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ABSTRACT—A dozen basal sauropodomorph genera are currently known from 

Southern Africa. The vast majority of the specimens were unearthed in South Africa, 

but a few were found in Lesotho. We provide here the first complete anatomical 

description of a historical specimen from Lesotho: “the Maphutseng dinosaur.” The 

first rests of this animal were uncovered in 1955 and cited in a scientific publication 

just one year after that, in 1956. Since then, the Maphutseng assemblage has been 

mentioned in several papers and named on two occasions but was never formally 

published. The bone bed has delivered a huge amount of material from all the regions 

of the skeleton, of which a small part is described herein. Based on these skeletal 

elements, and given the unique anatomy of this basal sauropodomorph, the new 

species Kholumolumo ellenbergerorum gen. nov., sp. nov. is erected. Although the 

rests come from a large number of individuals, the species is the most complete to date 

in the lower Elliot Formation. Considering all the material known from the upper 

Triassic of Gondwana, it is also one of the longest specimens (adults could probably 

reach 10m long). Despite this important size, the anatomy supported by the 

phylogenetic results remove any doubts concerning a putative quadrupedality of the 

animal, and thus a possible link with the origin of sauropoda.

Page 2 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

INTRODUCTION

Historical Background

Paul Ellenberger was, at first, a Protestant missionary like both his grandfathers and his father 

before him. Like his father, he was most curious about life and evolution. He worked in 

Lesotho for 17 years, from 1953 to 1970, period during which he prospected a lot looking for 

fossils. As a result, he published more than 15 papers on the paleontology of Lesotho.

In 1930, scattered remains were discovered by Samuel Motsoane, principal of the Paris 

Evangelical Mission School in Bethesda. He communicated their location to P. Ellenberger 

much later, in 1955. Following these indications, P. Ellenberger prospected near a 

fossiliferous lens in Maphutseng, not far from the Protestant mission, in August 1955 (Fig. 

1A-B). He was assisted by his brother, François Ellenberger, geologist, and their research was 

in part financed by the CNRS (the French National Center for Scientific Research). In 

September 1955, they uncovered a pile of well-preserved bones at the place called “Thotobolo 

ea ’Ma-Beata.” They will write later on it: “The bones of this pile (femora, tibias, various 

long bones, ribs, phalanges, claws, vertebrae, etc.) are distributed without order nor 

connection, in mass or trail, within a bed of 20 to 30 cm… […]. This deposit displays a 

previously unseen richness in the South African Stormberg.” (Ellenberger and Ellenberger, 

1956b: 100). The extent of the Maphutseng deposit being beyond the material and technical 

means of the brothers Ellenberger, they asked for the help of two South African colleagues, 

A.W. Crompton, head of the paleontology department at the National Museum of 

Bloemfontein, and R.F. Ewer from Rhodes University in Grahamstown. Their first 

collaboration, in November 1955, was the very first paleontological field campaign in 

Lesotho (Table 1). The same year, P. Ellenberger published a preliminary note, in which 

Maphutseng and the ongoing fieldwork, are quoted (Ellenberger, 1955). The following year, 
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in 1956, the same four-man team continued the excavations in Maphutseng (Table 1). Very 

soon, the Ellenberger brothers realized they were dealing with a very rich deposit (Ellenberger 

and Ellenberger, 1956a, 1956b). Overall, these first two field campaigns led to 683 collected 

pieces, of which approximately 450 complete bones, in a 35 m2 surface (Fig. 1C). In 1957, the 

whole of the material was brought back to the Iziko Museum (formerly South African 

Museum), Cape Town, in temporary storage. Nowadays, it has been moved to the University 

of Cape Town, where part of it is under study (E. Krupandan, pers. comm., 2014). After this 

first joint experience, the relationships between the Ellenberger brothers and Crompton began 

to deteriorate, probably because the preparation and, therefore, the study of the 1955-56 

material sent in Bloemfontein were not completed in time and the material not returned to 

Lesotho. In a 1964 letter to L. Ginsburg, Paul Ellenberger complained that the Maphutseng 

material was “cromptonized” (Supplementary Data Figure 1S).

The deposit being far from drained, another field campaign took place in Maphutseng in 

1959. It was funded by the CNRS, and the team included not only the brothers Ellenberger, 

but also Léonard Ginsburg and Jean Fabre, two researchers from the National Museum of 

Natural History in Paris (MNHN), as well as Hélène Ellenberger, the wife of F. Ellenberger 

(Table 1). The exact quantity of fossils collected during this campaign is unknown, but 

according to the excavation plan drawn by F. Ellenberger (Fig. 1C), it probably comes close 

to two hundred pieces. A small part of it was housed in Morija Museum & Archives, and 

some vertebrae were lent to the Iziko Museum in Cape Town. Most of the material was sent 

to Paris MNHN, in temporary storage. In 1960, F. and P. Ellenberger published an article 

about a slab found in Maphutseng and exhibiting dozens of tracks. According to them, the 

70 m² slab displayed at least eight different trackways (Ellenberger and Ellenberger, 1960). 

Several other tracks were found in Maphutseng. At least three original tracks were brought to 

Montpellier University, as well as 18 other tracks, presumably casts. Most of it is indicated as 
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“missing” in the inventory, the whereabouts of this material is thus currently unknown (pers. 

obs., 2016). The following excavations in Maphutseng occurred in 1963. The team consisted 

of P. Ellenberger, L. Ginsburg, J. Fabre and Christiane Mendrez (MNHN) (Table 1). The 

expedition was followed by the first description of the bones of the Maphutseng dinosaur, and 

their attribution to Euskelosaurus browni (Ellenberger and Ginsburg, 1966).

In September 1970, P. Ellenberger oversaw the last expedition in Maphutseng, with the 

assistance of L. Ginsburg, J. Fabre and Bernard Battail (MNHN) (Table 1; Fig. 2). The bones 

collected were brought to Paris. Between 1959 and 1970, based on the excavation plan of 

1959 and the total number of excavated pieces given by P. Ellenberger (Ellenberger, 1970: 

345), we estimate to approximately 400 the number of Maphutseng fossils sent to France. The 

brothers Ellenberger attributed a field number to each excavated bone between 1959 and 

1970. Given that the numbers range from 684 to 1303, the number of fossils is extended to 

600. However, only 210 are nowadays housed in the MNHN, in Paris. This significant 

difference can be explained if we consider that, on the field, several numbers can be attributed 

to fragments of the same bone. Consequently, some subcomplete bones of the collections 

display until 4 field numbers. The Ellenberger themselves wrote in 1956: “The second 

[fieldwork], in February 1956, increased this number to almost 700 (which should represent 

more than 450 complete and distinct bones), […]” (Ellenberger and Ellenberger, 1956b: 100).

In 1970, Paul Ellenberger returned for good to France, and continued his work on Lesotho 

fossils in Montpellier (Southern France). The same year, he wrote a review about Lesotho 

stratigraphy, in which appear all the fossils, ichnofossils and deposits he discovered during his 

expeditions. In this paper appears the first name attributed to the Maphutseng dinosaur, which 

was, at that time, no longer considered as a specimen of Euskelosaurus. Indeed, P. 

Ellenberger wrote: “A new type of ‘Euskelosauridae’, perhaps closer to sauropods: ‘The 

Maphutseng Beast’ or ‘Thotobolosaurus mabeatae’ (under study), 1150 bones extracted with 
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various rests of lower jaws and skulls from a Dicroidium marl of this age, in Maphutseng.” 

(Ellenberger, 1970: 345). This proposed binomen was inspired by the Sesotho name of the 

place where the first pile of bones was found, not far from the huts of the village of 

Maphutseng (“Thotobolo ea ’Ma-Beata”, meaning “Beata’s mother’s trash heap”). This new 

species was never formally published, even if numerous publications have dealt with this 

material (Ellenberger, 1955; Ellenberger and Ellenberger, 1956a, 1956b; Ellenberger and 

Ginsburg, 1966; Ellenberger et al., 1970; Ellenberger, 1970). It is thus currently considered as 

a nomen nudum. Gauffre (1993) coined the name Kholumolumosaurus ellenbergerorum for 

the Maphutseng dinosaur and described the material in more details in his PhD Thesis 

(Gauffre, 1996). The latter, too, was never formally published, and this second binomen is 

thus also considered as a nomen nudum.

Stratigraphical Overview and the Age of the “Maphutseng Dinosaur”

Maphutseng is a mission located in the Mohale’s Hoek District, in the southwest of Lesotho 

(Fig. 3). Many outcrops, corresponding to different stratigraphic levels, have yielded numerous 

fossils, including mainly footprints, but also plants and dinosaur bones in the vicinity of 

Maphutseng (Ellenberger, 1970).

As for most sauropodomorphs taxa from the Elliot Formation of southern Africa (McPhee et 

al., 2017), uncertainties remain on the exact stratigraphic provenance of the Maphutseng 

dinosaur. In the first three articles mentioning the latter, the Ellenberger brothers stated that 

the bones come from the base of Red Beds (Ellenberger, 1955; Ellenberger and Ellenberger, 

1956a; 1956b), i.e. the base of the lower Elliot Formation (LEF) (SACS, 1980; Johnson et al., 

1996; Bordy et al., 2004). According to the Ellenberger brothers, the bone bed presents 

sedimentary facies typical of the top of the Molteno Formation. It is mainly composed of grey 

to yellowish-green sandy clays and soft gritty sandstones that contain abundant plant fossils, 
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with the foliage species Dicroidium odontopteroides dominating the assemblage. Laterally, 

the bone bed grades into red sandstones typical of the LEF (Ellenberger and Ellenberger, 

1956b). In their subsequent publications (Ellenberger and Ginsburg, 1966; Ellenberger et al., 

1970), the same authors changed their mind and referred the bone bed of Maphutseng to the 

top of the Molteno Formation. In 1970, Paul Ellenberger established a subdivision for the 

Molteno, Elliot and Clarens Formations in Lesotho, and precised the stratigraphic position of 

the Maphutseng bone bed, which is placed in the Zone A/4 (“Molteno supérieur b du 

Lesotho”). The zone A/4 is now considered to form part of the LEF (e.g. Kitching and Raath, 

1984; Gauffre, 1993, 1996; Bordy et al., 2004). Based on lithostratigraphic assessments (van 

Gend et al., 2015), it has been recently suggested that the Maphutseng bone bed is in the 

uppermost part of the LEF, and thus is of a latest Triassic age (around 205 Myr). This has 

been contradicted by other lithostratigraphic observations (Ellenberger and Ellenberger, 

1956b; Battail, pers. comm., 2018) and a magnetostratigraphic study (Scissio et al., 2017) 

which place the site in the lower part of the LEF, suggesting a Norian age (around 210 Myr) 

for the bone bed.

Abbreviations

Institutional Abbreviations—BP, Evolutionary Studies Institute, Johannesburg, 

South Africa (formerly Bernard Price Institute); CM, Carnegie Museum, Pittsburgh, USA; 

CPSGM, Collections Paléontologiques du Service Géologique du Maroc, Rabat, Morocco; 

ISEM, Institut des Sciences de l'Évolution Montpellier, Montpellier, France; MB, Museum 

für Naturkunde, Berlin, Germany; MNHN, Muséum National d’Histoire Naturelle, Paris, 

France; NM QR, National Museum, Bloemfontein, South Africa; OUMNH, Oxford 

University Museum of Natural History, Oxford, England; PVL, Universidad Nacional de 
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Tucumán, San Miguel de Tucumán, Argentina; SAM-PK, Iziko South African Museum, 

Cape Town, South Africa; YPM, Peabody Museum of Natural History, New Haven, USA.

SYSTEMATIC PALAEONTOLOGY

DINOSAURIA Owen, 1842

SAURISCHIA Seeley, 1887

SAUROPODOMORPHA Huene, 1932

KHOLUMOLUMO, gen. nov.

Etymology—The Kholumolumo [xodumodumo] is a mythological creature of the 

sotho folklore. It is often described as a type of dragon, an enormous monster, or sometimes a 

big lizard or crocodile. When referring to dinosaurs, Basotho frequently use this term.

Type species—Kholumolumo ellenbergerorum.

Diagnosis—As for the species.

KHOLUMOLUMO ELLENBERGERORUM, sp. nov.

(Figs. 4–22)

“forme nouvelle de Prosauropode”: Ellenberger and Ellenberger, 1956a: 100.

“Prosauropode quadrupède (voisin de Melanorosaurus ou Euskelosaurus)”: Ellenberger and 

Ellenberger, 1960: 236.

Euskelosaurus Huxley, 1866: Ellenberger et al., 1964: 326.

Melanosauridae indet: Charig et al., 1965: 201.

Euskelosaurus browni Huxley, 1866: Ellenberger and Ginsburg, 1966: 1944.
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Thotobolosaurus mabeatae Ellenberger, 1970, nomen nudum: Ellenberger, 1970: 345.

Euskelosaurus Huxley, 1866: Gauffre, 1993: 147.

Kholumolumosaurus ellenbergerorum Gauffre, 1996, nomen nudum: Gauffre, 1996: 3.

Euskelosaurus Huxley, 1866: de Ricqlès et al., 2003: 72.

Plateosauridae indet.: Knoll, 2004: 79.

“Bloem Dino”: McPhee et al., 2014: 157.

“Maphutseng dinosaur”: Peyre de Fabrègues and Allain, 2016: 2.

Etymology—In honor of the brothers Ellenberger, Paul and François, who discovered 

the Maphutseng deposit, and have done a tremendous amount for Lesotho, particularly in 

terms of paleontology and geology.

Holotype—MNHN.F.LES381m. A right complete tibia (Fig. 20). We consider that all 

the specimens from the bone bed are congeneric and conspecific, but all the skeletons being 

disarticulated, we designate this bone because of its diagnostic features. The rest of the 

material is relegated to the status of paratype.

Paratypes and referred material—The bones from multiple individuals figured 

herein are considered as paratypes: an incomplete left postorbital (MNHN.F.LES153); an 

incomplete right postorbital (MNHN.F.LES54); a posterior cervical vertebra 

(MNHN.F.LES169); an incomplete anterior dorsal neural arch (MNHN.F.LES397); an 

incomplete middle dorsal vertebra (MNHN.F.LES32); a sacral vertebra (MNHN.F.LES155); 

two incomplete anterior caudal vertebrae (MNHN.F.LES168, 376); a left scapula 

(MNHN.F.LES386) ; a left humerus (MNHN.F.LES379); a right ulna (MNHN.F.LES159); a 

right radius (MNHN.F.LES147); a right metacarpal I (MNHN.F.LES26); a left metacarpal II 

(MNHN.F.LES92); a right metacarpal III (MNHN.F.LES93); an incomplete right metacarpal 

IV (MNHN.F.LES76); a left phalanx I-1 (MNHN.F.LES29); a right ilium 

Page 9 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

(MNHN.F.LES375a); a left pubis (MNHN.F.LES378); an incomplete left ischium 

(MNHN.F.LES152); a right femur (MNHN.F.LES394); a right fibula (MNHN.F.LES374); a 

left metatarsal I (MNHN.F.LES89); a left metatarsal II (MNHN.F.LES81); a left metatarsal 

III (MNHN.F.LES82); a left metatarsal V (MNHN.F.LES77).

The rest of the material housed in the MNHN is referred to Kholumolumo ellenbergerorum, 

as well as the Maphutseng remains stored in the University of Cape Town. A complete list of 

the material stored in Paris is available in supplementary data (Supplementary Data Table 1S).

Type locality—Maphutseng, Mohale’s Hoek District, Lesotho (Fig. 3).

Type horizon—Lower Elliot Formation, Upper Triassic.

Diagnosis—A basal sauropodomorph with the following unique combination of 

characters on the holotype: very short and stout tibia (circumference/length ratio = 53%. All 

the other basal sauropodomorphs have ratios < 49%, except Antetonitrus and Blikanasaurus) 

with a diaphysis becoming finer distally in lateral and medial views and showing straight 

anterior and posterior margins, unlike in Antetonitrus. By contrast with Blikanasaurus, fourth 

metatarsal elongated relatively to the tibia and with a proximal extremity larger transversely 

and less extended anteroposteriorly. Diagnostic characters of the paratype: posterior cervical 

vertebra particularly short and high with a centrum elongation of 1.2. On the anterior dorsal 

vertebra, base of the neural spine anterior to the anterior margin of the diapophysis in dorsal 

view. On the sacral vertebra, centrum very short anteroposteriorly, with an elongation (ratio 

of the ventral length of the centrum on its anterior height) of 0.7. On the scapula, two marked 

posterodorsal and anterodorsal ridges on the lateral surface of the blade.

Associated fauna—Two large teeth of a carnivore have also been collected. Referred 

to a theropod by Ellenberger (1970: 345), they most probably belong to a rauisuchian, given 

their size.

DESCRIPTION
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Skull

Two postorbitals were found in the Maphutseng bone bed: a left one (MNHN.F.LES153) and 

a right one (MNHN.F.LES54), both incomplete. According to the marked size difference, 

they belong to two different specimens (Fig. 4).

The postorbital is stout and triradiate. There is no marked step between the anterior and 

posterior processes in lateral view, as in Coloradisaurus, Melanorosaurus or Sarahsaurus. 

However, the dorsal margin of the postorbital still appears concave in lateral and medial 

views. The anterior process of the postorbital is transversely wide. A part of the articular facet 

for the frontal is visible on its ventrolateral surface (Fig. 4A, C). The medial surface of the 

anterior process also bears a depression, which probably accommodated the parietal (Fig. 4B). 

The lateral surface of the process is strongly convex. A small depression on the dorsomedial 

portion of the anterior process is indicative of the extension of the supratemporal fossa on the 

postorbital. The anterior margin of the postorbital constitutes the posterodorsal margin of the 

orbit. In anterior view, it gets wider dorsally.

In lateral view, the ventral process of the postorbital is bent forward as in most basal 

sauropodomorphs (Fig. 4A-B). In some genera however, the ventral process is straighter. It is 

the case in Anchisaurus or Jingshanosaurus. The transverse thickness of the ventral process 

equals 60% of its anteroposterior width. The posterior process of the postorbital is much 

thinner than the two other processes, both in lateral and dorsal views. The preserved part of 

the posterior process does not taper distally. Unlike the ventral process, the posterior process 

is straight and rod-like, with slightly dorsoventrally convex lateral surface (Fig. 4C-D). In 

some basal sauropodomorphs, such as Melanorosaurus, Xixiposaurus and Yunnanosaurus, the 

posterior process is not straight in dorsal view, but laterally convex.

Cervical Vertebrae
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Middle Cervical Vertebrae (MNHN.F.LES338 & MNHN.F.LES342)—Two 

incomplete middle cervical vertebrae were found in Maphutseng. Both vertebrae consist in a 

damaged and incomplete centrum. The lowest and most elongated one (LES342) is more 

complete than the other (LES338). LES342 was probably slightly anterior to LES338 in the 

cervical series.

The centra are amphicoelous, as well as acamerate. LES342 has been transversely 

compressed: its centrum elongation (ratio of the ventral length of the centrum on its anterior 

height) is of 2.4 (Table 3) but was probably closer to 2.7 given the compression (2.7 is the 

average Elongation Index: aEI as described in Chure et al., 2010). In anterior view, the 

transverse compression is well visible on both centra. In LES338, the anterior articular 

surface appears 1.2 times higher than wide. In LES342, it is 1.3 times higher than wide (Table 

3). In ventral view, a keel is visible on both centra as in many other basal sauropodomorphs. It 

is absent in some other genera like Coloradisaurus, Riojasaurus or Yunnanosaurus. In lateral 

view, the ventral border of both centra is concave. Their lateral surface appears slightly 

concave dorsally. It bears the parapophysis, which is located in the anterior third of the 

centrum, closer to the ventral margin than to the neurocentral suture. The parapophysis on 

LES338 is poorly developed and oval.

On LES342, the diapophysis is not much developed, subtriangular and oriented 

lateroventrally. It is situated in the anterior half of the centrum.

Given the length of the centrum, the position of the diapophysis and parapophysis, and 

compared to Adeopapposaurus and Plateosaurus, both vertebrae are considered to be part of 

the middle cervical series.

Posterior Cervical Vertebra (C10?) (MNHN.F.LES169)—One complete cervical 

vertebra was found on the Maphutseng site (Fig. 5). The only missing parts of the bone are 

the distal extremities of the postzygapophyses. The centrum is both amphicoelous and 
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acamerate and the neural arch displays low laminae. The centrum elongation (ratio of the 

ventral length of the centrum on its anterior height) is of 1.2 (Table 3): that is much inferior to 

the ratio of the middle cervical vertebra MNHN.F.LES342. These proportions are not 

observed in many posterior cervical vertebrae of basal sauropodomorphs, as most of them 

have very elongated and low cervicals. Some of the few other genera to present posterior 

cervical vertebrae with high articulation surfaces compared to their length are Plateosaurus, 

Riojasaurus and Ruehleia. However, as in the middle cervical vertebrae, the centrum articular 

surfaces are slightly higher than wide (Table 3). In ventral view, the cervical vertebra displays 

a marked median constriction and a ventral keel, of which the distal border is eroded. The 

ventral keel extends on all the length of the centrum (Fig. 5F). This morphology is similar to 

that observed in most basal sauropodomorphs, as in Massospondylus, even though in some 

genera such as Plateosaurus or Riojasaurus, the ventral surface of the cervical vertebrae is 

flat until the C9.

In lateral view, the ventral border of the vertebra is strongly concave. As it is the case in C9 

and C10 of most basal sauropodomorphs, a hypapophysis is visible on the anteroventral part 

of the centrum, in the axis of the ventral keel. The lateral surfaces of the vertebra are slightly 

excavated and display the parapophysis in the anterior third of the centrum, centered between 

the ventral margin and the neurocentral suture. The right parapophysis is broken, but the left 

one is complete (Fig. 5A-B). They are rather developed dorsoventrally and form a well-

developed tuber on the surface of the centrum. The dorsal portion of the parapophysis is the 

most extended laterally. More ventrally, the parapophysis gets lower and merges gradually in 

the centrum surface. The contact surface with the capitulum is oriented laterally to 

lateroventrally.

The diapophysis are developed, subrectangular and oriented lateroventrally (Fig. 5C-D). In 

ventral view, the anterocentrodiapophyseal and posterocentrodiapophyseal laminae are 
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visible. They are short and concealed by the diapophysis. The prezygodiapophyseal lamina is 

well-marked on the right size of the vertebra. The postzygodiapophyseal lamina is visible on 

the left side of the cervical vertebra. The prezygapophyses are still in articulation with the 

postzygapophyses and the hyposphene of the preceding vertebra. They are short, rounded and 

anteriorly projected. Their articular surface is oriented dorsomedially and seem to be flat. 

There is no visible intraprezygapophyseal lamina, whereas posterior cervical vertebrae of 

Adeopapposaurus, Plateosaurus, Ruehleia or Massospondylus bear this lamina. The ventral 

surface of the prezygapophyses is planar to slightly convex and connected to the centrum 

through the centroprezygapophyseal lamina. The postzygapophyses of the preceding vertebra 

project posteriorly with a lateral component in dorsal view. They are elongated, stout and bear 

an extensive planar to slightly concave articular surface directed ventrolaterally. The position 

of the postzygapophyses and the presence of a protuberant hyposphene make it unlikely the 

presence of an intrapostzygapophyseal lamina. Although broken, the postzygapophyses 

extended beyond the posterior margin of the centrum. In posterior view, the 

centropostzygapophyseal laminae are well visible. The dorsal surface of the 

postzygapophyses bears an epipophysis, which seems to extend on most of their length. The 

epipophyses are low and merged with the postzygapophyses on all their length, without well-

delimited medial or lateral borders. The dorsal surface of the postzygapophyses of the 

preceding vertebra bears a spinopostzygapophyseal lamina coming into contact with the 

lateral margins of the neural spine. This lamina is also observed on the posterior cervicals of 

Adeopapposaurus, Mussaurus and Ruehleia. The neural spine is almost as long as wide in 

dorsal view and appears globulous and subcircular (Fig. 5E). In lateral view, a small posterior 

projection of its posterodorsal corner is visible. The anterior margin of the neural spine is 

convex, the dorsal margin is straight to slightly convex and the posterior one is concave. In 

anterior and posterior views, the neural spine shows a slight distal expansion.
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The position of the parapophysis, at mid-height of the centrum, the presence of a 

hypapophysis, and the distance between the diapophysis and the postzygapophysis in lateral 

view allow to identify this element as a cervical vertebra. The height of the vertebra, the 

elongation of the centrum, the strongly concave ventral margin, the central rather than ventral 

position of the parapophysis, the shape of the diapophysis, the presence of the 

prezygodiapophyseal and postzygodiapophyseal laminae and the shape of the neural spine 

allow to identify the vertebra as a posterior cervical, most likely a C10.

Dorsal Vertebrae

Anterior Dorsal (D1?) Neural Arch [MNHN.F.LES397]— The neural arch is well-

preserved and not deformed at all. The left postzygapophysis and the neural spine are broken 

at their base, but all the remaining anatomical structures are complete (Fig. 6; Table 3).

No parapophysis, complete or partial, is visible in lateral view (Fig. 6B). It means that it was 

located on the centrum and that we deal with an anterior dorsal vertebra. No beginning of 

prezygoparapophyseal laminae (prpl) is visible near the prezygapophysis. The diapophyses 

are not much developed relatively to what is observed in other taxa such as Plateosaurus or 

Ruehleia. They are longer anteroposteriorly than large transversely. The left diapophysis is 

the most complete. In dorsal view, it is subrectangular. The diapophyses project laterally with 

a small posterior component in dorsal view. In anterior and posterior views, they are oriented 

slightly ventrally (Fig. 6C-D). In lateral view, their extremity has a subtriangular shape. The 

diapophyses are supported by four laminae (acdl or ppdl, pcdl, prdl and podl), delimiting four 

associated fossae. On the lateral surface of the neural arch, ventrally to the diapophyses, a 

vertical lamina, which was probably extending on the centrum of the vertebra, is visible in 

anterior view. Given that the parapophysis cannot be observed, this lamina could be an 

anterocentrodiapophyseal (acdl) or a paradiapophyseal lamina (ppdl). Anteriorly and 
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posteriorly to the diapophysis, the prezygodiapophyseal (prdl) and postzygodiapophyseal 

(podl) laminae are visible. The postzygodiapophyseal lamina (podl) is interrupted at the level 

of the hyposphen (“stranded lamina”, Wilson, 2012). This interruption is observed in some 

basal sauropodomorph taxa, including Ruehleia. In the latter, it occurs on the posterior 

cervicals. Kholumolumo is apparently the only one in which this lamina is visible on an 

anterior dorsal. On the posterior margin of the diapophysis, the postzygodiapophyseal lamina 

(podl) defines, with the posterocentrodiapophyseal lamina (pcdl), a postzygapophyseal 

centrodiapophyseal fossa (pocdf). In dorsal view, the postzygapophyses project more laterally 

than the prezygapophyses relatively to the longitudinal axis of the vertebra.

The prezygapophyses project anteriorly in dorsal and lateral views (Fig. 6A). In dorsal view, 

they are rather short and have a rounded extremity. They present flat dorsal articular surfaces 

which are dorsomedially oriented. The prezygapophyses are not interconnected by an 

intraprezygapophyseal lamina (tprl), conversely to what is observed on the first dorsal 

vertebra of Massospondylus, Plateosaurus or Ruehleia. In anterior view, the 

centroprezygapophyseal lamina (cprl) is well visible on each side of the vertebra. With the 

prezygodiapophyseal lamina (prdl) and the anterocentrodiapophyseal (acdl) or 

paradiapophyseal lamina (ppdl), it defines a deep prezygapophyseal centrodiapophyseal fossa 

(prcdf). No spinoprezygapophyseal lamina (sprl) is visible. The right postzygapophysis is the 

only one preserved. It is located very high on the neural arch, thus the dorsoventral distance 

between the postzygapophysis and the diapophysis is important. However, the anteroposterior 

distance between these two structures is reduced in lateral view relatively to the posterior 

cervical vertebra described herein. The postzygapophysis project posterolaterally in dorsal 

view, with a significant lateral component contrary to Plateosaurus. In lateral view, its 

orientation is slightly dorsal. The articular ventral surface of the postzygapophysis is flat and 

ventrolaterally oriented. In dorsal view, the postzygapophysis is wider transversely than long 
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anteroposteriorly and thus appears short and stocky. There is no intrapostzygapophyseal 

lamina (tpol) visible, the small gap between the postzygapophyses being occupied by a 

developed hyposphene. In posterior view, the centropostzygapophyseal lamina (cpol) is 

present. In dorsal view, there is no visible epipophysis on the right postzygapophysis. On the 

anterior part of the dorsal surface of the postzygapophysis, the beginning of a 

spinopostzygapophyseal lamina (spol) is visible. The neural spine is broken at its base. The 

location of the base of the spine is unusual: it is anterior to the anterior margin of the 

diapophysis (Fig. 6A). On the anterior dorsal vertebrae of Plateosaurus or Ruehleia, the base 

of the spine is located at the same level as the middle of the diapophysis or between the 

middle and the posterior margin of the diapophysis. The neural spine seems to be 

anteroposteriorly very short relatively to the length of the neural arch. In many basal 

sauropodomorphs, neural spines of anterior dorsal vertebrae display a reduced base and widen 

distally. However, the widening is usually transverse, and the anteroposterior length of the 

neural spine is more or less steady from the base to the top, as it is observed in Plateosaurus 

or Ruehleia.

The development of the diapophyses, and particularly the absence of epipophysis on the 

postzygapophysis, show that we do not deal with a cervical vertebra. The absence of 

parapophysis on the neural arch show that this is an anterior dorsal. Based on the location of 

the parapophyses on the dorsal series of Plateosaurus, this vertebra is located between D1 and 

D5. Given the development of the diapophyses (especially compared to that of the posterior 

cervical vertebra MNHN.F.LES169, which is quite similar), the thick 

anterocentrodiapophyseal (acdl) and posterocentrodiapophyseal (pcdl) laminae, and the 

absence of intraprezygapophyseal laminae (tprl), the neural arch probably comes from one of 

the first dorsals, much likely a D1.
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Anterior Dorsal (D2-3?) Centrum [MNHN.F.LES172]—One centrum from an 

anterior dorsal vertebra was found in the collected material. It fits well, in size and 

morphology, with the anterior dorsal neural arch described above (MNHN.F.LES397), and is 

thus probably from a very close vertebra. The centrum is slightly transversely compressed and 

deformed, this is particularly visible in anterior and posterior views. It is both amphicoelous 

and acamerate and the visible laminae are low. The centrum elongation ratio is of 1, the 

ventral length of the centrum being roughly equal to its anterior height (Table 3). In anterior 

and posterior views, the articular surfaces are 1.3 times higher than wide, like for the other 

vertebrae (Table 3). In ventral view, the centrum displays a marked median constriction and a 

ventral keel. The ventral keel, of which the distal border is broken, extends throughout the 

length of the centrum. This morphology is similar to that observed in most basal 

sauropodomorphs with complete dorsal series. In Massospondylus, the keel is present on the 

entire length of the centrum only in D1 and D2.

In lateral view, the ventral border of the vertebra is slightly concave. We can infer the 

presence of a hypapophysis following the ventral keel on the anteroventral part of the 

centrum, even though the area is eroded. The lateral surfaces of the vertebra are slightly 

excavated. They bear the parapophyses, which are located closer to the middle of the vertebra 

than to its anterior border. Dorsoventrally, the parapophysis is situated on the dorsal half of 

the centrum, overlying the neurocentral suture. The parapophysis is oval, almost three times 

longer dorsoventrally than anteroposteriorly. It has a rough surface and forms an important 

protrusion on the surface of the centrum. Laterally, the parapophysis protrudes on 

approximately 1 cm.

The proportions of the centrum and the high position of the parapophysis suggest a dorsal 

vertebra. The position and shape of the parapophysis combined with the presence of a ventral 

keel permit to identify this element as an anterior dorsal vertebra. The parapophysis overlying 
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the neurocentral suture and the thickness of the anterocentrodiapophyseal (acdl) and 

posterocentrodiapophyseal (pcdl) laminae, which are thinner than in the anterior dorsal neural 

arch MNHN.F.LES397, allow us to think that this centrum belongs to a D2 or D3.

Posterior Dorsal (D8-12?) [MNHN.F.LES32]—Overall, this vertebra is badly 

preserved. The postzygapophyses, neural spine, as well as some structures from the right side, 

are missing. The anterior surface of the centrum is substantially broken and eroded. 

Conversely, its posterior surface is almost complete. The neural arch is very eroded on its 

lower part. On the left side, the diapophysis is broken and the parapophysis is not visible any 

more. The whole of the vertebra has undergone a transverse compression (Fig. 7), as 

evidenced by the articular surfaces of the centrum 1.5 higher than wide, when the ratio should 

be more of 1.2 as in all the other vertebrae (Table 3).

The posterior articular surface of the centrum is concave (Fig. 7C). The lateral surfaces show 

a slight dorsal concavity. The centrum elongation (ratio of the ventral length of the centrum 

on its anterior height) is of 1.2. Given the observed deformation, the real ratio (aEI) was 

probably closer to 1.5. These values are slightly superior to the ratio of 1 observed on the 

anterior dorsal MNHN.F.LES172, but clearly inferior to the 2.4 ratio of the middle cervical 

vertebra MNHN.F.LES342 (Table 3). In ventral view, the centrum shows a median 

constriction. Its ventral surface is flat and does not exhibit a keel. Even though the anterior 

part of the centrum is partially broken, it does not seem to present a hypapophysis. In lateral 

view, the ventral margin of the centrum is concave.

The separation between the centrum and the neural arch is very clear. The neural arch shows 

marked but relatively thick laminae, typical of what is usually observed in basal 

sauropodomorphs. It is remarkably higher than the neural arch of the anterior dorsal 

MNHN.F.LES397 described above (Table 3). The parapophysis is located on the neural arch. 
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It is visible on the right side of the neural arch, but much damaged on the left side. It is 

situated at mid-height on the anterior part of the neural arch (Fig. 7A). It is large and suboval 

in shape, even though its ventral region is abraded and not much more visible. The long axis 

of the parapophysis is oblique relatively to the longitudinal axis of the vertebra. On the right 

side of the vertebra, the parapodiapophyseal lamina (ppdl) can be clearly distinguished. The 

bone surface being much damaged under the parapophysis and on the anterodorsal part of the 

centrum, it is impossible to determine if there is an anterocentroparapophyseal lamina (acpl). 

The right diapophysis is the only one to be preserved. It is high on the neural arch and 

projects posterodorsally in lateral view. It is not much developed, and the distal extremity is 

broken, making it impossible to appreciate the total extension of the diapophysis. Without a 

distal extremity, it appears subrectangular in dorsal view and projects strictly laterally. The 

diapophysis is surrounded, ventrally and anteriorly, by three laminae (prdl, ppdl and pcdl). 

Anteriorly, the prezygodiapophyseal lamina (prdl) is well developed. It borders dorsally the 

prezygapophyseal centrodiapophyseal fossa (prcdf). The parapodiapophyseal lamina (ppdl) 

extends over 45 mm between the diapophysis and the parapophysis. It replaces the 

anterocentrodiapophyseal lamina (acdl), which is absent because of the high position of the 

parapophysis. A posterocentrodiapophyseal lamina (pcdl) connects the diapophysis to the 

posterior part of the centrum. The ventral part of this lamina is not visible, because it is 

located on the damaged part of the neural arch and centrum. A shallow centrodiapophyseal 

fossa (cdf) is present between the posterocentrodiapophyseal lamina (pcdl) and the 

parapodiapophyseal lamina (ppdl). Posteromedially to the posterocentrodiapophyseal lamina 

(pcdl), a deep postzygapophyseal centrodiapophyseal fossa (pocdf) is visible in lateral and 

posterior views. In posterior view, the beginning of a postzygodiapophyseal lamina (podl) 

seems to be present on the posterior margin of the diapophysis. However, in the absence of 

postzygapophyses, we cannot attest to the presence of this lamina. The prezygapophyses are 
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elongated and project strictly anteriorly in dorsal view. In lateral view, their orientation shows 

a dorsal component. Their dorsal articular surface is flat and oriented dorsally with a slight 

medial component. The prezygapophyses are not interconnected by an intraprezygapophyseal 

lamina. The anterior part of the neural arch being damaged and poorly prepared, we cannot 

state with certainty that centroprezygapophyseal laminae (cprl) extend ventrally under the 

prezygapophyses, even if it appears to be the case. The dorsal surface of the neural arch is 

relatively well-preserved, despite the absence of neural spine, and does not bear a 

spinoprezygapophyseal lamina (sprl). The postzygapophyses were not preserved. However, a 

stout and well-developed hyposphene is visible above the neural canal in posterior view. In 

height, the hyposphene equals 25% of the total height of the neural arch without the neural 

spine. The neural spine is broken at its base. The missing parts and the plaster added on the 

dorsal surface of the neural arch prevent from locating the zone where the base of the neural 

spine was situated.

The position of the parapophysis on the neural arch and the height of the transverse process 

demonstrate that we deal with a dorsal vertebra. The height of the parapophysis on the neural 

arch, above the neurocentral suture, shows that it is a middle or posterior dorsal vertebra. 

However, it cannot be one of the last two dorsals given that the parapophysis and the 

diapophysis are well separated from each other. By comparing with the position of the 

parapophysis in other basal sauropodomorphs, we can situate this vertebra between D7 and 

D12.

Sacral Vertebra

Primordial Sacral 2? [MNHN.F.LES155]—The sacral vertebra is almost complete, 

without deformation, and its bone surface is relatively well-preserved. The anterior surface of 

the centrum and neural spine are eroded in some places and the prezygapophyses are missing 
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(Fig. 8). This can be explained by the fact that another sacral vertebra was probably 

articulated and partially fused anteriorly to this one. As a rule, prosauropod dinosaurs possess 

two primordial sacral vertebrae associated with a dorsosacral and/or a caudosacral, depending 

on the considered taxa (Galton, 1999; Galton and Upchurch, 2004). Because of their limited 

number and their contribution to the sacrum, sacral vertebrae usually have quite distinct 

morphologies from one another.

This sacral vertebra is stout, large and its centrum height equals approximately 60% of the 

neural arch height (Table 3). The sacral ribs, projecting on each side of the vertebra, are meant 

to meet the ilium (Fig. 8A). The centrum is very short anteroposteriorly, its elongation (ratio of 

the ventral length of the centrum on its anterior height) is of 0.7 (Table 3), that is inferior to that 

of the posterior cervical vertebra and dorsal vertebrae (ratios between 1 and 1.2) and much 

inferior the elongation ratio of the middle cervical vertebra (2.4). This stocky morphology is 

unusual among basal sauropodomorphs given that numerous taxa like Adeopapposaurus (1.5), 

Leonerasaurus (1.6) or Plateosaurus (exact ratio unknown) have sacral vertebrae with much 

higher elongation ratios. The anterior articular surface of the centrum is 1.3 times higher than 

wide, as in most other vertebrae. In ventral view, the centrum has a quite odd morphology, its 

anterior width equals 60% of its posterior width (Table 3). The state of preservation of the 

anterior part of the vertebra must have an impact on this difference, but probably an 

insignificant one, given that the bone surface is visible in some places. This width variation is 

quite representative of the sacral vertebrae of some sauropods like Apatosaurus, but is not 

observed in Adeopapposaurus, Massospondylus or Plateosaurus. The centrum shows a median 

constriction and its ventral surface is flat. It is circular in posterior view, the height and the 

width of the posterior articular surface being almost identical (Table 3), and its posterior surface 

is concave. In lateral view, the ventral margin of the centrum is concave and its posterior border 
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projects more ventrally than its anterior one. The lateral surface is slightly concave and partially 

covered by the rib, which occupies the dorsal third of its height.

The neural arch is anteroposteriorly short and located on the anterior two thirds of the 

centrum. On the neural arch, the diapophyses are developed and subrectangular. They are 

merged with the ribs and, taken together, their transverse width is much superior to the 

anteroposterior length of the diapophyses at their base. In posterior view, a small bulge visible 

on the dorsal surface of the fused diapophyses and ribs corresponds to the location where they 

are merging. Anteroposteriorly, each diapophysis occupies the entire length of the neural 

arch. In dorsal view, the length of the diapophyses decreases distally. The point where it is 

thinner seems to match the location where it merges with the sacral rib. The anteroposterior 

extension of the sacral rib is increasing towards its distal extremity. Despite this, there is no 

marked constriction between the diapophysis and the sacral rib in dorsal view (Fig. 8C). The 

fused diapophysis and rib show concave anterior and posterior margins and project laterally 

with a small posterior component. The shape and the direction of the process and rib in dorsal 

view resemble what is observed on the second primordial sacral of Lufengosaurus and 

Mussaurus. In posterior view, the rib exhibits a marked ventral depression, of which the 

dorsal margin is situated at the level of the neural canal and extending until the ventral border 

of the sacral rib. The lateral margin of the fused diapophysis and rib is concave. In lateral 

view, the extremity of the rib has a subrectangular shape and an oblique main axis (Fig. 8B). 

It extends on more than 100 mm dorsoventrally, that is approximately two thirds of the height 

of the centrum. The dorsal part of the rib is more extended anteroposteriorly than its ventral 

extremity. The articular facet for the ilium is simple. In lateral view, the dorsal border of the 

sacral rib is slightly convex, its anterior and posterior margins are concave, and its ventral 

border appears to be flat to slightly concave. The biconcavity (anterior and posterior) is 

mentioned by Pol et al. (2011) as being representative of the first primordial sacral among 
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sauropodomorphs. However, the shape and dorsoventral extension of the contact area with the 

ilium are inconsistent with what is observed on the first primordial sacral of Leonerasaurus or 

Riojasaurus. Moreover, the shape of the anteroventral margin of the rib and the state of 

preservation of the anterior surface of the sacral vertebra and rib clearly indicate that they 

were fused with the previous vertebra. It then cannot be the first primordial sacral. By 

comparing the shape of the contact area for the ilium with those visible on the sacral vertebrae 

of Adeopapposaurus, Leonerasaurus, Mussaurus or Riojasaurus, it appears that we are closer 

to the second primordial sacral. Among these three taxa, Riojasaurus is the one where the 

shape and the orientation of the contact area for the ilium best match what is observed on the 

Maphutseng specimen. The prezygapophyses of the sacral vertebra are, unfortunately, not 

preserved. The postzygapophyses are short, not extended transversely and project 

posterolaterally in dorsal view. Their ventral articular surfaces are flat and ventrolaterally 

oriented. The postzygapophyses arise from the base of the neural spine posterior margin and 

flush with the latter. They are separated by an interpostzygapophyseal notch. Underneath the 

postzygapophyses there is a large hyposphene, which is approximately the same height as the 

neural canal. The neural canal is circular. The neural spine is quite high and located anterior 

to the sacral vertebra centrum. In lateral view, the neural spine is clearly higher than 

anteroposteriorly long (its length equals 42% of its height) and shows a constant length (Table 

3; Fig. 8). Its proportions remind those of the sacrum neural spines of Plateosaurus, most of 

the other sauropodomorph taxa presenting neural spines usually anteroposteriorly longer with 

respect to their height. The neural spine is oriented posterodorsally, but not as dramatically as 

in Adeopapposaurus or Plateosaurus. Its anterior border is slightly convex, whereas its 

posterior border is concave. Its dorsal margin is posteriorly inclined. The distal extremity of 

the neural spine is oval in dorsal view. In posterior view, the lateral borders of the neural 
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spine are concave given that the proximal and distal extremities are slightly transversely 

extended compared with the median part of the neural spine.

Given the dorsoventral extension of the contact area for the ilium, the anterior surface of the 

vertebra which was probably fused with another one, the shape and the orientation of the 

fused diapophyses and ribs in dorsal view, and, considering that the majority of basal 

sauropodomorphs have three to four sacral vertebrae, including two primordial sacrals, we 

suggest this vertebra to be identified as a second primordial sacral.

Caudal Vertebrae

Anterior Caudal (Ca1-Ca5) [MNHN.F.LES168]—The first caudal from 

Maphutseng is damaged, but does not appear to have undergone important deformation. The 

posterior surface of the centrum is complete, but its anterior surface is quite incomplete, 

particularly on the borders. The largest missing parts are located at the base of the neural arch, 

for that reason the centropostzygapophyseal ridges were replaced by plaster, and on the lateral 

sides of the vertebra, where the transverse processes are absent. The left prezygapophysis and 

postzygapophysis are broken, those from the right side are in part reinforced with plaster, but 

complete. The neural spine is complete (Fig. 9).

The centrum is very high and short, as it is the case on the anterior caudal vertebrae of some 

basal sauropodomorph taxa like Aardonyx, Lufengosaurus or Melanorosaurus (NM QR1551). 

Its aEI equals 0.56 (Table 3), that is to say well inferior to what has been measured on all the 

preceding vertebrae, including the sacral vertebra. In posterior view, the centrum articular 

surface is overhung by a matrix residue. The latter could give the impression that the centrum 

shows a dorsal protuberance, but it is not the case and the centrum is, in reality, circular. The 

posterior articular surface of the centrum is concave (Fig. 9B). Similarly, its lateral surfaces 

show a slight dorsal concavity. In lateral view, the ventral margin of the centrum is strongly 
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concave (Fig. 9A). In ventral view, the centrum shows a marked median constriction, not 

located on a central point as it is the case on the posterior cervical (MNHN.F.LES169), but on 

the entire length of the centrum, apart from the anterior and posterior borders. The ventral 

surface of the centrum is smooth and does not bear a longitudinal groove as in 

Adeopapposaurus, Eoraptor or Riojasaurus. This groove is observed on the anterior caudal 

vertebrae of several basal sauropodomorphs, but usually appears after a few vertebrae on the 

caudal series (for instance, in Plateosaurus, it is well visible from the Ca6).

The neural arch is badly preserved. Laterally to the neural canal, a small part of the base of 

the neural arch is still in place on both sides. It is difficult to judge the anteroposterior 

extension of the neural arch, given that the posterior borders are broken, but it seems to be 

quite short, as an extension of the centrum. The neural arch is very high, almost as high as the 

one of the sacral vertebra MNHN.F.LES155 (260 and 265 mm, respectively). The transverse 

processes are missing. The right prezygapophysis of the vertebra, the only one preserved, is 

projecting strictly anteriorly. It is relatively long in comparison to the anteroposterior 

extension of the vertebra, but is not mounted on high pedicels. It has got a rounded shape in 

dorsal view and a subtriangular one in lateral view (Fig. 9A). The dorsal articular surface of 

the prezygapophysis is flat and oriented strictly dorsally. In dorsal view, an 

interprezygapophyseal notch is visible. The right postzygapophysis is the only one preserved. 

It projects strictly posteriorly in lateral view. It is robust, rounded in dorsal view and coupled 

over its entire height to the posterior margin of the neural spine. The spinopostzygapophyseal 

lamina is broken, but apparently exceeded the mid-height of the neural spine. The ventral 

articular surface of the postzygapophysis is flat to slightly concave and oriented ventrally to 

ventrolaterally (Fig. 9B). Judging by the remnants of the left postzygapophysis on the left side 

of the posterior surface of the neural spine, the postzygapophysis articular surfaces were 

probably very close to each other. The neural spine is complete, high and located at the same 
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level as the centrum on an anteroposterior axis. The anteroposterior length on the top of the 

neural spine equals 36% of its total height (Table 3). This length is constant on the entire 

height of the neural spine, if we do not take into account the postzygapophysis. Transversely, 

the neural spine is compressed and its width goes slightly increasing towards its distal 

extremity. In posterior view, the lateral margins of the neural spine are straight above the 

postzygapophyses. In lateral view, the vertebra neural spine is oriented strictly dorsally and 

not posterodorsally, as on the most posterior caudal vertebra. The distal extremity of the 

neural spine is convex, its anterior border is slightly convex and its posterior border, dorsally 

to the postzygapophysis, appears slightly concave. In dorsal view, the distal extremity of the 

neural spine is oval.

The proportions of this vertebra, the absence of laminae or fossae on the preserved parts of 

the neural arch and the height of the neural spine allow us to confirm that we deal with a 

caudal vertebra. Considering the proportions of the vertebra, including the very short centrum, 

the size of the vertebra, very close to the one of the sacral vertebra MNHN.F.LES155, the 

absence of posterodorsal projection on the neural spine and the fact that the pedicels of the 

prezygapophyses and postzygapophyses are almost non-existent, we identify this vertebra as a 

very anterior caudal (Ca1-Ca5).

Anterior Caudal (Ca5-Ca15) [MNHN.F.LES376]—This anterior caudal vertebra is 

well-preserved. On the neural arch, the left transverse process is broken at its extremity. The 

right transverse process is broken at its base. Both postzygapophyses are broken. However the 

prezygapophyses are complete, as well as the neural spine, in spite of some slight damages on 

the anterior and posterior margins (Fig. 10). 

This caudal vertebra is clearly smaller than the other one (MNHN.F.LES168). Its height 

equals approximately 80% of the one described above (Table 3). Other differences were also 

found, like a more elongated centrum, much more developed pedicels bearing the 

Page 27 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



28

prezygapophyses and a posterodorsally projecting neural spine. It is unlikely that these two 

caudal vertebrae had belonged to the same individual, but we can affirm that this second 

vertebra was situated more posteriorly in the caudal series than the previous one. The caudal 

centrum is amphicoelous and its lateral surfaces are flat. The aEI is 0.91 that is superior to the 

ones of the sacral and the more anterior caudal vertebrae. The articular surfaces are oval, their 

long axis being dorsoventral. The width of the centrum equals approximately 85% of its 

height (Table 3). In lateral view, the ventral margin of the centrum is concave, but in a much 

less marked way than on the previous caudal vertebra (Fig. 10C). In ventral view, the centrum 

does not show a median constriction, but lateral borders are concave all the same. On the 

median area of the centrum, a slight longitudinal groove is visible (Fig. 10E).

The neural arch equals approximately 60% of the entire height of the vertebra (Table 3). The 

neural canal, visible in posterior view, is circular. The left transverse process is the only one 

to be partially preserved. Its base is quite wide dorsoventrally and extends slightly on the 

dorsal part of the centrum. The base quickly sharpens dorsoventrally, thus imparting a 

subtriangular shape to the transverse process in anterior and posterior views (Fig. 10A-B). In 

dorsal view, the transverse process is thin and seems to be subrectangular, even though it is 

not complete. It is projecting posterolaterally. On the caudal series of Plateosaurus or 

Riojasaurus, we can observe that the transverse processes oriented posterolaterally are usually 

situated on the most anterior caudal vertebrae. In Riojasaurus, for instance, the processes 

recover a strictly lateral orientation between Ca10 and Ca15. The prezygapophyses are 

located further from the median axis of the vertebra than the postzygapophyses (Fig. 10D). 

The prezygapophyses of the vertebra are projecting anteriorly with, in lateral view, a dorsal 

component. They are small, but seem to be mounted on pedicels, which was not the case on 

the previous caudal vertebra. They bear flat dorsal articular surfaces, which are dorsomedially 

oriented. The postzygapophyses are broken. As on the previous caudal vertebra, they arise 
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from the base of the neural spine, on the posterior margin of the latter (Fig. 10C). The neural 

spine is complete and projects posterodorsally. The angle of the main axis of the neural spine 

relatively to the longitudinal axis of the vertebra is sometimes fairly important from the first 

caudal vertebra. It is, for example, the case in Lufengosaurus or Mussaurus. In some other 

basal sauropodomorph taxa, the neural spine is not angled at all on the first caudals and 

switches to a more and more posterodorsal orientation along the anterior part of the caudal 

series. It is the case in the Maphutseng specimen, but also in Melanorosaurus. The neural 

spine is very high and located at the level of the posterior half of the centrum. The 

anteroposterior length of the top of the neural spine equals 35% of its total height, that is 

almost the same value as on the more anterior caudal vertebra (Table 3). In lateral view, the 

anteroposterior extension of the neural spine is constant along its entire height (Fig. 10C). In 

anterior or posterior view, the neural spine is transversely compressed. Its lateral borders are 

straight and its distal extremity, although eroded, appears to be slightly superior in width than 

the rest of the neural spine. In anterior or posterior view, the distal part of the neural spine is 

slightly deflected towards the right side of the vertebra, arguably because of breakages and 

fossilization process of the vertebra (Fig. 10A-B). In lateral view, the distal extremity of the 

neural spine is convex, but slightly eroded. The anterior margin of the neural spine is 

somewhat damaged, but seems straight, and its posterior margin is concave. In dorsal view, 

the top of the neural spine is clearly longer than wide and oval (Table 3, Fig. 10D).

The proportions of this vertebra, the absence of laminae or fossae on its neural arch, the 

height of the neural spine and the arrangement of the postzygapophyses help to conclude that 

we deal with a caudal vertebra. As already said, it is, without doubt, more posterior than the 

caudal vertebra MNHN.F.LES168. We deduce this mainly by looking at the elongation of the 

centrum, the position of the neural arch relatively to the latter, and the orientation of the 

neural spine. Considering the elongation of the centrum on this caudal vertebra, the presence 
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of a very light ventral longitudinal groove, the orientation of the transverse processes, the 

elongation of the prezygapophyses, and comparing with a few complete caudal series, it is 

most likely that we deal with an anterior caudal vertebra, probably located between Ca5 and 

Ca15.

Middle Caudal (Ca15-Ca25) [MNHN.F.LES177]—This middle caudal vertebra is 

particularly well-preserved. The centrum is subcomplete, having just a few fragments missing 

on the borders. It is the only middle caudal vertebra to have most of its neural arch preserved. 

On the latter, the right prezygapophysis is broken and the left postzygapophysis is missing. 

The neural spine is broken at its base. This vertebra shows a typical “middle caudal 

morphology”, that is anteroposteriorly elongated and quite low in height.

The centrum is amphicoelous and its lateral surfaces are flat. The aEI is quite important, as it 

equals 1.5. One of the most anterior caudal vertebrae (MNHN.F.LES168) has the same 

anteroposterior length (90 mm), but a much superior width, and hence a 0.56 aEI. In anterior 

and posterior views, the articular surfaces are rounded, very slightly wider than high. The 

width of the centrum equals 113% of its height (Table 3). In lateral view, the ventral margin 

of the centrum is concave. In ventral view, the centrum shows a slight median constriction 

and, on its median area, a faint longitudinal groove is visible.

The neural canal, visible both in anterior and posterior views, is subcircular. The 

prezygapophyses are located further than the postzygapophyses relative to the median axis of 

the vertebra. The prezygapophyses are projecting anteriorly with a slight lateral component in 

dorsal view, and a dorsal component in lateral view. They are mounted on pedicels and quite 

small. Unfortunately, the articular surfaces are not preserved. The postzygapophyses are 

located at the base of the neural spine, on its posterior margin. The neural spine base is 

situated at the level of the last posterior quarter of the centrum. It appears transversely 

compressed.
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The proportions and morphology of this vertebra, the absence of laminae or fossae on its 

neural arch, and the arrangement of the prezygapophyses and postzygapophyses allow to 

conclude that we deal with a caudal vertebra. Considering the proportions of the centrum on 

this caudal vertebra, the absence of transverse processes, the presence of a faint ventral 

longitudinal groove, and the location and shape of the zygapophyses, it is most likely that we 

deal with a middle caudal vertebra, probably located between Ca15 and Ca25.

Posterior Caudals (Ca25 and beyond) [MNHN.F.LES35&37]—These vertebrae are 

among the few well-preserved posterior caudals. For most of them, the centrum is the only 

preserved part and is often damaged. The centra of these two vertebrae are subcomplete, 

having just a few fragments missing on their extremities. It is practically the only posterior 

caudals in which a part of the neural arch is preserved. On MNHN.F.LES35, the lower part of 

the neural arch as well as the base of the postzygapophyses and neural spine are preserved. On 

MNHN.F.LES37, the anterior part of the neural arch is preserved, along with the right 

prezygapophysis. The following description is based on both vertebrae. Measurements are 

made on MNHN.F.LES35. These vertebrae exhibit a morphology close to that of the middle 

caudal vertebra, with an anteroposteriorly elongated and dorsoventrally low centrum.

The centrum is amphicoelous and its lateral surfaces are flat. The aEI is more important than 

in the middle caudal vertebra, as it equals 1.9. In anterior and posterior views, the articular 

surfaces are circular. On these surfaces, the width of the centrum equals approximately 100% 

of its height (Table 3). In lateral view, the ventral margin of the centrum is slightly concave. 

In ventral view, the centrum shows a slight median constriction. On its median area, a wide 

but shallow longitudinal groove is visible.

At the interface between the centrum and the neural arch, the neural canal is subcircular. The 

prezygapophyses are located more laterally than the postzygapophyses relative to the median 

axis of the vertebra. The prezygapophysis is projecting anteriorly with a slight lateral 
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component in dorsal view. In lateral view, it has a dorsal component. It is mounted on a short 

pedicel and terminated by an oval articular surface which is medially, and slightly dorsally, 

oriented. The postzygapophyses are located at the base of the neural spine. They are at the 

level of the last posterior quarter of the centrum.

The proportions and morphology of these vertebrae, the absence of laminae or fossae on their 

neural arch, and the unique morphology of the centrum, allow to conclude that we deal with 

caudal vertebrae. Considering the proportions of the centra, the absence of transverse 

processes, and the arrangement of the neural arches, it is most likely that we deal with 

posterior caudal vertebrae, probably located beyond Ca25.

Ribs and Chevrons

Ribs—No complete ribs could be reconstructed from the many rib sections found in 

the collected material. A single middle dorsal rib (MNHN.F.LES138) has been identified with 

confidence, based on the circular to triangular proximal cross section of the rib shaft, and on 

the well-differenciated tuberculum and capitulum. In articulation with its corresponding 

dorsal vertebra; this rib should have a posterolateral orientation.

Chevrons [MNHN.F.LES53]—Several isolated haemapophyses (chevrons), more or 

less complete, were recovered in Maphutseng. The description will focus on 

MNHN.F.LES53, which is the more complete and better-preserved element. The chevron is a 

robust Y-shaped bone. It is 320 mm long. Both its proximal and distal extremities are 

damaged and, all along the chevron, six fractures are visible, but the structure is nonetheless 

subcomplete.

The proximal extremity of the chevron consists of an eroded and partially broken arch. The 

arch is dorsally concave and corresponds to the articular surface for the caudal vertebrae. 

Beneath this surface is located the haemal canal. It has a pronounced oval shape, with a 
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dorsoventral long axis. More ventrally, the chevron sharpens distally and, therefore, appears 

V-shaped in anterior and posterior views. Transversely, the haemal spine is 2.6 times thicker 

proximally than at its distal end. Following the haemal canal, the anterior surface of the 

chevron bears a marked groove extending on the median axis of the bone for about one third 

of its entire length. On both sides, small ridges frame the longitudinal groove. The posterior 

surface of the haemal spine is flat beneath the haemal canal, but being more sharpened than 

the anterior surface, it exhibits a marked ridge on its distal half. In lateral view, the anterior 

and posterior margins of the chevron are subparallel. The thinnest part of the chevron is 

located at the level of the haemal canal. The haemal spine is anteroposteriorly more extended 

distally than proximally. Its distal extremity is about 1.7 wider than its proximal part. The 

distal extremity of the haemal spine is not entirely preserved, but its distal margin seems to be 

straight in lateral view.

We identify this chevron as a very proximal one (around the fourth and fifth caudal vertebrae 

or so), based on its size and global morphology, and on what is observed in Plateosaurus 

(Huene, 1926, Taf. III: Fig. 1).

Pectoral Girdle

Left Scapula [MNHN.F.LES386]—The scapula described hereinafter is considered 

with its long axis positioned vertically. Following this orientation, the contact surface with the 

coracoid is ventral, the acromion is on the anterior part of the scapula and the glenoid is 

posterior. We assume that, in vivo, the scapula was oriented obliquely with respect to the 

longitudinal axis of the animal, with the contact surface bearing the coracoid directed 

anteroventrally.

The scapula is almost complete, its distal extremity being the only part of the bone not fully 

preserved. The preserved dorsal and ventral margins present a relatively marked wear. The 
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bone surface of the scapula is damaged, and the bone exhibits multiple fractures, particularly 

on the blade. Nonetheless, the scapula does not show any deformation. It is not articulated 

with the coracoid (Fig. 11). The Maphutseng specimen scapula is quite short and stout, like 

the one of Antetonitrus. Its proximal extremity is clearly anteroposteriorly extended with 

respect to the blade. The distal extremity of the scapula seems to be widened too, but the lack 

of the distal part of the bone prevents the estimation of its anterior projection.

The distal part of the scapular blade is incomplete, but judging by the orientation of its 

anterior border, by the crack, it was fan-shaped, as in most basal sauropodomorph taxa 

(Remes, 2008:figs. 7-3). The posterodorsal corner of the scapula is incomplete too, but 

probably did not project behind the posteroventral corner.

The scapular blade represents 65% of the total length of the bone. In posterior view, the 

lateral margin of the blade is convex, and its medial margin is concave. In lateral view, the 

blade is straight, with distally concave and proximally subparallel anterior and posterior 

borders (Fig. 11A). Anteroposteriorly, the minimal width of the blade equals approximately 

45% of the maximal anteroposterior extension of the proximal end of the scapula, and 24% of 

the dorsoventral length of the bone. Transversely, the blade is 40 mm wide at mid-length, that 

is 38% of the transverse width of the scapula at the level of the glenoid (Table 4). In 

transverse section, the blade has a suboval shape, with a slightly convex lateral margin and a 

flat medial margin. The lateral and medial surfaces of the blade merge to form anterior and 

posterior bulges. Besides this blunt edge, no real anterior and posterior surfaces are visible on 

the blade of the scapula. The lateral surface of the blade is smooth, apart from two small 

posterodorsal and anterodorsal ridges, which are extending on the distal part of the blade and 

which probably delimit the area of origin of the muscle deltoideus scapularis (Remes, 

2008:figs.7-12) (Fig. 11A). The medial surface of the blade is flat and smooth. A blunt ridge, 

located on its posteroventral part, is poorly visible (Fig. 11B).
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The proximal part of the scapula seems more extended anteroposteriorly than the distal part, 

even though it is impossible to declare with certainty. It equals half (53%) of the total length 

of the bone. In lateral view, the proximal extremity is subrectangular, its anteroposterior 

extension being clearly superior to its dorsoventral height. On the lateral surface of the 

proximal extremity, the acromion fossa extends for two thirds of the extremity length. The 

acromion fossa is anteroposteriorly longer than high, its height being of, approximately, 

120 mm. It is a shallow fossa, with a marked anterior margin and a very light wrinkle 

outlining its anterodorsal border. The acromion is poorly developed anteroposteriorly, its 

extension (from the anterior border of the acromion to the anterior border of the scapular 

blade) equals 50% of the anteroposterior length of the blade (at mid-length). The height of the 

anterior margin of the acromion represents 19% of the entire length of the scapula (Table 4). 

The dorsal border of the acromion is oblique and extends from the anterior margin of the 

blade, following a gently slope, to merge with the anterior border of the acromion, without 

visible angle. In lateral view, the dorsal margin of the acromion is at approximately 40 ° to the 

main (dorsoventral) axis of the scapula. In lateral and medial views, the anterior border of the 

acromion is also slightly oblique. Its ventral extremity is a bit more anterior than its dorsal 

extremity (Fig. 11). In anterior view, the anterior margin of the acromion follows the anterior 

border of the scapula. The ventral part of the acromion is extremely thin transversely, it is the 

thinnest part of the bone. The glenoid is on the posterior border of the scapula proximal 

extremity. Conversely to the acromion, the glenoid is the largest part of the bone, transversely 

(Table 4). The glenoid cavity has a slightly coarse texture. The latter is particularly visible on 

the medial surface of the scapula, where the bone surface appears to be better preserved. In 

posterior view, the glenoid cavity is oval, dorsoventrally higher than transversely wide. In 

lateral view, the posterodorsal corner of the glenoid cavity is sharp and projects quite far 

posteriorly. A similar degree of projection is observed in Antetonitrus, Lufengosaurus or 
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Sefapanosaurus. On the ventral margin of the scapula, the contact area for the coracoid is 

sigmoid in lateral and medial views. In Kholumolumo, we also observe a rounded projection, 

located anteroventrally with respect to the glenoid, on the ventral border of the scapula (Fig. 

11). This structure is also visible, although less pronounced, in Antetonitrus.

Anterior Member

Left Humerus [MNHN.F.LES379]—The left humerus is complete and well-

preserved. It does not exhibit any distortion and the bone surface is relatively well-preserved, 

aside from the more abraded proximal and distal extremities. The proximolateral margin of 

the humerus and its distolateral corner are incomplete. On the posterior surface of the bone, 

the bone surface is cracked and slightly depressed in some places. The humerus also shows 

several fissures on its diaphysis (Fig. 12). The humerus is 685 mm long and is not particularly 

robust for its size. The deltopectoral crest has a limited anterior projection. The proximal and 

distal extremities are clearly extended with respect to the diaphysis, giving the humerus an 

hourglass shape in anterior and posterior views (Table 5). The proximal half of the humerus 

has been rotated of approximately 30 ° clockwise relative to its distal half.

The proximal part of the humerus has a concave anterior surface and a relatively flat posterior 

surface, with light lateral and medial concavities. The head of the humerus is thick and shows 

a convex dorsal margin (Fig. 12A-D). It bears a strong bulge anteroposteriorly thicker than 

the rest of the proximal articular surface. On this bulge, the bone surface is rough. In proximal 

view, the thickest part of the humeral head is located on its medial half. The lateral third of 

the humeral head is two to three times thinner than its medial part. In proximal view, the 

anterior margin of the humerus is flat to slightly concave, whereas its posterior margin is 

convex (Fig. 12E). The deltopectoral crest arises from the lateral border of the humerus. It 

extends anteriorly on approximately 5 cm and is projecting at nearly 90 ° of the anterior 
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surface of the humerus in proximal view. In anterior view, the main axis of the deltopectoral 

crest is oriented strictly dorsoventrally. The length of the deltopectoral crest (measured from 

the dorsalmost point in its alignment) equals 48% of the total length of the humerus. The 

distal margin of the deltopectoral crest bears a coarse bulge which appears straight in anterior 

view (Fig. 12A). In lateral view, the distal border of the deltopectoral crest is convex. The 

crest arises very gradually from the proximal end of the humerus. Proximally, the crest 

reaches a plateau, after a few centimeters, where its distal margin becomes straight in lateral 

or medial view. Distally, the deltopectoral crest ends quite abruptly at the level of the 

diaphysis. In lateral view, the distal dorsoventral axis of the crest is at approximately 130 ° of 

its ventral margin merging with the diaphysis (Fig. 12B).

The humerus diaphysis is not much extended with respect to the entire length of the bone. It is 

relatively thin; its transverse width equals approximately 30% of the maximum proximal 

extension of the humerus and 40% of the distal one. In anterior and posterior views, the 

medial and lateral borders of the diaphysis are both concave (Fig. 12A, C). In lateral and 

medial views, the anterior and posterior borders of the diaphysis are curved and subparallels, 

the anterior being concave and the posterior convex (Fig. 12B, D). In transverse section, the 

diaphysis is subcircular.

In posterior view, the distal half of the humerus is subtriangular. It is transversely extended, 

and its transverse width equals approximately 70% of the proximal width (Table 5). The 

ventral margin of the distal extremity is slightly concave in anterior and posterior views. The 

anterior surface of the distal extremity exhibits a well-marked median cuboid fossa (Fig. 

12A). The posterior surface is also concave on its median part because of the presence of the 

olecranon fossa, but this fossa is still shallower than the cuboid fossa (Fig. 12C). The distal 

condyles of the humerus are preserved, but their posterior surface is abraded. In anterior view, 

the condyles appear poorly developed, as it is usually the case in prosauropod dinosaurs. The 
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anteroposterior thickness of the distal medial condyle is very close to the anteroposterior 

thickness of the proximal end of the humerus (Table 5). In distal view, the cuboid and 

olecranon fossae are well visible and demarcate, on both sides, the ovoid condyles. There is a 

small lack on the posteroventral part of the lateral condyle. Despite this lack, the ulnar 

(lateral) condyle seems to be a little more extended transversely than the radial (medial) 

condyle (Fig. 12F).

Right Ulna [MNHN.F.LES159]—The right, complete, Kholumolumo ulna is well-

preserved. The only small missing part of the bone is located anteriorly, on the distal 

extremity. The proximal and distal articular surfaces of the ulna are complete, even though a 

bit abraded. The bone surface is, for the most part, rather well-preserved. The surface layer of 

the bone is still removed in some small patches on the lateral surface of the ulna. The bone 

shows multiple fractures on the entire length of the diaphysis (Fig. 13). For the following 

description, the ulna is positioned with the long axis of its distal extremity horizontal and 

oriented anteroposteriorly. The radial fossa is oriented anteriorly to anterolaterally and the 

two processes surrounding it are projecting anterolaterally and anteromedially.

The maximum length of the ulna is 390 mm (Table 5). The Maphutseng bone bed having 

delivered rests from several disarticulated specimens, it is not possible to associate this ulna to 

a particular humerus and, therefore, to calculate a length ratio. The ulna is a robust bone, with 

proximal and distal extremities extended both anteroposteriorly and transversely with respect 

to the diaphysis, the proximal extremity being more extended than the distal one (Table 5). 

The main axes of the extremities of the ulna are not parallel, but oriented following an angle 

of approximately 40 °. The ulna has a morphology very similar to that of the other basal 

sauropodomorphs, but appears less stout than some forms, like Antetonitrus, in which the ulna 

is shorter and stockier. The anteroposterior extension of the proximal extremity of the ulna 

equals 36% of the total length of the bone. In proximal view, the articular surface has a 
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subtriangular outline (Fig.13E), close to what is observed in Antetonitrus or Melanorosaurus 

(NM QR3314 and SAM-PK-3449). The posteromedial border of the proximal extremity is 

concave and its lateral border is convex. The anterolateral margin of the proximal extremity 

bears a concavity, the radial fossa, which is shallower than the posteromedial concavity. The 

radial fossa is less marked than in Aardonyx, Melanorosaurus (SAM-PK-3449) or 

Sefapanosaurus. It is bordered by both the anterolateral and anteromedial processes of the 

ulna. The anteromedial process is, like in many prosauropod dinosaurs, oval. Therefore, its 

distal extremity appears rounded. The process is well developed and exhibits a quite 

important width relative to its length. In Antetonitrus and Sefapanosaurus, the anteromedial 

process is much thinner. The anterolateral process is not much developed and is less 

protruding than in most basal sauropodomorph genera. On its posterior part, the proximal 

extremity of the ulna bears a rounded projection, of which the posterior margin is convex in 

proximal view. Ahead of this projection, the olecranon is visible, in a little more posterior 

position than the anterolateral process. The olecranon is not much developed, but remains 

visible in medial and lateral views. The dorsalmost point of the olecranon is some 3 cm above 

the lowest point of the proximal surface of the bone, on the anteromedial process surface (Fig. 

13B).

The diaphysis is much less stout than that of Antetonitrus, which has an ulna of equivalent 

size. The transverse section of the diaphysis is elliptical. The anteroposterior extension of the 

diaphysis equals 35% of the one of the proximal extremity and 45% of the extension of the 

distal extremity (Table 5). In lateral and medial views, the proximal portion of the diaphysis is 

narrowing distally. The diaphysis appears waisted around two thirds of the length of the bone, 

and then widens distally. Therefore, the diaphysis has an anteroposterior length of 125 mm on 

the proximal part of the bone, but is merely 56 mm at its, more distal, thinnest point. The 

anterior and posterior margins of the diaphysis are concave. In anterior and posterior views, 

Page 39 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



40

the lateral border of the ulna diaphysis is sigmoid and its medial border is slightly concave. 

The medial surface of the diaphysis is concave on its proximal half and flat on the distal half 

(Fig. 13D). The lateral surface of the ulna diaphysis is slightly convex on the proximal portion 

of the bone and flat on the distal part.

The anteroposterior extension of the distal extremity of the ulna equals 85% of that of the 

proximal extremity. It is also equivalent to 28% of the entire length of the ulna (Table 5). The 

distal articular surface is simple and convex. The anterior surface of the distal extremity 

seems to bear a tuber, but the bone being broken, the structure cannot be observed in its 

entirety. The articular surface is subrectangular in distal view. The long axis of the distal 

extremity is oriented anteroposteriorly. The medial and lateral margins are straight, and the 

anterior and posterior borders appear convex (Fig. 13F).

Right Radius [MNHN.F.LES147]—The right radius is complete and well-preserved. 

The only damaged part of the bone is its proximal extremity, of which two margins are 

broken. The bone surface of the radius is well-preserved, even though it is not entirely 

prepared on the extremities of the bone. The diaphysis of the radius is cracked in two different 

spots (Fig. 14).

The radius is straight and relatively thin. Its proximal extremity is transversely extended. In 

lateral view, it also appears slightly anteroposteriorly extended with respect to the extension 

of the diaphysis. In proximal view, the extremity is not complete, but was, in all likelihood, 

oval. The transverse width of the proximal articular surface equals approximately 1.2 times its 

anteroposterior expansion (Table 5). The anterior border of the proximal extremity is straight, 

its posterior border is slightly convex and its lateral border convex. The lateral part of the 

proximal articular surface seems to be slightly shorter anteroposteriorly than the medial part 

(Fig. 14E). In anterior and posterior views, the lateral part of the proximal articular surface 

has a convex margin, more developed dorsally than the medial part of the surface. The medial 
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part of the proximal articular surface is slightly concave for the radial condyle of the humerus 

(Fig. 14A, C).

The diaphysis of the radius represents approximately three quarters of the entire length of the 

bone. In transverse section it is elliptical, the transverse width being superior to the 

anteroposterior expansion. The transverse width of the diaphysis equals approximately 45% 

of the transverse width of the radius proximal extremity and 55% of that of the distal 

extremity (Table 5). In anterior and posterior views, the diaphysis is straight. Its lateral and 

medial margins are subparallel and exhibit a slight concavity (Fig. 14A, C). In lateral and 

medial views, the diaphysis appears slightly curved with a straight anterior border and a 

slightly concave posterior border. The diaphysis starts widening both transversely and 

anteroposteriorly 8 cm above the distal extremity (Fig. 14B, D). On the distal part of the 

diaphysis, the lateral area of the radius bears a flat and rough tuber, situated 4 cm above the 

distal margin of the bone, which probably matches the contact point with the ulna.

The distal extremity of the radius is extended both transversely and anteroposteriorly with 

respect to the diaphysis. As it is usually the case in basal sauropodomorphs, the ventral margin 

of the distal extremity projects much further on the medial side than on the lateral side. In 

anterior and posterior views, the distal margin of the radius therefore appears slanted. The distal 

articular surface is flat. In distal view, the distal extremity is subcircular, its transverse width is 

slightly superior to its anteroposterior extension (Table 5). The posterior margin is the only one 

roughly straight in distal view, the other borders appear convex (Fig. 14F).
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Manus—We were only able to identify with certainty four metacarpals (the 

metacarpal V was the only one not recovered) and two phalanges of Kholumolumo manus (the 

phalanges I.1 and IV.2) in the collected material. Given that the elements of the metacarpus 

have been found disarticulated, and belong to several individuals, they cannot be compared in 

size. Overall, the metacarpals are well-preserved, even though they exhibit some fractures. 

Their bone surface is eroded in some places and the proximal part of the metacarpal IV is 

incomplete (Fig. 15).

The first right metacarpal (MNHN.F.LES26) is, as in all basal sauropodomorphs, slightly 

longer than wide (Table 5). It is a very robust bone, quadrangular in shape. In dorsal view, the 

proximal margin is slightly concave, and the medial and lateral margins are strongly concave. 

In lateral view, the proximal border of the metacarpal I is straight, and its dorsal and ventral 

borders are strongly concave. A marked concavity on the proximolateral surface of the 

metacarpal allows the articulation with metacarpal II, which is located, not in the alignment of 

metacarpal I, but slightly anteriorly to the latter, as in most basal sauropodomorph dinosaurs. 

In proximal view, the articular surface of the metacarpal I appears subrectangular. The torsion 

between the bone proximal and distal extremities is slightly marked. The distal condyles are 

large and dorsoventrally well developed. The distal lateral condyle is projecting much more 

anteriorly than the medial (Fig. 15).

The second left metacarpal (MNHN.F.LES92) is an elongated element, of which the proximal 

transverse width equals 54% of its entire length (Table 5). This value supports the important 

difference of morphology of the proximal articular surfaces. Indeed, in proximal view, the 

proximal articular surface of metacarpal II is subrectangular with a long-axis oriented 

dorsomedially to ventrolaterally. In dorsal view, the metacarpal II is hourglass-like with 

concave lateral and medial borders. The transverse proximal width equals 1.7 times the 

minimum width of the metacarpal and is equivalent to its distal transverse width. In medial 
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view, the proximal margin of metacarpal II appears straight, whereas its ventral and dorsal 

margins are concave. The distal condyles are dorsoventrally less developed than the proximal 

extremity of the bone (Fig. 15).

The third metacarpal (MNHN.F.LES93) is also elongated and, compared to the second 

metacarpal, presents a thinner diaphysis with respect to its proximal and distal extremities. 

Thus, the transverse width of the metacarpal III proximal extremity equals 47% of the entire 

length of the bone and represents 2.5 times the minimum width of the diaphysis, as well as 1.2 

times the transverse width of the distal extremity (Table 5). In dorsal view, the medial and 

lateral borders of the bone are concave. In medial view, the proximomedial area of the bone is 

slightly coarse on the contact surface for metacarpal II. The dorsal and ventral margins of the 

bone are concave. The proximal extremity of the third metacarpal shows a relatively flat 

surface and, in lateral view, is clearly more developed dorsoventrally than the distal 

extremity. The lateroventral surface of the bone bears a concavity in which metacarpal IV 

articulates. In proximal view, the articular surface of metacarpal III is subrectangular and 

dorsoventrally high (Fig. 15).

The fourth metacarpal (MNHN.F.LES76) is incomplete. In dorsal view, the medial and lateral 

borders of the bone are concave. The proximal extremity is broken, but seems to extend more 

transversely than the distal one. With respect to metacarpals II and III, the distal extremity of 

metacarpal IV is less developed than its diaphysis both transversely and dorsoventrally. In 

medial view, the beginning of a slight proximomedial concavity where metacarpal III 

articulates can be guessed. The dorsal and ventral borders of the bone are slightly concave 

(Fig. 15). A proximomedian prominence is visible on the metacarpals II to IV.

The first phalanx of digit I (MNHN.F.LES29) is one of the few elements of the manus, with 

the metacarpals, that we were able to identify with certainty. It is a short and stout bone, of 

which the maximum length and width are roughly equivalent. The proximal articular surface 
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of phalanx I-1 bears two concavities separated by a bulge, where the distal condyles of 

metacarpal I. The lateral concavity is considerably more marked than the medial one. 

Phalanx I-1 presents intercondylar dorsal and ventral processes, the ventral being the more 

developed. The diaphysis is very short, almost absent. It has undergone a torsion of 

approximately 40 °. In medial view, the dorsal and ventral margins of the bone are strongly 

concave. Distally, the ginglymus is more extended ventrally than dorsally. The distal condyles 

are rather large and bear clearly visible collateral fossae (Fig. 15).

The second phalanx of the manual digit IV (MNHN.F.LES101, LES105) have been identified 

based on its small size and on the asymmetry of its proximal and distal articular surfaces. The 

proximal articular surface is trapezoidal in outline and its width is almost equal to its height. 

The distal condyles are deeply divided with shallow collateral pits and extend ventrally.

Pelvic Girdle

Right Ilium [MNHN.F.LES375a]—The right ilium is complete, although very 

cracked. Its bone surface is very damaged, not to say, completely removed. A bone fragment 

of several centimeters is missing on the supracetabular crest, in the posterodorsal area of the 

pubic peduncle. Another fragment is missing at the junction between the posterodorsal border 

of the ischial peduncle and the ventral border of the postacetabular process (Fig. 16). The 

ilium is robust, large and typical, in morphology, of what is usually observed in prosauropod 

dinosaurs. It is 590 mm long, from the extremity of the preacetabular process to the one of the 

postacetabular process. The minimum anteroposterior length of the ilium is above the 

acetabulum and equals approximately 60% of the maximum length of the bone. The 

maximum height of the ilium is 370 mm (Table 6).

The dorsal border of the ilium is sigmoid in lateral view. The dorsalmost point is practically at 

the center of the anteroposterior axis of the ilium, above the anterior margin of the ischial 
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peduncle. The lowest point of the dorsal margin is at the level of the preacetabular process 

(Fig. 16A). In dorsal view, the medial border of the ilion is convex and its lateral border is 

concave (Fig.16C). Transversely, the iliac blade is 3 to 4 cm wide, measured on its dorsal 

border. The thinnest part of the blade is at the level of the concavity occupying the central part 

of the iliac blade and extending ventrally until a point close to the acetabulum. Some basal 

sauropodomorphs, like Lufengosaurus or Riojasaurus, show the same concavity on their 

ilium, located much more dorsally. Above the acetabulum, the iliac blade height equals 

approximately half of the entire height of the ilium. It is less extended dorsoventrally than in 

Meroktenos. The medial surface of the iliac blade is flat, both ventrally and dorsally, but 

presents a marked concavity on its central part, where the insertion of the sacral vertebrae is 

located (Fig. 16B).

The preacetabular process is suboval with a rounded extremity in lateral view. It is the most 

common shape in prosauropod dinosaurs, although in some genera, like Adeopapposaurus or 

Anchisaurus, the extremity is sharper. Here the process is as high as long, its height 

representing approximately 90% of its length. The length of the preacetabular process equals 

18% of the ilium entire length and 53% that of the postacetabular process (Table 6). The 

lateral surface of the preacetabular process is flat and its medial surface concave. In lateral 

view, the dorsal and ventral margins are slightly convex and meet at the rounded extremity. 

The preacetabular process is oriented at approximately 50 ° of the pubic peduncle, and its 

distal margin is posterior to the anterior projection of the latter (Fig. 16A, B).

The postacetabular process is subtriangular with a rounded distal extremity. In several genera 

like Jingshanosaurus, Lessemsaurus or Yunnanosaurus, the process has a subrectangular 

shape. Its minimum height (at the level of the extremity) equals approximately 55% of its 

maximum height. It is longer than the preacetabular process and represents 34% of the ilium 

length (Table 6). The lateral surface of the postacetabular process is convex on its dorsal part 
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and flat on its ventral part. The medial surface is flat to very slightly concave. In lateral view, 

the dorsal margin of the postacetabular process is slightly concave, its ventral margin is 

straight and oblique, following an angle of approximately 45 °, relative to the horizontal. As 

in most sauropodomorphs else than Eoraptor, Panphagia or Saturnalia, there is no brevis 

crest and, by extension, no visible brevis fossa on the ventral surface of the postacetabular 

process (Fig. 16D).

The acetabulum is completely open, in contrast of what can be observed in Chromogisaurus, 

Panphagia or Saturnalia, and shows similar proportions than in most prosauropod genera. 

The acetabulum is semicircular and slightly longer than high (Fig. 16A-B). It presents an 

intermediate structure between the very low and elongated acetabulum of some basal forms as 

Eoraptor or Panphagia and those, narrower, observed in Lessemsaurus or Sarahsaurus. The 

supracetabular crest rises quite abruptly on the dorsal area of the pubic peduncle and runs 

along the dorsal border of the acetabulum (Fig. 16A). It extends posteriorly until the base of 

the ischial peduncle, where it merges gradually with the lateral bone surface. The 

supracetabular crest is eroded, but does not seem to have been laterally developed. It is 

approximately 2 cm at its widest point, that is to say on the dorsal area of the pubic peduncle. 

The acetabular wall is very wide transversely, a bit wider at the base of the pubic peduncle 

than at the one of the ischial peduncle. The anterior and anterodorsal surfaces of the wall are 

concave. More posteriorly, in the area where the supracetabular crest loses thickness, the 

acetabular wall gets flatter. It is completely flat at the level of the ischial peduncle. As in 

many sauropodomorph dinosaurs, the acetabular wall is oriented ventrolaterally, particularly 

on its posterior part.

The pubic peduncle extends anteroventrally on 195 mm. It is trapezoidal, robust, and clearly 

longer than the ischial peduncle. In lateral view, its anterior and distal margins appear 

straight. Its posterior margin is concave both laterally and medially (Fig. 16A). In distal view, 
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the pubic peduncle has a subtriangular shape, with a strongly convex anterior border and a 

concave posterior border. The posteromedial corner of the articular surface bears a projection 

which, probably due to erosion, appears slightly rounded. Taking this projection into account, 

the transverse width of the articular surface of the pubic peduncle equals approximately 75% 

of its maximum anteroposterior length (Table 6).

The ischial peduncle is projecting ventrally and slightly posteriorly on approximately 

110 mm. It is stout and relatively developed and represents a little more than half the length of 

the pubic peduncle (Table 6). This morphology is widespread among basal sauropodomorphs, 

as opposed to that of sauropod dinosaurs, in which the ischial peduncle usually shows an 

extreme reduction (Upchurch et al., 2004). The ischial peduncle, despite its broken 

posterodorsal margin, appears subrectangular. In lateral view, its anterior margin is straight 

and its incomplete posterior border is slightly concave. This concavity induces a posterior 

projection of the posteroventral corner of the peduncle (Fig. 16A-B). This morphological trait 

is observed in many prosauropod genera, in a more or less marked manner. It is in 

Plateosaurus (Moser, 2003) and Riojasaurus that the projection is the most visible. In distal 

view, the ischial peduncle is almost square, the length and the width of the articular surface 

being nearly equivalent (Table 6). The anterior and medial margins of the peduncle are 

straight, whereas its posterior and lateral margins are slightly convex (Fig. 16D).
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Left Pubis [MNHN.F.LES378]—For the need of the description, the pubis is 

described with its long axis oriented horizontally. Following this orientation, the flat surfaces 

of the pubic apron are oriented strictly dorsally and ventrally, and the iliac peduncle is 

oriented posteriorly. In vivo, the pubes were oriented at a slant angle with respect to the 

longitudinal axis of the animal, with the surface of the pubic apron oriented anterodorsally.

The left pubis of Kholumolumo is practically complete, but very badly preserved. The bone 

exhibits numerous fractures, a part of the obturator plate is missing and the medial border of 

the pubic apron is not entirely preserved (Fig. 17). The extreme fragility of the pubic apron 

prevented us from taking photos in lateral or medial views; nevertheless, one illustration is 

available in the work of Gauffre (1996, annexe 2). The pubis, in spite of its robust aspect, is 

elongated and has a total length of 665 mm (Table 6). In dorsal and ventral views, the pubis is 

subrectangular with a straight lateral margin, which has a slight concavity on the proximal 

part of the bone (Fig. 17). This morphology is very similar to the one of Meroktenos or 

Melanorosaurus (NM QR1551) and is different from specimens in which a marked concavity 

is visible on the lateral border at the distal extremity of the pubis, and from specimens in 

which even the central part of the lateral border is concave, as in Coloradisaurus or 

Lessemsaurus.

The pubis obturator plate is incomplete, but still retains a visible obturator foramen, iliac and 

ischial peduncles, as well as the acetabular area. It is 215 mm long, 32% of the total length of 

the pubis, and its maximum width under the obturator foramen equals 37% of the total length 

of the bone (Table 6). The iliac peduncle is much more developed than the ischial peduncle. 

Its main axis is oriented dorsolaterally to ventromedially. There is no dorsal marked 

protrusion visible on the dorsolateral area of the obturator plate. The iliac peduncle is twice as 

long as large (Table 6). Its articular surface is flat and appears suboval with convex borders in 

proximal view. The pubic component of the acetabulum is complete and is 75 mm long, 
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following its main axis. It is located in the continuity of the iliac peduncle and is oriented 

dorsolaterally to ventromedially. It is short and thin. Its proximal surface is slightly concave. 

In dorsal view, the pubic component of the acetabulum is at right angles to the ischial 

peduncle (Fig. 17A). The ischial peduncle is subcomplete, it lacks some centimeters on its 

most distal part. It has a length almost equivalent to that of the iliac peduncle (Table 6). The 

articular surface of the ischial peduncle is oriented medially to ventromedially. The 

subtriangular ischial peduncle is considerably thinner than the iliac peduncle. The maximum 

width of the peduncle is on its proximal extremity, and is tapering to the distal tip (Fig. 17B). 

The obturator foramen is located on the medial side of the obturator plate, a few centimeters 

anteriorly to the proximal border of the pubis. Its borders appear a bit damaged, but it is 

almost complete, the only bone fragment missing is on the anteromedial margin of the 

foramen. In dorsal and ventral views, the obturator foramen has a subrectangular shape. The 

approximate anteroposterior length of the obturator foramen is 80 mm, that is 37% of the 

length of the obturator plate, and his width equals 63 mm. In dorsal view, the lateral borders 

of the obturator plate and the pubic apron are aligned. Regarding the medial margin of the 

pubis, the junction between the obturator plate and the pubic apron is lacking.

The pubic apron extends, distally to the obturator plate, on 450 mm, that is almost 70% of the 

entire length of the bone. The blade reaches a maximum width of 148 mm a few centimeters 

prior to the distal extremity (Table 6). On the center of the blade, the medial margin of the 

pubic apron is approximately 10 mm high, which is dorsoventrally thinner than the 35 mm 

lateral margin. The dorsal and ventral surfaces of the pubic apron are flat, no bulge nor ridge 

is visible. In dorsal and ventral views, the lateral and medial borders are straight and 

subparallel (Fig.17A). This morphology is similar to what is observed in Antetonitrus, 

Melanorosaurus (NM QR1551) or Meroktenos. In lateral view, the dorsal margin of the pubic 

apron is slightly concave and the ventral margin slightly convex (annexe 2).
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In dorsal or ventral views, the distal extremity of the pubis is not laterally widened, unlike in 

Yunnanosaurus. Therefore, the transverse width of the distal extremity is almost equivalent to 

that of the one taken at the center of the pubic apron. It equals approximately 23% of the 

pubis total length (Table 6). In lateral or medial views, however, the club-shaped distal 

extremity gets dorsoventrally wider. Its dorsoventral height is twice the height of the pubic 

apron, measured on the lateral margin of the latter. In lateral view, the dorsal expansion of the 

distal extremity is faint. Most of the dorsoventral expansion of the extremity comes from a 

marked ventral projection, quite like what is observed in Coloradisaurus. In lateral view, the 

distal margin of the pubis appears strongly convex. In ventral and dorsal views, the distal 

margin of the pubis is also convex, although to a lesser extent. In distal view, the distal 

extremity has a suboval shape and convex borders.

Left Ischium [MNHN.F.LES152]—For the need of the description, we consider here 

that the ischium pubic peduncle is oriented strictly anteriorly and that the iliac peduncle is 

oriented anterodorsally.

There is only the proximal part of a left ischium of Kholumolumo preserved. It is rather badly 

preserved and presents several fractures. The bone surface is badly preserved too. The ischial 

component of the acetabulum is medially damaged (Fig. 18).

The proximal part os the ischium is transversely thin and dorsoventrally expanded. It is 

usually the thinnest part of the bone which represents, in prosauropod dinosaurs, 

approximately 30% of the ischium total length. The proximal extremity as it has been 

preserved, that is broken at the base of the ischium diaphysis, is almost as high dorsoventrally 

than anteroposteriorly long (Table 6). This ischial plate bears the pubic peduncle, the 

acetabular area and the iliac peduncle. In lateral view, the dorsal border of the proximal part is 

strongly convex, the anterior border shows a concavity due to the acetabulum, and the ventral 
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border is incomplete. The lateral surface of the bone is flat posteriorly to the pubic peduncle, 

slightly concave in the area surrounding the acetabulum component, and slightly convex 

behind the iliac peduncle (Fig. 18B). The medial surface of the bone presents a dorsal 

convexity just behind the iliac peduncle and a marked concavity on the rest of the surface 

(Fig. 18A). The pubic peduncle is located on the anterior part of the proximal extremity of the 

ischium (Fig. 18). It is dorsoventrally elongated and, in anterior view, subtriangular and very 

similar in shape to the ischial peduncle of the pubis with which it is articulating. The 

maximum width of the pubic peduncle if located on its dorsal part, and tapers ventrally. This 

maximum transverse width equals approximately 32% of the maximum length of the pubic 

peduncle (Table 6). Posteriorly to the pubic peduncle, the ischium ventral margin is damaged 

and broken. It is therefore impossible to determine if a ventral obturator notch was present 

between the pubic peduncle and the ischium diaphysis, as it is the case in Lufengosaurus, 

Massospondylus or Ruehleia. The ischial component of the acetabulum constitutes a deep 

notch between the pubic peduncle and the iliac peduncle. It is approximately 5 cm deep, with 

respect to the articular surface of the pubic peduncle, but 2 cm deep with respect to the one of 

the iliac peduncle (Fig. 18). It represents approximately 45% of the length of both the pubic 

and iliac peduncles, and shows almost the same extension as the pubic component of the 

acetabulum (70 and 75 mm, respectively) (Table 6). The iliac peduncle is located in the dorsal 

area of the ischium proximal extremity. It is approximately the same length as the pubic 

peduncle, but its maximum transverse width is more important. The latter equals roughly 44% 

of the maximum length of the peduncle (Table 6). In dorsal view, the iliac peduncle shows a 

suboval outline, with slightly convex lateral and medial margins (Fig. 18C). Distally to the 

iliac peduncle, the posterodorsal border of the ischium proximal extremity shows a marked 

concavity merging with the diaphysis of the bone.
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Posterior Member

Right Femur [MNHN.F.LES394]—Several femora, more or less complete, are part 

of the material referred to Kholumolumo. The following description is based on a right, 

complete, and relatively well-preserved, femur. The most damaged area of the femur is its 

laterodistal corner, where a bone fragment has been torn off. Several centimeters thick bone 

fragments are also missing on the anterior surface of the diaphysis, which is covered with 

numerous cracks. The bone surface is not very well preserved, particularly on the anterior 

surface of the bone (Fig.19).

The femur is 755 mm long and is relatively stout. Its robustness index is 2.36, that is quite 

close to those of some specimens like Massospondylus, Melanorosaurus (NM QR1551) and 

Plateosaurus (Table 7). In anterior and posterior views, the femur has a slightly sigmoid 

shape (Fig. 19A, C). In lateral and medial views, the femur is curved at the level of its distal 

extremity. On the first three quarters of its length, the anterior and posterior margins of the 

femur are straight. On its distal extremity, the anterior margin is convex and the posterior one 

is concave (Fig. 19B, D). The femoral head has undergone a rotation of approximately 30 ° 

relatively to the transverse axis of the distal condyles.

In anterior and posterior views, the femoral head is rounded and projects at approximately 90 

° with respect to the main axis of the bone. The head of the femur is higher dorsoventrally 

than transversely elongated. In proximal view, it is oval, all its margins are convex and its 

transverse length equals twice its anteroposterior width (Table 7). The long transverse axis of 

the head is oriented strictly transversely (Fig. 19E).

The femur diaphysis is subcircular and more robust than in most other basal 

sauropodomorphs that have a similar morphology. It has an eccentricity of 1.16. The 

diaphysis is slightly thinner transversely on its center than on its proximal and distal 

extremities (Fig. 19A). The lesser trochanter is located on the anterior surface of the femur, in 
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the proximal area of the diaphysis. It is a low ridge extending proximodistally, at the center of 

the transverse axis of the diaphysis. In comparison, Lessemsaurus or Riojasaurus display very 

high lesser trochanters. The lesser trochanter is not visible in posterior view. Its proximal 

extremity is lower than the ventral margin of the femoral head. The lateral border of the lesser 

trochanter is higher and better defined than the medial border (Fig. 19A). On the posterior 

surface of the diaphysis, the fourth trochanter is quite developed. Its proximal extremity is 

located 280 mm under the proximal margin of the bone and is 145 mm long, that is 19% of 

the entire length of the femur (Table 7). The fourth trochanter extends beyond the median 

point of the femur proximodistal axis. In posterior view, it is straight, as in Coloradisaurus, 

Lessemsaurus or Melanorosaurus (NM QR1551). The proximal extremity of the fourth 

trochanter is slightly curved medially with respect to the rest of the structure. This extremity 

is located in the medial quarter of the diaphysis transverse axis. The distal extremity of the 

fourth trochanter is in the mediocentral quarter of the diaphysis (Fig. 19C). In lateral view, the 

fourth trochanter is asymmetrical and subrectangular. Its proximal margin rises gradually 

from the diaphysis, whereas its distal margin is steep and straight (Fig. 19B). In between, the 

apical border of the trochanter is straight. It is, however, oblique with respect to the long axis 

of the femur, because its proximal height is more important than its distal one. Regarding the 

shape, the closest fourth trochanter is observed in Riojasaurus, even if in the latter, the apical 

margin of the trochanter is subparallel to the femur main axis instead of being oblique. In 

cross-section, the fourth trochanter of Kholumolumo is subtriangular in its proximal part and 

suboval in its distal part.

The distal extremity of the femur is incomplete. Its transverse width equals approximately 1.5 

times that of the center of the diaphysis (Table 7). In anterior view, the bad preservation of the 

fossil prevents us from checking the presence of an extensor groove (Fig. 19A). In posterior 

and distal views, a marked popliteal fossa is visible between the distal condyles (Fig. 19C, F). 

Page 53 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



54

The femur distal condyles are rounded. In medial view, the medial condyle has a strongly 

convex posterior border and a straight to slightly convex ventral border (Fig. 19D). The 

tibiofibular crest is rather marked and well visible in lateral view. The transverse width of the 

distal extremity of the femur is superior to its anteroposterior extension (Table 7). The medial 

condyle appears to be approximately the same size as the lateral and fibular condyles put 

together, even though we cannot say it with certainty because of the deformation (Fig. 19F).

Right Tibia [MNHN.F.LES381m]—The Kholumolumo tibia is complete, but not 

particularly well-preserved. Its bone surface is damaged and depressed in some areas, 

particularly on the lateral surface of the bone. The tibia diaphysis is covered in numerous 

fractures and cracks. The proximal and distal extremities of the bone are not completely 

prepared and the posteromedial corner of the proximal articular surface is broken (Fig. 20).

The tibia exhibits a short and stocky morphology. It is straight, with widened proximal and 

distal extremities in anterior and posterior views (Fig. 20A, C). The proximal extremity also 

appears slightly extended in lateral and medial views (Fig. 20B, D). It is clearly more robust 

than the distal extremity, and is not in the same axis as the latter due to a torsion at the level of 

the diaphysis.

The proximal articular surface of the tibia seems flat and bears, as in all the prosauropod 

dinosaurs, a cnemial crest as well as two condyles. In proximal view, without considering the 

cnemial crest, the articular surface is subcircular. Considering the cnemial crest, the surface is 

suboval and appears 1.6 times more extended anteroposteriorly than tranversely (Table 7). In 

Kholumolumo, the long axis of the proximal articular surface is oriented anteroposteriorly and 

slightly laterally. In proximal view, the anterior margin of the proximal articular surface is 

strongly convex. The lateral margin is sigmoid as a result of the depression adjacent to the 

cnemial crest. The posterior and medial margins are convex (Fig. 20E). The cnemial crest is 

oriented anterolaterally and measures on its most proximal part 50 mm, that is 24% of the 
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total anteroposterior length of the articular surface (Table 7). In lateral view, the dorsalmost 

point of the cnemial crest is near its proximal extremity. On the anterior part of the bone, the 

cnemial crest is not well defined. Nonetheless, it seems to extend on 10 to 15 cm 

proximodistally, on which it is losing height. The depression visible in proximal view is also 

exposed in lateral view, and separates the cnemial crest from the proximal lateral condyle. 

The latter, which is oval, clearly appears in proximal view and seems to extend on almost all 

the length of the surface, posteriorly to the cnemial crest. The lateral condyle represents 

approximately 65% of the anteroposterior length of the proximal surface. In proximal view, 

the proximal medial condyle is extending as posteriorly as the lateral condyle, but its anterior 

extension is more limited. The intercondylar groove, which usually defines the two condyles, 

is not visible in proximal view (Fig. 20E). In medial and lateral views, the medial condyle 

seems to be projecting less dorsally than the lateral one. In anterior and posterior views, the 

medial and lateral margins of the tibia proximal extremity are convex and, more ventrally, 

slightly concave at the level of the transition with the diaphysis.

The tibia diaphysis is large and stocky. It is cylindrical with parallel margins in anterior and 

posterior views (Fig. 20A, C). In medial and lateral views, the diaphysis borders are getting 

closer distally. Hence, the anteroposterior extension of the diaphysis is reduced from 120 mm 

proximally to 90 mm near the distal extremity of the bone (Fig. 20B, D). At mid-length, the 

cross-section of the tibia is oval, the anteroposterior extension of the bone being superior to its 

transverse width (Table 7).

The distal extremity of the tibia is approximately the same transverse width as its proximal 

extremity, and therefore appears transversely extended. However, its anteroposterior 

extension is considerably inferior to that of the proximal extremity, given that the distal 

extremity exhibits practically the same extension as the diaphysis in medial and lateral views. 

The distal extremity is 2.3 times larger transversely and 1.2 times more extended 
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anteroposteriorly than the diaphysis (Table 7). As in all sauropodomorph dinosaurs, the distal 

processes of the tibia are projecting laterally. On this Kholumolumo specimen, their distal 

extremities are slightly weathered. Le processus postérodistal s’étend plus ventralement que 

l’antérodistal. En vue antérieure, le processus antérodistal dissimule en grande partie le 

postérodistal (Fig. 20A) et en vue postérieure, l’inverse se produit (Fig. 20C). Les deux 

processus ont une forme subtriangulaire avec un bord dorsolatéral droit. The distal articular 

surface of the tibia is flat to sightly convex. In distal view, it appears suboval with convex 

medial and posterior margins, a slightly concave anterior border, and a strongly concave 

lateral margin due to the presence of distal processes. The anteroposterior extension of the 

distal surface equals 78% of its transverse width (Table 7). The maximum anteroposterior 

extension of the distal extremity is located at the center of the articular surface. Despite all 

this, the lateral margin is more extended anteroposteriorly than the medial one. The 

anteromedial corner of the distal extremity is rounded, it forms an angle of approximately 100 

° (Fig. 20F).

Right Fibula [MNHN.F.LES374]—The right fibula is subcomplete. The proximal 

extremity is incomplete, the anteroproximal and posteroproximal corners are broken. The 

distal extremity of the fibula is also damaged, its lateral surface being eroded and the 

posterodistal corner being broken. The bone diaphysis shows seven fractures and some 

cracks. The bone surface is relatively well-preserved, even though it has been removed in 

some places (Fig. 21). The fibula is 575 mm long, it is elongated and relatively thin (Table 7). 

The main axis of the bone exhibits a torsion of approximately 20 °.

The proximal extremity of the fibula is incomplete, but still remains the most 

anteroposteriorly extended part of the bone. In medial and lateral views, it is subtriangular 

(Fig. 21B, D). The lateral surface of the proximal extremity is slightly convex, and its medial 

surface is slightly concave. The latter exhibits a rough texture, due to the articulation surface 
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for the tibia. On the medial surface, a poorly defined proximomedial tubercle, which is only a 

few millimeters high, is visible. This structure is also observed in Aardonyx, Antetonitrus, 

Coloradisaurus or Ruehleia. In proximal view, the articular surface is crescentic. Its 

transverse width equals 33% of its anteroposterior extension. The lateral border of the 

articular surface is convex in proximal view, and its medial border is concave (Fig. 21E). The 

proximal articular surface is smooth and slightly convex in lateral view.

The diaphysis is straight with subparallel margins in medial and lateral views. The 

anteroposterior extension of the fibula diaphysis decreases distally, going from 58 mm 

underneath the proximal extremity, to 38 mm above the distal extremity (Fig. 21B). In 

anterior and posterior views, the margins of the diaphysis are also subparallel, even though 

the lateral one appears slightly convex and the medial one slightly concave. The diaphysis 

tapers slightly between the proximal extremity and the distal one (Fig. 21A). At mid-length, 

the cross-section of the fibula is elliptical, with a long axis directed anteroposteriorly (Table 

7). In the anterolateral area of the diaphysis, at approximately twenty centimeters distally to 

the proximal extremity of the bone, a poorly defined bulge probably corresponding to the 

fibular trochanter is present. On the medial surface of the diaphysis, two longitudinal 

concavities are visible. The most proximal one is at approximately twenty centimeters of the 

proximal border of the fibula. It is about 5 cm long proximodistally and is surrounded by a 

posterior bulge. The second concavity appears under the preceding one, and extends on more 

or less 10 cm. It is bordered by a bulge posteriorly and a ridge anteriorly (Fig. 21D).

The distal extremity of the fibula exhibits a subtriangular shape in lateral view. It is less 

extended anteroposteriorly than the proximal extremity and should represent approximately 

70% of the latter. With respect to the anteroposterior extension at mid-diaphysis, the distal 

extremity is practically twice more extended (Table 7). The medial surface of the distal 

extremity bears an anterior shallow concavity, posteriorly surrounded by a small bulge. The 
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distal articular surface of the fibula articulates with the calcaneum and astragalus and appears 

flat to slightly convex in lateral and medial views (Fig. 21B, D). In distal view, the extremity 

is oval, and its transverse width equals approximately 50% of its anteroposterior extension 

(Fig. 21F).

Pes—The pes of Kholumolumo is known by several metatarsals and phalanges. A 

complete right pes is stored in Cape Town (obs. pers., 2014). Unfortunately, the MNHN 

material only comprises a very incomplete pes (MNHN.F.LES381), as well as isolated 

metatarsals and phalanges, coming from several individuals. The phalanges are not easily 

identifiable, we will therefore propose in what follows a description of the metatarsus only. 

The metatarsals are subcomplete and present some cracks. The quality of preservation differs 

from bone to bone. On the whole, however, the bone surface is rather badly preserved (Fig. 

22).

As in all basal sauropodomorphs, the metatarsals articulate via the proximolateral surface of 

the most medial element recovering partially the proximomedial area of the following 

metatarsal. Kholumolumo metatarsus is one of the stockiest among prosauropod dinosaurs. It 

is, more or less, as robust as the metatarsus of Antetonitrus or Melanorosaurus (NM QR1551 

& NM QR3314), but still remains more elongated than the one of Blikanasaurus. Thus, the 

ratio of the proximal transverse width on the length of the metatarsal I is 47% in 

Kholumolumo and 87% in Blikanasaurus.

The left metatarsal I of Kholumolumo (MNHN.F.LES89), despite its robust appearance, 

remains longer than wide (Table 7). In dorsal view, the proximal margin of the metatarsal I is 

straight, its lateral and medial borders are concave and its distal margin is convex. In lateral 

view, its dorsal and ventral margins are concave. The proximal articular surface of the 

metatarsal I is eroded and appears flat to slightly convex. In proximal view, the extremity is 

subquadrangular with relatively straight borders. The diaphysis of metatarsal I shows a 
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strongly elliptical cross-section and convex margins. The minimum width of the diaphysis 

equals 66% of the proximal width of the bone. The distal extremity of metatarsal I bears two 

distal condyles, one of which (the medial one) is broken. It, however, seems that the condyles 

were asymmetrical, the lateral projecting more distally than the medial. The lateral part of the 

distal lateral condyle is damaged and does not exhibit a collateral ligament fossa. On the distal 

lateral condyle, the ginglymus is not more developed ventrally than dorsally. Ventrally, a 

marked groove separates the two distal condyles (Fig. 22).

The left metatarsal II (MNHN.F.LES81) is subcomplete. Its proximal extremity is incomplete 

and its distal extremity is eroded, however, the total length of the bone seems to have been 

preserved. In dorsal view, the lateral and medial borders of the metatarsal II are slightly 

concave, while its distal margin is convex. In lateral view, the dorsal and ventral borders of 

metatarsal II are concave. The diaphysis of metatarsal II is straight with concave margins. The 

cross-section is elliptical, being more extended transversally than dorsoventrally. At the level 

of the distal extremity, both distal condyles are separated by a small distal depression and a 

shallow ventral groove. The collateral fossa is not visible on the medial side of the metatarsal, 

and is shallow on its lateral side. In medial view, the ginglymus appears more extended 

ventrally than dorsally (Fig. 22).

The metatarsal III is usually the longest element of the metatarsus. On the left metatarsal III 

of Kholumolumo (MNHN.F.LES82), the proximal width of the bone equals 36% of its entire 

length (Table 7). In dorsal view, the lateral and medial borders of the metatarsal are concave. 

On the proximomedial part of the bone, we can see the articulation facet receiving the 

metatarsal II. In medial view, the proximal part of the bone is more extended dorsoventrally 

than its distal part. The proximal area is damaged, especially on the edges. The proximal 

articular surface is concave, and in proximal view it appears subtriangular with an oblique 

long axis. The metatarsal III diaphysis is straight with concave margins and an elliptical 
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cross-section. Distally, the distal condyles are not well developed and separated by a slight 

groove. The collateral fossa is not visible on the medial side of the bone and is shallow on its 

lateral side. On the dorsal surface of the metatarsal III, posteriorly to the distal condyles, a 

small crescentic fossa is visible (Fig. 22). This fossa is also visible in other genera, like 

Coloradisaurus or Mussaurus.

The metatarsal IV is usually a bit longer than the metatarsal II. Here, the transverse width of 

the proximal extremity of the left metatarsal IV (MNHN.F.LES381c) equals 44% of the entire 

length of the bone (Table 7). In dorsal view, the proximal extremity is much more extended 

transversely than the distal one. The lateral and medial borders of the metatarsal IV are 

concave, the lateral being more concave than the medial one. In medial view, the dorsal and 

ventral margins are concave too. The proximal and distal extremities show the same 

dorsoventral extension. The proximomedial area of the metatarsal IV presents an articulation 

facet receiving the metatarsal III, bordered by a thin dorsal ridge which merges with the 

proximal articular surface of the bone. The latter is flat. In proximal view, it exhibits a 

subtriangular outline with a long transverse axis and a concave ventral margin. The diaphysis 

has concave margins, it is straight, and is transversely extending towards the proximal 

extremity of the metatarsal. The minimum transverse width of the diaphysis is a few 

centimeters away from the distal extremity of the bone. The cross-section of the diaphysis is 

strongly elliptical. In dorsal view, the distal extremity of the metatarsal IV is very slightly 

asymmetrical, the medial distal condyle projecting a little more distally than the lateral one. 

The two distal condyles are separated by a groove, as observed in the preceding metatarsals. 

The medial distal condyle does not bear a visible collateral fossa, while the distal lateral 

condyle exhibits a marked one (Fig. 22).

The metatarsal V is a vestigial element, and consequently, the shortest element of the 

metatarsus. The metatarsal V of Kholumolumo (MNHN.F.LES77) is strongly asymmetrical, 
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unlike in Adeopapposaurus, Coloradisaurus or Mussaurus. Based on the comparison with 

other asymmetrical metatarsals V, we suppose that this is a left element. The metatarsal V is 

stout and almost as wide as long, its proximal width representing 83% of its length (Table 7). 

In lateral view, the dorsal and ventral margins of the bone are concave and the dorsoventral 

extension of both extremities is almost the same. In medial view, the distal extremity is more 

developed dorsoventrally than the proximal one. In dorsal view, the metatarsal V exhibits 

concave medial and lateral margins, the medial one being much more concave than the lateral. 

The proximal articular surface of the bone is slightly damaged but appears slightly convex. In 

proximal view, it is subtriangular. The diaphysis of the bone is very short. Distally, the 

metatarsal V extremity equals 37% of its proximal extremity in width. The distal extremity is 

convex and shows no condyles nor collateral fossae (Fig. 22).

ANATOMICAL COMPARISONS

Among basal sauropodomorphs, twelve genera other than Kholumolumo are known from the 

Late Triassic of southwestern Gondwana (southern Africa and South America). Of these, 

Euskelosaurus, which is currently considered a nomen dubium by most authors (Yates, 2004), 

is not included in the following comparisons. Given their very dissimilar anatomy, the small 

and gracile forms such as Eoraptor (Sereno et al., 2013), Pampadromeus (Cabreira et al., 

2011), Saturnalia (Langer et al., 1999) and the like are not taken into account in this amount.

Comparison with Large Basal Sauropodomorphs from the Upper Triassic of Southern 

Africa

The main differences between Blikanasaurus and Kholumolumo are located on the tibia. The 

excavation of the proximal part and the curvature of the posterior edge of the tibia of 
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Blikanasaurus are not considered here, both being presumably pathological (Galton and Van 

Heerden, 1998:164). In Blikanasaurus, the shaft of the tibia is triangular in cross-section, 

whereas it is oval in Kholumolumo. In lateral view, the tibia of Blikanasaurus is more curved, 

with a proximal extremity more extended anteroposteriorly relatively to the shaft. The distal 

articular surface of the fibula is asymmetrical in lateral view in Blikanasaurus, whereas it is 

subsymmetrical in Kholumolumo. Finally, the metatarsals of Blikanasaurus are stockier (with 

a superior width/length ratio at midshaft), especially the metatarsals II and III.

In Eucnemesaurus, the posterior tubercle and the lesser trochanter of the femur are much 

more developed than in Kholumolumo. The rounded fourth trochanter is part of the generic 

diagnosis of Eucnemesaurus (McPhee et al., 2015). It is rounded and subsymmetrical in 

profile, whereas it is both angular and asymmetrical in Kholumolumo. Furthermore, a fourth 

trochanter with a curved and oblique long axis is diagnostic of E. fortis (Yates, 2007a:96). In 

Kholumolumo, it appears straight in posterior view.

The syntype series of Melanorosaurus readi originally included several elements of the 

members, pelvis, as well as some vertebrae (Haughton, 1924). Unfortunately, some of these 

pieces are currently lost. The femur and the proximal half of a humerus were found in a 

higher stratigraphic layer than the remaining type materials. They are thus excluded from the 

syntype series. The tibia (SAM-PK-3449) of M. readi shows a more curved diaphysis in 

lateral view and its posterodistal process extends further distally (relatively to the anterodistal 

process) than in Kholumolumo. In proximal view, the cnemial crest is less developed in M. 

readi than in Kholumolumo. Considering the ulnae, the olecranon is more developed 

proximally and the radial fossa is deeper in M. readi than in Kholumolumo.

The material referred to Melanorosaurus readi catalogued under the accession number NM 

QR1551 includes vertebrae (mostly caudals), some bones from the pectoral and pelvic girdles 

and many bones from both members (Van Heerden and Galton, 1997). The centrum of the 
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posterior cervical vertebrae is much anteroposteriorly longer than dorsoventrally high in NM 

QR1551, whereas it is almost as long as high in Kholumolumo. The neural arch is 

dorsoventrally lower: its height is inferior to what is observed in Kholumolumo relatively to 

the total height of the vertebra. The scapula is stouter in Kholumolumo than in M. readi. In the 

latter, the blade appears longer relative to the total length of the bone, and its lateral borders 

are straight and subparallel in lateral view. Conversely, the lateral borders are curved in 

Kholumolumo. The articular surface of the proximal end of the ulna of M. readi is triangular 

in proximal view, with the anteromedial and anterolateral processes subequal in length. In 

Kholumolumo the articular surface is more pear-shaped, with an anteromedial process much 

more developed than the anterolateral one. The postacetabular process of the ilium of M. 

readi is anteroposteriorly elongated and exhibits a subrectangular extremity, while the 

extremity is shorter and more rounded in Kholumolumo. The dorsal margin of the ilium is 

straight in lateral view of M. readi, but sigmoid in Kholumolumo. In dorsal view, the dorsal 

border of the iliac blade is much thinner, at its central point, in NM QR1551. The lateral 

margin of the pubis is more curved throughout its length in anterior view in M. readi than in 

Kholumolumo. Finally, the femur of M. readi differs from that of Kholumolumo in various 

ways: in anterior view, the main axis of the femur is straight and its femoral head is projecting 

less medially. On the anterior surface, the lesser trochanter of M. readi is laterally located and 

more developed with a marked proximal extremity. On the posterior surface, the fourth 

trochanter is located more medially than in Kholumolumo and, in lateral view, it is low and 

rounded. In distal view, the articular surface is wider transversely than anteroposteriorly long 

in M. readi, whereas it is almost as wide as long in Kholumolumo.

The second specimen referred to Melanorosaurus readi NM QR3314 is represented by a 

poorly preserved but articulated skeleton. On the skull, the postorbital of NM QR3314 

presents a marked step between its anterior and posterior processes in lateral view, step not 
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visible in Kholumolumo. In dorsal view, the posterior process of the postorbital is laterally 

convex in NM QR3314, but appears straight in Kholumolumo. The radial fossa of the ulna of 

NM QR3314 is deeper and the anterolateral process is more developed than in Kholumolumo. 

Also, the posteromedial corner of the proximal articular surface appears more elongated and 

sharper than in Kholumolumo.

The genus Meroktenos is known from an incomplete skeleton, including a femur and two 

elements of the pelvis. The material referred to Meroktenos strongly differs from 

Kholumolumo in terms of size and proportions. A comprehensive comparison between the 

two taxa is available in the original publication of Meroktenos thabanensis (Peyre de 

Fabrègues and Allain 2016:21).

The material referred to Plateosauravus (Van Heerden, 1979) might be among the most 

resembling Kholumolumo. On the anterior dorsal vertebra of Plateosauravus (SAM-PK-

3345a) the postzygapophyses are at the same level as the prezygapophyses. In Kholumolumo, 

the articular surface of the postzygapophyses are more dorsally located than the 

prezygapophyses. In Plateosauravus, the anterior border of the neural spine is posterior to the 

anterior margin of the diapophyses, whereas it is anterior to the anterior margin of the 

diapophyses in Kholumolumo. The humeri of Plateosauravus (SAM-PK-3350 and 3342) are a 

bit stockier and their humeral head is less marked than in Kholumolumo. The ilium of 

Plateosauravus (SAM-PK-3609) is more elongated than the one of Kholumolumo (H/L ratio 

= 0.53 versus 0.63, respectively). Its dorsal margin appears straight in lateral view and the 

postacetabular process is subrectangular in Plateosauravus. In Kholumolumo, the dorsal 

margin is sigmoid and the postacetabular process is more rounded.

Comparison with Massive Basal Sauropodomorphs from the Upper Triassic of Southern 

America
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Several cranial (Apaldetti et al., 2014) and postcranial elements of Coloradisaurus (Apaldetti 

et al., 2013) can be compared with the material referred to Kholumolumo. In Coloradisaurus, 

the posterior process of the postorbital is thicker and shorter, the scapula is much slender with 

a gracile outline, the deltopectoral crest of the humerus projects more anteriorly and is more 

rectangular in lateral view. On the pubis, the lateral border of the bone is strongly concave in 

Coloradisaurus, whereas it is straight in Kholumolumo. In lateral view, the distal extremity of 

the pubic apron is more developed anteroposteriorly in Coloradisaurus. The femur is straight 

in posterior view with a fourth trochanter located in the proximal half and rounded in lateral 

view. In Kholumolumo, it is slightly sigmoid in posterior view, with a fourth trochanter more 

distally located and subrectangular. The tibia is much stockier in Kholumolumo. Finally, the 

metatarsal V of Kholumolumo is strongly asymmetrical, unlike in Coloradisaurus in which it 

is subsymmetrical.

Lessemsaurus is known by numerous postcranial elements (Pol and Powell, 2007). The 

acromion process of the scapula of Lessemsaurus is subrectangular, when it is rounded in 

Kolumolumo. The posterodorsal corner of the scapular blade projects much more posteriorly 

compared to Kholumolumo. The distal and proximal ends of the humerus are more expanded 

transversely, relatively to the shaft, in Lessemsaurus. In Kholumolumo, the humeral head also 

presents a distinctive bump in anterior view which is not visible in Lessemsaurus. There are 

several main discrepancies in the pelvic girdle. The postacetabular process of the ilium is 

subrectangular in Lessemsaurus, whereas it is subtriangular with a rounded distal extremity in 

Kholumolumo. The acetabulum is higher and narrower in Lessemsaurus. In dorsal view, the 

pubis exhibits a strongly concave lateral border in Lessemsaurus. In Kholumolumo, the lateral 

border is straight with a slight concavity on the proximal part of the bone. The lesser 

trochanter of the femur appears high and well-developed in Lessemsaurus, whereas it is very 

low in Kholumolumo. The fourth trochanter of Lessemsaurus is located near the medial 
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margin of the diaphysis in posterior view, whereas it is at the center of the diaphysis in 

Kholumolumo. Finally, the distal extremity of the tibia is much more extended relatively to its 

width at midshaft in Lessemsaurus, in lateral view.

Quite a few postcranial elements are known from Mussaurus (Otero and Pol, 2013). The 

postzygapophyses of the anterior dorsal vertebrae are larger and project more laterally in 

Kholumolumo than in Mussaurus. In posterior view, the postzygapophyses are very high 

compared to the position of the diapophyses in Kholumolumo, whereas they are practically at 

the same height in Mussaurus. The scapulae differ a lot from each other. The scapula of 

Mussaurus is slender and gracile, while the one of Kholumolumo is stout and large. In 

Mussaurus, the ratio of the minimal transverse width at midshaft of the scapula relatively to 

its maximum transverse width on the proximal extremity is much inferior. The metacarpal I of 

Mussaurus is longer than large, while it is almost as long as large in Kholumolumo. The 

phalanx I.1 of the manus exhibits discreet condyles in dorsal and ventral views, while they are 

bulging and bulbous in Kholumolumo. The ilia referred to Mussaurus are incomplete but their 

ventral part is preserved (Otero and Pol, 2013). In lateral view, the ventral margin of the 

postacetabular process is straight and the ischial peduncle appears subtriangular in 

Mussaurus. In Kholumolumo, the ventral margin of the postacetabular process is oblique and 

the ischial peduncle is subrectangular. The lateral margin of the pubic apron of Mussaurus is 

slightly concave, whereas it is straight in Kholumolumo. In Mussaurus, the femur is less 

sigmoid in anterior and posterior views. In anterior view, the lesser trochanter is more 

developed and more laterally located. In lateral view, the fourth trochanter is less developed 

and is much shorter proximodistally. In posterior view, the fourth trochanter is more medially 

located. In distal view, the extensor and popliteal fossae are more marked. Finally, the 

metatarsal I is longer and more gracile in Mussaurus than in Kholumolumo, while the 

proportions of the other metatarsals do not vary much.
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Riojasaurus preserves most of its cranial and postcranial elements (Bonaparte, 1971). The 

skull material having not been studied first-hand, the comparison between the two postorbitals 

has not been performed. The height of the neural arch of the most posterior cervical vertebra 

of Riojasaurus is much inferior to the height of the centrum, conversely to what is observed in 

Kholumolumo. The diapophysis is less developed both anteroposteriorly and laterally in 

Riojasaurus. The posterior margin of the proximal articular surface of the humerus of 

Riojasaurus bears a distinct tubercle, which is not present in Kholumolumo. The deltopectoral 

crest is sigmoid and thick in Riojasaurus, while it is straight and thinner in Kholumolumo. 

The diaphysis appears much shorter, relatively to the total proximodistal length of the 

humerus, in Riojasaurus. The proportions of the ilium are slightly different: in Riojasaurus 

the acetabulum is higher, relatively to the total height of the ilium than in Kholumolumo. The 

preacetabular process is sharp in Riojasaurus, whereas it is rounded in Kholumolumo. On the 

pubis, the obturator foramen is smaller in Riojasaurus. The pubic apron is transversely wider, 

relatively to the maximum transverse width of the pubis, in Riojasaurus. The femur of 

Riojasaurus is straight in anterior view, whereas in Kholumolumo it is slightly sigmoid. The 

lesser trochanter is more developed and protruding in Riojasaurus. In posterior view, the 

fourth trochanter is oblique in Riojasaurus, whereas it is straight in Kholumolumo. In distal 

view, the lateral condyle of the femur is more developed in Riojasaurus and the depression 

between the fibular and lateral condyles is much more marked than in Kholumolumo. The 

tibia of Riojasaurus has a slenderer morphology than the tibia of Kholumolumo. In lateral and 

medial views, the proximal end of the bone is more developed anteroposteriorly in 

Riojasaurus than in Kholumolumo. In distal view, the anteroposterior length of the lateral 

margin is inferior to the same length measured on the medial margin in Riojasaurus, whereas 

the opposite is observed in Kholumolumo.
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Although a considerable number of new basal sauropodomorph taxa have been described over 

the past 15 years in southern Africa, it seems that the material from Maphutseng cannot be 

referred to any known taxon. Even if detailed nomenclatural and taxonomic revisions, allied 

with clear diagnoses based on associated material and works on the intraspecific variation are 

required for numerous southern gondwanan taxa (e.g. Massospondylus, Euskelosaurus, 

Melanorosaurus), the type material of Kholumolumo ellenbergerorum is diagnostic (see 

above) and the erection of a new genus and species is justified.

RESULTS

Characterization of the Maphutseng Bone Bed

The Maphutseng locality is the only basal sauropodomorph bonebed ever discovered in 

southern Africa. Nearly 470 pieces have been collected in 1959, 1963 and 1970 at 

Maphutseng, but only 225 pieces are currently housed in the MNHN collections in Paris. This 

is undoubtedly a consequence of the attribution, on the field, of several numbers to fragments 

of the same bone (see the introduction for more details). Among the 225 identifiable bones 

and fragments, several fragments fit together, leading to 212 fossilized remains. Of the 212, 

99% (210) are considered to belong to Kholumolumo ellenbergerorum, classifying this a 

monotaxic bone bed (Eberth et al., 2007). The remaining two are two large teeth of a 

rauisuchian. Based on the number of right radii present in the collections, the minimum 

number of individuals (MNI) in the bone bed can be estimated at 5. Given that the 1955 and 

1956 excavations yielded nearly 650 bones, the number of Kholumolumo individuals 

preserved in the Maphutseng bone bed is probably twice as large.

The Maphutseng bone bed is distinct from most of the Plateaosaurus bonebeds of the Late 

Triassic of Europe which preserved articulated skeletons and are interpreted as mire traps 
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(Sander, 1992), except for the Ellingen locality (Moser 2004). Miring can not definitively be 

excluded for the Kholumolumo specimens of Maphutseng, as the presence of small bones 

(distal caudal vertebrae and distal phalanges), vertebrae and ribs suggests very little scattering 

within the assemblage. Skull material is very rare, but it could be a sampling bias on the field. 

However, all the skeletons are disarticulated indicating post-mortem displacement and more 

likely a bone accumulation area. The latter interpretation is more consistent with the 

meandearing river environment with associated floodplain areas depicted for the lower Elliot 

Formation (Bordy et al., 2004).

Phylogenetic Analysis

Here, we include Kholumolumo to a comprehensive cladistic analysis of basal 

sauropodomorphs. We amended the data matrix from Apaldetti et al. (2018) to carry out the 

phylogenetic analysis. The original matrix consists of 372 characters and 63 terminal taxa, 

including Kholumolumo, which was scored based on all the available material. We carried out 

three consecutive parsimony analyses, all performed with Winclada (Nixon, 2002) running 

over NONA (Goloboff, 1993), using a heuristic search with a random stepwise-addition of 

100 replicates and an unconstrained search strategy of multiple TBR + TBR branch swapping. 

The first analysis includes all the original taxa and resulted in a 1491 steps consensus tree 

(Supplementary Data Figure 2S). In the second one, we pruned three taxa a priori: 

Barapasaurus, Isanosaurus and Gongxianosaurus. Gongxianosaurus, given the uncertainty 

surrounding its anatomy. Isanosaurus because of the uncertainty about the age of the material. 

Indeed, a part of the Nam Phong Formation, where was collected the type material of 

Isanosaurus, has been recently dated as Late Jurassic on the basis of its palynoflora (Racey, 

2009; Racey and Goodall, 2009). It is very likely that Isanosaurus is Late Jurassic in age and 

that its basal position in sauropodomorph phylogeny is only the reflect of the incompleteness 
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of the known material for this taxon. This second analysis resulted in a 1472 steps consensus 

tree (Supplementary Data Figure 3S).

For the third analysis, we removed from the sampling all the taxa presenting more than 70% 

of missing data, leaving only 47 taxonomic units. The analysis resulted in 24 most 

parsimonious trees (length=1402 steps, CI=0.30, RI=0.61). Based on this analysis, we 

produced a strict consensus tree (length=1451 steps; Fig. 23) where Lessemsaurus, 

Antetonitrus and the Sauropoda (sensu Salgado, Coria & Calvo, 1997; Peyre de Fabrègues et 

al., 2015) pertain to the same clade, Antetonitrus being the sister group of Sauropoda. The 

Massospondylidae (Adeopapposaurus, Coloradisaurus, Leyesaurus, Lufengosaurus and 

Massospondylus) is the clade recovered in the most “apical” (i.e., close to Sauropoda) 

position. The Plateosauridae (Unaysaurus, Plateosaurus) are also recovered. In between, 

Kholumolumo is retrieved as sister group of Sarahsaurus, within a clade also comprising 

Xingxiulong. This clade is diagnosed by the following unambiguous synapomorphies: 

epipophyses not overhanging the rear margin of the postzygapophyses in the cervical 

vertebrae (character 137, state 0), transversely expanded plate-like summits of posterior dorsal 

neural spines (character 174, state 1), length of first caudal centrum inferior to its height 

(character 183, state 1), anteroposterior width of the lateral side of the distal articular surface 

of the tibia as wide as the anteroposterior width of its medial side (character 307, state 0), 

transverse width of the calcaneum less than 30% of the transverse width of the astragalus 

(character 324, state 1).

The clade comprising Kholumolumo and Sarahsaurus is diagnosed by the following 

unambiguous synapomorphies: centra of the anterior cervical vertebrae approximately 1.25 

times higher than wide (1) (character 130, state 1), flattened epipophyses (character 136, state 

1), strongly convex dorsal margin of the ilium (character 245, state 1), preacetabular process 

of the ilium blunt and rectangular (character 247, state 0), length of the ischial peduncle of the 
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ilium much shorter than pubic peduncle (character 254, state 1), anterior margin of the pubic 

apron smoothly confluent with the anterior margin of the iliac pedicel in lateral view 

(character 261, state 0), lesser trochanter forming just a scar upon the femoral surface 

(character 287, state 0), transverse width of the distal tibia subequal to its anteroposterior 

length (character 306, state 0), anteromedial corner of the distal articular surface of the tibia 

forming a right angle (character 310, state 0).

As a result, Kholumolumo is nested among the basal sauropodomorphs with an ancestral 

morphotype and a bipedal bauplan and, despite its large size, is not recovered close to 

“sauropod-like” forms like Antetonitrus or Lessemsaurus.

DISCUSSION

Phylogenetic Relationships and Paleobiogeography

The phylogenetic tree (Fig. 23) exhibits a particular topology consisting of Sarahsaurus and 

Xingxiulong, two Jurassic taxa, in the same clade as Kholumolumo. The latest study of 

Sarahsaurus (Marsh and Rowe, 2018) showed the North American taxon with more or less 

the same affinities as in this paper. It was recovered among Massospondylidae in two 

phylogenetic trees out of three, the authors having considered three different datasets (Marsh 

and Rowe, 2018:figs. 47–49). In the only dataset, also including Xingxiulong (Marsh and 

Rowe, 2018:fig. 49), the latter appears just before Massospondylidae, closer to the base of the 

tree. However, in the phylogenetic analysis published with the original description of 

Xingxiulong (Wang et al., 2017), the Chinese taxon does not show the same phylogenetic 

affinities. It is not close to the Massospondylidae, but sister taxon of Jingshanosaurus and 

rather at the base of the Sauropodiformes (Wang et al., 2017:fig. 5). This phylogenetic result 

led the authors to assume an Asian origin for the Sauropodiformes clade. Our phylogenetic 

analysis does not corroborate this hypothesis, Xingxiulong, Sarahsaurus and Kholumolumo 
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being not recovered among Sauropodiformes. It is the first time that one clade includes taxa 

from China, North America and Africa. It was suggested that Sarahsaurus’s lineage most 

likely originated and dispersed from Gondwana between the end of the Norian and the 

Pliensbachian (Marsh and Rowe, 2018). The affinities with Kholumolumo could be explained 

by such an occurrence. An initial concentration of the sauropodomorph populations in 

Gondwana could have resulted in a geographic dispersal during the Late Triassic and 

vicariance during the Early Jurassic, with new taxa arising from the Triassic forms, including 

in North America and China.

Size and Body Mass Estimation

We used the relation between the femur length and the overall body length in Plateosaurus 

engelhardti which evaluates the body length to ten times the femur length (Sander and Klein, 

2005) to estimate the size of Kholumolumo. Using the longest femur found in Maphutseng 

(Table 7), we estimate the body length of the largest Kholumolumo specimen around 9 meters 

long (Table 8). Compared to other Norian basal sauropodomorphs, it is the genus with the 

most important size just before Lessemsaurus (PVL 4822:8.4 m).

It has been established that there is a correlation between the long-bones circumference and 

the weight in dinosaurs (Anderson et al., 1985). In quadrupeds, the circumferences of the 

femur and humerus of one species are correlated to its body mass (Campione and Evans, 

2012). In bipeds, the equation is linking only the circumference of the femur to the body mass 

(Campione et al., 2014). The stance is therefore crucial to estimate the body mass of a given 

genus, but uncertainties remain concerning the stance of numerous basal sauropodomorphs 

(Bonnan and Senter, 2007; Bonnan and Yates, 2007; Otero et al., 2017; McPhee et al., 2018). 

Hence, we propose different estimations of the body mass of Kholumolumo ellenbergerorum 

using both the quadrupedal and bipedal equations (Benson et al., 2018:16), as well as the 
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regression equations given by Apaldetti et al. (2018) (Table 8). Based on the largest femur 

available (MNHN.F.LES371), the bipedal equation gives a body mass of 1754 kg for 

Kholumolumo. Other prosauropod specimens known from the Late Triassic range from 

438 kg (Coloradisaurus) to 1963 kg (Lessemsaurus) (Table 8). The quadrupedal equation 

requires the circumferences of the humerus and femur of a same individual. The remains from 

Maphutseng coming from several individuals, we chose to calculate the body mass based on 

the biggest humerus (MNHN.F.LES379) and femur (MNHN.F.LES371) available, the 

proportions of which are consistent. The quadrupedal equation gives a result of 3334 kg for 

Kholumolumo, that is roughly double the calculated weight with the bipedal equation. The 

same result is observed in other taxa, except Lessemsaurus for which the body mass is 

roughly equivalent regardless of the equation used. The body mass ranges between 757 kg 

(Coloradisaurus) and 3334 kg (Kholumolumo). In that case, Kholumolumo is heavier than 

Lessemsaurus (Table 8).

The correlation between the size of the girdle elements and the body mass among 

Sauropodomorpha (Apaldetti et al., 2018) give an even more significant estimation of the 

weight of basal sauropodomorphs. Using the maximum length of the scapula 

(MNHN.F.LES386) and ilium (MNHN.F.LES375a) of Kholumolumo we obtain, respectively, 

3864 kg and 3963 kg. Unaysaurus, of which the scapula is known, is the smallest specimen 

(88 kg) from the Late Triassic. It is followed by Coloradisaurus (307 kg). In both cases, 

Kholumolumo is one of the largest basal sauropodomorphs, with Lessemsaurus 1. The 

recently described Lessemsaurus 2 (CRILAR) appears to be the heaviest (Table 8). 

Considering a larger temporal scale, Kholumolumo is still one of the biggest basal 

sauropodomorphs, being only lighter than the Jurassic taxa Antetonitrus (Apaldetti et al., 

2018) and Ledumahadi (McPhee et al., 2018).
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Three equations out of four give an estimated body weight of more than 3000 kg for 

Kholumolumo. Therefore, Kholumolumo was among the heaviest terrestrial animals in 

gondwanan wildlife at the end of the Triassic. However, the significant gap between the 

results of the bipedal and quadrupedal equations is a prime example of the uncertainties 

surrounding the weight estimates in fossil organisms, particularly in groups such as 

Sauropodomorpha, including bipedal and quadrupedal animals, as well as transitional forms. 

These results should therefore be interpreted cautiously. In any case, Kholumolumo appears to 

be the biggest known basal sauropodomorph in the Triassic of Southern Africa. It is, however, 

not linked to the origin of Sauropoda, as supported by the proportions and anatomy of its 

anterior and posterior members and by its phylogenetic position. 

CONCLUSIONS

The complete anatomical description of the Late Triassic Kholumolumo 

ellenbergerorum, discovered in Lesotho in 1955 and hosted in the collections of the MNHN 

during more than 50 years, is provided here. The remains, pertaining to at least five different 

specimens, form a virtually subcomplete skeleton, one of the most complete in the lower 

Elliot Formation. The only parts not maintained in the collections are the skull (with the 

exception of the postorbital), the coracoids and the complete ischium. The 210 bones unveiled 

in the Maphutseng bone bed present an exclusive morphology as well as a unique 

combination of characters and are therefore attributed to a new genus and new species.

The phylogenetic reconstruction replaces the new genus between two well-known clades of 

basal sauropodomorphs: Plateosauridae and Massospondylidae. The exact position of the 

Triassic Kholumolumo is intriguing, as it is recovered within the same clade as Xingxiulong, a 

Jurassic form from China and Sarahsaurus, another Jurassic form from North America. This 
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topology might be a testimony of the prosauropods biogeographic history by illustrating the 

effects of Late Triassic geographic dispersals and Early Jurassic vicariance.

The total body length of Kholumolumo is estimated at 9 meters. Based on the long-bones 

circumference and the size of the girdle elements, we calculated a body mass ranging between 

1754 kg and 3963 kg, making of Kholumolumo one of the heaviest terrestrial animals at the 

end of the Triassic.
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FIGURE CAPTIONS

FIGURE 1. Maphutseng bone bed location and excavation plan. A, Geological map drawn by 

F. Ellenberger situating the Maphutseng bone bed (“Gisement”, F) relative to the trackways 

(“Pistes”) and to the Protestant mission (“PEMS”) (Ellenberger archives, ISEM); B, Satellite 

view framed in a similar way than the drawing, showing the exact location of the Maphutseng 

bone bed (F) and the river as a reference (Image © 2018 DigitalGlobe); C, Excavation plan of 
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the 1955/56 and 1959 campaigns drawn by F. Ellenberger (Ellenberger archives, ISEM). The 

location of the 1963 and 1970 excavations were deduced thanks to a more comprehensive 

excavation plan figured in Gauffre (1996:fig. 21). [planned for page width]

FIGURE 2. Photographs of the excavations on the Maphutseng bone bed during the last 

campaign, in 1970. A, The excavation site. The photography was taken by P. Ellenberger. On 

the right side of the photography, from right to left: B. Battail and L. Ginsburg (Ellenberger 

archives, ISEM); B, Bones in situ. This photography was taken by B. Battail and illustrates 

perfectly the status of bone bed attributed to Maphutseng. From left to right and top to bottom 

appear: a caudal vertebra, a tibia, a right femur, an ischium, an ilium, a left femur, several 

metatarsals and phalanges. [planned for 2/3 width]

FIGURE 3. Geological map of Lesotho showing the five geological Formations outcropping 

and the Maphutseng bone bed as part of the Elliot Formation, based on the Geological map of 

Lesotho of the Department of Mines and Geology of Lesotho (1982). [planned for page 

width]

FIGURE 4. Kholumolumo ellenbergerorum postorbitals. Left postorbital (MNHN.F.LES153) 

in lateral (A) and medial (B) views; Right postorbital (MNHN.F.LES54) in lateral (C) and 

medial (D) views. Abbreviations: apr, anterior process; cfr, contact with frontal; cpa, 

contact with parietal; csq, contact with squamosal; ppr, posterior process; ru, orbital 

rugosity; vpr, ventral process. Scale bar equals 1 cm. [planned for page width]

FIGURE 5. Kholumolumo ellenbergerorum posterior cervical vertebra (C10?) 

(MNHN.F.LES169). A, right lateral view; B, left lateral view; C, posterior view; D, anterior 
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view; E, dorsal view; F, ventral view. Abbreviations: di, diapophysis; hpo, hyposphene; hy, 

hypapophysis; nc, neural canal; ns, neural spine; poz, postzygapophysis; pp, parapophysis; 

prz, prezygapophysis; vk, ventral keel. Scale bar equals 5 cm. [planned for page width]

FIGURE 6. Kholumolumo ellenbergerorum anterior dorsal (D1?) neural arch 

(MNHN.F.LES397). A, dorsal view; B, right lateral view; C, posterior view; D, anterior view. 

Abbreviations: cdf, centrodiapophyseal fossa; cpol, centropostzygapophyseal lamina; cprl, 

centroprezygapophyseal lamina; di, diapophysis; hpo, hyposphene; nc, neural canal; ns, 

neural spine; pcdl, posterocentrodiapophyseal lamina; pocdf, postzygapophyseal 

centrodiapophyseal fossa; podl, postzygodiapophyseal lamina; poz, postzygapophysis; prcdf, 

prezygapophyseal centrodiapophyseal fossa; prdl, prezygodiapophyseal lamina; prz, 

prezygapophysis. Scale bar equals 5 cm. [planned for page width]

FIGURE 7. Kholumolumo ellenbergerorum middle dorsal vertebra (D7-12?) 

(MNHN.F.LES32). A, right lateral view; B, anterior view; C, posterior view; D, anterior 

view. Abbreviations: di, diapophysis; hpo, hyposphene; nc, neural canal; pcdl, 

posterocentrodiapophyseal lamina; pp, parapophysis; ppdl, paradiapophyseal lamina; prdl, 

prezygodiapophyseal lamina; prz, prezygapophysis. Scale bar equals 5 cm. [planned for page 

width]

FIGURE 8. Kholumolumo ellenbergerorum primordial sacral vertebra (2?) 

(MNHN.F.LES155). A, posterior view; B, left lateral view; C, dorsal view. Abbreviations: 

di, diapophysis; hpo, hyposphene; nc, neural canal; ns, neural spine; poz, postzygapophysis; 

sr, sacral rib. Scale bar equals 10 cm. [planned for page width]
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FIGURE 9. Kholumolumo ellenbergerorum anterior caudal vertebra (Ca1-5?) 

(MNHN.F.LES168). A, right lateral view; B, posterior view. Abbreviations: nc, neural 

canal; ns, neural spine; poz, postzygapophysis; prz, prezygapophysis. Scale bar equals 10 cm. 

[planned for 2/3 width]

FIGURE 10. Kholumolumo ellenbergerorum anterior caudal vertebra (Ca5-15?) 

(MNHN.F.LES376). A, anterior view; B, posterior view; C, left lateral view; D, dorsal view; 

E, ventral view. Abbreviations: di, diapophysis; gr, longitudinal groove; nc, neural canal; 

ns, neural spine; poz, postzygapophysis; prz, prezygapophysis. Scale bar equals 5 cm. 

[planned for page width]

FIGURE 11. Kholumolumo ellenbergerorum left scapula (MNHN.F.LES386). A, lateral 

view; B, medial view. Abbreviations: ac, acromion; acf, acromial fossa; adr, anterodorsal 

ridge; gl, glenoid; nc, neural canal; ns, neural spine; pdr, posterodorsal ridge; rss, ridge 

surrounding the attachment area of the muscle serratus superficialis; sb, scapular blade. Scale 

bar equals 10 cm. [planned for 2/3 width]

FIGURE 12. Kholumolumo ellenbergerorum left humerus (MNHN.F.LES379). A, anterior 

view; B, lateral view; C, posterior view; D, medial view; E, proximal view; F, distal view. 

Abbreviations: cuf, cuboid fossa; dpc, deltopectoral crest; hh, humerus head; mt, medial 

tuberosity; olf, olecranon fossa; rc, radial condyle; uc, ulnar condyle. The arrow indicates the 

anterior surface of the bone for E and F. Scale bar equals 10 cm. [planned for page width]

FIGURE 13. Kholumolumo ellenbergerorum right ulna (MNHN.F.LES159). A, anteromedial 

view; B, lateral view; C, posterolateral view; D, medial view; E, proximal view; F, distal 
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view. Abbreviations: alp, anterolateral process; amp, anteromedial process; ol, olecranon; 

rf, radial fossa. The arrow indicates the anterior surface of the bone for E and F. Scale bar 

equals 5 cm. [planned for page width]

FIGURE 14. Kholumolumo ellenbergerorum right radius (MNHN.F.LES147). A, anterior 

view; B, lateral view; C, posterior view; D, medial view; E, proximal view; F, distal view. 

The arrow indicates the anterior surface of the bone for E and F. Scale bar equals 5 cm. 

[planned for page width]

FIGURE 15. Kholumolumo ellenbergerorum elements of the manus (from top to bottom: 

metacarpals I to IV and phalange I-1. Respectively: MNHN.F.LES26, MNHN.F.LES92, 

MNHN.F.LES93, MNHN.F.LES76, MNHN.F.LES29). A, F, K, P, T, dorsal views; B, G, L, 

Q, U, ventral views; C, H, M, R, V, lateral views; D, I, N, W, proximal views; E, J, O, S, X, 

distal views. Scale bar equals 5 cm. [planned for page width]

FIGURE 16. Kholumolumo ellenbergerorum right ilium (MNHN.F.LES375a). A, lateral 

view; B, medial view; C, dorsal view; D, ventral view. Abbreviations: ibl, iliac blade; isp, 

ischial peduncle; mwa, medial wall of the acetabulum; pop, postacetabular process; prp, 

preacetabular process; pup, pubic peduncle; sac, supracetabular crest; svi, sacral vertebrae 

insertion. Scale bar equals 10 cm. [planned for 2/3 width]

FIGURE 17. Kholumolumo ellenbergerorum left pubis (MNHN.F.LES378). A, dorsal view; 

B, ventral view. Abbreviations: ac, acetabulum; ilp, iliac peduncle; isp, ischial peduncle; of, 

obturator foramen; pa, pubic apron; pp, pubic plate. Scale bar equals 10 cm. [planned for 2/3 

width]
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FIGURE 18. Kholumolumo ellenbergerorum incomplete left ischium (MNHN.F.LES152). A, 

medial view; B, lateral view; C, dorsal view. Abbreviations: ac, acetabulum; ilp, iliac 

peduncle; pup, pubic peduncle. Scale bar equals 10 cm. [planned for page width]

FIGURE 19. Kholumolumo ellenbergerorum right femur (MNHN.F.LES394). A, anterior 

view; B, lateral view; C, posterior view; D, medial view; E, proximal view; F, distal view. 

Abbreviations: ef, extensor fossa; fc, fibular condyle; fh, femoral head; lc, lateral condyle; lt, 

lesser trochanter; mc, medial condyle; pf, popliteal fossa; 4t, fourth trochanter. The arrow 

indicates the anterior surface of the bone for E and F. Scale bar equals 10 cm. [planned for 

page width]

FIGURE 20. Kholumolumo ellenbergerorum right tibia (MNHN.F.LES381m). A, anterior 

view; B, lateral view; C, posterior view; D, medial view; E, proximal view; F, distal view. 

Abbreviations: adp, anterodistal process; cnc, cnemial crest; lc, lateral condyle; lco, lateral 

concavity; mc, medial condyle; pdp, posterodistal process. The arrow indicates the anterior 

surface of the bone for E and F. Scale bar equals 10 cm. [planned for page width]

FIGURE 21. Kholumolumo ellenbergerorum right fibula (MNHN.F.LES374). A, anterior 

view; B, lateral view; C, posterior view; D, medial view; E, proximal view; F, distal view. 

Abbreviation: pmt, proximomedial tubercle. The arrow indicates the anterior surface of the 

bone for E and F. Scale bar equals 10 cm. [planned for 2/3 width]

FIGURE 22. Kholumolumo ellenbergerorum elements of the pes (from top to bottom: 

metatarsals I to V. Respectively: MNHN.F.LES89, MNHN.F.LES81, MNHN.F.LES82, 
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MNHN.F.LES381c, MNHN.F.LES77). A, F, K, P, T, dorsal views; B, G, L, Q, U, ventral 

views; C, H, M, R, V, lateral views; D, I, N, S, W, proximal views; E, J, O, S, X, distal 

views. Scale bar equals 10 cm. [planned for page width]

FIGURE 23. Strict consensus tree (length=1451 steps) of the phylogenetic analysis conducted 

with 47 taxa and 372 characters and based on the matrix and scorings of Apaldetti et al., 2018 

(except for Kholumolumo). The consensus is based on 24 MPTs of 1402 steps each. [planned 

for 2/3 width]

Page 90 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x178mm (300 x 300 DPI) 

Page 91 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

121x159mm (300 x 300 DPI) 

Page 92 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x174mm (300 x 300 DPI) 

Page 93 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

182x123mm (300 x 300 DPI) 

Page 94 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x232mm (300 x 300 DPI) 

Page 95 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x159mm (300 x 300 DPI) 

Page 96 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x105mm (300 x 300 DPI) 

Page 97 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x168mm (300 x 300 DPI) 

Page 98 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

122x113mm (300 x 300 DPI) 

Page 99 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x232mm (300 x 300 DPI) 

Page 100 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

122x98mm (300 x 300 DPI) 

Page 101 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x121mm (300 x 300 DPI) 

Page 102 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x131mm (300 x 300 DPI) 

Page 103 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x131mm (300 x 300 DPI) 

Page 104 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x232mm (300 x 300 DPI) 

Page 105 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

122x214mm (300 x 300 DPI) 

Page 106 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

122x130mm (300 x 300 DPI) 

Page 107 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x120mm (300 x 300 DPI) 

Page 108 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x149mm (300 x 300 DPI) 

Page 109 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x149mm (300 x 300 DPI) 

Page 110 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

122x142mm (300 x 300 DPI) 

Page 111 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

181x232mm (300 x 300 DPI) 

Page 112 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Page 113 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



TABLE 1. List of the five field campaigns in the Maphutseng bone bed, with the 

approximative number of attributed numbers on the field and the team involved in each 

campaign. In bold: MNHN researchers.

1955
August & 
September

1955
November

300
numbers attributed

1956
February

400
numbers attributed

1959
?

200
numbers attributed

1963
Month?

100
numbers attributed

1970
September

300
numbers attributed

P. Ellenberger
F. Ellenberger

P. Ellenberger
F. Ellenberger

A.W. Crompton
R.F. Ewer

P. Ellenberger
F. Ellenberger

A.W. Crompton
R.F. Ewer

P. Ellenberger
F. Ellenberger
H. Ellenberger
L. Ginsburg

J. Fabre

P. Ellenberger
L. Ginsburg

J. Fabre
C. Mendrez

P. Ellenberger
L. Ginsburg

J. Fabre
B. Battail
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TABLE 2. Source of comparative data used in the anatomical descriptions. The underlined 

specimens were studied first-hand by the first author of this work.

Aardonyx celestae BP/1/6254; Yates et al., 2010
Adeopapposaurus mognai PVSJ 610; PVSJ 568; PVSJ 569; Martínez, 2009
Anchisaurus polyzelus AM 41/109; YPM 208; YPM 1883; Galton, 1976; Fedak and 

Galton, 2007; Yates, 2010
Antetonitrus ingenipes BP/1/4952; McPhee et al., 2014
Blikanasaurus cromptoni SAM-PK-K403; Galton and Van Heerden, 1985, 1998
Camelotia borealis Galton, 1998
Chromogisaurus novasi PVSJ 845; Ezcurra, 2010; Martínez et al., 2013
Coloradisaurus brevis PVL 3967; PVL 5904; Apaldetti et al., 2013, 2014
Efraasia minor Galton, 1984; Yates, 2003
Eoraptor lunensis PVSJ 512; Sereno et al., 2013
Eucnemesaurus entaxonis McPhee et al., 2015
Jingshanosaurus xinwaensis Zhang and Yang, 1994
Lamplughsaura dharmaramensis Kutty et al., 2007
Leonerasaurus taquetrensis MPEF-PV 1663; Pol et al., 2011
Lessemsaurus sauropoides PVL 4822; Pol and Powell, 2007
Leyesaurus marayensis PVSJ 706; Apaldetti et al., 2011
Lufengosaurus huenei IVPP V15; Young, 1941; Barrett et al., 2005
Massospondylus carinatus BP/1/4934; BP/1/5241; BP/1/4779; BP/1/5247; BP/1/4924; 

BP/1/4693; Sues et al., 2004; MNHN.F.LES15
Melanorosaurus readi NM QR3314; NM QR1551; SAM-PK-3449; SAM-PK-3450
Meroktenos thabanensis MNHN.F.LES16; MNHN.F.LES351
Mussaurus patagonicus MLP 61-III-20-22; MLP 61-III-20-23; MLP 68-II-27-1; 

Pol and Powell, 2007; Otero and Pol, 2013
Pampadromaeus barberenai Cabreira et al., 2011; Müller et al., 2016
Panphagia protos PVSJ 874; Martínez and Alcober, 2009; Martínez et al., 2013
Plateosaurus longiceps MB.R.1937; MB.R.4402; MB.R.4404; MB.R.4416
Pulanesaura eocollum McPhee et al., 2015
Riojasaurus incertus PVL 3808
Ruehleia bedheimensis MB.R.4718; MB.R.4430; Galton, 2001
Sarahsaurus aurifontanalis MCZ 8893; TMM 43646-2; Rowe et al., 2010
Saturnalia tupiniquim MCP 3845-PV; MCP 3846-PV; Langer et al., 1999; Langer 

2003; Langer et al., 2007
Sefapanosaurus zastronensis BP/1/386; BP/1/7409–7455; Otero et al., 2015
Seitaad ruessi Sertich and Loewen, 2010
Thecodontosaurus antiquus Benton et al., 2000
Unaysaurus tolentinoi UFSM11069; Leal et al., 2004
Xixiposaurus suni Sekiya, 2010
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TABLE 2. (Continued)

Yunnanosaurus huangi IVPP V20; IVPP V505; Young, 1942; Barrett et al., 2007
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TABLE 3. Selected measurements (mm) of the vertebrae of Kholumolumo ellenbergerorum. 

Abbreviations followinf the order of the table: L, maximum anteroposterior ventral length; 

antW, anterior width; medW, medial width; postW, posterior width; antH, anterior height; 

postH, posterior height; naH, neural arch height; nsH, maximum neural spine height; nsL, 

maximum neural spine length; nsW, maximum neural spine width measured at its distal end; 

przD, distance between the lateral borders of the prezygapophyses; H, total height; *, 

deformation.

CENTRUM NEURAL ARCH VERTEBRA

L antW medW postW antH postH naH nsH nsL nsW przD H
Cmid

MNHN.F.LES338 ? 65 30 ? 78 ? ? ? ? ? ? ?

Cmid
MNHN.F.LES342 127 41* 20* ? 54* ? ? ? ? ? ? ?

C10?
MNHN.F.LES169 132 90 34 85 105 92 150 46 39 37 88 255

D1?
MNHN.F.LES397 ? ? ? ? ? ? >110 ? ? ? 91 ?

D2-3?
MNHN.F.LES172 115 90* 33* 82* 117* 105* ? ? ? ? ? ?

D8-12?
MNHN.F.LES32 120 63* 38* 71* 97* 108* >120 ? ? ? 68 >233

Sp2?
MNHN.F.LES155 101 105 73 175 137 155 265 175 75 45 ? 420

Ca1-5
MNHN.F.LES168 90 ? 102 155 141 165 260 180 65 41 ? 425

Ca5-15
MNHN.F.LES376 105 108 68 107 125 124 210 155 55 23 75 335

Ca15-25
MNHN.F.LES177 90 60 46 59 53 52 ? ? ? ? ? ?

Ca25+
MNHN.F.LES35 65 35 25 34 34 29 ? ? ? ? ? ?

Page 117 of 145

Society of Vertebrate Paleontology

Journal of Vertebrate Paleontology: For Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



TABLE 4. Selected measurements (mm) of the scapulae of Kholumolumo ellenbergerorum. 

Abbreviations following the order of the table: L, maximum dorsoventral length; dW, 

maximum distal width; bW, blade minimal anteroposterior width; bT, blade transversal 

thickness measured at midpoint on the posterior border; pW, maximum proximal width; 

amxH, acromion maximum height measured at the level of the point of divergence with the 

anterior border of the blade; amnH, acromion minimum height measured on its distal 

extremity; aW, acromion anteroposterior width measured at the level of the anterior border of 

the blade; aT, acromion transversal thickness; nsW, maximum neural spine width measured 

at its distal end; gcT, glenoid cavity maximum thickness.

BLADE ACROMION

L dW bW bT pW amxH amnH aW aT gcT
Scapula (right)

MNHN.F.LES133 ? ? ? 35 ? ? ? ? ? ?

Scapula (left)
MNHN.F.LES134 ? ? 132 34 ? ? ? ? ? ?

Scapula (right)
MNHN.F.LES135 ? ? 164 35 ? ? ? ? ? ?

Scapula (right)
MNHN.F.LES158 ? ? 76 34 ? ? ? ? ? ?

Scapula (left)
MNHN.F.LES386 720 ? 172 30 385 265 140 85 40 106
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TABLE 5. Selected measurements (mm) of the bones from the anterior member of 

Kholumolumo ellenbergerorum. Abbreviations following the table order: L, maximum 

proximodistal length; dpcL, deltopectoral crest dorsoventral length (measured from the 

proximal border of the humerus); W, maximum transverse width; T, maximum 

anteroposterior thickness; C, circumference of the diaphysis (measured beneath the 

deltopectoral crest on humeri); >, length measured given that one or both extremities of the 

bone are broken.

PROXIMAL DIAPHYSIS DISTAL

L dpcL W T W T C W T
Humerus (left)

MNHN.F.LES379 685 330 300 70 82 80 262 220 68

Humerus (right)
MNHN.F.LES385 630 280 ? ? 77 70 235 225 ?

Humerus (right)
MNHN.F.LES390 610 265 233 64 85 72 257 214 60

Ulna (right)
MNHN.F.LES145 >305 - ? ? 50 44 - 54 ?

Ulna (right)
MNHN.F.LES156 370 - 120 150 53 50 - 50 100

Ulna (right)
MNHN.F.LES159 390 - 126 142 52 48 - 56 108

Radius (left)
MNHN.F.LES140 >264 - 112 65 47 45 - ? ?

Radius (right)
MNHN.F.LES142 >235 - ? ? 42 39 - ? 58

Radius (left)
MNHN.F.LES144 320 - 97 54 42 42 - ? 65

Radius (left)
MNHN.F.LES147 320 - 99 58 46 38 - 85 64

Metacarpal I (right)
MNHN.F.LES26

97 - 95 69 66 33 - 85 53

Metacarpal II (left)
MNHN.F.LES92

125 - 68 60 32 27 - 60 38

Metacarpal III (right)
MNHN.F.LES93

142 - 67 64 26 29 - 57 40

Metacarpal IV (right)
MNHN.F.LES76

>103 - ? ? 28 21 - 43 27

Phalanx I.I (left)
MNHN.F.LES29

94 - 65 - - - - - -
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TABLE 6. Selected measurements (mm) of the ilia, pubes and ischium of Kholumolumo 

ellenbergerorum. Abbreviations following the table order: L, maximum anteroposterior 

length; La, anteroposterior length above the acetabulum (at the level of the notch); H, 

maximum dorsoventral height; Hibl, maximum dorsoventral height of the iliac blade 

(measured on the lateral surface above the supracetabular crest); Dac, maximum diameter of 

the acetabulum (measured on the medial side); Lprp, length of the preacetabular process 

measured from its extremity to the level of the notch; Lpop, length of the postacetabular 

process measured from its extremity to the level of the notch of the ischial peduncle; Lpup, 

length of the pubic peduncle following its main axis; Lepup, anteroposterior length of the 

extremity of the pubic peduncle measured in ventral view; Wepup, transverse width of the 

extremity of the pubic peduncle measured in ventral view; Lisp, length of the ischial peduncle 

following its main axis; Leisp, anteroposterior length of the extremity of the ischial peduncle 

measured in ventral view; Weisp, transverse width of the extremity of the ischial peduncle 

measured in ventral view; >, length measured given that one or both extremities of the bone 

are broken; *, deformation.

L La H Hibl Dac Lprp Lpop Lpup Lepup Wepup Lisp Leisp Weisp
Ilium (right)
MNHN.F.LES375a 610 390 385 205 180 95 200 185 155 117 110 117 122

Ilium (right)
MNHN.F.LES396 550 360 350 180 177 85 160 160 113 90 75 102 105

L Lpp Wpp Hepp Lilp Lac Lisp Lpa Wpa Wde Hde
Pubis (right)
MNHN.F.LES373 660 180 ? >160 136 45 ? ≈430 155 ? ?

Pubis (left)
MNHN.F.LES378 665 215 243 74* 160 75 >155 450 148 152 75

Ischium (left)
MNHN.F.LES152 315 300 160 51 70 31 155 68
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TABLE 7. Selected measurements (mm) of the femora, tibiae and fibulae of Kholumolumo 

ellenbergerorum. Abbreviations following the table order: L, maximum proximodistal length; 

W, maximum transverse width; T, maximum anteroposterior thickness; C, circumference of 

the diaphysis (measured beneath the fourth trochanter on femora, at midpoint on tibiae and 

fibulae); dp, distance between the proximalmost point of the fourth trochanter and the 

proximal extremity of the femur; IR, robustness index (L/C); E, eccentricity of the diaphysis 

(W/T); >, length measured given that one or both extremities of the bone are broken; *, 

deformation.

PROXIMAL DIAPHYSIS DISTAL 4th TROCH. RATIOS

L W T W T C W T dp L IR E
Femur (left)
MNHN.F.LES371 860 235 140 102 109 333 198 195 300 165 2,58 0,94

Femur (right)
MNHN.F.LES394 755 220 107 108 93 320 172 140 280 145 2,36 1,16

Tibia (left)
MNHN.F.LES148 345 ? ? 50 51 165 99 67 - -

Tibia (right)
MNHN.F.LES167 >410 128 173 78 88 267 ? ? - -

Tibia (right)
MNHN.F.LES381m 510 130 205 63 100 270 148 116 - -

Tibia (right)
MNHN.F.LES387 580* 218* 110* 90* 85* 275* 156* 90* - -

Tibia (left)
MNHN.F.LES389 515 145 200 70 95 255 138 105 - -

Fibula (right)
MNHN.F.LES149 >460 ? ? 40 48 146 60 104 - -

Fibula (right)
MNHN.F.LES150 >400 ? ? 46 54 163 ? ? - -

Fibula (right)
MNHN.F.LES374 575 40 >141 45 54 162 52 107 - -

Metatarsal I (left)
MNHN.F.LES89 134 92 43 61 34 - 81 50 - - - -

Metatarsal II (left)
MNHN.F.LES81 180 ? ? 48 35 - 70 47 - - - -

Metatarsal III (left)
MNHN.F.LES82 219 78 50 45 34 - 73 50 - - - -

Metatarsal IV (left)
MNHN.F.LES381c 228 100 40 43 27 - 55 50 - - - -

Metatarsal V (left)
MNHN.F.LES77

111 92 41 39 29 - 36 31 - - - -
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TABLE 8. Size and body mass estimations for Kholumolumo ellenbergerorum compared to 

those of other gondwanan basal sauropodomorphs from the Norian or Rhaetian. The 

parameters were defined by Campione & Evans, 2012 and the linear regression curve is from 

Apaldetti et al., 2018. Material used for Kholumolumo measurements: MNHN.F.LES371 

(femur); MNHN.F.LES379 (humerus); MNHN.F.LES386 (scapula); MNHN.F.LES375a 

(ilium). Specimens considered for the comparison: Coloradisaurus PVL 5904; Lessemsaurus 

1 PVL 4822; Lessemsaurus 2 CRILAR PV-303 (scapula), CRILAR PV-302 (ilium); 

Melanorosaurus NM QR 1551; Plateosauravus SAM PK 3602 (femur), SAM PK 3609 

(ilium); Riojasaurus PVL 3808; Ruehleia MB.R.4718; Unaysaurus UFSM11069. All were 

measured first-hand, except Unaysaurus.

Genera Size Body mass
Size

estimation
(Sander and 
Klein, 2005)

Bipedal 
equation

(Benson et 
al., 2018)

Quadrupedal 
equation

(Benson et al., 
2018)

Scapula 
equation

(Apaldetti et 
al., 2018)

Ilium
Equation 

(Apaldetti et al., 
2018)

Kholumolumo 8.6 m 1754 kg 3334 kg 3864 kg 3963 kg
Coloradisaurus 5.0 m 438 kg 757 kg 307 kg ?
Lessemsaurus 1 8.4 m 1963 kg 2208 kg 1746 kg 2792 kg
Lessemsaurus 2 ? ? ? 5268 kg 7165 kg
Melanorosaurus 6.2 m 946 kg 1603 kg 1396 kg 1656 kg
Plateosauravus 8.0 m 824 kg ? ? 2792 kg
Riojasaurus 6.1 m 1005 kg 1923 kg ? 1552 kg
Ruehleia 7.6 m 986 kg ? ? 2371 kg
Unaysaurus ? ? ? 88 kg ?
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