
HAL Id: hal-03980732
https://hal.science/hal-03980732v1

Submitted on 25 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data interoperability assessment, case of
messaging-based data exchanges

Jannik Laval, Nawel Amokrane, Boubou Thiam Niang, Mustapha Derras,
Néjib Moalla

To cite this version:
Jannik Laval, Nawel Amokrane, Boubou Thiam Niang, Mustapha Derras, Néjib Moalla. Data inter-
operability assessment, case of messaging-based data exchanges. Journal of Software: Evolution and
Process, 2023, �10.1002/smr.2538�. �hal-03980732�

https://hal.science/hal-03980732v1
https://hal.archives-ouvertes.fr

Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE - TECHNOLOGY

Data Interoperability Assessment, Case of Messaging Based Data
Exchanges

Jannik Laval*1 | Nawel Amokrane2 | Boubou Thiam Niang1,2 | Mustapha Derras2 | Néjib
Moalla1

1DISP-UR4570, Univ Lyon, Univ Lyon
2, INSA Lyon, Université Claude
Bernard Lyon 1, 69676 Bron, France

2DRIT, Berger-Levrault, Lyon, France

Correspondence
*Jannik Laval Email:
jannik.laval@univ-lyon2.fr

Present Address
University Lumière Lyon 2, 160
Boulevard de l’Université, 69500 Bron

Summary

Data interoperability implies data exchanges among intra and inter enterprises collaborat-

ing with Information Systems (IS). The multiplicity of these exchanges and the increasing

number of data exchanged generates complexity and brings out the needs for control to

avoid dysfunctions with a negative impact on the overall performance of the systems.

Indeed, actually, interoperability has become a necessary performance lever that thus

requires particular attention. Being at a low level in the enterprise interoperability con-

cerns, data interoperability is mainly automated, which leads us to question: is it possible

to evaluate data interoperability performance and security based on inspection and analysis

of ongoing data exchanges? We therefore endeavored to answer this question by estab-

lishing monitoring and analysis systems. In this paper, we present a research work which

addresses services provided by a messaging based communication system. In order to col-

lect information on Information System interactions allowing one to assess their level of

data interoperability, we propose a Messaging metamodel that aggregates the collected

information. It provides a single point of control and enables one to determine indicators

of potential interoperability problems. The approach is validated on two case studies. An

industrial case study of interactions among existing systems is presented to showcase the

feasibility and interest of the approach. It is proposed on top of RabbitMQ and allows our

partner to identify some issues in the studied information system. The second case study

shows that the approach can integrate other protocols, by reading MQTT messages. The

approach is implemented using Moose, a software analysis platform.

KEYWORDS:

Event-driven Architecture, Message Broker, Data Monitoring, Interoperability Assessment

1 INTRODUCTION

Information systems are revolutionizing and transforming the activities of organizations. They are essential to any company in the process of
implementing a strategy to achieve its objectives. O’Brien and Marakas 1 define an information system as an organized set of resources of various
types. It is a combination of people, software, communication networks, hardware, data, policies and procedures that store, retrieve, transform and
disseminate a variety of information within an organization 2.

In today’s world, a company needs an information system to track all its activities. These activities, represented by business processes, can be
supported by software tools and enterprise applications that aim to automate exchanges. It can be a source of competitive strength if it allows

2 Jannik Laval et al

the company to innovate or perform tasks faster than competing companies. Shackelford et al. 3 state that information systems specialists focus
on integrating IT solutions and business processes to meet the information needs of companies, thus enabling them to achieve their objectives
effectively and efficiently. However, the information system is often not perfectly aligned with the company’s processes. On the one hand, the
company’s needs are constantly evolving and the information system must adapt to its requirements. On the other hand, the gap between speci-
fications and implementation is one of the main causes of IT project failures 4. In order to address these gaps, agility is seen an essential feature of
information systems 5,6.

At the same time, the information system depends on more and is more numerous and interconnected software applications, and therefore
more complex to transform. The information system is supported by interconnected computer applications. Its components are able to share and
exchange information without depending on a particular actor and function independently of each other. We call them interoperable systems 7.
Interoperability is a property that defines the ability of two or more systems or components to exchange information and use the information
exchanged 8. Interoperability is also characterized as the relationship of exchange and cooperative use of information. In practice, the success of the
cooperation depends heavily on the effectiveness of the interoperability between the participating systems. According to 9, data interoperability
is “the ability of data (including documents, multimedia content, and digital resources) to be universally accessible, reusable, and comprehensible
by all transaction parties (in a human-to-machine and machine-to-machine basis) by addressing the lack of common understanding caused by the
use of different representations, different purposes, different contexts, and different syntax-dependent approaches”. When established between
communicating information systems, it ensures increasing productivity and efficiency of inter- and intra-company processes. This is technically
possible through the automation of information exchanges based on the use of shared exchange formats and appropriate communication protocols.
To achieve data interoperability 10, companies implement flexible, scalable and loosely coupled architectures, such as service-oriented and event-
driven architectures (SOA, EDA).

A software application is defined as a living system 11. Companies must take into account the new technological developments that regu-
larly occur to meet the various business, technical (more reliable architecture, cloud, CPS, etc.) or qualitative (semantic integration, security, etc.)
needs 12,13. Beyond a "simple" software evolution, this transformation involves architectural, material and strategic changes, as well as processes
and security modifications 14. Despite these developments in software applications, the complexity continues to increase, particulary by shifting
the focus from architecture to deployment issues 15. Among the structure, interactions and data exchanges are concerned. Interoperability assess-
ment methods take into account barriers that hinder enterprises and systems to interoperate. Even if some or all barriers are overcome, technical
problems may arise due to the inherent nature of information systems and the constant evolution of systems that may alter the properties that
have been set up to perform interoperability. However, even if interoperability is guaranteed by design, we noted the problems of stability and
reliability of behavior when the constituents evolve: each constituent has organizational independence and can be added or removed from the
system. Incidents may appear on the whole system, or emerging behaviors may arise. This dynamicity does not allow the overall behavior of the
system to be anticipated at the time of its design 16. Processes, interfaces may change, and the way interoperability is conducted may be affected.
This is why it is important to monitor data exchanges and provide support to assess their performance. In this context, assessing the consequences
of the lack of interoperability between systems is a critical issue and is considered as one of the key challenges for enterprise information systems
interoperability research today.

In this article, we consider the dynamics of a distributed information system. The information system can become unstable or fragile, and lose its
reliability. Our work here deals with the monitoring of existing data exchanges among distributed information systems. The proposed framework
collects system data, and the latter is structured through Model Driven Engineering. This makes it possible to analyse and to propose elements
of remediation. Our contribution is the result of a collaboration with Berger-Levrault. This article is an extension of previous articles 17,18 with a
detailed explanation of the process, of the metamodel and more examples in the case study section.

2 RELATED WORK

The system operation phase lifts many scientific barriers. Maturity models 19,20,21,22,23,24 were first used as approaches to assessing interoperability.
They allow interoperability to be assessed against a set of predefined levels and provide recommendations for moving from one level to the next
one in order to achieve the required level or reach full maturity. However, maturity models do not provide a precise indication of the causes of
non-interoperability and mainly focus on general qualitative notions 25.

Once the distributed information system is put into production, its components are able to share and exchange information without depending
on a particular actor and operate independently of each other, we speak of interoperable systems 7. Interoperability has become an important
business asset and is now proposed as a key performance indicator for business process performance management systems 26.

The problem of interoperability between different heterogeneous systems already exists and is amplified by the strong deployment of dis-
tributed applications and the Internet of Things (IoT). To meet this challenge, companies are emphasizing the use of open standards for data

Jannik Laval et al 3

format and communication protocols. Also, they can approach the problem using agile software development process such as Continuous Software
Engineering 27,28 to increase the deployment frequency and the release delivery.

Some data interoperability issues are load-related. Interoperable systems can exchange large amounts of data while requiring low latency. This is
the case when interacting with IoT systems 29. The increase in the volumes of data exchanged implies the implementation of exchange architectures
capable of supporting not only the load, but also the variability in the frequency of data production. This requires distributed architectures (both
in terms of infrastructure and flows) that can be adaptable or even self-adapting 30, in order to strengthen the system’s resistance to malfunctions
while avoiding potential congestion phenomena and thus, guarantee reliable interactions in terms of interoperability.

Service Oriented Architecture (SOA) is one of the approaches used to integrate legacy platforms, protocols and systems 31. It is characterized by
simplicity, flexibility and adaptability. Researchers believe that SOAprovides significant benefits to organizations, enabling them to dynamically build
new applications and respond to changing business needs. Services represent the functionalities of the business 32. As an architectural approach,
it breaks down business applications into individual processes and services. They can be recomposed to create alternative applications. They can
also be exposed to other systems allowing different applications to reuse common parts.

Event-driven architectures (EDAs) are architectures that implement services that react to external events. The use of events allows the architec-
ture to operate asynchronously and with low coupling. An event-oriented architecture is based on a bus with subscription and publication features.
Message brokers are typically used to decouple distinct stages of software architecture. They enable asynchronous communication, which pro-
motes the decoupling of applications, using the subscription/publication paradigm. These message brokers also find new applications in the area of
IoT devices and can also be used as a method to implement an event-driven processing architecture. The multiplicity of this type of data exchange
generates complexity and control requirements.

Collecting event log data to understand or reengineer a complex process is known as Process Mining. This technique has been used for some
years in software engineering 33,34,35. It is applied to various software reengineering topics such as bug fixing 36. Process mining is mainly used to
reverse engineering of a work process. Given the dynamics and reliability analysis, this work is not suitable and needs to be coupled with a dynamic
process analysis system and semantics to facilitate the analysis of interoperability problems.

In terms of use of event data, the field of process discovery is a closer match. From the event data, it provides abstractions to model the process
as it works and links the logs to this abstraction 37. These abstractions allow the process manager to optimize performance issues, using complex
algorithms such as artificial intelligence 38. The process discovery domain is suitable for identifying an existing process that is not documented or
that must be understood. It does not consider the reliability of the system, which should be done by an expert when the discovery has yielded
results. Again, the various works in this area need to be coupled with analysis systems to dynamically analyse the interoperability of a system.

In this article, we discover the architecture of a running system using the event log of the system itself. The closest existing approach we have
found is the one of Gomez et al. 39. It provides a metamodel for building an IoT system. The difference between this approach and the one presented
in this article is that we evaluate running systems, while the objective of the other approach is to build a system. Similarly, for supervising an
information system, we have developed an approach that allows us to identify architectural problems such as interoperability problems.

3 OBJECTIVES

Event-driven architectures (EDAs) 40,41,42 allow loose coupling, but limit the ability to understand the overall behavior of the architecture. EDA is
based on the principle that an event is sent by a publisher node to a broker on a topic without knowing which node will consume the message.
A consumer subscribes to a topic and receive all messages published on this topic (Figure 1). The flexibility offered by this structure hide the
path taken by the messages, and the understanding of the architecture. The multiplicity of data exchanges generates complexity and highlights
supervision needs that can be met by setting up monitoring and analysis systems 43. A monitoring system is defined as a distributed process or set
of processes comprising the function and dynamic collection, interpretation and processing of information about a running application.

ApplicationApplication

Event
producer Publisher Subscriber Event

consumer

Broker
• topic 1
• topic 2
• …

event event
post event

to topic

notify event

subscribe
to topic

FIGURE 1 An EDA message flow

4 Jannik Laval et al

Existing structures (for example ApacheCamel1 2, NServiceBus3) providemonitoring consoles. However, theymainly focus on low-levelmonitor-
ing information such asmessage frequency, performance indicators ormemory usage. RabbitMQ4 provides amanagement consolewith information
about the structure of the messaging system and the status of messages 44. It presents lists of existing resources (channels, exchanges, queues ...),
their contents, their characteristics and a set of statistics. It is possible, for example, to access queues and check pending messages. In our expe-
rience, the RabbitMQ console can be used for real-time monitoring and is suitable for specific requests where the maintenance manager knows
which queues or exchanges to monitor. However, it does not allow advanced searches and filters on sources and messages in transit. Consumed
messages are no longer visible in the management console. In addition, messaging channels such as exchanges, queues and their links are volatile
and can be deleted when the consumer logs out.

The absence of these controlsmakes it difficult to analyse and diagnose dysfunctions, such as publisher and consumer inactivity, invalid exchange
formats or unavailability of data. As a result, it is difficult to identify the context and origin of the problem, based solely on a management console.
Our approach uses monitoring to perform an analysis capable of defining a kind of classification of the potential causes of problems occurring in
trade, in order of importance and for a given problem. In the first study, we advocate that the data exchange behavior between communicating
applications gives an indication of the level of interoperability of their data. A monitoring system should provide elements to maintain a good level
of interoperability based on the interoperability requirements 25.

We therefore propose to combine the information provided to perform advanced monitoring and querying. This would provide indicators which
determine maintenance actions. The main research problem addressed is to ensure the supervision of a distributed information system based on
the metadata of the messages, transiting through the system and the metadata of the message broker. The research objectives we have addressed
are the following:

1. Collect metadata of the messages transiting through the information system in order to analyse the architecture of the exchange system.
For this purpose, we proposed the analysis framework called Pulse. It collects metadata in order to (i) track the messages exchanged, (ii)
simplify the visualization of exchanges, (iii) improve maintainability by detecting exceptions (e.g. problems in the transfer of a message), and
by specifying the context and the origin of the problem.

2. Organize the collected metadata so that they can be processed in a consistent way. To this end, we have proposed a generic and extensible
metamodel adapted to the EDAs. It is capable of representing the AMQP and MQTT protocols (shown in the case studies) but also KAFKA
andCoAP protocols based on a correlation explained in Table 2, and can be extended to other protocols. Themessaging datamodel describes
the messaging structure implemented via message queuing and the exchange system. It is used for collecting the metadata from the logging
services offered by the exchange infrastructure and tracks the messages exchanged.

3. Identify interoperability issues and help solve them. To do this, we carried out a study of the causes and effects of the problems while
identifying the indicators related to interoperability.

4. Take into account the lifecycle of the various components. To achieve this, the Pulse structure integrates dynamics modeling functionalities,
where the life cycle of different components of the architecture is described including a history and the creation and deletion dates of the
components.

4 TERMS AND VOCABULARY

We address the supervision of distributed information systems based on four protocols:

• AMQP 45 : it’s an asynchronous communication protocol through a mediator. It aims to create an open standard for transporting information
between applications. A message is published in an exchange by a message producer, then routed by the message broker to one or more
queues according to predefined routing keys. Consumers connect to the queue to retrieve the message.

• MQTT 46 : it’s a communication protocol dedicated to the IoT. It was designed as an extremely lightweight asynchronous communication
protocol. It can work in the same way as AMQP. The subscription / publication model allows dissociating the producer sending a message
from the consumer receiving the messages. Compared to AMQP, MQTT includes a quality of service parameters. The level of service
determines the type of guarantee that a message has to reach the desired recipient.

1http://sksamuel.github.io/camelwatch/
2http://rhq-project.github.io/rhq/
3https://particular.net/nservicebus
4https://www.rabbitmq.com/

http://sksamuel.github.io/camelwatch/
http://rhq-project.github.io/rhq/
https://particular.net/nservicebus
https://www.rabbitmq.com/

Jannik Laval et al 5

• Kafka 47 : This protocol has been optimized to disseminate data between systems and applications as quickly as possible and in a scalable
manner. It is also based on a subscription / publication communication model. The data are organized into subjects. Subjects are multi-
subscribed, divided into partitions and each message broker can have one or more of these partitions.

• CoAP 48 : it is a specialized communication protocol for constrained devices, defined in RFC 7252. One of the main objectives of CoAP is
to design a generic protocol for the needs of constrained environments, including energy, building automation, and machine-to-machine
(M2M) applications. CoAP uses the UDP protocol.

In this article, we use some specific terms related to these protocols presented in Table 1.

TABLE 1 The Pulse terms associated with the protocols concepts

Pulse
Terms

definition

Connection A TCP network connection between an application and the
message broker.

Channel A communication flow between two constituents.
Message A message consists of a header and a body. The header con-

tains the properties of the message presented in a specific
format type. The body or load is the application data also
presented in a specific format type.

Exchange A named entity that receives messages from producers and
routes them to the queues.

Queue An entity that contains the messages and delivers them to
consumers.

Routing
key

A virtual address that an exchange can use to route messages
to specific queues.

Publisher A client application that publishes messages for exchange.
Consumer A client application that requests messages from the queues.

5 THE PULSE FRAMEWORK

In order to collect, analyse and identify communication problems, we have defined a framework, illustrated in Figure 2. The monitoring framework
is composed of four levels: (i) a data import level, (ii) a historical record management and model version management level, (iii) a persistence level,
(iv) an analysis level.

The data import level, the persistence level and the analysis level are based on the Meta-Model presented in Section 6. They do not represent a
strong problem. For importing data from different sources with different formats, we have defined dedicated importers that consume the messages
or logs and instantiate the model with the collected information.

For the persistence, the historical record module keeps several versions of the model in the runtime environment. This is related to references
between entities of different versions that are not copied from one version to another. When the persistence module is called, all versions of the
Orion model are stored in a file. It can be extended to produce other types of structured data. Thanks to this feature, external system such as
Grafana5 can be used to calculate metrics and to display certain visualizations.

For the analysis level, the implementation of the historical record management allows one to both analyse and visualize the changes made to
the monitored system in real time, as well as return to a previous state of the system to view and analyse the changes and their impact. These
two features provide the detection of interoperability problems as they occur, and also allows one to analyse the potential source of a problem by
returning to previous states.

5https://grafana.com/

https://grafana.com/

6 Jannik Laval et al

FIGURE 2 The Pulse Framework presented in a previous article 18

The main feature is the Historical Record Management. When importing data from different sources, it is difficult to represent the dynamic
aspects of the system. For example, the RabbitMQ architecture and its messages are volatile and therefore not visible at the management console
level. We have therefore developed a kind of historization in order to understand previous events and facilitate a better analysis.

A trivial method could be to incorporate a timestamp for the creation, deletion and updating of each entity in the model. The problem with this
approach is the strategy used for creating a specific status at a given time. Another method may be to create a model each time, which would be
too space-consuming with each new piece of data coming from the analysers.

We’ve considered an alternative, based on Orion 49. It is a model that allows one to create different versions of a data model, taking into account
the tracking of changes made to that model. The basic principle of Orion is that each change triggers an Orion action to add it to the data model.
Each change may result in a new version of the data model. Orion optimizes the persistence of different versions of the model, while managing
deltas and pointers to previous versions. Orion copies only the entities affected by a change.

Figure 3 illustrates the version management strategy. A version of Orion includes new changes and information on the action taken to create
that version. This version management of the data model allows one to track the evolution of the messaging architecture over time, where each
version represents a snapshot of the architecture at a given point in time. For the user, each version represents a screenshot of the monitored
system at a specific time. We have defined a strategy to create a version whenever necessary. In the case of the message exchange system, we
have defined two types of events:

• A version of Orion is created when a change in the architecture or configurations/parameters of the supervised system occurs (creation of
a queue, deletion of a queue, changed user rights, etc.). The status of the system before and after the change must be kept.

• A dedicated entity in the current version of the template is instantiated when a new trace (new message published, message received, new
connections, etc.) appears.

6 PULSE METAMODEL

The objective of the Pulse metamodel is to represent three aspects of the information system:

• A static representation: the architecture of the system implemented, representing the queues and channels.

• A dynamic representation, where messages are shown from the source component to the destination. It represents connections, messages,
and any volatile entities.

• The lifecycle representation of the architecture, where components (e.g. queue, exchange...) are created, modified, deleted.

Jannik Laval et al 7

FIGURE 3 Historical Record management process with Pulse

Several protocols can be used in the same information system, one of the objectives of this metamodel is to be generic enough to take into
account different protocols, and to be extensible. After presenting a first metamodel 17 based on AMQP, we have analysed the official documen-
tation of MQTT, Kafka and CoAP protocols and we have compared the differences to create a metamodel allowing us to integrate them. Figure 4
illustrates the structure of the metamodel. It brings together information from several sources:

• The message traces provided by the tool management console, e.g. the RabbitMQ tracing plug-in 6, for each message, it makes it possible
to identify :

. The node through which it transits, as well as connection and host information.

. The exchange in which it was published or consumed, the queues to which it is routed or the queue from which it is consumed, and
the associated routing keys.

. The user publishing or consuming the message.

. Its timestamp, its type (published / received) and its mode of delivery (persistent or not).

• The current configuration of the message broker, e.g. via the RabbitMQ REST management API7.

• Events of creation and deletion resources, hosts, users and permission; creating and closing connections and channels and attempting to
authenticate the user, e.g. using the RabbitMQ Event Exchange plug-in.8.

• Contextual elements of the characteristics of the communicating applications provided by the business metadata.

We have analysed the 4 protocols and propose Table 2 which shows the differences between them and how we have integrated the concepts
into the metamodel. The security concepts and the exchange concepts have also been presented in a previous article 18.

6.1 System supervision queries and indicators

From the information collected, we can ensure the supervision of the system. Here is a subset of the queries and indicators that can be defined.
These queries are needed for the company project but the metamodel is not limited to them.

• Business-level queries : Metadata may contain traces providing business-level information, i.e. information with an identifiable meaning,
such as application identifiers, user identifiers, subjects and exchange formats. Similarly, the topics for which messages have been published
when using a publish / subscribe messaging model can be specified. This information helps managers specify the context of interactions.
For example, this allows one to take into account the identification of the user of the application that publishes or consumes messages.

• Message filtering : Messages can be filtered according to their characteristics such as identifier, timestamp, exchange, queues, editor, con-
sumers, users, status, size, encoding or exchange format. This allows more precision when searching through the message traces. For

6https://www.rabbitmq.com/firehose.html
7https://pulse.mozilla.org/api/
8https://www.rabbitmq.com/event-exchange.html

https://www.rabbitmq.com/firehose.html
https://pulse.mozilla.org/api/
https://www.rabbitmq.com/event-exchange.html

8 Jannik Laval et al

FIGURE 4 Pulse metamodel

example, filtering the messages that pass through a time interval between a producer and a consumer allows one to analyse the behavior
of the interaction during a period when a failure occurs. We can also check whether a message is duplicated, redeposited or rejected.

• Security checks : Supervising the security of message exchanges can be improved by checking several elements:

– User authentication timestamps and the success or failure of the authentication. This helps detect tampering attempts.

– User and consumer permission on each resource to avoid potential data leaks.

– The content of the payload is used to check whether the elements are encrypted or not.

Jannik Laval et al 9

TABLE 2 The Pulse terms associated with the protocols concepts

Pulse
Terms

AMQP MQTT KAFKA CoAP

Cluster The collection and logical
grouping of nodes that run-
ning the application and sharing
users, virtual hosts, queues,
exchanges, bindings, and
runtime parameters

A distributed system that rep-
resents one logical MQTT bro-
ker, it consists of many differ-
ent MQTT broker nodes that
are connected over a network

Kafka cluster typically
consists of multiple
brokers to maintain
load balance

Cluster is required to sync the
CoAP servers to sync the com-
mon resource set

V-host Designed for multi-tenancy and
security reasons and used to
separate permission of different
users

MQTT connections use a sin-
gle RabbitMQ host by default

CoAP connections use a single
RabbitMQ host by default

User A client application that pub/-
submessages to exchange/from
queues

A client including publisher or
consumer that pub/sub mes-
sages

Publisher and a group
of consumers that act
as a single logical unit

A client including publisher or
consumer that pub/sub mes-
sages

Connection A TCP network connection
between users and the broker

It uses TCP to connect to
the broker, keeping connec-
tion even no data exchanging

A framework for con-
necting Kafka with
external systems such
as databases, key-value
stores and file systems

CoAP is a simplification of
the HTTP protocol running on
UDP network connection

Channel A stream of communications
which a lightweight connection
to reduce the overhead of the
operating system in establishing
a TCP connection

A logical connection created
by threads to communicate
with broker

A type of Flume Chan-
nel that are the reposi-
tories where the events
are staged on an agent

A logical connection created
by threads to communicate
with the broker

Binding A virtual connection between
exchange and queue, routing
key can be included in binding

A virtual connection from Rab-
bitMQ queues bound to the
topic exchange

A virtual connection from a
temporary RabbitMQ queues
bound to the exchange

Queue A named entity as the container
of messages and delivers them
to consumers

A named entity created for
MQTT subscribers will have
queue TTL in RabbitMQ

Subscription to a topic is
implemented using a tempo-
rary RabbitMQ queue bound
to that exchange

Routing
Keys

A message attribute that the
exchange may use when decid-
ing how to route the message to
queues

An address which topic
exchanges route messages
to queues based on specified
wildcard (topic name)

Binding keys are compared for
last value that was published
with each routing key

• Evolution of architecture : The ability to track the creation and deletion of resources allows one to describe system configurations over
time. In addition, based on the business information provided, we can identify communicating applications even if their technical identifiers
have changed at the message broker level. We can therefore provide a more accurate visualization of the system components and their
interactions, as well as their evolution over time.

• Interoperability indicators : the behavior of data exchange between applications gives an indication of the level of interoperability of their
data. If, for example, a resource has been inactive for a certain period of time, this may indicate the uselessness or obsolescence of the
interaction. It may also indicate a change of configuration (consumption on another channel) or a change of process at the application level.
In Table 3, we describe how we can highlight some data interoperability issues through contextualized indicators or possible queries on the
proposed metamodel. We also indicate potential causes and highlight existing correlations between interoperability problems.

10 Jannik Laval et al

6.2 Evaluation of the Pulse metamodel

The validation of the Pulse metamodel was carried out according to the revised model evaluation framework proposed in Kitchenham et al. 50. This
validation involves qualitative aspect in terms of syntactic, semantic, pragmatic, test and value.

• Syntactic quality: it addresses the correctness of the syntax defined for the modeling. To this end, we performed a manual verification of the
Pulse metamodel. The metamodel is developed using the UML language with the Eclipse modeling framework. The use of the Eclipse tool
and the EMF framework ensures that the language is correctly used in the model, e.g. entities are represented by a rectangle with rounded
corners, etc.

• Semantic quality: it addresses the traceability of the domain as well as feasible validity and completeness. The feasible validity inspection
is aimed at checking that the model includes: definitions, detail and scope information. For this purpose, the different concepts of the
monitoring are represented as a first-class entity. With regard to the feasible completeness, it concerns other domain features related to
the pulse metamodel; problems associated with sensitivity analysis so as to identify unnecessary features consistency checking. This is
illustrated in Table 2 that proves the metamodel reflects thus part of the domain. The first column of Table 2 takes up the different concepts
of the Pulse metamodel. The column from two to five gives the meaning of the concepts for the four protocols covered by the scope of the
model, respectively AMQP, MQTT, KAFKA, and CoAP. These concepts come from the datasheet of these protocols and linked to the Pulse
concepts.

• Pragmatic quality: it addresses the structure and expressiveness of the model. We have built the metamodel representation considering the
message as the core of the representation. As we aim to analyse the evolution of the messaging system all concepts are represented as first-
class entities, with class names that are specific to the messaging system (Table 2). We assessed the level of comprehension achievable to
enable comprehension including visualization, explanation, filtering evaluate comprehension presented in Section 7. Also, the metamodel
is extensible to add new concepts.

• Test quality: it focuses on executability. We conducted out a validity test, using two case studies to assess consistency between our meta-
model and case studies. For feasible test coverage, we have performed simulation studies based on importing data from the company related
to input handling in order to assess the metamodel stability and sensibility (Section 7.1).

• Value: it addresses the practical usefulness of themetamodel and should enable one to use themodel, including the design of an appropriate
user interface for usability, user manuals and training. We proposed a prototype and our metamodel has proven that we are able to obtain
generated figures representing supervised data through various case studies (Figure 6 and Figure 7).

6.3 Application to Interoperability Analysis

Some approaches 51,52 provide the basic concepts for formalizing and assessing interoperability by indicating whether or not interoperability prob-
lems exist. Based on these concepts and in order to accurately locate interoperability problems among collaborative processes, Mallek et al. 53

define a set of interoperability requirements that must be checked in order to achieve interoperability. The requirements are structured in terms of
compatibility, reversibility and interoperability properties defined for each interoperability problem (data, services, processes and activities). This
formalization of interoperability requirements allows one to select the appropriate interoperability requirements to be verified.

We propose to focus on data requirements in order to assess data interoperability by analysing existing data exchanges between constituents.
These requirements are related to elements that may vary or be modified during interactions. They must therefore be monitored. To do so, we
inspect the behavior of data exchanges. This allows one to detect interoperability problems and find their potential causes.

Indicators and queries are used to detect and locate interoperability problems in order to maintain a good level of interoperability. To define a
good level of interoperability, we rely on interoperability requirements, i.e. what must be undertaken and maintained when establishing interop-
erability interactions between communicating systems. Interoperability problems represent situations in which requirements are not verified. In
addition to indicators that highlight these problems, we provide potential causes and highlight existing correlations between interoperability prob-
lems (by referencing other problems in the causes). If, for example, partners show no interaction at the data level over a certain period of time,
this may indicate the uselessness or obsolescence of the interaction due to a change in the configuration (consumption on another channel) or a
change in the process. It may also indicate an authorization problem or the invalidity of the exchange format.

Table 3 lists examples of how we can highlight data interoperability problems by providing indicators or possible queries that accurately define
the context of the problem. For example, a data leak can be detected by the presence of unauthorized consumers or prevented by monitoring
authentication attempts. The issues are difficult to identify in the context of distributed systems.

Jannik Laval et al 11

TABLE 3 Examples of interoperability requirements, interoperability problems, indicators and potential causes

Requirements Interoperability
problem

Operational indicator Statistical indicator Potential Causes

The data
received are con-
sistent with what
required

Invalid exchange
format

- Messages rejected on the
relevant queues
- Exchange format of the
last message accepted on the
queues

- Non-compliant mes-
sage rate
- Duplicate message
rate

- Incompatible exchange format
- Evolution of exchange format not
communicated

Data is
exchanged
between
partners

- Inability of con-
sumers to receive
more messages
- Missing pro-
ducer partner
- Missing
consumer
partner

- Set of messages during the
period concerned
- Presence of the user linked
to the Producer
- Presence of Exchanges
linked to the Producer

- Rate of messages
transmitted
- Rate of unconsumed
messages
- Rate of rejected mes-
sages
- Rate of lost messages

- Problems related to the lack of
acknowledgement of receipt
- The consumer is not ready to receive
- Disappearance of queues (deletion,
failure)
- Unable to restore the node containing
the resources
- Stopping the application
- Permission problems

Partners have
the necessary
permissions to
exchange data

Lack of neces-
sary permissions
to exchange data

- Authentication status
- Connection status
- Chain status
- Presence of access permis-
sions
- Status of Vhost related per-
missions
- user presence / user infor-
mation

- authentication failure
rate
- logout rate
- Authorisation change
rate

- Deleted / non-existent users
- Vhost deleted
- User is not allowed to access
- Limited permissions in Vhost
- Permissions update not communi-
cated
- Authentication failed
- Connection closed
- Error in publishing or assigning con-
suming properties

The amount of
data received
is equal to the
amount of data
required

Consumption
stop

- Presence of consumption
process
- Connection status
- Channel status
- Information of the last
accepted message on the
queues
- Message accumulation in
the relevant queues

- Rate of unconsumed
messages
- Rate of lost messages
- Problems related to
the lack of a consuming
partner

- Problems related to lack of necessary
permissions
- Inadequate value of the Qos

Partners have
an acceptable
exchange rate

Low exchange
rate

- Number of channels and
components for a user
- Number of queues in chan-
nel
- Number of consumers in
the channel

- Rate of lazy queues
- Comparative rate of
queues versus con-
sumer by channel

- Sharing channels between threads
- Use of the same channel as producer
and consumer
- Intensive resource creation
- Few queues for many consumers
- Missing consumer

6.4 Implementation of the framework

We set up a prototype tool of the Pulse framework. It allows one to visualize some of the behaviors of the information system. This prototype
aims at allowing one to understand the status of each message and provide indications which facilitate the analysis of interoperability problems.

12 Jannik Laval et al

The prototype is implemented on Moose.9, an open-source data analysis platform 54,55, in which we have implemented the Pulse metamodel. The
extension of Moose is a major asset to our implementation approach because it allows one to leverage and reuse existing tools.

The prototype shows the feasibility of our approach. Its implementation is composed of all the parts of the framework (Figure 5): the Pulse
metamodel, the importers development, the historical record management thanks to Orion 49, the persistence layer, and some visualizations. The
instantiation with the information retrieved from the information system follows a predefined sequence in order to build consistency in the history
model (Figure 5) :

• Message Reader: it analyses the message trace log files and completes the data model. It is called only once at the beginning of the
supervision to give an overview of the messages sent / received in the past.

• Management API Client: it uses the REST API if it exists. It is called the first time to fill in the missing information when reading the log files.
It is then called on demand when new elements appear.

• Event Consumer : it continuously listens and captures events (events such as the definition of a new consumer, modification of user
configurations, etc.) from the event queue and makes changes to the corresponding element in the data model.

• Messages Consumer : it constantly listens, captures new message traces and adds them to the data model as soon as they arrive.

Messages
Reader

Management
API Client

Events
Consumer

Messages
Consumer

1

2

3

4

5

Reads existing message traces to get an overview of previous transiting messages

Builds a picture of the current messaging architecture

Listens constantly to an events queue to update the messaging architecture

Completes missing information

Listens constantly to messages trace queue to keep track to
messages and update the messaging architecture if needed

FIGURE 5 Information retrieval process with Pulse

The approach was already tested on data generated by an existing RabbitMQ implementation from Berger-Levrault. In a previous article 17,
we provided analysis elements in response to some of the interoperability assessment needs expressed by the company requiring to have a clear
visualization of the traces of messages in transit in each queue and their characteristics. This can be used for checking the status of messages during
defined periods of time (Figure 6) and have a global vision of the information system architecture and message paths. This ensures the presence
and activity of producers and consumers and the expected interactions between them (Figure 7).

FIGURE 6 Number of messages per second in a queue

9https://modularmoose.org/

https://modularmoose.org/

Jannik Laval et al 13

FIGURE 7 Structure of the analysed system

7 CASE STUDY

We conducted two experiments. One deals with real data coming from a system on an AMQP base of the company Berger Levrault, on which we
identified problems. We were able to improve the system following this analysis. The other deals with data from anMQTT simulator. The simulator
makes several nodes communicate together. We imported the collected data to validate that the meta-model is functional with MQTT.

7.1 Case study 1 : AMQP analysis

7.1.1 Scenario

Here, we used a case of exiting interactions among Berger-Levrault applications to showcase some analysis services of the implemented prototype.
Berger-Levrault provides its clients with a software as a service console (SAAS-Console) to ensure a secure access to its cloud deployed software via
SSO (Single-Sign-On) mechanism. The SAAS-Console is also an administration console that allows clients to autonomously manage the accounts
and access rights related to the software they use.

The SAAS-Console exchanges data with several applications (CRM, authentication modules and business applications). In this case, we consid-
ered here the ones that use RabbitMQ for data transmission: (i) BL-Auth, a separate authentication module, to which it sends user accounts rights
and from which it receives credentials’ updates, (ii) BL-Socle for the automatization of provisioning, to which it sends information regarding the
packages of software to be deployed for the clients and their assigned user access accounts.

The interactions are set up with BL-MOM and the exchanged messages transit through a RabbitMQ node.

7.1.2 Goals

In this case study, we provided analysis elements in response to some of behavior needs expressed by Berger-Levrault. We analysed only the
events of the Event Consumer process.

• We ensured that the consumer connection and communication worked correctly. For that, we identified the failures and the differences
between creation and deletion of artefacts. This need is related to the interoperability problem presented in Table 3, line 3.

• Wemanaged to have a global vision of the behavior of the system, and detect unusual behaviors. This need is related to the interoperability
problem presented in Table 3, line 5.

7.1.3 Used Data

Berger-Levrault provided traces files from the Event Consumer used for the above explained data exchanges among the SAAS-Console, BL-Auth
and BL-Socle. BL-MOM controls the messaging actions allowing one to have logs with business-level information. These log files are activated by
elements that we want to trace on the broker node. The log file contains 738459 entries. We exploited only these log files without extracting
information from other sources (e.g. REST API). For the sake of confidentially, we did not trace the payload of the messages which contained the
transiting application data.

7.1.4 Results

In the case study, we collected 738459 events (detailed in Table 4) for 5 days. The events concerned artefacts evolution during the lifecycle of the
system. They concerned:

14 Jannik Laval et al

• the user authentication. It can be a successful authentication (2040 in the case study) or a failure authentication (detected 23 times). Related
to the interoperability requirements and problems presented in Table3, it is related to the line 3, “Partners have the necessary permissions
to exchange data”, and the indicator “Authentification status”.

• the connections. Two states were identified : the creation of the connection (2039 times), the closing of the connection (571901 times).
These values could be used to analyse the interoperability requirements of lines 3 and 5 in the Table3.

• the channels. There were two states identified : the creation of a channel (79043 times), the closing of a channel (78865 times). These
values could be used to analyse the interoperability requirements of lines 4 and 5 in the Table3.

• the consumers. There were two states identified : the creation of a consumer (1864 times), the deletion of a consumer (1711 times). These
values could be used to analyse the interoperability requirements of lines 3 and 4 in Table3.

• the vhost. We identified 5 occurrences where the vhost goes down. Related to the interoperability requirements and problems presented
in Table3, it is related to the line 2, “Data is exchanged between partners ”, and the indicator “Presence of link between a producer and a
consumer”.

• the other artefacts. 968 events concerned other artefacts : the change of user tags, or password changes, or permission changes. Related
to the interoperability requirements and problems presented in Table3, it is related to the line 3, “Partners have the necessary permissions
to exchange data”, and the indicator “Authentification status”.

TABLE 4 Number of artefacts in the collected data

artefact number
user authentication success 2040
user authentication failure 23
connection creation 2039
connection closure 571901
channel creation 79043
channel deletion 78865
consumer creation 1864
consumer deletion 1711
vhost down 5
other artefacts 968

Total 738459

Analyse of the number of artefacts :

We identified three interesting elements to be analysed. We first analysed the difference between created and closed artefacts. During the life
cycle of the system, the number of created artefacts should be the same as the number of closed ones. In this case study, we started to analyse
the system while it was already running. So, we cannot consider the whole life cycle. It means that the number of closed artefacts can be different
from the number of created ones.

Secondly, the number of channels, and the number of consumers are slightly different. This is the phenomenon we have just explained and the
company Berger-Levrault considered this difference as acceptable.

Thirdly, the number of closed connection was clearly higher than the created connections. The first idea was to consider that this number came
from created connections before the monitoring process. But the number of creation (2039) was 280 times smaller than the number of closed
connections. This difference raises the question of the origin of these closed connections. Regarding Table 3, the issue could be due to line 2, “Data
is exchanged between partners”. An explanation was that consumers were waiting for data and then closed due to a timeout. This part should be
investigated by the company, using other log files.

Jannik Laval et al 15

Analyse of the identified process :

We have identified a pattern of connection creation and message sending.
User authentication : it should succeed→ connection creation→ channel creation→ consumer creation→ consumer deletion→ channel closing→

connection closing.
This pattern is visible 2040 times. First of all, this pattern was presented to the company, which validated it : this process comes from the BL-

MOM process structure. Then, this pattern was visible because the entities appeared successively and not interspersed with other events. Given
the number of repetitions of this pattern, it was therefore quite easy to identify them. There is still work to do on identifying more complex or
diffuse patterns.

Regarding Table 3 and the expertise of the company, we are able to identify authentication issues (line 3) related to problems of authentification
failures.

Analyse of failures :

We detected three kinds of failures :
First, the vhost shut down 5 times during the period. In terms of Quality of Service, it is a problem. Just after the downtime, we identified that

the users could reconnect with an authentication success. When a vhost shut down, all the connections, channels, authentications are lost. Even
if, in the interoperability requirements and problems presented in Table3, this situation is related to line 2, “Data is exchanged between partners ”,
it also has a strong impact on all other indicators because of an indirect impact on the loss of all running entities.

Secondly, there are 23 authentication failures. They are grouped in two periods:

• during the first period, there were 11 occurrences of authentication failures. Just after, there was a user creation coupled with the
configuration tags and permission, followed by successful authentication.

• during the second period, there were 12 occurrences of authentication failures, which were followed by a password change and an
authentication success.

Here, in the interoperability requirements and problems presented in Table3, the indicator “Authentification status” of the line 3, “Partners have
the necessary permissions to exchange data”, is impacted and the problem, based on this indicator is identified.

Thirdly, we identified that sometimes, during short periods (between 1 and 2 minutes), creation and deletion of ephemeral channels occured : a
channel was created and closed just after, without events detected during this period. For example, for one of these periods, there were more than
9000 events per minute, 4500 creation and 4500 closure channels. In the interoperability requirements and problems presented in Table3, this
indicator “channel status” can impact the requirement on line 3, “Partners have the necessary permissions to exchange data” and the requirement
on line 4, “The amount of data received is equal to the amount of data required”. Based on this analysis, the behavior will be investigated by the
company.

7.2 Case study 2 : MQTT messages importing

7.2.1 Scenario and goal

Here, we used a simulator that simulates 15 IoT nodes which communicate together. We simulated air density sensors, humidity sensors, pressure
sensors. The simulator stops when themessage number created in the system is equal to 100 000. This home-made simulator allows us to generate
large files of data using MQTT protocol 56.

In this case study, the goal is to evaluate the extensibility of the Pulse metamodel by the possibility to import MQTT messages in the same way
as the AMQP messages.

7.2.2 Used Data

The simulator generates trace files with all events during the time of the simulation (Figure 8). The generated file contains 100 000 entries. On
each line, an event contains the payload, and all information provided by the system, for example the producer, the payload, the routing keys. The
file size is 193 Mbits.

7.2.3 Results

In the case study, we collected 100 000 events, as expected in the configuration of the simulator. We identified what we expected in the model
analysis, shown in the left part of Figure 9 : 3 routing keys, 4 queues, 51 connections, 99895 messages, etc.

16 Jannik Laval et al

FIGURE 8 A part of the json file

FIGURE 9 Pulse Model Information of MQTT log file

In this analysis, we can see that there are 99895 payloads. It is near 100 000. The difference probably comes from the similarity of multiple
payloads. In the right part of Figure 9, we can see that there are 3 routing keys. These values are instantiated automatically from the content of
the log file. There were 51 connections, which means that the 100 000 messages were sent during these 51 connections.

This case study shows that the Pulse metamodel is generic enough to integrate the MQTT protocol. It also validates that, when based on the
log file, the Pulse framework discovered the architecture of the IoT system.

8 DISCUSSION

In this section we discuss the limits and the future work of the proposed approach. We identify three elements to consider :

• The Pulse framework: Concerning the framework, we have validated the import thanks to parsers and we are able to do a static analysis.
Indeed, we have not yet validated versioning management based on the Orion framework, in order to perform a dynamic analysis according
to case study 1. Another point is that we have a working prototype based on the Pulse framework. The company wants a version of the
evolved prototype with automatic analysis, especially by setting up configuration data, for example alert thresholds. Behind this tool, there
is a research problem : how to adapt thresholds to the type of information system and information system activity ?

• The Pulse metamodel: We have proven that the model supports several protocols. This has been confirmed by two case studies on the
AMQP protocol and MQTT protocol. The metamodel is extensible and can represent four communication protocols: AMQP, MQTT, Kafka,
CoAP. The extensibility of the model is not yet validated for other communication protocols such as STOMP, ZigBee or ROS. One of the
future works is to validate the extensibility with these protocols and control the impact on the metamodel.

• The evaluation of the interoperability problem: The model and the framework have been validated by two very different case studies. The
first one is an industrial case study with real company data and the second one is done by simulation with prepared data. In the first case
study, we used the indicators to manually identify the issues listed in Table3. In future work, we want to provide a recommendation system
and, by extension, evaluate automatic problem identification.

Jannik Laval et al 17

9 CONCLUSION

In this article, we have presented the means of supervising exchanges within a distributed information system, through a collaboration with Berger-
Levrault company. The proposed framework addresses the services of message brokers to extract information on the behavior of the information
system. We proposed a metamodel used to aggregate information gathered from several sources. The population of the metamodel provides
contextual indicators to assess the interoperability needs related to the data and precisely locate interoperability problems.

We implemented the metamodel and analysis functions by extending the Moose metamodel and taking advantage of its extensibility. We
developed a trace data importer and analyser to populate the metamodel. In response to some of Berger-Levrault’s analysis needs, we used the
data structured by the metamodel in order to build two data visualizations that represent multiple indicators.

In the achievements presented, we have shown that the supervision of distributed systems is essential to control and ensure the functioning of
the system as a whole.We have also shown that semantic analyses can be used to optimize the handling of potential problems in a complex system.

In scientific literature, many locks for monitoring the dynamics of cyber-physical systems remain. These systems have the particularity of being
heterogeneous, with hardware and software components, including so-called plug-and-play components. Cyber-physical systems ensure the linking
of many sensors, as well as exchange large amounts of data while requiring low latency 29. The difficulty today is to be certain that all the data
produced will be consumed within a reasonable period of time. Several solutions exist at different levels: embedding control algorithms in the
sensors, adapting the dimensioning of the network, using data orchestration software. These systems require adapted dynamic reconfiguration
and monitoring mechanisms 57,58,59.

The increase in the volumes of data exchanged implies taking into account the variability in the frequency of data production. This requires
that distributed architectures (both infrastructure and flow) are adaptable or self-adaptable 30 in order to reinforce the system’s resistance to
malfunctions and guarantee reliable interactions while avoiding congestion phenomena.

The availability of the resources used in the exchange architectures must be guaranteed to ensure system reliability. The variability of the
types and frequencies of data exchanged can be managed by applying the principle of elasticity 60. This principle makes it possible to automate
the adaptation of the system according to the available components. This requires the definition of a set of exchange architecture configurations
(optimized, stable, degraded, etc.) and mechanisms to switch from one configuration to another, in order to allow the resilience of the exchange
system. The resilience capacity of these systems guarantees the functioning, but can hide the complexity of problems which are often difficult to
solve in order to return to a stable state.

Acknowledgement : The authors would like to thank Catherine Batisse (Univ. Lyon 2) for proofreading this document.

References

1. O’Brien JA, Marakas GM, others .Management information systems. 6. McGraw-Hill Irwin . 2006.

2. Al-Mamary YH, Shamsuddin A, Hamid A, Aziati N. The role of different types of information systems in business organizations: A review.
International Journal of Research (IJR) 2014; 1(7).

3. Shackelford R, McGettrick A, Sloan R, et al. Computing curricula 2005: The overview report. In: . 38. ACM. ; 2006: 456–457.

4. Int’l SG. Chaos Report. tech. report, Standish Group Int’l; : 2015.

5. Rasouli M, Ghazanfari H, Eshuis R. A process aware information system to support agility in relief operations. In: ; 2017.

6. Tarafdar M, Qrunfleh S. Agile supply chain strategy and supply chain performance: complementary roles of supply chain practices and
information systems capability for agility. International Journal of Production Research 2017; 55(4): 925–938.

7. ChenD, Doumeingts G, Vernadat F. Architectures for enterprise integration and interoperability: Past, present and future. Computers in industry
2008; 59(7): 647–659.

8. Geraci A, Katki F, McMonegal L, et al. IEEE standard computer dictionary: Compilation of IEEE standard computer glossaries. IEEE Press . 1991.

9. Gürdür D, Asplund F. A systematic review to merge discourses: Interoperability, integration and cyber-physical systems. Journal of Industrial
information integration 2018; 9: 14–23.

10. Chen D, Daclin N, others . Framework for enterprise interoperability. In: ; 2006: 77–88.

11. Retaillé JP. Refactoring des applications Java/J2EE. Editions Eyrolles . 2011.

18 Jannik Laval et al

12. Panetto H, Zdravkovic M, Jardim-Goncalves R, Romero D, Cecil J, Mezgár I. New perspectives for the future interoperable enterprise systems.
Computers in Industry 2016; 79: 47–63.

13. Li S, Da Xu L, Zhao S. The internet of things: a survey. Information Systems Frontiers 2015; 17(2): 243–259.

14. Kamble SS, Gunasekaran A, Parekh H, Joshi S. Modeling the internet of things adoption barriers in food retail supply chains. Journal of Retailing
and Consumer Services 2019; 48: 154–168.

15. Avritzer A, Ferme V, Janes A, Russo B, Schulz H, Hoorn vA. A Quantitative Approach for the Assessment of Microservice Architecture
Deployment Alternatives by Automated Performance Testing. In: Springer. ; 2018: 159–174.

16. Ceccarelli A, Bondavalli A, Froemel B, Hoeftberger O, Kopetz H. Basic Concepts on Systems of Systems: 1–39; Cham: Springer International
Publishing . 2016

17. Amokrane N, Laval J, Lanco P, Derras M, Moala N. Analysis of Data Exchanges, Contribution to Data Interoperability Assessment. In: IEEE. ;
2018: 199–208.

18. Laval J, Amokrane N, Derras M, Moalla N. Analysis of Data Exchange among Heterogeneous IoT Systems. In: ; 2020; Tarbe, France.

19. Group CAW, others . Levels of information systems interoperability (LISI). US DoD 1998.

20. Clark T, Jones R. Organisational interoperability maturity model for C2. In: Citeseer. ; 1999.

21. Tolk A, Muguira JA. The levels of conceptual interoperability model. In: . 7. Citeseer. ; 2003: 1–11.

22. Guédria W, Chen D, Naudet Y. A maturity model for enterprise interoperability. In: Springer. ; 2009: 216–225.

23. Soria dIM, Alonso J, Orue-Echevarria L, Vergara M. Developing an enterprise collaboration maturity model: research challenges and future
directions. In: IEEE. ; 2009: 1–8.

24. Kingston G, Fewell S, Richer W. An organisational interoperability agility model. tech. rep., Defence Science and Technology Organisation
Canberra (Australia); : 2005.

25. Mallek S, Daclin N, Chapurlat V. Towards a conceptualisation of interoperability requirements. In: Springer. 2010 (pp. 439–448).

26. Verdecho MJ, Alfaro-Saiz JJ, Rodriguez R. Integrating business process interoperability into an inter-enterprise performance management
system. Proceedings of the 9th International Conference on Interoperability for Enterprise Systems and Applications (I-ESA) Berlin, Germany 2018.

27. O’Connor RV, Elger P, Clarke PM. Continuous software engineering—A microservices architecture perspective. Journal of Software: Evolution
and Process 2017; 29(11): e1866.

28. Johanssen JO, Kleebaum A, Paech B, Bruegge B. Continuous software engineering and its support by usage and decision knowledge: An
interview study with practitioners. Journal of Software: Evolution and Process 2019; 31(5): e2169.

29. Buyya R, Dastjerdi AV. Internet of Things: Principles and paradigms. Elsevier . 2016.

30. Gascon-Samson J, Garcia FP, Kemme B, Kienzle J. Dynamoth: A scalable pub/submiddleware for latency-constrained applications in the cloud.
In: IEEE. ; 2015: 486–496.

31. Da Xu L. Enterprise systems: state-of-the-art and future trends. IEEE Transactions on Industrial Informatics 2011; 7(4): 630–640.

32. Iacob ME, Jonkers H. A model-driven perspective on the rule-based specification and analysis of service-based applications. Enterprise
information systems 2009; 3(3): 279–298.

33. Rubin VA, Mitsyuk AA, Lomazova IA, Aalst v. dWM. Process mining can be applied to software too!. In: ; 2014: 1–8.

34. Keith B, Vega V. Process mining applications in software engineering. In: Springer. ; 2016: 47–56.

35. Gürgen T, Tarhan A, Karagöz NA. An integrated infrastructure using process mining techniques for software process verification. In: IGI Global.
2018 (pp. 1503–1522).

Jannik Laval et al 19

36. Özdağoğlu G, Kavuncubaşı E. Monitoring the software bug-fixing process through the process mining approach. Journal of Software: Evolution
and Process 2019; 31(7): e2162.

37. Aalst v. dWM. Process discovery from event data: Relating models and logs through abstractions. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 2018; 8(3): e1244.

38. Verenich I, Dumas M, La Rosa M, Nguyen H. Predicting process performance: A white-box approach based on process models. Journal of
Software: Evolution and Process 2019; 31(6): e2170.

39. Gómez A, Iglesias-Urkia M, Urbieta A, Cabot J. A model-based approach for developing event-driven architectures with AsyncAPI. In: ; 2020:
121–131.

40. Michelson BM. Event-driven architecture overview. Patricia Seybold Group 2006; 2(12): 10–1571.

41. Maréchaux JL. Combining service-oriented architecture and event-driven architecture using an enterprise service bus. IBM developer works
2006; 12691275.

42. Theorin A, Bengtsson K, Provost J, et al. An event-driven manufacturing information system architecture for Industry 4.0. International journal
of production research 2017; 55(5): 1297–1311.

43. Brand T, Giese H. Generic Adaptive Monitoring Based on Executed Architecture Runtime Model Queries and Events. In: ; 2019: 17-22

44. Dossot D. RabbitMQ essentials. Packt Publishing Ltd . 2014.

45. Vinoski S. Advanced message queuing protocol. IEEE Internet Computing 2006; 10(6): 87–89.

46. Standard O. MQTT version 3.1. 1. URL http://docs. oasis-open. org/mqtt/mqtt/v3 2014; 1.

47. Garg N. Apache Kafka. Packt Publishing Ltd . 2013.

48. Shelby Z, Hartke K, Bormann C. The Constrained Application Protocol (CoAP). RFC 7252, RFC Editor; : 2014.

49. Laval J, Denier S, Ducasse S, Falleri JR. Supporting Simultaneous Versions for Software Evolution Assessment. Journal of Science of Computer
Programming (SCP) 2010.

50. Kitchenham BA, Pickard L, Linkman S, Jones P. A framework for evaluating a software bidding model. Information and Software Technology
2005; 47(11): 747–760.

51. Daclin N, Chen D, Vallespir B. Methodology for enterprise interoperability. IFAC Proceedings Volumes 2008; 41(2): 12873–12878.

52. Ford T, Colombi J, Graham S, Jacques D. The interoperability score. tech. rep., AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH; :
2007.

53. Mallek S, Daclin N, Chapurlat V. The application of interoperability requirement specification and verification to collaborative processes in
industry. Computers in industry 2012; 63(7): 643–658.

54. Demeyer S, Tichelaar S, Ducasse S. FAMIX 2.1 — The FAMOOS Information Exchange Model. tech. rep., University of Bern; Bern, CH: 2001.

55. Ducasse S, Gîrba T, Kuhn A, Renggli L. Meta-Environment and Executable Meta-Language using Smalltalk: an Experience Report. Journal of
Software and Systems Modeling (SOSYM) 2009; 8(1): 5–19. doi: 10.1007/s10270-008-0081-4

56. Riahi K, Kahn G, Dafflon B, Laval J. A Faulty IoT Network: Simulating Sensors and Perturbations. In: Springer. ; 2022: 87–97.

57. Vora O, Vora P, Vora U. Predictive Modeling for Infrastructure System Engineering. Journal of Professional Issues in Engineering Education and
Practice 2003.

58. Dávid I, Ráth I, Varró D. Foundations for streaming model transformations by complex event processing. Software & Systems Modeling 2018;
17(1): 135–162.

59. Mohsin A, Janjua NK, Islam SM, Neto VVG. Modeling Approaches for System-of-Systems Dynamic Architecture: Overview, Taxonomy and
Future Prospects. architecture 2019; 13: 15.

http://dx.doi.org/10.1007/s10270-008-0081-4

20 Jannik Laval et al

60. Al-Dhuraibi Y, Paraiso F, Djarallah N, Merle P. Elasticity in cloud computing: state of the art and research challenges. IEEE Transactions on
Services Computing 2017; 11(2): 430–447.

	Data Interoperability Assessment, Case of Messaging Based Data Exchanges
	Abstract
	Introduction
	Related Work
	Objectives
	Terms and Vocabulary
	The Pulse framework
	Pulse metamodel
	System supervision queries and indicators
	Evaluation of the Pulse metamodel
	Application to Interoperability Analysis
	Implementation of the framework

	Case Study
	Case study 1 : AMQP analysis
	Scenario
	Goals
	Used Data
	Results

	Case study 2 : MQTT messages importing
	Scenario and goal
	Used Data
	Results

	Discussion
	Conclusion
	References

