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Résumé - Deux des principaux défis de la reconnaissance d'images dans l'imagerie radar, à rayons X ou à rayons T 

sont la variation du motif selon le point de vue et les techniques d'extraction de caractéristiques qui doivent extraire 

les informations les plus discriminantes des données analysées. Dans cet article, nous décrivons une nouvelle technique 

d'extraction de caractéristiques et de classification d'images qui atteint une précision presque maximale et surpasse les 

approches classiques, telles que k-NN et SVM avec les vecteurs de caractéristiques habituels d'entropie et d'énergie. 

Dans notre algorithme, les images sont décomposées en utilisant une décomposition en paquets d'ondelettes invariante 

en rotation. Ensuite, nous calculons la nouvelle technique d'extraction de caractéristiques, l'entropie N-directionnelle, 

pour chaque sous-bande d'ondelettes à partir de la "meilleure base". L'arbre de caractéristiques résultant est soumis à 

un classificateur à réseau de neurones graphiques, adapté pour fonctionner avec des décompositions en ondelettes. 

Abstract - Two of the main challenges of image recognition in radar, X-ray or T-ray imaging are the view-point 

variation of the pattern and the feature extraction techniques that must retrieve the most discriminative information 

from the analyzed data. In this paper, we aim to describe a novel feature extraction and image classification technique 

that achieves an almost maximum accuracy and surpasses the classical approaches, such as k-NN and SVM with usual 

entropy and energy feature vectors. In our algorithm, the images are decomposed in using a Rotation Invariant Wavelet 

Packet Decomposition. Afterwards, we compute the novel feature extraction technique, the N-directional entropy, for 

each wavelet sub-band from the “best basis”. The resulted feature tree is fed to a Graph Neural Network classifier, 

adapted to operate on wavelet decompositions. 

 

1 Introduction 

The main objective of image pattern recognition is to 

study data characteristics in order to classify it into their 

corresponding categories [1]. Pattern recognition is 

widely used in include industrial automation; speech and 

character recognition; computer-aided diagnosis such as 

ultrasound imaging, THz and X-rays; entity 

fingerprinting and authentication [2]. Our paper proposes 

to develop a new approach of pattern analysis and in-

depth feature extraction based on entropy and rotation 

invariant wavelet decomposition.  

Wavelet Packet Decomposition (WPD) is a popular 

tool in the field of image processing. WPD is the 

extension of the Wavelet Transform (WT) that provides 

an over-complete analysis of an image in terms of time-

frequency sub-bands. Due to the exhaustive possibilities 

of wavelet basis, a selection algorithm is used to 

determine the best wavelet decomposition under the 

entropy minimization constraint. Our objective is to 

tackle the rotation variance problems in image 

processing.  As human beings, we can identify an object 

from many perspectives or view-points, but from a 

computer vision perspective the extracted features from 

the rotated image are distinct compared to the ones 

extracted from the original image. This directly impacts 

the robustness of a classifier, certainly leading to image 

misclassification. Rotation-Invariant WPD (RI-WPD) is 

the key algorithm used in our study which offers an 

identical decomposition for images with the same 

pattern, but which is rotated. 

Generally, in most classification problems, the feature 

vector used to train a classifier is created from the entropy 

or the energy of each wavelet sub-band [3], [4]. Their 

main issue regards the lack of an in-depth analysis of 

each sub-band. We propose a novel feature extraction 

method which emphasizes the distribution of entropy in 

N directions for each wavelet sub-band and therefore, 

providing an optimal analysis of an image. The idea 

behind using the entropy concept as a means of 

characterization comes from the fact that the wavelet sub-

band selection is also based on an entropy cost function. 

Moreover, in image processing, the entropy can be 

regarded as the quantization of the structural information 

contained in an image: the lower the entropy of an image, 

the more structured the information are, while the higher 

the entropy, the more the image is closer to noise. 

Graph Neural Networks (GNN) are becoming popular 

due to the great expressive power of graphs [5]. Their 

main characteristic, important to our proposed method, is 

the ability to directly operate on non-Euclidean data 

structures such as wavelet decomposition trees. They 

consider the hierarchical information of data, opposed to 

classic neural network which omit it. 

The paper is organized as follows. Section 2 and 3 

describes the WPD and the rotation invariance. Section 4 

details the novel N-directional entropy characterization 

of the RI-WPD. Section 5 describes the GNN and the way 



we use it in our study. Section 6 presents the results of 

the classification and Section 7 closes the paper with the 

conclusions. 

2 Wavelet Packet Decomposition 

In 2-D WPD, an image is decomposed into one 

approximation and three detail images. These images are 

further decomposed into other four images, and the 

process is repeated until it reaches a specific depth level. 

The classic 2-D WPD can be implemented using the 

multiresolution, filter-bank and pyramidal image 

decomposition principles [6]. The 2-D WPD of an

M M image up to a depth of 1D+ , where
2

logD M

, is defined as follows: 

( ) ( ) ( ) ( )

1

4 , , 2 , 2

d d

k i j k m i m j

m m

C h m h n C+

+ +
= (1) 

( ) ( ) ( ) ( )

1

4 1, , 2 , 2

d d

k i j k m i m j

m m

C h m g n C+

+ + +
= (2) 

( ) ( ) ( ) ( )

1

4 2, , 2 , 2

d d

k i j k m i m j

m m

C g m h n C+

+ + +
= (3) 

( ) ( ) ( ) ( )

1

4 3, , 2 , 2

d d

k i j k m i m j

m m

C g m g n C+

+ + +
= (4) 

where 0

0
C is the initial image, k is the node’s index in the 

wavelet packet tree, representing each sub-band, h  and 

g  are a pair of quadrature mirror filters’ impulse 
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 The number of possible decompositions in a WPD 

is often large and thus it is expensive to analyze all the 

possible options. In our study, the “best” decomposition 

from the overcomplete 2-D WPD is based on the 

minimization of the nonnormalized Shannon entropy 

function for an image, ( ),f x y : 

( ) ( ) ( )2 2, , ln ,
x y

E f x y f x y f x y  =      (5) 

The algorithm of selecting a subspace of minimum 

entropy distribution is synthesized in the following 

paragraph. Starting with the initial image and proceeding 

level by level to the lower resolution images: 

• Compute the Shannon entropy for each node 
P

  

(parent entropy) and the entropy of its four children 

nodes denoted as 
A

 (approximation entropy), 
H



(horizontal details entropy), 
V

 (vertical detail 

entropy), 
D

 (diagonal detail entropy). 

• If the summed entropy of the children nodes is less 

than the entropy of the parent, keep the children 

nodes in the optimal decomposition tree. Otherwise, 

keep only the parent node. 

An example of a wavelet “best” basis is presented in 

Fig. 1, where each square represents a sub-band. 

 

Fig. 1. An example of “best” basis 

3 Rotation-Invariant Wavelet Packet 

Decomposition 

Rotation invariance can be achieved by combining the 

polar representation of an image and a row-shift invariant 

WPD. The polar representation transposes the complex 

problem of rotation in digital images to a more simpler 

translation problem. A translation in the polar domain 

represents a rotation in the cartesian grid. The mapping 

from an image ( ),I x y  to a polar representation, 

( ),PR   is defined by the following relations: 

( ) ( )
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  − −
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where ( ),
c c

x y is the center of the image, ( ),x y denotes 

the sampling pixel in the cartesian grid and ( ),  is the 

radius and angular position in the polar representation. 

Fig. 2. presents the block diagram of RI-WPD.  

 

Fig. 2. Block diagram of RI-WPD. 

In order to achieve a rotation-invariant decomposition, 

an additional degree of freedom is considered and 

generated at the decomposition stage and then, 

incorporated into the “best basis” selection algorithm, as 

it is shown in Fig. 3. Iteratively, at each node, we generate 

a subspace of all wavelet packet coefficients and their 

row-shifted versions, using the analysis operator, here 

denoted A. A row-shift indicates that the translation 

operator (T) can only translate the image in horizontal 

direction, thus the accepted translations are  ( )0,0  and 

( )1,0 , where the first argument expresses the translation 

on the Ox  axis (horizontal), respectively, the Oy  axis 

(vertical) of the polar image. It is important to note that 

in our case, horizontal translations in polar domain are in 

fact rotations in the cartesian grid.  

 

Fig. 3. Presentation of RI-WPD analysis operator – high- and 

low-pass filtering, followed by one sample delay (T) and 

subsequently a 2:1 down sampling; and its implementation 

using Mallat’s pyramidal decomposition principle. 

The following RI-WPD definition represents all the 

coefficients that appear if the decomposed image is firstly 

translated and filtered individually for each case of row-

shifts, where  0,1T  . Considering the aforementioned, 

RI-WPD definition is stated as follows: 
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To demonstrate the rotation invariance of the wavelet 

decomposition we present the results of the classic WPD 

and RI-WPD for an image and its rotated version.  

 

 

Fig. 4. Comparison between WPD and RI-WPD for an image 

and it rotated version 

Fig. 4 presents a pattern and its rotated version in both 

cartesian and polar grid. We note that the WPD “best 

basis” is different in each case, while the RI-WPD 

provides an identical decomposition.  

4 N-directional entropy characterization 

The RI-WPD is further exploited by extracting 

features based on the Shannon entropy. This measure 

quantizes the informational randomness of an image. 

Considering a dyadic image of width and height, M , its 

entropy is 0  when the image has a constant intensity and 

is maximum, 
2

logM M , when the pixels’ probabilities 

are uniformly distributed. This novel feature extraction 

method is based on the concept that lower values of the 

entropy are correlated to geometric information 

appearing in the image. Based on this idea, our method 

offers a description of the structural information in N  

directions or regions.  

In Fig.5 (a) we present the manner in which we 

compute the directional entropy for an image. In Fig. 5 

(b), (c) we show an example of directional entropy 

characterization in 16N =  directions. The entropies are 

presented in a polar grid as this representation is adequate 

to visualize the distribution inside the analyzed image.  

 

 
(b) 

 
(a) (c) 

Fig. 5. (a) N-directional entropy algorithm; (b) 16-directional 

characterization of binary image and (c) its noised version. 

The two cases from Fig. 5 (b), (c) represent two binary 

images, one being the noised version of the other. The 

polar plot describes the directions in which there is 

structured information in the image. It is worth 

mentioning that this characterization is dependent only 

on the scattering of information and not on the geometric 

structures. The impact of the additive noise is observed 

in an increase of entropy due to the randomness 

introduced by the additive noise in the image. This novel 

tool proves to be powerful enough to describe not only 

time-frequency bands from wavelet decompositions, but 

even plain patterns present in images. 

5 Graph Neural Networks 

The motivation of using GNNs comes from the 

hierarchical structure of the RI-WPD. In other words, the 

RI-WPD decomposes an image into a wavelet graph, 

where each node represents a sub band image and each 

edge represents the connection between an image and one 

of its children. The general graph convolutional network 

(GCN) used in our study follows the message passing 

paradigm [7] and is defined as follows: 
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where V is the RI-WPD “best basis”, ( )V i  is the set of 

neighbors of node i , 
ji

c  is the product of the square root 

of node degrees, 
ji

e  is the scalar weight of the edge from 

node j  to node i , and  is the non-linear activation 

function ReLU. By using the notations W and b  we 

denote the weights and bias vector, respectively. The 

proposed network has 3 rounds of graph convolution with 

64 neurons. The next step is graph readout or aggregation 

by averaging over all node features: 

1
agg j

j V

h h
V 

=  (12) 

The final layer of the proposed GNN is a SoftMax 

classifier which offers a probabilistic interpretation of the 

output. The optimization technique used is Adam with a 

learning rate of 0.001 = . Fig. 6 presents an image 

characterization and classification example using the 

neural architecture mentioned in the previous paragraphs. 

Each of the “best basis” nodes are described using the N-

directional entropy. The edges are assumed to be of the 

same priority or weight, that is 1
ji

e = , regardless of ,i j .  

 

Fig. 6. Image decomposition, feature extraction and GNN 

classification 

6 Results 

To demonstrate our proposed approach in pattern 

recognition we used enhanced THz images [8] of a 

sample composed from bars (10 100mm m ) printed 

with metallic-ink on a polyethylene substrate. Fig. 7 (a) 

shows the THz image acquired with a THz imaging 



system, TeraPulse Ltd. from Teraview. The THz image 

is reconstructed using the maximum-peak value of the 

time-domain pulses. The spatial resolution is 300 m  and 

the sample is 3cm by 3cm . To generate a database of 

images, we divide the initial 100 100  image into 4 

classes or patterns as showed in Fig. 7. Inside these 4 

regions, we use a square mask to extract images 

corresponding to each class and thus generating the 

database. The percentages from the initial dataset of 1600 

(400 per class) images corresponding to the 

training/validation/testing sets are 70/15/15.  

 

Fig. 7. Database creation from the optical image to the 

corresponding THz images. 

The GNN architecture described in Section IV is 

trained until the validation accuracy is not greatly 

improving for 5 consecutive iterations. The confusion 

matrix from Table 1 provides an insight of the classifier’s 

capabilities on the testing set. As we observe, only one 

image is misinterpreted by the proposed GNN. The 

resulting accuracy is 99.6%, verified on the testing set. 
240 Cls 1 Cls 2 Cls 3 Cls 4 

Cls 1 60 0 0 0 

Cls 2 0 59 0 1 

Cls 3 0 0 60 0 

Cls 4 0 0 0 60 
 

Table 1. Confusion matrix 

The bar graphic in Fig. 9 presents a comparison 

between our proposed method and other classic image 

classification techniques such as k-Nearest Neighbors (k-

NN), Support Vector Machine (SVM) and WPD.  As we 

can observe, the performance of our proposed method is 

superior compared to the other techniques by a large 

margin. Second and third to our method are the classic k-

NN and WPD. 

 

Fig. 9, Performance analysis of different techniques of image 

classification 

7  Conclusions 

The paper presents a novel approach in image pattern 

recognition. The method is based on the rotation 

invariant version of the WPD and the selection of a ”best 

basis” using the mimization of the entropy cost function. 

In this manner, we provide a precise decomposition, 

invariant to view-point variations of the analyzed pattern. 

Each sub-band is analyzed to emphasize the 

distribution of entropy in N directions. Thus, a pattern 

analysis using our method will result in graph-structured 

features representing the most concise information 

extracted from the image in terms of structural 

information. Our study showed that the proposed method 

can considerably outperform classic techniques of pattern 

recognition. Moreover, using GNNs allows to use 

multiple stacked features of the analyzed pattern to 

increase the performance of the classifier. Further studies 

include the possibility to use a complementary feature 

such as N-directional energy. 
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