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ABSTRACT

Data Driven Computational Mechanics (DDCM) solves the boundary value problem by directly
relying on the strain-stress data, bypassing the need for a constitutive model. In presence of materials
exhibiting a softening response, Finite Element analyses performed with a constitutive model typically
use a length scale, which can be introduced into the problem in multiple ways. A few commonly used
ways include the addition of the gradient of damage variable in the energy density functional, using the
gradient of strain while evaluating the internal variable, and so on. However, in the context of DDCM,
these techniques may not be effective as the internal variables are not explicitly defined. Hence, the
current article introduces a regularization technique, where the gradient of strain is constrained to
lie within some interval. This prevents strain localization within an element by introducing a length
scale into the problem. This article demonstrates the effectiveness of such a regularization technique
in the case of 1D problems using a constitutive model while comparing its performance with strain
gradient (SG) models.

Keywords Localization, Strain gradient limiter, Regularization, Softening, Damage

1 Introduction

Local models of damage result in spurious localization of strain and damage in a region that depends on the mesh size.
This is a consequence of the lack of a length scale in such models. Different techniques exist in the literature to prevent
this mesh dependence and regularize the problem. One of these techniques rely on the gradient of the strain to introduce
the length scale onto the problem [1]. In this case, the equivalent strain that is used to evaluate the damage variable is
computed using the strain as well as its gradient. This results in the implicit and explicit gradient models. Another
approach relies on the computation of a non-local equivalent strain as a weighted integral of the strain variable [2, 3]. In
[4], a non-local driving force has been defined to compute the evolution of the damage variable. On the other hand, the
gradient of strain can be included in the stain energy functional directly. The result is the class of strain gradient (SG)
models, presented in [5, 6] and references therein. The introduction of the gradient of the strain in the strain energy
functional precludes the localization of strain by introducing a length scale into the model. An analysis of the SG
models in the presence of damage can be found in [7]. In that study, various cases were considered, where the damage
is considered to affect just the elastic (non-gradient) modulus in some cases and both the moduli in some other cases.

∗This article has been peer-reviewed, corrected following the requests of the reviewers and accepted in principle for publication
in Comptes Rendus mécanique (https://comptes-rendus.academie-sciences.fr/mecanique).
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The difference between the two approaches in including the SG into the analysis is that in the approach by [2], the SG is
used to compute an effective strain, which in turn affects only the computation of damage. The strain energy density
function remains unchanged. This can be seen to be an instance of uncoupled regularization with strain regularization
in the context of [8]. The SG models in [5, 6, 7], for instance, include the SG in the definition of the strain energy
itself. In the latter case, the inclusion of gradient effects affects the solution even during the elastic phase before the
material undergoes damage. Also, an analysis performed in [7] reveals that the SG models, even though they prevent
the localization of damage, result in dissipation that depends on the geometry of the analyzed specimen. In short, for
infinitely long specimens, using a SG model results in an infinite dissipation.

Other methods of regularizing the problem include introducing the gradient of the damage variable in the strain energy
functional, which introduces a characteristic length into the problem [9, 10]. This approach can also be compared to the
Phase Field models, see for instance [11, 12]. The Thick Level Set method introduced in [13] makes the damage a
function of the level set, the zero of which is identified to be the damage front. The norm of the gradient of the level
set function is restricted to be equal to 1, which introduces the length scale into the problem. A different approach to
introducing non-locality into the model has been introduced in [14, 15]. In [14], the gradient of the damage variable has
been constrained to be smaller than (a possibly damage-dependent) value. This prevents the damage from localizing
in one element when using a local damage model. In [15], the damage variable is instead constrained to be Lipschitz
continuous. This introduces a length scale into the model and prevents the mesh dependence of the solution as in the
previous case.

The standard Finite Element techniques obtain the solution of the equations of equilibrium and in this process, a
constitutive model is used to describe the behavior of the material. In [16], the material behavior is instead taken
to be described by the stress-strain data, ideally obtained from the experiments, thereby eliminating the need for a
constitutive model. The methodology is described as Data Driven Computational Mechanics, DDCM. The problem is
described as obtaining the mechanical state - pair of strains and stress, (ϵ, σ), that satisfies the equations of equilibrium
and the strain-displacement relations. A distance is defined between the mechanical state and the material states - the
strain-stress data that describes the behavior of the material. In addition to satisfying the equilibrium and compatibility
equations, the mechanical states also minimize the distance functional to the set of the material states. An extension of
the DDCM to inelastic cases has been performed in [17, 18, 19]. In [18, 19], the DDCM has been used to describe the
behavior of granular materials and a formulation equivalent to the Cosserat media has been used in [19] to prevent the
spurious (shear) strain localization in the numerical simulations.

However, the use of the Cosserat model to regularize the problem requires the presence of shear effects. Hence, they
may not be effective in regularizing the spurious localization encountered under mode-I loading (see page 30 of [1]) as
the rotational degrees of freedom do not become active under such loading. Also, the internal variables such as damage
typically used in the regularization are not explicitly introduced in DDCM. Hence, the current study intends to introduce
the notion of length scale into the problem by modifying the space of displacement functions from where the solution is
sought. The search space is modified to include only such functions whose second gradients are between −1/ℓc and
1/ℓc. In other words, the gradient of strains is restricted to lie in the interval [−1/ℓc, 1/ℓc]. During the minimization of
the strain energy density functional, the second displacement gradients are constrained by using Lagrange multipliers.
This can also be interpreted as limiting the energy associated with the gradients of strain to a certain value. This leads to
some resemblance of the method presented to the SG models.

This article presents the continuum version of the regularization technique where the behavior of the material will be
described by a constitutive function. It shall be noted that the intent is to use this methodology with the DDCM, where
the FE simulations are performed entirely using the database without any model. Thus, the constitutive model presented
in the next section will be replaced by a database of stress-strain pairs. This can be seen as using DDCM for inelastic
materials, for instance as in [17], but with the regularization presented in this article. This will be the focus of the future
work. Since the regularization is applied on the strains rather than internal variables, the proposed methodology indeed
remains valid even in the context of DDCM.
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2 The local problem - 1D case

Finding the solution of the boundary value problems consists of minimizing the potential energy functional which is
defined as (in the 1D case)

Π(u) =

∫
Ω

ψ(u,x) dx−Wext(u), (1)

where u,x denotes the gradient of the displacement, ψ denotes the strain energy functional, and Wext indicates the
potential of the external forces. In the case of material that undergoes damage, the strain energy function is made to
depend on the damage as well, ψ(u,x, d), where d denotes the damage variable. Damage d takes the values in the
interval [0, 1], where the value of 0 indicates a pristine material and 1 indicates a fully damaged material. In this case,
the potential energy to be minimized becomes

Π(u, d) =

∫
ψ(u,x, d) dx−Wext(u) +

∫ t

0

D dt, (2)

where D denotes the dissipation function [20]. An evolution equation for damage can be specified using the notion of
standard general materials [21].

The dissipation in this case can be written as

D =

∫
Ω

Y ḋdx, (3)

where Y denotes the strain energy release rate, defined as Y = −∂ψ/∂d. The evolution equation for damage can be
written using a positive, one-homogeneous dissipation potential as φ(ḋ) = Ycḋ+ 1(ḋ). 1 is the indicator function that
takes a value of 0 if ḋ ≥ 0 and +∞ otherwise. φ can hence be expressed as

φ(d∗) =

{
Ycd

∗ if d∗ ≥ 0,

+∞ otherwise.
(4)

The above choice of dissipation potential introduces irreversibility of the damage variable. The evolution equation can
then be written as

Y ∈ ∂φ(ḋ). (5)

It shall be noted that the subdifferential has been used here as the indicator function is not differentiable. The evolution
equation now becomes

Y − Yc ∈ ∂1(ḋ). (6)

This results in the Kuhn-Tucker conditions for the evolution of damage as

Y − Yc = 0 when ḋ ≥ 0, and Y − Yc ≤ 0 when ḋ = 0, (7)

Written compactly, (Y − Yc)ḋ = 0. (8)

When ḋ < 0, ∂1(ḋ) = ∅ and hence, ḋ < 0 is forbidden. Picking a form for the strain energy functional as in [10],

ψ(u, d) =
1

2
g(d)E0u

2
,x, (9)

where g(d) is the degradation function which depends on damage and E0 is the undamaged modulus of the material. It
shall be noted that the damage effects do not discriminate between the tensile and compressive loadings in the current
formalism as the bar will be subjected to tensile loading only.

The strain energy release rate then becomes

Y = −1

2
g′(d)E0ϵ

2, (10)

where ϵ = u,x and ′ denotes the derivative with respect to the argument.

When ḋ = 0, Y − Yc should be smaller than 0. This implies

|ϵ| ≤ ϵc(d) =

√
− 2Yc
E0g′(d)

. (11)
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The above condition establishes the criterion for the propagation of damage, which depends on the current value of
damage. It shall be noted that the function g shall be a monotone decreasing function of damage for the quantity under
the square root will be greater than 0 [10].

When |ϵ| ≥ ϵc and Y = Yc, ḋ ≥ 0. This condition can be used to evaluate the damage as

d = (g′)−1

(
− 2Yc
E0ϵ2

)
, ϵ ̸= 0, (12)

such that d > dn−1, the damage at the previous time. •−1 indicates the inverse of the function • and the damage is
obtained by evaluating the inverse at the value of the argument.

Currently, similar to in [10], a linear damage model will be used. In this case, g becomes

g(d) =
1− d

1 + (k − 1)d
. (13)

k denotes the ratio of strains when the damage reaches 1 (ϵf ) and when the damage starts to increase from 0 (ϵ0),
k = ϵf/ϵ0. Evaluating the derivative and using it in the equation 12,

d =
ϵ− ϵ0
ϵf − ϵ0

, (14)

subject to d ≥ dn−1.

It shall be noted that different dissipation and degradation functions (or more generally, stored energy functional) can
be used from the ones in this article, for example introducing tension-compression asymmetry. It leads to a perhaps
different driving force and damage evolution, but there is no direct effect on the regularization methodology presented.

Remark. It shall be noted that the functional to be minimized can be written as Π(u, d) =
∫
[ψ(u,x, d) + Ycd] dx−

Wext(u), where Yc can be seen to be energy expended per unit volume for the body to completely undergo damage
during homogeneous deformation. Stable solutions are taken to minimize Π with respect to admissible variations of u
and d. This is the approach that was followed in [9], where the stability and uniqueness of the solutions for the gradient
damage models was investigated.

Limitations

It is well known that the version of the damage model presented is devoid of length scale and as such the uniqueness of
the solution is lost when the damage initiates as a consequence of the loss of convexity of the strain energy functional.
This manifests itself as the dependence of the solution on the mesh parameter in the Finite Element setting. This can be
addressed by multiple approaches. A non-exhaustive list of approaches can be seen as - by using the gradient of damage
in the strain energy density functional ([10] and the references therein), by using a non-local version of the driving
force as in [4], by using the gradient of the strain when evaluating the damage [2], or by using the strain gradients in the
strain energy density functional [5].

An analysis of the SG method to introduce the length scale into the model has been carried out in [7]. It was observed
in that study that the introduction of strain gradients into the model regularizes the problem. However, it was noted
that the energy dissipated during the evolution of damage is dependent on the geometry of the specimen. The damage
propagates along the sample till the entire sample is fully damaged. Indeed, for infinitely long specimens, it was
observed that the energy dissipated is infinite.

3 The proposed method

The current study proposes to introduce the length scale into the problem by restricting the gradient of strains to lie
in a certain range. This prevents the localization of strain in one element and the FE solution is expected to become
independent of the mesh parameters. The time interval of interest is discretized as 0 = t0 < t1 < t2 < · · · < tf = T .
Starting from the minimization problem as in the previous section, the incremental potential energy at the current time
is defined as

Π(u, d) =

∫
Ω

[ψ(u,x, d) + Ycd] dx−Wext(u) + quantities at the previous time. (15)

4
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The quantities at the previous time do not affect the minimization process and will be dropped from the definition of Π
for convenience. In the usual case, the solution is sought as the pair (u∗, d∗) that minimizes Π, given the damage state,
dn−1, at the previous time. The damage variable is taken identically as 0 at t = 0.

(u∗, d∗) ∈ arg min
(u,d)∈(Cu×Cd

n;dn−1)
Π(u, d). (16)

Here, Cu, Cd
n denote the function spaces of u and d with the appropriate smoothness. They are defined as

Cu = {u ∈ H2(Ω)| u = ud on ∂Ωd}, (17)

Cd
n = {d ∈ L∞(Ω)| d(x) ≥ dn−1(x) and d(x) ∈ [0, 1] ∀x ∈ Ω}, (18)

where H2(Ω) denotes the space of functions whose second derivatives are square integrable and L∞(Ω) denotes the
space of bounded measurable functions in Ω. The irreversibility of damage is thus enforced. The damage is also
restricted to lie in the interval [0, 1]. For convenience, W (u, d) is defined as

W (u, d) = ψ(u,x, d) + Ycd, (19)

and will be used from hereon.

In the current case, in addition to the regularity requirements on u that arise from the condition
∫
ψ(u, d) dx < +∞, an

additional constraint is added as follows. From the equation 14, it can be seen that the damage depends on the current
value of strain. In the models that are devoid of any length scale, the strains and hence the damage tend to localize
within one element. This leads to large gradients of damage as well as strain in these regions. Introducing an additional
constraint that the gradients of strains are bounded by a certain value on the space from which the displacements are
sought is expected to prevent this.

Beginning by defining such a space in 1D case as

L = {u ∈ Cu : |u,xx| ≤
1

ℓc
}. (20)

the minimization problem can now be written as

(u∗, d∗) ∈ arg inf
(u,d)∈(Cu∩L×Cd

n;dn−1)
Π(u, d). (21)

The constraint on the gradient of strain can be included in the potential energy functional using the indicator function,
1, as

Π(u, d) =

∫
Ω

W (u, d) dx−Wext(u) +

∫
Ωc

1

{
|u,xx| ≤

1

ℓc

}
(x) dx, (22)

where the indicator function is defined as

1 {v ≤ a} (x) =
{
0 if v(x) ≤ a,

+∞ otherwise.
(23)

It shall be noted that the constraint is restricted to the region Ωc, which is defined as

Ωc = {x ∈ Ω : d < 1}. (24)

The constraint is not applied in the regions where the material is fully damaged. The importance of this condition will
be made clear in the later sections.

The absolute value in the constraint on the strain gradient in the equation 22 can be removed by expressing it as two
constraints: uxx ≤ 1/ℓc and −uxx ≤ 1/ℓc. These two constraints can now be applied using the indicator function as

Π(u, d) =

∫
Ω

W (u, d) dx−Wext(u) +

∫
Ωc

1

{
u,xx ≤ 1

ℓc

}
(x) dx+

∫
Ωc

1

{
−u,xx ≤ 1

ℓc

}
(x) dx. (25)

Clearly, at any point in the body, at most, only one of the above constraints is active. Also, observing that

1

{
u,xx ≤ 1

ℓc

}
= sup

λ∈L2,≥0

λ

(
u,xx − 1

ℓc

)
, (26)

5
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the potential energy can be written as

Π(u, d) =

∫
Ω

W (u, d) dx−Wext(u) + sup
λ+∈L2,≥0

∫
Ωc

λ+
(
u,xx − 1

ℓc

)
dx+ sup

λ−∈L2,≥0

∫
Ωc

λ−
(
−u,xx − 1

ℓc

)
dx.

(27)

By duality, the Lagrange multipliers belong to the space of square integrable functions, L2(Ω). The solution now
satisfies

(u∗, d∗) ∈ arg inf
(u,d)∈(Cu,Cd

n;dn−1)
sup

λ+,λ+∈L2,≥0

Π∗(u, d, λ+, λ−), (28)

where Π∗(u, d, λ+, λ−) =
∫
Ω
W (u, d) dx−Wext(u) +

∫
Ωc
λ+

(
u,xx − 1

ℓc

)
dx+

∫
Ωc
λ−

(
−u,xx − 1

ℓc

)
dx.

Comparison with the strain gradient models

It shall be noted that both the constraints in the equation 25 cannot be active at the same point and hence, either or both
of the λ+ and λ− are 0. Defining Ωa ⊆ Ωc as the region where the Lagrange multipliers are non-zero, the region of
integration of the last term can be changed to Ωa.

Taking the variation of Π∗ with respect to u results in

δuΠ∗(u, d, λ) =
∫
Ω

σδu,x dx︸ ︷︷ ︸
δWσ

−δWext(u) +

∫
Ωa

[
λ+δu,xx − λ−δu,xx

]
dx︸ ︷︷ ︸

δWλ

. (29)

The first integral can be split into integrals in two domains Ωa and Ω \ Ωa. Hence,

δuΠ∗(u, d, λ) =

∫
Ω\Ωa

σδu,x dx +

∫
Ωa

σδu,x dx − δWext(u) +

∫
Ωa

[
λ+δu,xx − λ−δu,xx

]
dx. (30)

Assuming no body forces, δWext(u) = 0. The first integral can be expanded as∫
Ω\Ωa

σδu,x dx =

∫
Ω\Ωa

(σδu),x dx−
∫
Ω\Ωa

σ,xδudx. (31)

Observing that
∫
Ω\Ωa

(σδu),x dx =
∫
∂(Ω\Ωa)

(σ.n)δudx, where n is the outward normal to ∂(Ω \ Ωa), the integral
becomes ∫

Ω\Ωa

σδu,x dx =

∫
∂(Ω\Ωa)

(σΩ\Ωa .nΩ\Ωa)δudx−
∫
Ω\Ωa

σ,xδudx. (32)

Also, δu = 0 on ∂Ω. Hence,∫
Ω\Ωa

σδu,x dx =

∫
∂Ωa\∂Ω

(σΩ\Ωa .nΩ\Ωa)δudx−
∫
Ω\Ωa

σ,xδudx, (33)

where ∂Ωa \ ∂Ω is the part of the boundary of Ωa that does not intersect the boundary of Ω (if their intersection is not
empty). It shall be observed that in the above equation, nΩ\Ωa is the outward normal to ∂Ωa part of ∂(Ω \ Ωa). The
second and the last terms of the equation 30 can be similarly expanded as∫

Ωa

σδu,x dx+

∫
Ωa

[
λ+δu,xx − λ−δu,xx

]
dx =∫

∂Ωa

(σΩa .nΩa)δudx−
∫
Ωa

σ,xδudx+

∫
Ωa

[
λ+ − λ−

]
,xx

δudx−
∫
∂Ωa

[
λ+ − λ−

]
,x
.nΩaδudx. (34)

Combining all the above in equation 30,

δuΠ∗(u, d, λ) = −
∫
Ω\Ωa

σ,xδudx−
∫
Ωa

σ,xδudx+

∫
Ωa

[
λ+ − λ−

]
,xx

δudx+∫
∂Ωa

(σΩ\Ωa .nΩ\Ωa)δudx+

∫
∂Ωa

(σΩa .nΩa)δudx−
∫
∂Ωa

[
λ+ − λ−

]
,x
.nΩaδudx. (35)

6
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It has been assumed that λ+ and λ− are 0 on ∂Ωa. The equations of equilibrium can be established using δuΠ∗ = 0,
for arbitrary δu, as (realizing that nΩa = −nΩ\Ωa )

σ,x = 0 in Ω \ Ωa, (36)

σ,x − [λ+ − λ−],xx = 0 in Ωa, (37)

σΩ\Ωa −
(
σΩa −

[
λ+ − λ−

]
,x

)
= 0 on ∂Ωa. (38)

It shall be noted that the equation 37 resembles the equilibrium equation with the couple stress that arises in the SG
models [5, 7]. Identifying σ − [λ+ − λ−],x as τ , it can simply be written as τ,x = 0. However, it shall be noted that the
term analogous to the couple stress is non-zero only in the regions where the constraint is active. In the regions where
this is not the case, the equations of equilibrium remain the same as that in the Cauchy media (λ+,− = 0 and so, σ = τ ).
This can be regarded as the main difference with the SG model, where the couple stresses are active everywhere in the
body. The equation 38 resembles the continuity of traction across the internal surfaces, σ = τ at the interface ∂Ωa.

Remark. Instead of imposing the constraint on the gradient of the strain as in equation 20, it is possible to restrict
the strains to be Lipschitz continuous as was done with the damage fields in [15]. However, in the limit of vanishing
element length, the constraint on the Lipschitz continuity tends to the constraint on the directional derivative of the
strain. It shall be noted that in this case, the regularity requirements on u can be loosened and it is sufficient that
u ∈ H1(Ω) as opposed to the currently stated H2(Ω). See the remark 4.1.

4 FE discretization and solver

4.1 Discretization

The minimization problem is solved using the Finite Element method. The choices of the spaces of functions used
will be discussed here. As can be observed from the strong form of the equilibrium equations 36 and 37, the Lagrange
multipliers take after the couple stresses that are usually observed in the SG models. Different discretization approaches
exist when using the SG models [6, 22] - the first, where the displacements are approximated by using Hermite
polynomials, the second, considered a mixed FE method, where the displacements are quadratic and an additional strain
variable that is piece wise linear linear and continuous. In the second case, the strain variable is constrained to be the
gradient of displacement using Lagrange multipliers.

In the present case, the former method will be used and the displacements are approximated in space using Hermite
polynomials. Since the Lagrange multipliers are analogous to the couple stresses in the SG model, and the couple
stresses vary linearly within each element and are discontinuous across elements, a similar discretization will be used
for the Lagrange multipliers in this case. Of course, whether the choice of such a space for the Lagrange multipliers is
stable should be determined by testing if it satisfies the inf-sup condition [23] that typically arises in the class of mixed
FE methods. Such a study will be undertaken at a later time and is beyond the scope of the current article. Here, the
stability of the solution will be determined by refining the mesh and observing their variations, if any, as the mesh is
refined.

The displacement within an element can be expressed as

u = u1H1 + u′1H2 + u2H4 + u′2H3, (39)

where

H1(ξ) = 1− 3ξ2 + 2ξ3, (40)

H2(ξ) = L(ξ − 2ξ2 + ξ3), (41)

H3(ξ) = L(−ξ2 + ξ3), (42)

H4(ξ) = 3ξ2 − 2ξ3. (43)

ξ varies from 0 to 1 with in the element. It can be expressed as a function of the coordinate along the length, x, as
ξ = (x− xl)/(xr − x1), where x1 and xr denote the coordinates of the left and right nodes, respectively. L = xr − xl.
The representation of the above shape functions can be seen in the figure 1.

7
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Figure 1: The Hermite polynomial shape functions for an element of unit length.
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Figure 2: Shape functions for the Lagrange multiplier.

The overall displacement field can be written as u = Hu, where u is a vector containing the degrees of freedom and
H is the matrix containing the basis or the shape functions. The strains can be expressed similarly as ϵ = Bu, where
B is the discrete gradient operator.

The strain energy density at a point is given by ψ = 1
2Eϵ

2. The overall strain energy is hence
∫
ψ dx. This can be

expressed as ∫
Ω

ψ dx =

Ne∑
e=1

∫
Ωe

ψ dx, (44)

where Ne denotes the number of elements. Within each element, the integral can be computed using an appropriate
quadrature rule. For instance, since the displacements are cubic, the strains within each element are quadratic. Strain
energy is hence a fourth order polynomial for a homogeneous material. Hence, the Gauss quadrature rule with three
integration points can integrate the strain energy density functional exactly. In cases where either the material or the
geometry is not homogeneous, the integration is only approximate.∫

Ωe

ψ dx ≈
3∑

g=1

1

2
wgEgAgϵ

2
g. (45)

In the above, wg denotes the quadrature weight, Eg and ϵg denote the value of modulus and the strain at the integration
point, respectively. Ag is the cross-sectional area at the Gauss point. Similar procedure can be followed for all the
elements and the overall strain energy can be expressed as∫

ψ dx ≈ 1

2
uTKu. (46)

K is the stiffness matrix. The damage variable is computed at the Gauss point using the strain variable. In this case,
Eg is the damaged modulus at the Gauss point, Eg = g(dg)E0. The minimization is performed using the alternate
minimization technique and hence, dg is a known (see the next section).

As mentioned earlier, the Lagrange multipliers are taken to be piecewise linear and discontinuous, see figure 2. They
can be expressed as λ = Nλλ. λ is a vector containing the nodal values of the Lagrange multiplier. The gradient of
the strain can be expressed as ϵ′ = Du, where D is the discrete second gradient operator. The inequality constraint,
ϵ′ ≤ 1/ℓc, written in weak form, becomes ∫

λϵ′ dx ≤
∫

1

ℓc
λ dx. (47)
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Written in terms of the global degrees of freedom,

λT

(∫
(Nλ)TD dx

)
u ≤ λT

∫
1

ℓc
(Nλ)T dx. (48)

The above equation is integrated numerically by a two point Gauss quadrature rule. The discrete form of the constraint
is

Λu ≤ lc, (49)

where, Λ =
∫
(Nλ)TD dx. The constraint ϵ′ ≥ −1/ℓc can be written as −ϵ′ ≤ 1/ℓc. In discrete form,

−Λu ≤ lc. (50)

The two constraint can be written together as
Au ≤ b, (51)

where A =

(
Λ
−Λ

)
and b =

(
lc
lc

)
.

Remark. In the current case, since the constraint is imposed on the gradient of strain and this requires the computation
of the strain gradient, the Hermite elements have been used. For a linear element, the strain field is constant over
an element and the gradient of strain will be 0 within the element. If, instead, as mentioned earlier, the strains are
constrained to be Lipschitz continuous, a linear element would have been sufficient.

4.2 Solver

The strain energy functional is not convex anymore when the damage variable is introduced. Hence, the alternate
minimization algorithm will be used to find the minimum of the strain energy functional. During this process, at a
given time step, the minimization is carried out with respect to the displacement variable assuming the damage variable
to be frozen. After the displacements are updated, the potential energy is now treated as a function of the damage
alone and is minimized with respect to damage. This leads to the update of damage variable according to the equation
8. Convergence is said to have been achieved if, at a given iteration, the change in the displacement and the damage
variables are within some tolerance level.

The first minimization with respect to displacement is to be carried out under the inequality constraint in the equation
51. The fmincon subroutine of Matlab, with the SQP method [24] has been used to carryout this minimization. The
subroutine requires the gradient of the objective function to be supplied. In the current case, this is simply Ku, owing
to the quadratic objective function. The discrete form of the inequality constraints is already of the form Au ≤ b
and need not be simplified any further. The dirichlet boundary conditions on the displacement are applied as equality
constraints.

The minimization with respect to the damage variable, together with the form of the function g results in the expression
for damage as in equation 14. The damage is updated subject to the constraint ḋ ≥ 0. Written discretely, this translates
to d ≥ dn−1, where dn−1 is the damage at the previous time step. In short, if d̃ = ϵ−ϵ0

ϵf−ϵ0
, d̃ = 1 if ϵ ≥ ϵf . d|t=0 = 0.

Then

d =

{
dn−1, if d̃ ≤ dn−1

d̃, otherwise.
(52)

It shall be noted that this update is carried out at each Gauss point.

5 Application to a 1D problem

To test the effectiveness of the formulation in preventing the strain localization, it has been applied to the case of a 1D bar
under traction with a defect at the center to trigger the initiation and localization of damage. The geometry considered can
be seen in figure 3. At the center of the bar, the area is taken to vary as A(x) = 1+0.01 cos (π − (πx)/(2ξ) + π/(4ξ)),
ξ = 0.12m. The bar is fixed at its left end and is subjected to a displacement at its right end. Characteristic length ℓc is
chosen so that 1/ℓc = (ϵf − ϵ0)/ℓc0, that the material that undergoes damage occupies a length of ℓc0 at failure. For
the damage model chosen, the parameter ℓc0 can also be related to the energy dissipated by the structure as will be
shown later in equation 55.
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Figure 3: 1D bar used for the analysis. The area at the middle of the bar is slightly smaller than the rest of the bar,
which initially allows the strains to localize in that region.

Remark. The value of 1/ℓc should be chosen to prevent the inequality constraint on the strain gradient from becoming
an equality constraint before the initiation of damage.

The value of lc0 has been chosen to be 0.2m. ϵ0 and ϵf have been chosen to be 1× 10−3 and 15× 10−3, respectively.
E0 has been chosen to be 1× 105 Pa. It is expected that the localization of strain and damage occur at the middle of the
bar when ud approaches 1mm. The response of the bar will be studied under two different mesh sizes. The region of
interest is meshed with elements of smaller length compared to the edges. It was ensured that the potential localization
region is resolved by at least 10 elements.

Remark. It will be observed later on that the value of ℓc0 chosen leads to a snap-back in the overall traction-separation
behavior of the body. To capture this response, an arc-length based solver that controls the amount of dissipation in a
time step [25] has been used.

5.1 Results

The distribution of strain (before the initiation of damage) along the bar when the bar is meshed with 35 elements can
be seen in the figure 4. Here, the strain gradient remains strictly below 1/ℓc and so, the constraint is inactive. It shall be
noted that the element size is nonuniform - the body is divided into three regions. In the regions away from the center,
the element size has been chosen to be 0.06m. Near the center where the damage is expected to occur, the element size
is about 0.016m.
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Figure 4: Strain distribution along the bar when applied displacement = 0.8017m. The constraint is not yet active at
this time.

As a consequence of the smaller cross-sectional area at the center of the bar, the strains are higher in that region. As the
value of ud increases, the damage, hence, initiates at the center and propagates outward. The evolution of damage as
the displacement at different times can be seen in the figure 5 for when the bar is meshed with 35 and 55 elements.
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It shall be noted that the regions away from the center (where the element size is 0.06m) are not refined. Only the
central part of the bar of about 0.4m has been refined between the two mesh sizes. The applied displacement values for
each curve starting from the lower most to the upper most curves are 1.0492mm, 1.4206mm, 1.7919mm, 2.1633mm,
2.5346mm, 2.9060mm, and 3.2773mm. The corresponding distribution of strain can be seen in the figure 6 for the
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Figure 5: Distribution of damage along the bar meshed with 35 and 55 elements. The applied displacement values for
each curve starting from the lower most to the upper most curves are 1.0492mm, 1.4206mm, 1.7919mm, 2.1633mm,
2.5346mm, 2.9060mm, and 3.2773mm.

two meshes. Also can be seen in dashed line is the case where the bar is completely broken and the strain is concentrated
in the element that is fully damaged (d = 1).

From both the results, it can be seen that the length of the damaged region remains the same at the instant when the
center of the bar is fully damaged even when the mesh is refined. This span can be seen to be 2ℓc0. The overall response
of the bar presented as the load vs displacement plot can be seen in the figure 7. The results for the two mesh sizes can
be seen to be almost similar.

To compare the effect of the parameter ℓc0 on the width of the damaged region, its value has been changed to 0.1m and
the computations presented above have been repeated. The damage profile when the bar is completely broken along
with the case where ℓc0 = 0.2m can be seen in the figure 8. The load-displacement curve when ℓc0 = 0.1m can be
seen in the figure 9.

The paths taken by different point in the body can be seen on the stress-strain plot in the figure 10. It can be seen that
the point at the center takes up all the strain once it is fully damaged. The rest of the points in the damage zone then
undergo unloading to the origin. The point that is away from the damage zone simply undergoes loading and unloading
on the elastic branch.

5.2 Variation of the Lagrange multipliers

In the region where the constraint on the strain gradient is active, it is expected that the Lagrange multipliers are
non-zero. It shall be noted that the Lagrange multipliers are analogous to the couple stresses that arise in the strain
gradient theory. The distribution of Lagrange multipliers along the bar at an instance when the bar is partially damaged
can be seen in figure 11. The variation of the Cauchy stress, σ, along the bar at the same time step can be seen in the
figure 12. The evolution of Lagrange multipliers when the bar is meshed by 55 elements for the same load cases for the
strains presented earlier can be seen in the figure 13. It can be seen that the region where the Lagrange multipliers are
non zero expand further into the body with the damage front. It can be seen that σ is not homogeneous in the regions
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Figure 6: Distribution of strain along the bar meshed with 35 and 55 elements. The applied displacement values for
each curve starting from the lower most to the upper most curves are 1.0492mm, 1.4206mm, 1.7919mm, 2.1633mm,
2.5346mm, 2.9060mm, and 3.2773mm.
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Figure 7: Overall load-displacement response of the bar with two different meshes (ℓc0 = 0.2m).

where the Lagrange multipliers are non-zero.

It can be noticed from the figures 6 and 12 that the strains as well as the stresses exhibit oscillations towards the end
of localization zone. These can be attributed to the sharp rise in the strains as the localization zone expands. This, in
combination with the order of interpolation used may result in oscillations in the strains and stresses. If linear elements
were used together with the Lipschitz constraint, the oscillations might not have occurred.
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Figure 8: Damage profile when the bar breaks for ℓc0 = 0.1m and 0.2m.
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Figure 9: Overall load-displacement response of the bar with two different meshes (ℓc0 = 0.1m).

5.3 Verification of equilibrium

The strong form of the equilibrium equations obtained by using the current regularization method can be seen in the
equations 36 and 37. The weak form of these equations can be seen in the equation 29. Whether the Cauchy stress and
Lagrange multipliers obtained from the current simulations satisfy the equilibrium equations can be verified by using
them in the equation 29. Observing that the virtual work of the internal forces can be written in the form (see equation
29 for definitions) δWσ + δWλ = {δu}T {f}int, at equilibrium, it is expected that {f}int = 0 for the internal nodes.
For the nodes at the boundary, non-zero values corresponding to the reaction forces are expected.

Defining δWσ = {δu}T {f}σ and δWλ = {δu}T {f}λ (see equation 29), the variation of {f}σ and {f}λ as a function
of the number of the degree of freedom can be seen in figure 14. Non zero values of the internal forces, fσ , can be seen
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Figure 10: The paths taken by different points in the body with their positions as in the legend. Here, ℓc0 = 0.2m.
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Figure 11: Variation of Lagrange multiplier (λ+ − λ−) along the bar, for an applied displacement of 1.4206mm.

at the internal nodes in contrast to what is usually seen in the unconstrained case. The force fλ can be seen to take equal
values but with opposite signs. The evolution of the internal force vector, {f}int = {f}σ + {f}λ, can be seen in the
figure 15. Here, the only non-zero forces observed are at the ends of the bar, corresponding to the displacement degrees
of freedom, as expected. Hence, it can be concluded that the Cauchy stress and the Lagrange multipliers together verify
the weak form of the equilibrium equation.

Remark. It shall be noted that since the Hermite elements have been used in this article, the degrees of freedom
at a node is the displacement and its derivative. The global degrees of freedom are stored in an array of the form
{u1 u′1 u2 u′2 . . . }T . The conjugate nodal forces take the form {f1 m1 f2 m2 . . . }T . At the boundaries of the body,
only the displacements are applied, and hence, only the nodal forces that are conjugate to the displacement appear.
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Figure 12: Variation of σ along the bar, meshed with 55 elements, for an applied displacement of 1.4206mm.
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Figure 13: Variation of Lagrange multiplier (λ+ − λ−) along the bar, for various end displacements. The applied
displacement values for each curve starting from the lower most to the upper most curves are 1.0492mm, 1.4206mm,
1.7919mm, 2.1633mm, 2.5346mm, 2.9060mm, and 3.2773mm.

Hence, in the figure 15, at the right end, the penultimate force can be observed to be non-zero, while the last DOF that
is conjugate to the derivative of displacement can be seen to be zero.

5.4 Significance of regularization region

It shall be noted that the constraints on the gradient of strains are active only in the region of the body where the
damage is smaller than 1. The reason for this will be discussed here. It has been noted earlier on in the article that the
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Figure 14: Internal nodal forces, {f}σ and {f}λ, as a function of the number of degree of freedom, for an applied
displacement of 1.4206mm.
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Figure 15: Internal nodal forces, {f}int = {f}σ + {f}λ, as a function of the number of degree of freedom, for an
applied displacement of 1.4206mm.

Lagrange multipliers that enforce the constraint on the gradient of the strain are analogous to the couple stresses that are
encountered in the strain gradient models.

The regularization used in the current study can be interpreted as that in the SG models, but with some differences. In
the SG models, the modulus (E′) associated with the strain gradient affects the solution in the regions where the strain
gradient is non-zero. This is the case regardless of whether the material is undergoing damage or not. In the current
case, however, it shall be noted that for the regularization to be active, the gradient of strain should be equal to 1/ℓc0.
When the strain gradients are smaller than this value, the constraint is inactive and the solution coincides with the elastic
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solution (gradient independent elasticity). When the damage initiates, the element in which the initiation takes place
deforms more than the rest, which increases the gradient of strain as the surrounding elements are possibly undamaged.
The constraint is thus activated after the damage and hence the strain increases to a certain level, which results in the
propagation of strain and hence damage to the surrounding elements. The non-locality is thus achieved.

Deactivating the constraint once again when the damage reaches 1 lets the damaged element take up all the deformation
(currently, regularization is removed from an element if the damage at any of the Gauss points reaches 0.999). This also
prevents the damage envelope from expanding into the body as the strains are increased, limiting the damage to a band
of width ℓc0, regardless of the length of the bar. Hence, the energy dissipated during the process does not depend on the
length of the bar. This can be noted to be one of the main differences between the current regularization technique and
the strain gradient models.

An analysis of the SG models in the context of regularizing the damage problem can be seen in [7]. Two cases were
considered in that article. In the first case, the damage variable is taken to act only on the modulus (E) associated with
the strain and not on the modulus (E′) associated with the strain gradient. In this case, it was observed that the energy
dissipated in the bar (from the initiation of damage till the stresses in the bar become zero) depends on the length of the
bar and that for a bar of infinite length, this is ∞. It was concluded that this was the case even when the damage acts on
E′, but E′(1), the modulus when the material is fully damaged, is strictly greater than 0.

It was also observed in the same study that making E′ a function of the damage variable such that E′ goes to 0 when
the damage reaches 1 results in an ineffective regularization. In essence, the results of the FE simulations were observed
to depend on the mesh size in this case. In the simulations performed in that study, the dependence of E′ on the damage
variable was taken to be similar to that of E. Such effects are avoided in the present approach.

5.5 Energy balance

The energy dissipated in the body as it undergoes damage can be seen to be D|t0 =
∫
Ω
Ycd(t) dx. Since the final

damage profile can be observed to not depend on the mesh size (see figure 5), the energy dissipated in the body is hence
independent of the mesh size. The energy dissipated in the body from the damage initiation to complete fracture can be
related to the parameter ℓc0 as follows. When the damage reaches 1 (and hence, ϵ reaches ϵf ) at some point in the body,
the strain distribution in the damaged region can be written as (as a consequence of the Lipschitz constraint)

ϵ(x) = ϵ0 +
ϵf − ϵ0
ℓc0

x, ∀x ∈ [0, ℓc0], (53)

where the x-coordinate is taken as 0 at the point where ϵ = ϵ0. The damage variation in this region, from equation 14,
can be seen to be

d(x) =
x

ℓc0
. (54)

The energy dissipated in the body is
∫
Ω
Ycddx = 2Yc

∫ ℓc0
0

ddx (since the damaged material spans a length of 2ℓc0).
Since Yc = −g′(0)ψ0(ϵ0), the expression for the energy dissipated (denoted as Gc) can be seen to be

Gc =

∫
Ω

Ycddx =
k

2
E0ϵ

2
0ℓc0 (= Ycℓc0). (55)

The parameters k,E0, ϵ0, and ℓc0 have been defined earlier. Hence, fixing all other parameters and changing ℓc0 results
in a different Gc. Thus, changing ℓc0 while keeping all the other parameters the same is akin to analyzing a material
with a different Gc.

The evolution of the strain energy (SE=
∫
ψ dx), energy dissipated (D=

∫
Ω
Ycddx) and the total external work

(Wext =
∫ t

0
fext(t)u̇dt) done on the body can be seen in the figure 17 when ℓc0 = 0.2m and in the figure 18 when

ℓc0 = 0.1m for two meshes presented earlier. Till the initiation of damage, it can be observed that Wext = SE. The
dissipation in the body can be seen to increase as the damage evolves and the damage front moves into the body. It shall
be noted that the evolution of energies has been plotted with the ratio of maximum strain in the bar at each time to the
strain at failure (ϵf ) since this quantity is monotonically increasing.

With the parameters chosen, the value of Gc can be computed from equation 55 and compared with the dissipation
obtained from the FE computations. For ℓc0 = 0.1m, and 0.2m, the values of Gc are 0.15 J and 0.075 J, respectively.
The corresponding values obtained from the FE computations using the finer mesh can be seen to be 0.145 J and
0.0723 J, respectively and are quite close to the expected values.
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From figure 17, it can be seen that the strain energy in the body increases towards the end as the material undergoes
failure in the case of ℓc0 = 0.2m. However, when ℓc0 = 0.1m (figure 18), there is a reduction in the strain energy as
the damage progresses. This can be interpreted as follows. The strain energy in the body can be written as

SE =

∫
Ω

ψ dx =

∫
Ωu

ψ dx+

∫
Ωd

ψ dx, (56)

where Ωu denotes the undamaged region of the body (d(x) = 0 ∀x ∈ Ωu) and Ωd denotes the region of the body
undergoing damage (d(x) > 0 ∀x ∈ Ωd = Ω \Ωa). The measure of Ωd depends on the parameter ℓc0. Also, the values
taken by the strain energy density, ψ, in Ωd depends on the parameters of the damage evolution model such as k. For
instance, the variation of the strain energy density with strain for two different values k can be seen in figure 16. The
strain energy density function has been expressed entirely in terms of the strain variable only, ψ(u, d) = g(d(ϵ))ψ0(ϵ).
It can be seen that the variation of ψ after the initiation of damage is a competition between the increasing strain and
damage variables. It shall be noted that the ψ that enters the second term on the RHS of equation 56 belongs to the
region marked undergoing damage in figure 16. Hence, even though the measure of the region Ωd might be smaller
than the measure of Ωu, the strain energy density in Ωd might be higher than in Ωu which leads to different variations
of SE after the initiation of damage depending on the parameters such as k, ℓc0.
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Figure 16: Variation of ψ with strain for different values of k = ϵf/ϵ0.

Figure 19 presents the energy evolution for cases where ϵf and ℓc0 are varied. For the case where ϵf = 7.5× 10−3,
ℓc0 = 0.2m (dashed lines), Gc = 0.075 J is same as when ϵf = 15× 10−3, ℓc0 = 0.1m. It can be seen that the energy
dissipated for both the cases is the same. The value of abscissa when the damage (and hence dissipation) initiates is
different because of the different ϵf s. Once initiated, the evolution curves for both the cases follow a similar trend.

The results for ϵf = 7.5 × 10−3 and ℓc0 = 0.1m, 0.2m can be seen in figure 20. The strain energy can be seen to
decrease as the material undergoes damage when ℓc0 = 0.1m as the damaged material occupies a smaller region. Also,
the ψ vs ϵ curve looks like the solid red line in figure 16 and hence the strain energy density in Ωd is smaller when
compared to when ϵf = 15× 10−3.

6 Extension to 2D and 3D cases

The extension of the local damage problem to 2D and 3D cases is straightforward and has been carried out in several
references and will be described below briefly. It is of interest here to determine the quantity on which the constraint is
to be applied. In the 1D case presented in this article, the constraint has been directly applied on the gradient of the
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Figure 17: Evolution of different energies plotted as a function of ratio of the maximum strain in the body at each time
to ϵf . Here, ℓc0 = 0.2m. The solid and the dashed lines indicate the results when 35 and 55 elements, respectively, are
used.

strain variable as the damage is a function of the strain itself. Introducing the constraint on the spatial distribution of
strain variable thus prevents the spurious strain and damage localization.

In 2D and 3D cases, the damage is a function of an equivalent strain. The appropriate quantity can be obtained by
considering the equation 10, which can be written as

Y = −g′(d)ψ0(ϵ), (57)

where ψ0 denotes the undamaged strain energy functional. Damage propagation is taken to occur when Y = Yc. This
condition is then used to determine the damage value at the current time. Equation 12 now becomes

d = (g′)
−1

( −Yc
ψ0(ϵ)

)
, ψ0(ϵ) ̸= 0. (58)

By taking the form of g as in the equation 13, an explicit expression for damage can be written as

d =

√
kψ0(ϵ)−

√
Yc

(k − 1)
√
Yc

. (59)

k can now be seen as
√
ψ0(ϵf )/ψ0(ϵ0), the ratio of undamaged strain energies at complete failure to at initiation.

To maintain parallels with the strain gradient elasticity as was done in the case of 1D model, it is possible to impose the
constraint directly on the invariants of the strain gradients defined through the energy density functional as in [5]. For
instance, the constraint can be written as

ψ̃(∇ϵ) = a1kiikkkjj + a2kijjkikk + a3kiikkjjk + a4kijkkijk + a5kijkkkji ≤
1

ℓ′2c
, (60)

for some ℓ′c, where kijk = ϵij,k. Taking all the ai s except a4 to be 0 results in (for 1D case)

(u,xx)
2 ≤ 1

a4ℓ′2c
. (61)

If a4ℓ′2c = ℓ2c , the constraint becomes similar to that of the equation 20.
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Figure 18: Evolution of different energies plotted as a function of ratio of the maximum strain in the body at each time
to ϵf . Here, ℓc0 = 0.1m. The solid and the dashed lines indicate the results when 35 and 55 elements, respectively, are
used.

7 Conclusions

The current article presents a way to introduce a length scale into the problem to prevent the mesh dependence of the
solution in case of a softening material. Applying the constraints on the strain instead of damage precludes the need for
internal variables. Hence, this approach is ideally suited for applications that use DDCM, where the constitutive model
used in this article will be replaced by the stress-strain data (i.e. damage variable will not be considered explicitly).
It has been observed that the introduction of length scale in such a way renders the solution independent of the finite
element mesh even after the initiation of damage. Restricting the regularization region to where the damage variable is
smaller than 1 makes sure that the damage front does not propagate all through the body as is usually observed in the
SG models (if damage is not directly available, stress can give an indication of the damage level). Thus, the energy
dissipated is independent of the geometry of the body and is finite. The extension of the current method to the 2D and
3D cases will be the subject of future work.
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