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Abstract—Two of the main challenges of image recognition 

in radar, acoustic or T-ray imaging regard the view-point 

variation of the pattern and the feature extraction techniques 

that must retrieve the most discriminative information about 

different classes. In this paper, we focus on feature extraction 

and image classification techniques by using a Rotation 

Invariant Wavelet Packet Decomposition and a novel entropy-

based feature extraction technique to characterize an image. 

The entropy-based characterization described in the paper 

offers an extended analysis compared to usual approaches such 

as the energy of the wavelet sub bands. The computed features 

will be further used to train a Graph Neural Network adapted 

to a quad-tree decomposition which has the powerful advantage 

of considering the structural information of the rotation-

invariant decomposition. We successfully classified the images 

with an accuracy of 99.3%. The results are compared to other 

classic feature extraction techniques such as k-NN, SVM and 

WPD, proving the increased capability of our method. 

Keywords—rotation invariant wavelet packet decomposition, 

directional entropy, feature extraction, graph neural networks, 

pattern recognition, image classification 

I. INTRODUCTION 

Pattern recognition is a field that studies the characteristics 
of data by means of computer algorithms in order to classify 
it into different categories [1]. The image recognition task 
involves four main components that are usually addressed in 
the following order: sensing or image acquisition, image 
preprocessing, image characterization or feature extraction 
and finally, image classification. The applications of pattern 
recognition are vast and include computer-aided diagnosis 
such as ultrasound, imaging, X-rays and ECG; industrial 
automation; speech and character recognition; industrial 
fingerprinting and entity authentication [2]. Most of the 
methodologies used in these applications are based on a hybrid 
approach, meaning that they use complementary information, 
tools and paradigms to create an accurate classification 
system.  In the same framework, our paper aims to develop a 
new approach of image analysis and in-depth feature 
extraction based on entropy, invariant wavelet decomposition 
and “best basis” selection.  

One of the popular choices in the field of image processing 
is Wavelet Packet Decomposition (WPD). WPD is the 
generalization of the Wavelet Transform (WT) that offers a 
detailed decomposition of an image into multiple frequency 
sub-bands [3], similar to how the human’s visual system 

perceives reality. However, the overcomplete WPD is 
computational expensive and therefore, it motivates the 
selection of the most representative sub-bands usually based 
on entropy cost functions [4]. Additionally, from a human 
perspective, an object can be identified regardless of the point 
of view. But from computer vision perspective, the extracted 
features from the rotated image are different with respect to 
the ones coming out from the original image. This will 
certainly lead to a wrong classification. In order to overcome 
this, the WPD is improved to Rotation-Invariant WPD (RI-
WPD), making the decomposition identical for images with 
the same pattern, but which is rotated. 

In most classification applications, the widely used 
features are the statistical properties [5], energy [6] or the 
entropy [7] of the wavelet sub-bands. The aforementioned 
approaches wield good results in many applications, but lack 
an in-depth analysis of the wavelet sub-bands. In opposition, 
in this paper, the wavelet features are in fact the N-directional 
entropy of each wavelet sub-band. This novel feature 
emphasizes the distribution of entropy in N  directions for 

each sub-band and offers an optimal analysis of the image. 
The idea behind using the entropy concept as a means of 
characterization comes from the fact that the wavelet sub-band 
selection is also based on an entropy cost function. Moreover, 
in image processing, the entropy can be regarded as the 
quantization of the structural information contained in an 
image: the lower the entropy of an image, the more structured 
the information are, while the higher the entropy, the more the 
image is closer to noise.  

Recently, Graph Neural Networks (GNN) have received 
more attention because of the great expressive power of 
graphs [8]. They are used in various domains, including traffic 
forecasting, recommender systems, medical diagnosis, etc. A 
GNN operates directly on non-Euclidean data structures and 
can be used to predict node labels, links, edges or even the 
entire graph. The major advantage of GNN stems from 
considering the hierarchal information of data, as opposed to 
the classical neural networks which do not.  

The contributions of this paper include the 
characterization of images in terms of entropy distribution 
among wavelet sub-band images and finally, the use of GNN 
adapted to RI-WPD to classify a set of images accordingly. 

The paper is organized as follows. Section II briefly 
describes the classic WPD, “best basis” selection and the 
additional property of rotation invariance. Section III details 



the novel N-directional entropy characterization of the RI-
WPD. Section IV describes the GNN and the way we use it in 
our study. Section V presents the results of the classification 
and Section VI closes the paper with the conclusions. 

II. WAVELET PACKET DECOMPOSITION 

WPD is an extension of WT in order to obtain an over-
complete time-frequency analysis of a signal. In 2-D WPD, an 
image is decomposed into one approximation and three detail 
images. These images are further decomposed into other four 
images, and the process is repeated. The classic 2-D WPD can 
be implemented using the multiresolution, filter-bank and 
pyramidal image decomposition principles [9]. The 2-D WPD 

of an M M image up to a depth of 1D + , where
2

logD N

, is defined as follows: 
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where 0

0
C is the initial image, k is the node’s index in the 

wavelet packet tree, representing each sub-band, h  and g  

are a pair of quadrature mirror filters’ impulse responses. 

Recursively, the image d
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. In Fig. 1 we 

find the graph representation of an over-complete wavelet 
analysis. 

 

Fig. 1. Full WPD analysis graph 

A. “Best basis” selection 

The number of possible decompositions in a WPD is often 
large and thus it is expensive to analyze all the possible 
options. There are efficient algorithms for finding optimal 
decompositions which use classical entropy and energy cost 
functions [10]. In our study, the “best” decomposition from 
the overcomplete 2-D WPD is based on the minimization of 
the nonnormalized Shannon entropy function for an image, 

( ),f x y : 

 ( ) ( ) ( )2 2, , ln ,
x y

E f x y f x y f x y=       . (5) 

The algorithm of selecting a subspace of minimum 
entropy distribution is synthesized in the following. Starting 
with the initial image and proceeding level by level to the 
lower resolution images: 

• Compute the Shannon entropy for each node 
P

  

(parent entropy) and the entropy of its four children 

nodes denoted as 
A

 (approximation entropy), 
H



(horizontal details entropy), 
V

 (vertical detail 

entropy), 
D

 (diagonal detail entropy). 

• If the summed entropy of the children nodes is less 
than the entropy of the parent, keep the children nodes 
in the optimal decomposition tree. Otherwise, keep 
only the parent node. 

 After finishing the algorithms’ iterations, we find the 
optimal decomposition as it is depicted in Fig. 2, where only 
the most representative time-frequency bands are included. 

 

Fig. 2. “Best basis” or the optimal decomposition graph 

B. Rotation invariancy 

The WPD can be modified accordingly in order to achieve 
rotation invariance [11]. Fig. 3 (a) presents the strategy to 
obtain a rotation invariant decomposition. Firstly, the image is 
represented in polar coordinates. The polar representation 
transposes the complex problem of rotation in digital images 
to a more simpler translation problem. A translation in the 
polar domain represents a rotation in the cartesian grid. The 

mapping from an image ( ),I x y to a polar representation, 

( ),PR   is defined by the following parameters relations: 

 ( ) ( )
2 2

c c
x x y y = − + −   (6) 
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where ( ),
c c

x y is the center of the image, ( ),x y denotes the 

sampling pixel in the cartesian grid and ( ),  is the radius 

and angular position in the polar representation. 

Rotation-invariance comes from an additional degree of 
freedom, generated at the decomposition stage and 
incorporated into the “best basis” selection algorithm as it is 
shown in Fig. 3 (b), (c). In accordance with Mallat’s pyramidal 
decomposition principle [9], at each node, we generate the 
subspace of all wavelet packet coefficients and their row-
shifted versions using the analysis operator, here denoted A . 
Row shifting indicates that the translation operator (T) can 
only translate the image in horizontal direction, thus the 

accepted translations are ( )0,0  and ( )1,0 , where the first 

argument expresses the translation on the Ox  axis 

(horizontal), respectively, the Oy  axis (vertical) of the polar 

image. 



 
(a) 

  
(b) (c) 

Fig. 3. Presentation of the: (a) conceptual scheme of  RI-WPD; (b) RI-WPD 

analysis operator A  – high- and low-pass filtering followed by one sample 

delay (T) and subsequently a 2:1 downsampling; (c) Mallat’s pyramidal 

decomposition with the presented analysis operator, A . 

With respect to the row-shifts, where  0,1T  , the RI-

WPD can be defined as follows: 
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Equations (8)-(11) represent all the coefficients that 
appear if the original analyzed image is translated individually 

by ( )0,0  and then by ( )1,0 , before the filtering procedure of 

each case. We select the “best” time-frequency band from the 
generated subspace based on the entropy cost function. By 
repeating the procedure, at each node, we select a space of 
minimum entropy distribution, invariant to rotations defined 
in the polar representation. 

    
(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Fig. 4. A comparison between WPD and RI-WPD for: (a) an image and (e) 
its rotated version in cartesian grid; (b), (f) same images in polar coordinates; 

(c), (g) WPD “best basis”; and (d), (h) RI-WPD “best basis”. 

Figure 4 (a), (b), (e), (f) shows an image and its rotated 
version in both cartesian and polar coordinates. We provide 
the corresponding WPD and RI-WPD analysis for a depth

3D =  in Fig. 4 (c), (d), (g) and (h), respectively. We observe 

that the RI-WPD “best basis” is the same regardless the 
orientation of the initial image, while in the classic WPD the 
basis changes. This feature of RI-WPD allows us to provide 

the same decomposition of a pattern regardless of its 
orientation. 

III. N-DIRECTIONAL ENTROPY 

After an invariant decomposition of the image, the next 
step is to introduce a novel method of feature extraction based 
on the Shannon entropy. The entropy measures the 
randomness of an image. For a M M  dyadic image, the 
entropy is 0 when the image is of constant intensity and is 

maximum, 
2

logM M , when the probabilities of a pixel value 

to occur are uniformly distributed. It is important to mention 
that lower values of the entropy are strictly correlated to 
structural information appearing in the image.  

 Based on this concept, we describe the distribution of 
information in N directions or regions of interest (ROI). The 

choice of N  depends on the information present in the image. 

As a rule of thumb, the maximum value should be a power of 
2 and lower than the smallest dimension of an image, in our 
case, M . In this manner we assure no overlapping pixels 
between the regions. If N does not respect the imposed 
constraints, the analysis should still provide a good 
description, but with redundant information and at a higher 
computation cost. 

 Fig. 5 (a), (b) provides two examples of a directional 
entropy analysis, where 8N =  and thus, forming 8 regions to 

compute the entropy. The computed entropies are presented in 
a polar plot as it provides an adequate way to visualize the 
distribution inside the analyzed image. The cases from Fig. 5 
represent two binary images, one being the noised version of 
the other. The two lobes present in each polar plot show that 
in specific directions there is a structure of information, in our 
case, a square and an ellipse. It is worth mentioning that this 
method is not dependent on the geometric structures, but 
rather on the scattering of information in the image. Moreover, 
the additive white noise has a low impact on the results, as we 
can see in Fig. 5 (b). The lobes keep their aspect, but their 
entropy is slightly increased due to the randomness introduced 
by the additive white noise in the whole image. 

 The N-directional entropy characterization has high 
potential in being a powerful tool to describe not only time-
frequency bands from wavelet decompositions, but even raw 
patterns and motives present in images.  

 
(a) 

 
(b) 

Fig. 5. N-directional entropy characterization of binary image: (a) ideal 

case; (b) noisy case. 



IV. GRAPH NEURAL NETWORKS 

A GNN is a type of neural network which directly operates 
on a graph structure. The main advantage of GNN regards the 
opportunity to exploit not only the features from all edges and 
nodes, but also the structural information of the graph, which 
is omitted by the classic neural network architectures [12]. A 
GNN is an optimizable transformation of all attributes of a 
graph (nodes or edges) that offers an optimal graph 
representation used to predict other node values, edges or even 
classify the entire graph. 

The motivation of using GNNs comes from the general 
hierarchical structure of the RI-WPD. In other words, the RI-
WPD decomposes an image into a wavelet graph, where each 
node represents a sub band image and each edge represents 
the connection between an image and one of its children. The 
general graph convolutional network (GCN) used in our study 
follows the message passing paradigm [13] and is defined as 
follows: 
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where V is the RI-WPD “best basis”, ( )V i  is the set of 

neighbors of node i , 
ji

c  is the product of the square root of 

node degrees, 
ji

e  is the scalar weight of the edge from node 

j  to node i , and   is the non-linear activation function 

ReLU. By using the notations W and b  we denote the 

weights and bias vector, respectively. The proposed network 
has 3 rounds of graph convolution with 128 neurons. The next 
step is graph readout or aggregation by averaging over all 
node features: 

 
1

agg j

j V

h h
V 

=   (13) 

The final layer of the proposed GNN is a SoftMax 
classifier which offers a probabilistic interpretation of the 
output. The optimization technique used is Adam [14] with a 
learning rate of 0.001 = . In our study, this type of neural 

network is adapted to work on a wavelet graph. Fig. 6 presents 
an image characterization and classification example using the 
neural architecture mentioned in the previous paragraphs. 
Each of the “best basis” nodes are described using the N-
directional entropy. The edges are assumed to be of the same 

priority or weight, that is 1
ji

e = , regardless of ,i j  values.  

 

Fig. 6. Image feature extraction and GNN classification from RI-WPD 

“best basis” 

V.  DATABASE CREATION AND RESULTS 

To demonstrate our proposed approach in pattern 
recognition we used enhanced THz images [15] of a sample 
composed from paper substrate (95%) and 3mm  metallic 

fibers (5%) printed on it with a random distribution. Fig. 7 (a) 
shows the optical image of the sample and the corresponding 

THz image acquired with a THz imaging system, TeraPulse 
Ltd. from Teraview. The THz image is reconstructed using the 
maximum-peak value of the time-domain pulses. The spatial 
resolution is 300 m  and the sample is 4.5cm by 4.5cm . The 

spatial resolution is limited by the refraction limit and the 
wavelength of the THz waves. Therefore, because of the small 
carbon fibers, the THz image does not resemble the optical 
image. 

To generate a database of images, we divide the initial 
150 150  image into 9 classes or patterns as showed in Fig. 7 

(a). Each pattern is interpolated to extract 256 256  images 

from inside of it. The training dataset creation is depicted in 
Fig. 7 (b), where for each interpolated image we apply a 
circular mask. The idea is to assure the independence of the 
images generated for a class. Inside the circular mask, we can 
freely translate and rotate a 256 256 mask without the risk 

of getting inter-class pixel information. In this manner, we 
generate 400 images for each category. To further validate our 
concept, we divide the database. The percentages from the 
initial dataset of 3600 images corresponding to the 
training/validation/testing sets are 60/20/20.  

 

(a) 

 
(b) 

Fig. 7. Presentation of the: (a) optical sample, THz image and the classes 

(noted from 1 to 9); (b) The means of class generation with a square mask 

inside a circle to avoid inter-class overlapping. 

The GNN architecture described in Section IV is trained 
until the validation accuracy is not greatly improving for 5 
consecutive iterations. The evolution of the learning metrics 
(training/validation loss and accuracy) can be seen in Fig. 8. 
The curves have a steady and a low-variance that correspond 
to an adequate learning procedure. The validation accuracy 
goes up to 99.8% and the validation loss converges to a 
minimum, solidifying the performance of the classifier. 

  
(a) (b) 

Fig. 8. Monitoring of learning metrics: (a) training/validation accuracy; (b) 

training/validation loss. 

The confusion matrix provides an insight of the classifier’s 
capabilities on the testing set. The rows correspond to the 
predicted class and the columns correspond to the target class. 
On the first diagonal, the numbers represent the correctly 
classified images, while the off-diagonal cells are the 
misclassified ones. The far-right column corresponds to the 
precision and false discovery rate (FDR), while the bottom 



row shows the recall and false negative rate (FNR). The cell 
in the bottom right shows the overall accuracy. As we observe, 
the resulted accuracy is 99.3%. Only a few images are 
misinterpreted by the proposed GNN, the FDR achieving a 
maximum of 2.5% for the third class. 

 

Fig. 9. Confusion matrix 

The bar graphic in Fig. 10 presents a comparison between 
our proposed method and other classic image classification 
techniques such as k-Nearest Neighbors (k-NN), Support 
Vector Machine (SVM) and WPD. In this comparison, we 
used the same image database with the same proportions for 
the training/validation and testing set. For WPD, the entropy 
features extracted are provided to train a two-layer neural 
classifier for 50 epochs. As for the k-NN, we analyzed 
multiple number of neighbors and found that 5k =  offered 

the best outcome. As we can observe, the performance of our 
proposed method is superior compared to the other techniques 
by a large margin. Second and third to our method are the 
classic k-NN and WPD. 

 

Fig. 10. Performance analysis of different techniques of image classification 

VI.  CONCLUSIONS 

The paper presents a novel approach in image pattern 
recognition. The method is based on the rotation invariant 
version of the WPD and the selection of a ”best basis” using 
the mimization of the entropy cost function. In this manner, 
we provide a precise decomposition, invariant to rotational 
variations of the observed pattern. 

Each time-frequency band is individually analyzed to 
emphasize the distribution of entropy in N directions or 

regions. Thus, a pattern analysis using our method will result 
in graph-structured features representing the most concise 
information extracted from the image in terms of information 
organization and structures.  

The graph structure imposes the use of GNN to classify 
the images, as this type of neural network works directly on 
the graph-structured data, improving the generalization power 
of the classifier.  

Our study showed that the proposed method can 
considerably outperform classic techniques of pattern 
recognition. Moreover, using GNNs allows to use multiple 
stacked features of the analyzed pattern to increase the 
performance of the classifier. Further studies include the 
possibility to extract complementary features from both a 
rotation and translation invariant WPD to increase the 
performance and robustness of the classifier. 

ACKNOWLEDGMENT 

This work is supported by the French Agence Nationale de 
la Recherche (AUSTRALE project – grant ANR-18-CE39-
0002) and Région AURA (AUTHANTIC project – grant 
C2019-086) 

REFERENCES 

[1] S. Asht and R. Dass, “Pattern Recognition Techniques: A Review,” Int. 
J. Comput. Sci. Telecommun., vol. 3, no. 8, 2012. 

[2] V. Kober, T. Choi, V. Diaz-Ramírez, and P. Aguilar-González, 
“Pattern Recognition: Recent Advances and Applications,” Math. 
Probl. Eng., vol. 2018, Nov. 2018, doi: 10.1155/2018/8510319. 

[3] R. C. Gonzalez and R. E. Woods, 4TH EDITION Digital image 
processing. 2018. 

[4] R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for 
best basis selection,” IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 713–
718, 1992, doi: 10.1109/18.119732. 

[5] G. G. Yen, “Wavelet packet feature extraction for vibration 
monitoring,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 650–667, 
2000, doi: 10.1109/41.847906. 

[6] W. Ting, Y. Guo-zheng, Y. Bang-hua, and S. Hong, “EEG feature 
extraction based on wavelet packet decomposition for brain computer 
interface,” Measurement, vol. 41, no. 6, pp. 618–625, Jul. 2008, doi: 
10.1016/J.MEASUREMENT.2007.07.007. 

[7] D. Wang, D. Miao, and C. Xie, “Best basis-based wavelet packet 
entropy feature extraction and hierarchical EEG classification for 
epileptic detection,” Expert Syst. Appl., vol. 38, no. 11, pp. 14314–
14320, Oct. 2011, doi: 10.1016/J.ESWA.2011.05.096. 

[8] J. Zhou et al., “Graph Neural Networks: A Review of Methods and 
Applications,” AI Open, vol. 1, pp. 57–81, Dec. 2018, doi: 
10.1016/j.aiopen.2021.01.001. 
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