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LAPTNet-FPN: Multi-scale LiDAR-aided Projective Transform
Network for Real Time Semantic Grid Prediction

Manuel Diaz-Zapata1,2, David Sierra-Gonzalez2, Özgür Erkent2,3, Christian Laugier2, Jilles Dibangoye1,2

Abstract— Semantic grids can be useful representations of
the scene around an autonomous system. By having information
about the layout of the space around itself, a robot can leverage
this type of representation for crucial tasks such as navigation
or tracking. By fusing information from multiple sensors,
robustness can be increased and the computational load for
the task can be lowered, achieving real time performance. Our
multi-scale LiDAR-Aided Perspective Transform network uses
information available in point clouds to guide the projection
of image features to a top-view representation, resulting in a
relative improvement in the state of the art for semantic grid
generation for human (+8.67%) and movable object (+49.07%)
classes in the nuScenes dataset, as well as achieving results
close to the state of the art for the vehicle, drivable area and
walkway classes, while performing inference at 25 FPS.

I. INTRODUCTION

The top-view representation of a scene, also known as
bird’s eye view (BEV), can be an extremely useful tool
for autonomous systems that are limited to the ground
plane, as it is in the case for wheeled or legged robots.
Having a representation of the scene in the BEV can be
beneficial to downstream tasks such as tracking, prediction
and navigation. Compared to the camera point of view, the
size of the objects in the BEV does not vary depending on
their distance to the robot. Semantic grids are one type of
BEV representation that allow a dense representation of the
space around the robot. In a semantic grid, each cell contains
a semantic label corresponding to the class of the object or
area occupying it.

The interest over semantic grid prediction has increased
in recent years. Existing approaches in the literature can be
grouped along three lines: camera-based, LiDAR-based and
sensor fusion based methods. For camera-based methods,
the main challenge is how the projection to the BEV is
performed from the image plane. Some methods rely on
MLPs to find the relationships between camera plane and
BEV [1], [2], [3] . Others perform categorical depth pre-
diction to do this projection [4], [5], whereas Xie et al.
assume an uniform depth distribution along the camera ray
[6]. More recently, the use of attention mechanisms has also
been proposed as a solution to this challenge [7], [8], [9]. For
LiDAR-based approaches, some follow a bayesian approach
[10], whereas others leverage geometric relationships in the
point cloud as well as occupancy features [11]. Sensor fusion
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approaches leverage information from different modalities
such as camera and LiDAR by processing each one with
separate encoders and then fusing them via heuristics [12],
convolutions [13], [14] or self-attention mechanisms [15].

In the proposed LAPTNet-FPN, we use the geometric
information about the scene coming from a LiDAR sensor
to guide the projection of camera features. By doing this
projection at multiple image scales given by a convolutional
backbone, we are able to associate BEV cells to pixels in
the images and do semantic grid prediction in real time.

II. RELATED WORK

The utility of the BEV representation space can be seen in
its increased use for different tasks such as 3D bounding box
detection and map segmentation in the robotics community
during recent years.

A. BEV for 3D bounding box detection

Regarding camera-based approaches, the Orthographic
Feature Transform (OFT) creates a BEV representation from
an intermediate voxel representation using camera informa-
tion [16]. CaDDN and BEVDet predict a categorical depth
distribution to project image features from the camera plane
to the BEV [17], [18]. PseudoLidar predicts a point cloud
using camera images, which is then projected to the BEV
where height is encoded in the channel dimension [19] .

Aside from camera-only methods, MV3D uses the BEV
representation space to encode the LiDAR point cloud in-
formation which is then fused with camera features [20]. In
contrast, PointAugmenting fetches image features to enrich
point cloud data which are processed by a 3D backbone and
then flattened to the BEV [21].

B. BEV semantic grid prediction

Although the BEV has been successfully used for the task
of 3D bounding box estimation, the current trend for the
use of this representation space is to generate semantic grids
(also known as semantic maps). For this task, the current
literature can be classified into three main types depending
on the input data modalities: camera-based, LiDAR-based or
sensor fusion based grid generation.

1) Camera-based grid generation: Generation of seman-
tic grids solely from camera information is a challenging
task. This is mainly due to the difficulty of correlating
information between the camera plane and the BEV given
the pinhole camera projection model [22] and the lack of
geometric information about the scene. Some methods such
as Lift-Splat-Shoot (LSS), predict a probability distribution



for a set of discrete depth values in order to project the image
features to 3D space; these features are then sum-pooled to
generate the BEV map that is used for semantic grid genera-
tion [4]. FIERY follows the same projection method as LSS
and accumulates these features in the BEV along a temporal
dimension to create the semantic grids [5]. Compared to
LSS, M2BEV assumes a uniform depth distribution along the
camera ray to project the image features to a voxel space that
is then reduced to a BEV using convolutions [6]. Others, like
the Pyramid Occupancy Network, the View Parsing Network
(VPN) and the Variational Encoder-Decoder Network use
fully-connected networks to ’shrink’ the 2D camera informa-
tion into 1-dimensional feature vectors that are then sampled
to generate the 2D BEV [1], [2], [3].

Attention mechanisms have also been proposed as a
method to correlate the information from the camera plane
to the BEV plane. Saha et al. generate the BEV from image
features by projecting vertical scanlines in the image plane to
polar rays in the top-view using inter-plane attention and po-
lar ray self-attention mechanisms [7]. Zhou and Krähenbühl
propose a camera-aware, cross-view attention mechanism to
learn the mapping from each camera image to the BEV using
the camera parameters [8]. BEVFormer proposes the use of
deformable attention [23] to generate the BEV feature map
from features across different image scales and timesteps [9].

2) LiDAR-based grid generation: Given the 3D nature of
the point clouds generated by a LiDAR sensor, the projection
step from the input to the 2D BEV representation becomes
trivial. Instead, two of the challenges of working with point
clouds for the generation of semantic grids are: the data
sparsity in point clouds compared to camera images and the
lack of color and texture information of the scene. In the
case of PillarSegNet, semantic grids are generated by using
a pseudoimage [24] and occupancy feature maps, both in the
BEV [11].

3) Fusion-based grid generation: Being aware of the
drawbacks of using only one or the other sensor modality,
some methods propose a sensor fusion approach. Erkent et
al. map the semantic segmentation predictions from camera
images to the BEV using a set of intermediary planes,
concatenate them to grids generated by an occupancy grid
filter [10], and fuse them together using convolutions [13].
FISHINGNet projects camera features to the BEV using
VPN and predicts a set of BEV semantic maps using separate
backbones for each modality (LiDAR, camera and radar)
[12]. The final semantic output is generated using heuristics
to fuse the results of each modality. BEVFusion uses LSS
to generate a BEV from camera images and VoxelNet [25]
for LiDAR [14]. These features are then concatenated and
fused using convolutions to generate the final semantic
grid. TransFuseGrid proposes using a series of self-attention
operations to fuse BEV feature maps generated with LSS for
camera images and PointPillars for LiDAR point clouds [15].
Although these works leverage the BEV from diferent sensor
modalities, all of them rely on camera-based approaches to
perform the projection from the camera image plane to the
BEV plane.

Our approach, the multi-scale LiDAR-aided Projective
Transform Network (LAPTNet-FPN), differs from the state
of the art by the fact that we leverage LiDAR information to
do the projection of the camera information for semantic grid
prediction. Compared to PointAugmenting [21], we propose
to do this step across with multiple image scales instead of a
single one. The use of multiple scales allows us to populate
more cells in the BEV with the image information improving
semantic grid prediction.

We list our contributions as follows:
• A novel method for real time semantic grid prediction

using camera and LiDAR information.
• An efficient approach for projection of multiple image

scales to a bird’s eye view representation.
• Extensive ablation studies that explore how the per-

formance changes when using multiple image scales,
projecting to different grid resolutions, as well as how
it is improved by adding a parallel LiDAR-dependent
backbone to combine BEV representations.

• A study exploring the dependence on the camera and
LiDAR modalities, as well as the performance under
adverse conditions such as night and rain.

III. LAPTNET-FPN: MULTI-SCALE LIDAR-AIDED
PROJECTIVE TRANSFORM NETWORK

In this section, we explain how the LiDAR-aided Perspec-
tive Transform Network (LAPTNet) leverages point cloud
information together with camera parameters to perform
the projection of information from an arbitrary number of
cameras to an unified bird’s eye view for semantic grid
prediction. The network will be presented in three main
modules, the camera encoder which extracts image features
(subsection III-B), the LiDAR-based projection transform
(LAPT) that correlates multi-scale camera features to the
BEV (subsections III-C and III-D) and the BEV decoder
that generates the semantic output from these feature grids
(subsection III-E) The architecture of the network can be
seen in Fig. 1.

A. Problem formulation

Given a number of n RGB images {Xk ∈ R3×H×W }n
of size (H × W ) taken from cameras placed in a vehicle
and a point cloud P ∈ R3×D with D points taken from a
LiDAR sensor located on top of it, we want to estimate an
occupancy grid for C classes of size (X × Y ) in the BEV
(y ∈ RC×X×Y ) that is centered on the coordinate frame of
the vehicle.

Using the available intrinsic Ik and extrinsic Ek camera
parameters, together with the transformation matrix of the
LiDAR sensor EP , we project the image features from
the camera plane to the BEV by leveraging the geometric
information available in the point cloud.

B. Image feature extraction

For our approach, we want to maximize the ratio of
correspondences between pixels in Xk and the points from
P that fall into the field of view for camera k. Normally,
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Fig. 1. Proposed architecture for the LAPTNet-FPN. We reduce the spatial size of the camera images with a convolutional RGB backbone taking the
last two feature scales with downsampling factors 8 and 16. Depth images are generated by projecting the point cloud to each camera view and applying
a minpooling operation to match the spatial size of the image features. Using this information, and a sum pooling operation, the features are projected to
a BEV representation that is fed to a convolutional decoder for the generation of the semantic grids. The output shows a superposition of the individually
trained classes for a sample. Best viewed with digital zoom.

if we perform this association in the raw input space, we
would have six times as many pixels as points [26]. This
is assuming that: 1) all LiDAR rays give a return and 2)
the points are located in parts of the scene visible by at
least one camera, which is not always the case in practice.
This implies that an important amount of information about
the scene that is captured by the cameras would not have
geometric information associated to it for the projection to
the BEV.

Knowing this, we use a convolutional backbone to down-
sample the images to a size that will allow a higher ratio of
correspondences, while encoding color and texture informa-
tion in the channel dimension. For each image, we decrease
the input image shape by a factor of df to generate a feature
map {Fk ∈ RNf×H/df×W/df }n containing Nf channel-wise
features. Any standard image encoder like Resnet [27], FPN
[28] or EfficientNet [29] can be used for this step.

C. LiDAR-aided projective transform (LAPT)

With the camera images now encoded in a reduced spatial
size, we turn our attention on how to use the point cloud for
the projection of the found features Fk to the BEV.

In comparison to the LiDAR sensor, one camera is not able
to get a full 360◦ view of the scene. In order to associate
the image features to their position in the BEV, we need to
project P to each camera’s field of view. This corresponds to
a perspective transformation of the 3D points, which requires
us to know the camera parameters Ik,Ek and transformation
matrix of the LiDAR EP . Using a homogeneous coordinate
system, we transform the point cloud from the LiDAR
reference frame to the vehicle reference frame using the
inverse of EP , and then to the camera reference frame
using Ek as shown in Eq. 1. The points in the camera
reference frame Pk are then normalized to 2D homogeneous
coordinates in order to be projected to the image plane of
Xk using the camera’s intrinsic matrix Ik as indicated in Eq.
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In the case that two or more points of Pk are projected to
the same pixel, we assign the pixel to the closest one in the
zk axis, following the pinhole camera model [22]. The result
after this projection step is a sparse depth image Dk with the
same spatial size of Xk, but only one channel in which we
put the depth values zk available from Pk. Having now some
depth correspondences for the pixels in Xk, we downsample
Dk to match the spatial size of our processed feature map Fk

through a minimum pooling operation with a squared kernel
size of df . We use minimum pooling since we need to find
the closest depth correspondence for each pixel in Fk. The
corresponding distance values {δk ∈ R1×H/df×W/df }n are
then used to do the projection for the points in Fk to the
robot’s reference frame, as shown in Eq. 3-4. Features that
are in image coordinates (uf , vf )

T in Fk, will be projected
to the point (xf , yf , zf )T in 3D space.xfyf
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Finally, we create the bird’s eye view representation
B ∈ RNf×X×Y from this 3D point cloud containing the
image features by following the voxel sum pooling method



proposed in LSS [4]. This results in the 2D BEV map that
will be later used for the prediction of semantic grids.

D. Multi-scale LAPT

In the proposed LAPT method, we specify that the pro-
jection is only performed with the deepest feature map
available from the network. But, in practice, using only this
feature map yields a very sparse BEV representation. Since
convolutional backbones gradually reduce the spatial size of
the original image, we follow the idea proposed in FPN [28]
and project different image scales in order to generate a
denser BEV map. For LAPT-FPN, we project the two last
scales of the feature maps delivered by the chosen backbone
to a BEV of spatial size (X × Y ).

Having multiple scales to project to the 3D space means
that the resulting sparse depth image Dk needs to be
downsampled using the corresponding kernel values df for
each scale. It also implies that the steps described in Eq.
3-4 need to be performed for each of the chosen scales to
generate separate B ∈ RC×X×Y maps which need to be
fused together to generate a unified BEV representation. For
the case of LAPT-FPN, we sum them together to generate the
unified BEV representation containing all the image features.

E. BEV decoding

Given that the BEV representation has an image-like
structure, we use also a convolutional network to perform
the decoding. Specifically, we use a residual convolutional
network [27] together with an upsampling block made of
a bilinear upsampling step, (3 × 3) convolutions and ReLU
activation to have the desired grid spatial size of (X,Y ).
One final (1×1) convolution is applied to predict the desired
semantic grid y ∈ RC×X×Y .

IV. EXPERIMENTAL SETUP

Here we discuss the experimental setup to train our
approach, as well as the proposed experiments that explore
the effectiveness of the network for semantic grid prediction.
Following previously mentioned sensor-fusion approaches
[14], [15], we also explore how the network can be improved
by adding a parallel backbone to generate a BEV map using
only LiDAR information as well as different ways of fusing
the image-based and LiDAR-based top-view representations
for semantic grid prediction.

A. Dataset used

We use the nuScenes dataset for our experiments [26].
nuScenes is a large-scale dataset for different tasks related
to autonomous driving. It is made of 1000 driving scenes
taken in the cities of Boston and Singapore, where each scene
has a duration of 20 seconds with synchronized keyframes
containing LiDAR, camera and radar data at a sampling rate
of 2Hz. Their setup of six cameras enables a 360◦ surround
view of each scene. Aside from the sensor data, this dataset
offers 3D bounding box annotations as well as HD maps.

To generate the ground truth for training, we take the
information available from the HD maps and 3D bounding

boxes and project them into a BEV representation with the
vehicle in the center. The grid space represents a square
of 100m by 100m at a 0.5m resolution with the car in
its center, resulting in ground truth samples with a (X,Y )
shape of (200×200) pixels. We choose 5 classes from these
annotations: drivable area, walkway, human, vehicle and
movable object to facilitate comparisons to the state-of-the-
art. The ground truth labels for the drivable area and walkway
classes are rasterized from the HD maps. The human, vehicle
and movable object ground truths are generated by projecting
their corresponding cuboid annotations to the BEV.

B. Training setup and evaluation metrics

We train our network to predict each class separately (C =
1). We start with an ImageNet [31] pretrained EfficientNet-
B0 and we perform training on both the camera encoder and
BEV decoder. Before backbone inference, we concatenate
images along the batch dimension, resulting in an input
tensor of size (B ∗C, 3, H,W ). As loss function, we follow
LSS [4] and use the binary cross-entropy loss. The Adam
[32] optimizer is used with a learning rate of 1e− 3, weight
decay of 1e − 7 and the standard values for the betas and
epsilon given in the Pytorch implementation. We train all of
our networks with batch size of 16 samples for 100 epochs or
until intersection over union (IoU) convergence in the vali-
dation split is reached, whichever happens first. Each sample
contains the 6 images from the surround camera setup and
the point cloud from the LiDAR for a given keyframe. For
evaluation, we use the commonplace metric of intersection
over union for segmentation. We use EfficientNet-B0 as our
image encoder and a ResNet18 as our BEV decoder together
with the mentioned upsampling blocks. We only use one
LiDAR sweep and resize input images to a resolution of
(128× 352) pixels.

C. Model modifications, ablation and adverse conditions
studies

We evaluate the difference between using only the last
scale (df = 16) of the camera encoding network, and using
the last two scales (df ∈ {8, 16}), we name these models
LAPT and LAPT-FPN respectively. We also evaluate how
the performance of the model changes if instead of projecting
the smallest feature map, with (df = 16), directly to the final
BEV space, we project it to a grid of half the final resolution
(B ∈ RNf×X/2×Y/2) which is then upsampled by 2× using
the same upsampling architecture as in the BEV decoder to
match the final grid size. We denote the models that project
to a coarser grid with (MSB).

We train and evaluate a point-cloud-only baseline method
with PointPillars as the encoder and our proposed BEV
decoder, in order to compare how much the use of camera
features influences the quality of the predicted grids. Since
our method uses point clouds, we also evaluate how the qual-
ity of the final grid is affected if a parallel backbone is added
to process them separately. We use the PointPillars [24]
backbone to generate a BEV representation from the LiDAR
input, as in [11] and [15], to fuse it through addition with



Method Modalities Human Vehicle Movable Object Drivable Area Walkway FPS

LAPTNet C+L 13.8 40.13 27.4 79.43 57.25 43.8
LAPTNet-FPN C+L 22.17 48.04 32.2 81.78 61.25 38.1
LAPT-PP C+L 30.45 50.15 36.31 81.88 60.26 32.2
LAPT-FPN-PP C+L 33.92 52.4 38.38 83.04 62.11 25.1

Pyramid Occupancy Network [1] C 8.2 15.37 6.9 60.4 31.0 22.3
Lift-Splat-Shoot [4] C 9.99 32.02 21.6 72.9 51.03 28.3
M2BEV [6] C - - - 75.9 - 4.3
FIERY [5] C+T - 35.8 - - - -
Translating Images into Maps [7] C 8.7 38.9 13.2 72.6 32.4 -
BEVFormer (Seg) [9] C - 44.8 - 77.5 - -
Harley et al. [30] C - 47.0 - - - 7.3

PointPillars baseline L 0.0 24.99 16.81 58.44 33.66 -
FISHINGNet [12] C+L 20.4 40.9 - - - -
TFGrid [15] C+L - 35.88 - 78.87 50.98 18.3
Harley et al. [30] C+L - 60.8 - - - -
BEVFusion [14] C+L - - - 85.5 67.6 -

TABLE I
IOU [%] ON THE VALIDATION SPLIT FOR THE NUSCENES DATASET. BEST RESULTS ARE IN BOLD, SECOND BEST ARE IN BLUE FONT.

our unified BEV representation with the camera features. We
name these methods LAPT-PP and LAPT-FPN-PP depending
on the amount of feature map scales used. Motivated by [12],
we evaluate as well three different methods of fusing together
the BEV representations generated from each modality: sum,
concatenation along the channel axis and (1×1) maxpooling
along the channel dimension of the two concatenated feature
maps.

Finally, we explore how our methods fare in adverse
conditions such as night and rain, which are available in
the nuScenes dataset. These two conditions were chosen to
further evaluate the dependence to each sensor modality,
where the night condition should challenge the camera
modality [22] and the rain condition should challenge the
LiDAR modality [33].

V. RESULTS AND DISCUSSION

A. Comparison with the state of the art

In table I, a comparison to other state of the art methods
can be seen using the IoU metric. Here we can observe that
by guiding the projection of the features using real geometric
information about the scene, our multiscale approach (LAPT-
FPN) network is able to outperform all other networks which
need to learn the relationships between the camera plane
and the BEV. Even comparing against methods that perform
sensor fusion such as FISHINGNet [12] and TransFuseGrid
[15], LAPT-FPN is able to outperform them across the
available classes without having to add a LiDAR-specific
backbone to process point clouds.

For LAPT-FPN, we report improvements over the state
of the art of 8.67% for human segmentation [12] and
49.07% for movable object segmentation [4]. We achieve
similar results to [14] for drivable area (-4%) and walkway
(-10.3%) segmentation for inference on images with 1/4
the resolution. We achieve a lower (-26.5%), segmentation
value for the vehicle class compared to [30] which uses an
image resolution 9.5× bigger than ours and reports a latency
5.2× slower for the RGB-only method. We theorise that the
difference of performance with these approaches might be

related to the use of deeper networks for [30] or transformers
for [14], to extract features from the images, as well as the
use of bigger images.

B. Addition of LiDAR-specific encoder

With the addition of a LiDAR-specific encoder based
on PointPillars, the performance of our proposed methods
is improved even further. With our proposed architecture
LAPT-FPN-PP, we improve the state of the art by 66.27%
for human segmentation and 77.68% for movable object
segmentation. We achieve a close second place against [14]
for drivable area (-2.4%) and walkway (-8.8%) segmentation.
Using this encoder we narrow the gap with [30] in vehicle
segmentation (-16%) while being 3.7× faster.

C. Using multiple scales and MSB projection

In Fig. 2, we show the amount of points that are projected
for each feature scale in a random sample. We also show how
the projection approach to a coarser grid (MSB) compares to
the original approaches.

We can see in Tab. II, how the performance of the grid
is affected by projecting the features with (df = 16) to a
grid with half the resolution of the original one proposed in
LAPTNet. Here, we can see that this extra projection and
upsampling step does not bring any improvement over the
LAPT and LAPT-FPN models for the evaluated classes. The
proposed MSB step only brings marginal improvements for
the LAPT-PP and LAPT-FPN-PP methods.

One scale (LAPT) Two scales (LAPT-FPN)
Coarser grid projection 

of one scale (MS )B

Fig. 2. Visualization of the number of points projected to the BEV when
using one (left) or two (center) image scales. We also visualize the idea
of projection to a grid half the resolution of the base approach (left). Best
viewed with digital zoom.



Human Vehicle Mov. Obj. Driv. A Walkway

LAPT 13.8 40.13 27.45 79.43 57.25
LAPT (MSB) 3.42 30.61 0.0 67.09 40.04
LAPT-FPN 22.17 48.04 32.2 81.78 61.25
LAPT-FPN (MSB) 8.57 42.07 9.05 78.03 52.52

LAPT-PP 30.11 50.14 35.86 81.89 60.25
LAPT-PP (MSB) 33.0 52.4 38.11 83.03 62.11
LAPT-FPN-PP 33.25 52.4 38.11 83.03 62.11
LAPT-FPN-PP (MSB) 32.74 51.75 37.06 83.07 62.52

TABLE II
IOU [%] COMPARISON WHEN USING BEV MULTISCALE (MSB ).

D. Fusion methods for BEV maps from LiDAR and camera

As previously stated, following the study presented in
[12], we study how different fusion methods can impact the
performance of the network when dealing with separate BEV
representations that encode camera and LiDAR features. We
present the results for each of the proposed fusion methods
(sum, concatenation and maxpooling) in both LAPT-PP and
LAPT-FPN-PP in table III. For LAPT-PP, we find that
only the maxpooling-based fusion improves the detection
of humans by 12.02%, and for the rest of classes the
performance does not change greatly with the other fusion
methods. In the case of LAPT-FPN-PP, any of the other two
fusion approaches (concat and maxpool), do to not bring any
improvements to the creation of semantic grids.

Human Vehicle Mov Obj. Driv. A Walkway

LAPT-PP sum 30.11 50.14 35.86 81.89 60.25
LAPT-PP concat 30.19 49.72 36.08 79.39 56.56
LAPT-PP maxpool 33.73 49.36 35.92 78.34 56.33

LAPT-FPN-PP sum 33.25 52.4 38.11 83.03 62.11
LAPT-FPN-PP concat 33.64 52.65 37.91 81.09 58.66
LAPT-FPN-PP maxpool 29.82 52.58 37.58 78.95 61.34

TABLE III
IOU [%] FOR LAPT-PP AND LAPT-FPN-PP ABLATION STUDY USING

THE THREE PROPOSED FUSION METHODS

E. Robustness against adverse conditions

In Tab. IV, we report the performance of our network on
the scenes under rain and night conditions for our proposed
methods. As a general trend, we see that the network is
affected more by the night condition than rain. For us, this
suggests that the network relies more on camera information,
such as color or texture, that is difficult to capture at night,
than the geometric information from the point cloud, which
might be noisy when it is raining. As noted in subsection V-B
we also observe that the addition of a LiDAR encoder helps
to mitigate the effects in both types of adverse conditions.

Comparing to the general results in the validation set we
can see that even for the best performing method (LAPT-
FPN-PP), the performance drops sharply on night scenes. In
this case, the network seems to perform worse with classes
which have a smaller grid footprint, like human and movable
object, dropping their IoU scores by two thirds. For the
walkway class, performance also drops significantly during
the night (-46%). However, this does not seem to be the case
for vehicles under any of the two adverse circumstances.

The system seems to be robust against rainy conditions,
achieving segmentation results similar to the ones in the
general validation split across all methods and classes. It is
important to note here that there is a difference in scores with
adverse conditions versus the whole validation split since we
are evaluating a robust model on a smaller subset of the data.

Human Vehicle Mov Obj. Driv. A Walkway

LAPT (Rain) 10.14 44.74 32.39 73.08 49.96
LAPT-FPN (Rain) 17.40 51.54 36.92 74.48 52.50
LAPT-PP (Rain) 22.14 52.79 37.58 75.20 51.66
LAPT-FPN-PP (Rain) 23.58 55.13 40.78 77.12 53.33

LAPT (Night) 6.48 36.79 12.23 67.89 25.93
LAPT-FPN (Night) 11.67 46.52 13.87 71.02 28.76
LAPT-PP (Night) 10.80 50.21 15.06 73.39 34.56
LAPT-FPN-PP (Night) 13.79 52.45 12.06 74.55 33.16

LAPT-FPN-PP (All) 33.92 52.4 38.38 83.04 62.11

TABLE IV
IOU [%] FOR THE ADVERSE CONDITIONS STUDY

F. Semantic grid generation latency
An autonomous system should aim to have as little latency

as possible in order to react accordingly to changes in its
environment [34]. This implies that the processing time for
each part of the autonomy stack is crucial. Motivated by this,
we compare the latency of our proposed methods to some
of the ones currently available in the literature.

The inference time in frames per second (FPS) is presented
for the different LAPTNet variations as well as other methods
of the state of the art in Tab. I. These results are reported
on a Nvidia V100 GPU. Comparing against LSS, our best
performing method achieves a similar latency with much
better segmentation results. Comparing against some state
of the art approaches based on attention mechanisms [30],
we see that using the geometric information available from
the LiDAR sensor results in a 6× speedup for the case of
our fastest method (LAPT) or a 3.7× speedup for our best
perfoming method (LAPT-FPN-PP).

Looking at the sensor setup used to capture the nuScenes
dataset, we see that any of our proposed approaches would be
able to keep up with the slowest sensor in the stack, making
our system run in real time. Here, the LiDAR sensor would
be the slowest sensor in the vehicle running at 20Hz [26].

VI. CONCLUSIONS
We have presented in this paper the multiscale LiDAR-

aided Perspective Transform Network (LAPT-FPN). By us-
ing information available in point clouds, the LAPT-FPN is
able to correlate image features extracted by a convolutional
backbone to a bird’s eye view representation for semantic
grid prediction. Doing this correlation across different image
scales provided by the backbone, allows the method to
outperform some state of the art approaches while being able
to run in real time.
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