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Abstract 

Accurate and robust anatomical landmark localization is a mandatory and crucial step in 

deformation diagnosis and treatment planning for patients with craniomaxillofacial (CMF) 

malformations. In this paper, we propose a trainable end-to-end cephalometric landmark 

localization framework on CBCT scans, referred to as CMF-Net, which combines the 

appearance with transformers, geometric constraint, and adaptive wing (AWing) loss. More 

precisely: 1) We decompose the localization task into two branches: the appearance branch 

integrates transformers for identifying the exact positions of candidates, while the geometric 

constraint branch at low resolution allows the implicit spatial relationships to be effectively 

learned on the reduced training data. 2) We use the AWing loss to leverage the difference 

between the pixel values of the target heatmaps and the automatic prediction heatmaps.  We 

verify our CMF-Net by identifying the 24 most relevant clinical landmarks on 150 dental 

CBCT scans with complicated scenarios collected from real-world clinics. Comprehensive 

experiments show that it performs better than the state-of-the-art deep learning methods, with 

an average localization error of 1.108 mm (the clinically acceptable precision range being 1.5 

mm) and a correct landmark detection rate equal to 79.28%. Our CMF-Net is time-efficient 

and able to locate skull landmarks with high accuracy and significant robustness. This 

approach could be applied in 3D cephalometric measurement, analysis, and surgical planning. 

Keywords: 3D cephalometric analysis, CBCT, craniomaxillofacial, landmark localization 
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1. Introduction 

Congenital and acquired deformities are the major causes of 

craniomaxillofacial (CMF) malformations. Cone-beam 

computed tomography (CBCT) is often used in treatment due 

to its low radiation dosage compared to spiral multi-slice 

computed tomography. In addition, it has short imaging time 

and low examination cost. The goal of landmark localization 

is to accurately detect the location of each predefined meaning 

key point on the bonny boundary annotated by an orthodontist, 

which can assist clinicians to determine the degree of the 

deformity and make further a surgical plan more precise. 

Presently, most of the advanced automatic or semi-

automatic locating methods focus on 2D lateral cephalograms. 

Linear and angular measurements are commonly performed to 

evaluate the relationships among teeth, facial skeleton, and 

soft tissue profile. However, the 2D radiographs are not fully 

satisfying to analyze the extent of the CMF deformities 

(Troulis et al., 2002) since 34% of patients with dentofacial 

varieties have asymmetric conditions (Severt and Proffit, 

1997). This motivates us to make more precise cephalometric 

measurements and analyses on volumetric CBCT images, 

especially for patients with CMF malformations. 

Whereas, going from 2D to 3D is not so trivial. Manual 

landmark annotation is labor-intensive and requires domain-

specific expertise. In addition, some significant discrepancies 

in annotations are exhibited among experts. Therefore, 

developing a fully automatic and highly accurate localization 

system that can robustly identify cephalometric landmarks 

could help to circumvent the aforementioned shortcomings.  

A considerable number of works have been devoted to 

automatic landmark detection fulfilling the clinically 

acceptable precision requirements (Zhang et al., 2015; Zhang 

et al., 2020b; Lang et al., 2020; Lian et al., 2020; Chen et al., 

2022; Torosdagli et al., 2019a; Chen et al., 2021b). 

Nevertheless, an efficient, accurate, robust, and fast automatic 

localization method is still expected and the reasons for such a 

situation can be summarized as follows: 1) Severe aliasing 

artifacts. Braces, metal alloy implants, and dental fillings will 

introduce severe streaking and shading aliasing artifacts, 

which often reduce the contrast of bone boundaries. As shown 

in Fig. 1(a), metal artifacts appear in coronal and sagittal 

views due to the presence of amalgam dental fillings. 2) Large 

morphological variations. Anatomical structures are diverse 

across individuals, especially for patients who are subject to 

congenital or acquired CMF deformities. Therefore, some 

singular anatomical structures are seldom to be covered due to 

the inherently limited datasets leading to a poor generalization 

potential of the model. For example, mandibular retrognathia 

and maxillary prognathia as exhibited in Fig. 1(b) are 

categorized into skeletal class II malocclusions. While in Fig. 

1(c), the subject shows an apparent maxillary retrognathia that 

refers to skeletal class III malocclusion. Irregularities from 

metal alloy artifacts or underlying diseases are marked with 

red rectangle boxes. It is thus extremely hard to detect the 

landmarks of incisors accurately and robustly from maxilla  

(b)

(c)

(a)
(a)

 
Figure 1. Three challenging cases were caused by metal artifacts and 

complex pathologies as labeled in the red rectangle boxes from randomly 
selected subjects in CBCT scans. The left column shows the 3D volumetric 

renderings of the skulls, the middle and right columns display coronal and 

sagittal views for the corresponding subject, respectively. (a) Severe streaking 
and shading metal artifacts arise from dental alloy fillings. (b) The subject is 

classified as skeletal Class II. (c) The subject belongs to skeletal Class III. 
 

and mandible with serious anatomical abnormities. 3) Local 

similarities. Landmarks are hard to be recognized solely on 

local patterns because of high local similarities. Their 

detections and locations can only be obtained by exploiting 

global context information within the CBCT scans. 4) Large 

volume data. The majority of our collected CBCT volumes 

have a size of 610×610×610. Using such data as inputs to any 

deep learning (DL) framework would be computationally 

expensive and require large memory resources. 5) Imaging 

issues. The problems related to the imaging devices such as 

beam hardening, inhomogeneity, truncation effects, noise, and 

low tissue contrast increase the challenge of detecting 

anatomical landmarks in a fully automatic way. 

Among the recent contributions on the localization task, 

most efforts concentrate on using U-Net or its variants (Payer 

et al., 2019; Chen et al., 2022; Zhang et al., 2020b; Lang et 

al., 2020; Payer et al., 2016; Torosdagli et al., 2019a; Lian et 

al., 2020). However, the intrinsic locality of convolution 

operators leads to a limited receptive field and deteriorates the 

capability of the model to correctly regress the activations of 

the output heatmaps. As shown later, the combination of the 

local appearance branch with long-range dependency based on 

transformer (Carion et al., 2020) allows capturing global 

context information and provides an enhanced accuracy in 3D 

anatomical landmark localization.  

Detecting the anatomical landmarks using only local 

neighborhoods but regardless of geometric information will 

lead to numerous false positives. Methods like point 

distribution model (PDM) (Lindner et al., 2015; Li et al., 

2018), Markov random field (MRF) (Glocker et al., 2012; 
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Donner et al., 2013; Donner et al., 2010) and handcrafted 

energy function (Chen et al., 2015; Wang et al., 2021) have 

been reported to deal with this problem. They all decompose 

the identification task into successive processing steps 

including detection, feature extraction, filtering out false-

positive landmarks and so on, with sometimes additional and 

time-consuming user selection. Here, the implicit prior 

knowledge is embedded within the geometric constraint 

component which enables the network to effectively learn the 

spatial hidden distribution of landmarks and eliminates the 

false-positive candidates generated in the appearance 

component. 

Heatmap-based regression methods have been widely 

employed in localization tasks. In practice, it is essential to 

accurately estimate the values of foreground pixels compared 

to the ones on background, and adaptive wing (AWing) loss 

(Wang et al., 2019) has obtained excellent results and 

outperforms other loss functions like mean square error 

(MSE), L1 norm, wing loss (Feng et al., 2018) in facial 

landmark localization benchmarks. Therefore, AWing loss is 

utilized to predict against pseudo-probable Gaussian heatmaps 

generated at each annotated landmark. 

In this paper, we propose an accurate and efficient CMF 

landmark localization method for CBCT scans based on 3D 

convolutional neural networks with heatmap regression. In 

summary, our main contributions include: 

1) Our CMF-Net consists of two branches, the appearance 

branch aims to identify predefined landmarks with high 

accuracy by integrating transformer modules, and the 

geometric constraint branch focuses on eliminating false-

positive candidates. Therefore, the prior knowledge is 

embedded into the geometric constraint that allows the model 

to effectively learn the implicit spatial relationships between 

the landmarks from a limited number of CBCT scans. 

2) AWing loss is used to penalize the difference between the 

ground truth and the prediction, which enables the detection 

framework to pay much attention on pixel values near the 

mode of the regressed volumetric heatmap and results in lower 

localization error. 

3) Experimental results conducted on two test datasets have 

shown that our model can locate skull landmarks with high 

accuracy and significant robustness. It reveals that the 

approach could assist clinicians in analyzing 3D cephalometric 

CBCT data and this way in planning surgical correction, 

especially for patients who suffer from severe CMF 

malformations. 

The rest of the paper is organized as follows. Section 2 

briefly introduces related work. In Section 3, we present the 

architecture of the proposed CMF-Net, the objective function, 

and the coordinate decoding during inference. Then, 

evaluation dataset, implementation details, and evaluation 

criteria are described in Section 4. Section 5 compares our 

approach with other advanced landmark localization methods. 

The effectiveness of various components has been studied, and 

the landmarking performance against the different amounts of 

training data is analyzed. Some conclusions and perspectives 

are drawn in Section 6. 

2. Related work 

2.1 Craniomaxillofacial landmark localization 

CMF landmark localization is a fundamental examination in 

deformation analysis and surgical planning. A significant 

number of efforts have been made on this issue using 3D 

dental CBCT scans. Registration-based approaches usually 

transfer landmarks from template images to test images via 

registration techniques (Codari et al., 2017; Shahidi et al., 

2014). Although both affine and non-rigid transforms are used 

for image registration, perfect alignment between the 

reference and moving images in the same spatial coordinate 

system remains difficult due to large variations in anatomy 

and pathological patterns. In general, segmentation is 

performed before registration and its outcomes determine the 

performance of the overall process. Besides, the registration 

procedure may have a high computational complexity which 

makes challenging for real-time clinical applications. The 

knowledge-based approach proposed in (Gupta et al., 2015) 

involves seed point selection and contour detection, two 

sensitive steps required to be handled due to complex 

anatomical structures, and potential missing structures like 

teeth and image artifacts. The interest point detection method 

(Donner et al., 2010) often limits to identify the anatomical 

landmarks with distinctive geometry (e.g., salient corners or 

boundaries). 

While conventional methods mainly rely on intensity 

information, machine leaning-based approaches can capture 

local context information and overall shape information. They 

can be roughly divided into two categories: classification and 

regression-based methods. Classification-based methods 

(Cheng et al., 2011; Criminisi et al., 2011) use classifiers to 

discriminate the positive patch surrounding certain landmark’s 

position from the negative ones and often lead to poor 

localization performance if complex and similar anatomical 

structures exist across subjects. In contrast to classification-

based methods, the ultimate goal of regression models is to 

estimate offsets from any voxel to the target landmark 

(Lindner et al., 2015; Criminisi et al., 2013; Ebner et al., 

2014; Gao and Shen, 2015; Urschler et al., 2018; Zhang et al., 

2015). As shown in (Ebner et al., 2014), the method 

(Criminisi et al., 2013) using multivariate regression forests 

with context-rich visual features for detecting the bounding 

boxes of multiple anatomical structures can be modified to 

identify multiple landmarks as well. Nevertheless, the local 

appearances of faraway voxels being less informative, a 

spherical sampling strategy (Gao and Shen, 2015) was used to 

draw training voxels within a certain distance of a voxel to the 

target, which achieved higher localization accuracy on dental 

landmarks. Urschler et al. (2018) integrated the geometric 

configuration and image appearance into a unified random 

forest scheme, then they iteratively refined the multiple 

landmarks using a coordinate descent optimization scheme. In 

(Zhang et al., 2015), before aggregating evidence for each 

landmark localization, an extra prior step as bone 

segmentation must be carried out. Although promising results 
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have been achieved, the limited capability of handcrafted 

feature extraction results in a sub-optimal outcome. 

DL methods are now widely applied in all image processing 

tasks and whatever the application target. Heatmap regression 

methods become mainstream for accurate localization due to 

their image-to-image dense prediction and visual intuition. 

Zhang et al. (2017; 2020b) explored a multi-task-oriented 

approach using context-guided fully convolutional networks 

for concurrent bone segmentation and landmark digitalization 

from CBCT data. In the first stage, they introduced three 

volumetric displacements at x, y, and z-axes to bridge context 

information for every landmark, which is extensively 

parameter-heavy and computationally inefficient. Zhong et al. 

(2019) adopted a two-stage U-Net for cephalometric landmark 

localization, where the global stage identifies the coarse 

locations further refined in position through individual local 

stages. Lang et al. (2020) reported a cascaded network built on 

a U-Net for predicting CMF landmarks and a graph network 

for deciding whether a given landmark exists. Lian et al. 

(2020) presented a multi-task dynamic transformer network 

that learns task-oriented feature embedding in a “learning-to-

learn” fashion for joint mandible segmentation and 

localization on dental CBCT data. Palazzo et al. (2021) 

designed a coarse-to-fine three-stage localization architecture 

for sequentially processing a CT scan. Instead of heatmap 

regression, coordinate regression methods (Gilmour and Ray, 

2020; Li et al., 2020; Zeng et al., 2021) are rarely reported 

because of their high-dimensional nonlinear mapping from the 

input space to the coordinate representation which may 

introduce visual ambiguity. Due to the curse of dimensionality 

in CT scans, Lee et al., (2019) first generated 2D shadowed 

images from 3D skull surface data, then VGG-19 (Simonyan 

and Zisserman, 2015) serves as a regressor for obtaining a set 

of 2D coordinates. Zeng et al. (2021) regressed the 2D 

coordinates through three sequential stages, where the last 

stage operates over a local image patch with high resolution to 

enhance the localization precision. Chen et al. (2022) 

progressively refined the relative displacements of landmarks 

from the cropping high-resolution patches with a structure-

aware long short-term memory (SA-LSTM) network and 

obtained encouraging results on 3D cephalograms. Instead of 

using the Euclidean metric, Torosdagli et al. (2019a) argued 

that regression based on the bone manifold is more reliable for 

landmarking. They segmented the mandible bones and then 

generated the learning-based geodesic map to detect the 

landmarks with an LSTM. Nevertheless, their approach 

strongly relies on previous segmentation results and an 

underperformed outcome at this level would inevitably lead to 

inferior localization performance. To get rid of segmenting the 

regions of interest, a relational reasoning network is designed 

to infer other landmarks given locations of several 

representative ones (Torosdagli et al., 2019b). Although 

excellent localization results are obtained, the initial 

landmarks must be deliberately selected which limits the 

application in the real clinical setting. 

Recently, in (Chen et al., 2021b; Lang et al., 2022), they 

formulated landmark localization as an object detection 

problem. It is reported in (Chen et al., 2021b) that a Faster R-

CNN (Ren et al., 2015) can be used to estimate the landmark 

centers. The hybrid method proposed by (Noothout et al., 

2020) makes use of a global-to-local localization approach to 

locate the landmarks by performing coordinate regression and 

patch-based classification simultaneously. The major 

limitation imposed by such a strategy of cascaded coarse-to-

fine is that it increases the computational complexity of the 

localization task. Building upon the work of (Alansary et al., 

2019; Ghesu et al., 2019), reinforcement learning methods  

have been introduced for CMF landmark detection (Kang et 

al., 2021), but they require a large number of training data and 

have an expensive computational cost. Additionally, only a 

few landmarks can be detected in general because each agent 

is solely responsible for identifying the distinct and optimal 

trajectory to the specific meaning point.  

2.2 Transformer 

The attention mechanism has since a few years a great 

impact on computer vision (Vaswani et al., 2017; Veličković 

et al., 2018). Transformer (Carion et al., 2020) introduced a 

shift in object detection by formulating it as a direct set 

prediction problem that gets rid of proposal, anchor, and non-

maximal suppression. The recent attempts in segmentation 

(Chen et al., 2021a) and recognition (Dosovitskiy et al., 2021) 

have demonstrated its outstanding performance over other 

CNN techniques. Here, we integrate transformers into the 

appearance component, which allows the network to capture 

global context and long-range dependency by using self-

attention mechanisms. To the best of our knowledge, we are 

the first to explore its potential for automatic landmark 

localization on medical images. 

2.3 Geometric constraint 

Despite of complex deformities or potential pathologies, the 

predefined fiducial points on a 3D hard skull are relatively 

stable and constrained by other landmarks when compared 

with ones on soft tissue. General localization approach 

exploits image appearance information with handcrafted 

graphical models encoding the geometric landmark 

configuration. Once the geometrical structure constraints 

serving as the prior knowledge are properly applied, these 

landmarks would be precisely identified from limited training 

data. Early methods usually identify the exact locations of 

landmarks through local appearance features that bring false 

positives due to similar anatomical structures, then a PDM 

(Lindner et al., 2015; Li et al., 2018) and graphical MRF 

(Glocker et al., 2012; Donner et al., 2013; Donner et al., 2010) 

are applied to disambiguate the candidate predictions and to 

provide a better accuracy.  

However, the exact positions are estimated by employing an 

extra postprocessing step based on a parametric or a graphic 

model. Payer et al. (2016) implicitly encoded structural 

knowledge in a single-stage CNN. To mitigate the need for 

large amounts of medical data, their later contribution (Payer 

et al., 2019) decomposed the localization problem into local 
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appearance and spatial configuration components, providing 

thus highly accurate results by training the network in an end-

to-end manner. Inspired by their work, we integrate the 

appearance and the geometric constraint branches into a 

trainable end-to-end framework to detect CMF landmarks 

accurately and robustly, even in the presence of anatomical 

malformations, dental aliasing artifacts and low contrasts.  

3. Method 

The overall architecture of our CMF-Net is illustrated in 

Fig. 2. It consists of two branches, the appearance branch aims 

to identify predefined landmarks with high accuracy by 

integrating two transformer modules, while the geometric 

constraint branch focuses on eliminating false-positive 

candidates to locate robustly. In the following, they are fused 

by the Hadamard product (element-wise product) operator to 

produce the final regressed volumetric heatmaps capturing 

both global and local context information. The responses at 

each heatmap are activated only if a landmark is identified by 

appearance feature and lies in a feasible region according to 

implicit structural constraints between these landmarks. 

Furthermore, we use the AWing loss to estimate the responses 

on the regressed volumetric Gaussian heatmaps, permitting the 

network to effectively detect the target landmarks being 

located. Finally, multiple skull landmarks in sub-pixel are all 

exactly determined from the regressed heatmaps with low 

resolution by using a quadratic curve fitting method during 

inference.  

3.1 CMF-Net 

3.1.1 Appearance branch with transformers 
Although now classical CNN-based techniques have shown 

impressive performance in computer vision, convolution 

operations cannot fully perceive large receptive fields and 

suffer from limitations in our localization task. To surmount 

the drawbacks of capturing global context and long-range 

dependency, we integrate two transformers into a multi-level 

U-shape structure to accurately estimate the location of each 

landmark as shown in Fig. 2. 

A given CBCT image being fed into the appearance branch, 

K levels are used to generate the CNN feature maps 

1{ } k k kC D H WK

k

  
f in the analysis path, where , ,k k kD H W  

denote depth, height, and width of the kth level, respectively. 

Considering the computational complexity of 3D volume, we 

retain the number of channels C unchanged in the multi-level 

structure and set its value to 96. All levels consist of two 

consecutive convolution blocks except for the highest level, 

each of them including a 3×3×3 convolution, a leaky ReLU 

(LReLU) with a slope of -0.2 (Maas et al., 2013), and a 

dropout rate of 0.25. A 2×2×2 average pooling with stride 2 is 

applied to half the resolution at the last convolution layer in 

the analysis path to form the input to the next higher level. In 

the synthesis path, the high-level features are up-sampled with 

a 3D linear interpolation to recover the resolution 

quadratically. They are concatenated to the low-level outputs  

 
Figure 2. An overview of the CMF-Net with the schematic diagram of 

transformer modules is shown on the right side. 

 

in the synthesis path and formulated as higher-resolution 

outputs that are equivalent to skip connection. To speed up the 

process of training and to avoid the issue of 

vanishing/exploding gradients, we rely on the idea exposed in 

(He et al., 2016). Finally, a 1×1×1 convolution with a Tanh 

activation function restricts the output values of the 

appearance branch with L channels in the range (-1, 1) 

following the two convolution layers. 

DL on 3D will introduce a much larger input vector when 

compared to 2D, which is prohibitively expensive for graphics 

hardware. Moreover, deploying transformer architectures over 

all levels in multi-level structures will exacerbate this 

problem. To mitigate the computational cost and memory 

requirements, we add two transformers onto the bottom in the 

appearance branch to build long-range dependency and exploit 

global context information. The highest level representative 

feature maps 
Kf  are transformed to embedded space vectors 

0
K K KD H W C

z  using a learnable linear projection with a 

convolution kernel size of 111 and C output channels, 

where the values of ,K KD H  and 
KW  are changed to D/8, H/8 

and W/8 after three down-sampling operators, respectively. 

Moreover, we preserve the spatial information by adding a 

trainable position embedding initialized with zeros. The 

architecture of the transformer is shown on the right side of 

Fig. 2. The output of the mth transformer is expressed by 

(Chen et al., 2021a) 

 
-1 -1MSA(LN( ))

MLP(LN( ))

m m m

m m m

 = +


 = +

z z z

z z z
 (1) 

where MSA( ) , MLP( )  and LN( )  represent the multiple 

self-attention, multi-layer normalization and layer 

normalization operators, respectively. Finally, the embedded 

output of the transformer is permuted and reshaped with the 

same spatial resolution as 
Kf  and then passes through the 

synthesis path to produce the appearance outputs. We 

experimentally set the number of attention heads to 8 and 

transformers to 2, respectively.  

3.1.2 Geometric constraint branch 
Even if the appearance branch can detect these landmarks 

with high accuracy, it less considers the spatial relationships 

between them and may thus lead to false positives. 

Furthermore, the human skull structure has rather stable 
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geometric characteristics and so the anatomical landmarks 

placed on the surface of it are anatomically-constrained, 

despite of complex pathologies or severe deformities. The 

embedded prior knowledge can ensure these landmarks are in 

feasible regions and facilitate the network to learn the spatial 

relations between them, thus reducing the requirement for a 

large amount of training data. 

In our work, the implicit spatial relationships between the 

landmarks are effectively learned by using a geometric 

constraint branch which is formulated with a U-shape network 

at low resolution. We process the down-sampled feature maps 

of the appearance branch by a factor of 4 as the input of the 

geometric constraint branch, which ultimately avoids 

landmark misidentification and makes the localization 

performance to be further improved. 

In (Payer et al., 2019), both appearance and spatial 

configuration components are combined to improve the 

localization results, the relationships between the landmarks 

have not been adequately explored due to the limited 

capability of consecutive convolution layers with large kernel 

sizes in their spatial configuration branch. This is done here 

with a specific multiscale U-shape network at low resolution 

where each level involves a single convolutional layer of 

3×3×3 kernel size with an LReLU. Then, they convoluted 

with a 1×1×1 kernel to produce the geometric constraint 

outputs for modeling the spatial relationships with a stronger 

representative capability, as shown in Fig. 2. Finally, a 

heatmap regressor ended with the Hadamard product between 

the outputs of the appearance and the up-sampled geometric 

constraint with a 3D cubic interpolation in the same resolution 

as the prediction heatmaps. In this way, the implicit spatial 

coherence between the landmarks is enhanced and further 

boosts the locating robustness of the proposed detection 

framework. We will validate the effectiveness of these 

components in the ablation experiments reported later. 

3.2 Loss function 

MSE and L1 norm are commonly used to penalize the 

difference between the intensities of the ground truth 

heatmaps and the prediction heatmaps. However, it has been 

shown in (Wang et al., 2019) that Wing loss (Feng et al., 

2018) provides a function allowing to better adaptation to 

coordinate-based regression. AWing loss, initially employed 

in face alignment, can not only exactly estimate the targets of 

a heatmap, but also tolerate slight errors appearing in the 

background. The AWing loss function is given by (Wang et 

al., 2019) 

 

-gˆ
ˆln(1 | | ) | |

ˆ( , )

ˆ| | otherwise

g g
w if g g

g g

A g g B

 


−
+ − 

= 
 − −

L  (2) 

where g  and ĝ  denote the pixel values in the ground truth 

heatmap and the prediction heatmap. The parameters w ,  , 

 , θ will be set respectively to 14, 2.1, 1, 0.5 as recommended 

in (Wang et al., 2019). 
1(1/ (1 ( / ) )( )(( / ) )(1/ )g gA w g      − − −= + −  and  

 
Figure 3. Illustration of the inference process when inputting a CBCT. 

 

( ln(1 ( / ) ))gB A w    −= − + make the objective function 

differentiable under the condition ˆ| | =g g − . 

Finally, the network parameters ,w b are updated to better 

estimate the L Gaussian volumetric heatmaps by minimizing 

the AWing loss between the ground truth heatmaps ( ; )lg x  

and the regressed prediction heatmaps ˆ ( ; )lg I w,b  over all 

landmarks for a given CBCT image I by the following formula 

 
1

ˆmin ( ( ; ), ( ; ))
L

l l

l

g I g 
=


w,b

x

w,b xL  (3) 

where  denotes the Gaussian standard deviation and is set as 

a constant value of 1.5. Note that x and *

lx  respectively refer 

to the coordinate in the heatmap domain and the target 

position of ground truth of lth landmark, and it is expressed as 

follows 

 
2

*

2 2

1
( ; ) exp( )

2
l lg 


= − −x x x  (4) 

3.3 Inference procedure 

Fig. 3 illustrates the inference process for a given 3D dental 

CBCT image. Note that ground truth heatmaps are determined 

by the positions of landmarks in decimal format through the 

known down-sampling factors, rather than rounding them up 

to the nearest integer value. A drawback of heatmap-based 

regression is that the coordinates cannot be estimated directly. 

The location of the sub-pixel including the maximum value 

from the regressed heatmap at low resolution must be 

recognized using advanced techniques. Ideally, the regressed 

heatmap would follow a Gaussian distribution as well as the 

target heatmap generated around each landmark. However, the 

response signal from the predicted heatmap does not strictly 

obey a Gaussian distribution due to the influence of complex 

anatomical and pathological structures. Thus, the distribution-

aware landmark regression method (i.e. DARK (Zhang et al., 

2020a)) may output final coordinates that are far away from 

the targets. We estimate the location of true extreme point 

around the maximum in the predicted heatmaps by a quadratic 

curve fitting method (Bailey, 2003). Then, the coordinates in 

sub-pixels are rescaled back to the original space to obtain the 

final regressed coordinate representations. Our algorithm can 

thus accurately detect multiple 3D cephalometric landmarks 

simultaneously when inputting a down-sampled volumetric 

CBCT image with a variable size.  

4. Experimental configurations 

4.1 Evaluation dataset 
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1. Nasion (Na) 2. Orbitale Right (OrR) 3. Orbitale Left (OrL) 
4. Anterior Nasal Spine (ANS) 5. A Point (A) 6. Maxillary incisor-right (UR1) 
7. Maxillary incisor-left (UL1) 8. Mandibular incisor-left (LL1) 9.Mandibular incisor-right (LR1) 
10. Infradentale (Id) 11. B Point (B) 12. Pogonion (Pg) 
13. Gnathion (Gn) 14. Menton (Me) 15. Coronoid Right (CorR) 
16. Condylar Right (CoR) 17. Sigmoid Notch Right (SNR) 18. Gonion Right (GoR) 
19. Coronoid Left (CorL) 20. Condylar Left (CoL) 21. Sigmoid Notch Left (SNL) 
22. Gonion Left (GoL) 23. Basion (Ba) 24. Sella (S) 

Figure 4. All landmarks annotated on a 3D volume rendering of a subject 

from frontal, right, left, and top views with 9 landmarks on midface and 15 on 
mandible. Their names and the corresponding abbreviations are given. 

 

 
Figure 5. The distribution of skeletal classification, and gender information 

in our dataset. The outer, middle, and inner rings represent the training set, 

Test1 data and Test2 data, respectively. 

 

3D CBCT data from 150 subjects (from 7 to 41 years old, 

average age = 17.97 years, standard deviation = 7.05, 

including 44 males and 81 females) were acquired from the 

Affiliated Hospital of Stomatology, Nanjing Medical 

University. Among them, 58, 60, 32 subjects were 

respectively identified as Class I, Class II, and Class III 

malocclusion according to skeletal classification types. The 

CBCT device was NewTom (Quantitative Radiology, Verona, 

Italy) and the parameter setting was as follows: tube voltage of 

110 kV and current of 10 mAs, image matrix size of 

610×610×(509~610) with a voxel of 0.25×0.25×0.25 mm3 or 

0.30×0.30×0.30 mm3. It is worth noting that if a subject had a 

missing incisor, then the imaging data were excluded because 

there are four landmarks placed on incisors of maxilla and 

mandible. The research associated with the CMF landmark 

localization was approved by the ethics committee and has no 

implication on patient treatment. 

Manual marking on volumetric CBCT images at original 

resolution was carried out on multiplanar reconstruction 

(MPR, i.e., axial, sagittal, and coronal cross-sections) views 

and then confirmed the accuracy of the outcome on a 

segmented volume-rendered hard skull. The ground truths of 

all datasets were obtained by a domain-specific and 

experienced expert who served as reference. A second one, 

with less experience, was asked to annotate the datasets again 

to estimate the inter-observer variability and the performance 

of our approach when compared with the competing methods.  

In total, 24 skeletal landmarks were identified, including 9 

on midface and 15 on the mandible. All landmarks lay on a 

hard skull as shown in Fig. 4 and the objective is to locate 

these predefined significant points accurately and robustly. 

As shown in Fig. 5, we randomly selected 50% of the 150 

CBCT scans for training, 33% for Test1 data, and the 

remaining 17% CBCT images used as Test2 data to further 

validate the generalization capability of the proposed 

architecture. Among them, Classes I, II, and III represent 

respectively 40%, 40%, 20% in the training set, 38%, 44%, 

18% for Test1 and 32%, 32%, 36% for Test2. The 

distributions of gender as male and female are 32%, 68% for 

training and 38%, 62% for Test1 and 16%, 84% for Test2.  

4.2 Implementation details 

Every image is smoothed using a 3D Gaussian filtering 

kernel with a standard deviation of 0.75 before entering the 

network. The CBCT images are down-sampled to get isotropic 

volumes with size of 969696 and voxel spacing of 222 

mm3 by linear interpolation. We truncate the pixels’ values in 

each dataset to the range of [-1024, 2048] and they are then 

normalized to [-0.5, 1] by dividing by 2048. To get rid of 

overfitting issues, a series of data augmentations are carried 

out to enrich the diversity of training data. Intensity 

perturbation operations are performed including shift ([-0.25, 

0.25] pixel value) and scale ([0.75, 1.25] times). Spatial 

augmentation is also conducted to enrich the diversity of the 

training dataset using off-the-shelf SimpleITK (Beare et al., 

2018). It includes translation ([-30, 30] mm), rotation ([-0.25, 

0.25] rad), scale ([0.95, 1.15] times) and flip (randomly flip 

along the z-axis with the possibility of 0.5). All data 

augmentation operations follow a uniform distribution within 

the predefined intervals.  

Our CMF-Net is fully implemented using the TensorFlow 

platform on a GPU (i.e., NVIDIA GeForce RTX 2080 Ti, 11 

GB), and Ubuntu 18.04 equipped with 64 GB RAM. The 

Adam optimizer with an initial learning rate of 0.0001 

(Kingma and Ba, 2014) is employed to minimize the objective 

function. It follows an exponential decay function as the 

training step increases. The number of iterations and batch 

size are set to 50000 and 1, respectively.  

4.3 Evaluation metrics 

The point-to-point error is computed by the Euclidean 

distance between the location of the ground truth 
,n lx  and the 

predicted position 
,

ˆ
n lx . For L landmarks in N images, the 

mean radial error (MRE) and associated standard deviation 

(SD) are computed by  

 
, ,

1 1

1
ˆ

N L

n l n l

n l

MRE
NL = =

= − x x  (5) 

 
, 2

1 1

1
ˆ

1

N L

n l

n l

SD MRE
NL = =

= −
−
 x  (6) 

The successful detection rate (SDR) measures the rate of 

correctly detected anatomical landmarks: a landmark is 

considered as successfully detected if the distance between the 

ground truth and the automatically detected landmark of the 
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network is within various ranges of a certain radius r, such as 

1.5 mm, 2 mm, 3 mm, 4 mm. It is worth noting that if a 

landmark is not been detected, then we regard it as missing, 

which will not take part in calculating the detection precision. 

Additionally, the non-parametric Wilcoxon signed rank test 

(p-value) is also used to evaluate the agreement for paired 

data. 

5. Results and analysis 

5.1 Methods for comparison 

We compare our method to state-of-the-art methods on the 

training and two test datasets. The approach described in 

(Alansary et al., 2019) is based on learning the optimal search 

strategy that maximizes the reward function to localize the 

target anatomical landmark with multiscale deep Q-network 

(DQN) (Mnih et al., 2015) in a coarse-to-fine fashion. We 

repeatedly train an individual detection model for each 

landmark using an officially released source code1. To take 

advantage of anatomical interdependence, a collaborative 

multi agent landmark detection framework (Collab DQN) 

(Vlontzos et al., 2019) is used to increase accuracy by sharing 

the agents’ experience. We set the number of agents to 2 and 

train it using the official implementation 2 . The U-Net 

approach (Ronneberger et al., 2015) is first developed for 

medical image segmentation and its architecture has been 

adopted here to fit for CMF landmark localization purpose. 

SCN (Payer et al., 2019) suggests a spatial configuration 

network to encode the spatial relationships between the 

landmarks and optimize objective function with learnable 

standard deviations. It achieved promising results on both 2D 

and 3D medical images and the fact that its code is publicly 

available3 and is used for the comparison with our method. In 

contrast to the conventional inference rule of finding the 

extreme value (Payer et al., 2019) or the center of mass (Sun 

et al., 2018) in the predicted heatmaps, DARK (Zhang et al., 

2020a) exploits unbiased sub-pixel centered coordinate 

encoding and Taylor expansion for coordinate decoding, a 

model-agnostic method used to refine positions on human 

pose estimation. We extend its original 2D solution to a 3D 

version for predicting the coordinates in the original image 

space. SA-LSTM (Chen et al., 2022) first localizes landmarks 

via heatmap regression and then progressively updates the 

relative offsets based on the cropped high-resolution patches, 

and is used for the comparison with its released code4. 3D 

Faster R-CNN (Zhang et al., 2020a) is designed for detecting 

a varying number of landmarks. We drop the random erasing 

operation to boost the discrimination of the model since all 

subjects have the same number of landmarks. Furthermore, we 

train an individual model using a single-scale U-Net for each 

 
1 https://github.com/amiralansary/rl-medical 
2 https://github.com/thanosvlo/MARL-for-Anatomical-Landmark-Detection 
3 https://github.com/christianpayer/MedicalDataAugmentationTool-

HeatmapRegression 
4 https://github.com/runnanchen/SA-LSTM-3D-Landmark-Detection 

landmark because no refinement code is freely available 5 . 

Specifically, the local refinement architecture is analogous to 

the appearance branch of our solution but without 

transformers. We crop a high-resolution volume patch with 

size 96×96×96 with an isotropic spacing of 0.4 mm around the 

initial position estimated from the first stage as input of the 

corresponding framework to achieve a better prediction. To 

make a fair comparison, we perform the same refinement 

strategy in our localization framework dubbed CMF-

Net+Refinement. 

5.2 Experimental results 

5.2.1 Quantitative results 
Quantitative evaluations of different methods are presented 

in this subsection. We report runtime, MRE±SD, the number 

of missing landmarks, and p-value as shown in Table 1. 

Furthermore, SDR is also used to measure the reliability of 

each method when given a certain error range (i.e., 1.5 mm, 2 

mm, 3 mm, 4 mm) as tabulated in Table 2. The best results are 

marked in bold.  

Benefitting from the implicit communication between 

agents, Collab DQN achieves a lower MRE±SD and a higher 

SDR within the four precision ranges in contrast with DQN on 

test sets as summarized in Tables 1 and 2. We can see that U-

Net achieves a lower localization error, as it regresses 

according to local patches and lacks global context 

information, which still results in false-positive predictions as 

demonstrated in a lower SDR within 3 mm and 4 mm when 

compared to DQN. There is a large performance gain of over 

0.5 mm in terms of MRE and also a significant improvement 

in SDRs with SCN in comparison to localization U-Net on test 

sets. It proves that the spatial configuration component can 

reveal spatial dependency between neighboring landmarks and 

greatly disambiguate similar looking candidates and further 

enhance the localization precision. When we replaced the 

coordinate decoding method in SCN by using the scheme 

proposed in (Zhang et al., 2020a), a severe deficit of up to 0.3 

mm on MRE and a drop in SDRs as well are observed. This 

indicates that a quadratic curve fitting method predicts 

coordinates more accurately than by analyzing the distribution 

of responses from the regressed heatmap, since the response 

itself may not necessarily resemble a Gaussian distribution 

because of large morphological variations and pathological 

structures. Conversely, the fitting method is regardless of 

these drawbacks. SA-LSTM (Chen et al., 2022) brings 

competitive results on both MRE±SD and SDR owing to a 

cascaded coarse-to-fine scheme. The disadvantages of intrinsic 

visual ambiguity and high-dimensional nonlinear mapping 

involved by subsequent displacement regression for 

coordinate refinement still make it underperform our method 

even if we use a down-sampled image as an input. The CMF-

Net consistently performs better than other competing  

 
5 https://github.com/xychen2022/3DFasterRCNN 
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Table 1. Results for inter-observer variability and nine different methods on training (75 images), Test1 (50 images), Test2 (25 images), and both test sets (75 

images) (i.e., runtime (s), MRE±SD (mm), number of missing landmarks and p-value compared to the latter of the proposed method) 

Method Runtime (s) 
Training  Test1  Test2  Test1+Test2 

MRE±SD (mm)  p-value  MRE±SD (mm) #Miss  MRE±SD (mm) #Miss  MRE±SD (mm)  p-value 

Inter-observer - 1.053±1.031 0.0007  0.963±0.999 0  0.984±1.012 0  0.970±1.003 0.0061 

DQN 123.04 1.511±2.913 0.0050  2.026±3.085 0  2.365±7.513 0  2.139±5.016 <0.0001 

Collab DQN  35.20 1.291±1.690 <0.0001  1.666±2.090 0  1.691±2.639 0  1.675±2.287 0.0019 

Localization U-Net 4.27 1.697±3.219 0.5036  1.819±2.280 0  1.964±3.990 1  1.867±2.961 0.0583 
SCN 8.60 0.912±0.561 <0.0001  1.257±0.895 0  1.240±0.874 0  1.268±0.880 0.0003 

SCN+DARK 8.70 1.257±0.618 0.0005  1.565±0.925 0  1.592±0.876 0  1.574±0.909 0.0347 

SA-LSTM 3.08 0.754±0.610 0.0009  1.122±0.913 0  1.187±0.959 0  1.144±0.929 0.3659 
3D Faster R-CNN 85.36 0.104±0.049 0.1840  0.925±0.901 39  0.979±0.893 28  0.943±0.898 0.0944 

CMF-Net 4.68 0.701±0.515 <0.0001  1.100±0.839 0  1.123±0.773 0  1.108±0.817 0.5179 

CMF-Net+Refinement 62.94 0.102±0.050 -  0.923±0.894 0  0.968±0.876 0  0.938±0.888 - 

 

Table 2. Results for inter-observer variability and nine different methods on training (75 images), Test1 (50 images), Test2 (25 images), and both test sets (75 

images) (i.e., SDR (%) within four precision ranges) 

Method 
Training  Test1  Test2  Test1+Test2 

1.5 mm 2 mm 3 mm 4 mm  1.5 mm 2 mm 3 mm 4 mm  1.5 mm 2 mm 3 mm 4 mm  1.5 mm 2 mm 3 mm 4 mm 

Inter-observer 78.72 88.28 95.00 97.39  82.08 88.50 94.92 97.75  80.67 88.83 95.17 97.67  81.61 88.61 95.00 97.72 

DQN 71.67 86.06 95.33 97.22  51.17 69.50 86.00 92.83  49.33 70.50 87.00 93.00  50.56 69.83 86.33 92.89 

Collab DQN 85.00 91.72 95.50 96.72  65.17 77.58 91.58 94.75  65.50 79.67 90.33 94.83  65.28 78.28 91.17 94.78 
Localization U-Net 66.61 78.89 88.11 93.61  61.25 73.92 85.83 92.67  61.77 73.62 85.81 91.15  61.42 73.82 85.83 92.16 

SCN 88.61 95.61 99.17 99.72  72.58 85.58 95.50 98.33  71.50 84.00 95.00 98.67  71.78 84.89 95.33 98.44 

SCN+DARK 71.33 89.78 98.56 99.72  55.50 77.42 92.83 97.83  54.67 75.17 92.50 97.67  55.22 76.67 92.72, 97.78 
SA-LSTM 86.67 92.08 97.25 98.25  75.75 86.58 95.50 98.42  73.67 84.17 93.50 98.00  75.06 85.78 94.83 98.28 

3D Faster R-CNN 100.00 100.00 100.00 100.00  85.96 91.99 97.16 98.19  84.79 90.21 95.98 98.08  85.57 91.40 96.77 98.15 

CMF-Net 95.17 97.94 99.39 99.89  80.25 90.08 96.83 98.92  77.33 87.33 97.00 99.00  79.28 89.17 96.89 98.94 

CMF-Net+Refinement 100.00 100.00 100.00 100.00  86.67 92.08 97.25 98.25  85.00 90.67 96.33 98.33  86.11 91.61 96.94 98.28 

 

 
Figure 6. Localization errors (mm) for each of the 24 landmarks with inter-observer variability and nine different methods. 

 

methods except for 3D Faster R-CNN for both MRE±SD and 

SDR with respect to all precision ranges, with an average error 

limited to 1.108 mm and an SDR of 79.28% within 1.5 mm 

over all test sets. This demonstrates that the model consisting 

of the appearance branch and the geometric constraint branch 

has the capability of achieving sub-pixel position accuracy 

according to a quadratic curve fitting method applied in 

predicted volumetric heatmaps, providing an enhanced 

accuracy in 3D anatomical landmark localization. It is worth 

recalling that the error range of 1.5 mm is clinically acceptable 

as reported in the literature (Zhang et al., 2020b) and CMF-

Net clearly fulfills this condition. By comparing the CMF-Net 

with its variant on all test sets, it can be seen that the 

difference (p > 0.05) between them for landmark detection is 

not statistically significant. 

Even though 3D Faster R-CNN offers encouraging 

performance with less than 1 mm on MRE and SD owing to a 

cascaded global-to-local pipeline, the detection-based method 

often fails to identify all landmarks with the number of 

missing ones of 67 on both test sets as presented in Table I. 

Finally, our CMF-Net with refinement exhibits the lowest 

MRE and the highest successful detection accuracy except for 

SDR within 4 mm and has no missing landmarks whilst it 

takes less computational cost during inference compared to 3D 

Faster R-CNN. It also particularly outperforms the second 

observer in SDRs with significant gaps, e.g., 4% and 3% 

higher within 1.5 mm and 2 mm precision ranges on all test 

sets. This indicates that our refinement version has a 

performance capable of landmarking these clinically relevant 

points with high accuracy and reaching the level of an 

experienced orthodontist. 

Fig. 6 reports the error statistic on each of the 24 landmarks 

with a boxplot for comparing distributions between 

predictions of competing methods and our CMF-Net solution 

and its refinement version. We can see that U-Net provides a 

better localization accuracy than DQN, but it often fails to 

detect upper and lower teeth since the teeth possess local 

similar anatomical appearance features as opposed to other 

landmarks. With its spatial configuration encoding structural 

constraints between the landmarks, SCN leads to a large gain 

in both MRE and SD. The performance begins to decrease 

when the coordinate decoding is changed to DARK. Despite 

our method yielding the best results among all tested methods, 

too high localization errors remain for teeth on the mandible,  

Page 9 of 14 AUTHOR SUBMITTED MANUSCRIPT - PMB-114030.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

ACCEPTED MANUSCRIPT / CLEAN COPY



CMF-Net+RefinementCollab DQNDQN Localization U-Net SCN+DARKSCN 3D Faster R-CNN CMF-NetSA-LSTM

1.448±0.9222.978±2.2373.026±2.190 1.913±0.714 2.230±1.0751.994±0.946 1.470±0.892 1.695±1.0341.895±1.075

0.912±0.7371.495±1.2691.767±1.430 2.093±3.380 1.423±0.5461.186±0.651 0.897±0.768 1.231±0.6881.319±0.709

0.648±0.4261.265±0.7471.649±1.215 1.525±1.422 1.288±0.6851.060±0.531 0.648±0.422 0.843±0.4990.911±0.499

1.057±0.8233.133±6.3072.345±1.478 1.500±0.980 1.686±0.9641.299±0.887 1.013±0.753 1.174±0.9771.318±1.091

 
Figure 7. Visualization of localization results on 4 representative cases. The columns specify various methods, the rows different subjects, and the first 
columns display coronal views.  MRE±SD is also shown below the corresponding case for each landmarking method. Red and green points respectively 

denote the landmarks detected by each method and the ground-truth annotations. Red arrows indicate large errors or misdetections. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article) 
 

Gonia, and Orbitale. Consider that providing sufficient 

receptive field can help the model to better localize these 

meaning points lay on the bony structure. In the future, we 

will work on building long-range dependency at multiple 

scales in a computationally-efficient way. The refinement 

variant of CMF-Net achieves considerably superior 

performance capable of landmarking comparable with the 

level of the second observer. Whereas, the coarse-to-fine 

manner still falls behind CMF-Net owing to not effectively 

capturing global-local dependence, especially for Sella and 

Gonion. 

As we know, images acquired from patients with metallic 

implants undergoing CBCT examinations suffer from metal 

artifacts, and the following undesirable detection results will 

lead to an unacceptable diagnosis. Therefore, we selected 9 

images from Test1 and Test2 data to evaluate the impact of 

metal artifacts on the localization performance of all 

techniques. The results reported in Table 3 clearly show that 

our proposed model performs better than other competing 

methods in terms of MRE±SD and SDR within various error 

ranges. Especially given the 1.5 mm error range, it achieves a 

remarkable improvement of 8% over SA-LSTM, enabling 

anatomical landmark detection with significant robustness. 

5.2.2 Qualitative results 
To complement these quantitative features, we propose to 

visually illustrate some representative cases of landmark 

localization. Four randomly selected subjects are displayed in 

Fig. 7. It can be seen that DQN fails to identify the correct 

locations of teeth when considering a subject who suffers 

from severe CMF deformities as pointed out by case 3. The 

reason is that the design of patch selection usually exposes a 

limitation in that it moves towards to the target according to 

the current local environment being located but neglects the 

global representation of anatomical structure. Collab DQN 

less considers the spatial relationships between landmarks, 

leading to false-positive predictions. In addition to high 

sensitivity to position initialization, both reinforce learning 

methods contribute to significant performance degradation, 

especially for limited annotated medical images. The results 

obtained by using localization U-Net tend to exhibit large 

errors as marked in the red arrow in the fourth column, 

especially for the second subject where the predicted tooth is 

far away from the target and is false-positively detected. U-

Net focusing more on appearance learning is sensitive to 

their variations and leads to landmark misidentifications. 

SCN injects weak structural knowledge and the 

postprocessing step provided by DARK also brings 

imprecise coordinate representative owing to inaccurate 

response estimation on the prediction heatmaps. Large 

distance errors in locating challenging landmarks are marked 

by the red arrow in the first subjects in Fig. 7. SA-

LSTM(Chen et al., 2022) behaves worse in detecting  
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Table 3. Results for nine different methods on selected images with metal 
artifacts from test data (i.e., MRE±SD, number of missing landmarks, SDR) 

Method 
MRE±SD 

(mm) 
#Miss 

SDR (%) 

1.5 mm 2 mm 3 mm 4 mm 

DQN 2.688±8.609 0 47.22 66.20 85.19 92.59 

Collab DQN 1.836±2.242 0 62.04 73.15 88.89 93.52 
Localization U-Net 1.867±1.688 0 55.09 73.15 84.26 92.59 

SCN 1.423±0.937 0 62.04 80.09 95.37 98.61 

SCN+DARK 1.730±1.006 0 43.06 71.76 89.81 98.15 
SA-LSTM 1.267±1.054 0 66.67 80.56 93.98 97.69 

3D Faster R-CNN 0.972±0.929 12 83.33 89.71 98.04 98.53 

CMF-Net 1.240±0.957 0 74.07 87.04 97.22 98.61 

CMF-Net+Refinement 0.958±0.916 0 84.72 90.74 97.69 98.61 

 

landmarks located on the mandible in the first three cases, 

which justifies that the coordinate-based method would 

compromise the detection accuracy. Although 3D Faster R-

CNN obtains a favorable detection precision, it fails to detect 

all landmarks perfectly. In these four representative cases, 

the locations of the predicted landmarks obtained by CMF-

Net are much closer to the targets. We observe that the 

variant of CMF-Net achieves a much more accurate detection 

when applying a local refinement, e.g., the positions of 

Nasion are nearly aligned across the four cases. 

Case 4 shows severe aliasing artifacts due to metallic 

implants, and the performance of all methods begins to 

decrease when compared to that in the first three cases. Ours 

yields the best results with a mean radial error of 1.448 mm 

of all. This indicates that poor image quality will affect the 

downstream localization task, while it consistently surpasses 

other state-of-the-art methods on the metric of MRE. 

5.3 Ablation studies 

A set of ablation experiments on Test1 data were 

conducted to validate the effectiveness of the proposed 

model. 

1) Evaluation on Different Components: We analyzed the 

influence of different components (i.e., transformer (Trans), 

geometric constraint (GC), and AWing loss) and considered 

the localization U-Net as the baseline (Base). The results are 

reported in Table 4. Adding transformers enhances the 

discriminative capability of the model (Base+AWing vs. 

Base+Trans+AWing, Base+GC+Awing vs. Base+Trans+GC 

+AWing). This result confirms the interest to utilize long-

range information in feature maps to suppress false-positive 

candidates while achieving accuracy gains. In addition, 

adding GC dramatically decreases the localization error by 

more than 0.5 mm in MRE and improves the successful 

detection rate by over 15% in SDR (Base+Awing vs. 

Base+GC+Awing, Base+Trans+Awing vs. 

Base+Trans+GC+Awing). It boosts the performance by a 

large margin and such a result reveals that the prior 

knowledge on spatial constraints of landmarks has been 

effectively learned. When replacing the traditional MSE loss 

with the AWing loss, the best performance is achieved by 

using the transformer together with the geometric constraint 

branch (Base+Trans+GC vs. Base+Trans+GC+Awing). 3.8%  

Table 4. Influence on Trans, GC, and AWing loss 

Method 
MRE±SD 

(mm) 

SDR (%) 

1.5 mm 2 mm 3 mm 4 mm 

Base 1.819±2.280 61.25 73.92 85.83 92.67 

Base+Awing 1.702±1.854 62.17 76.33 87.42 93.25 
Base+GC+AWing 1.142±0.895 78.17 88.58 96.17 98.75 

Base+Trans+AWing 1.607±1.517 63.00 77.58 89.08 94.75 

Base+Trans+GC 1.143±0.875 78.33 88.93 96.58 98.58  
Base+Trans+GC+AWing 1.100±0.839 80.25 90.08 96.83 98.92 

Base+Trans(w/o multi-

head)+GC+AWing 
1.132±0.877 78.67 89.50 96.67 98.83 

 

Table 5. Results achieved by selecting different parameter combinations for 

CMF-Net (i.e., MRE±SD and SDR for 24 landmarks) 

heads transformers 
MRE±SD 

(mm) 

SDR (%) 

1.5 mm 2 mm 3 mm 4 mm 

8 1 1.105±0.864 79.58 89.58 97.17 98.67 

8 2 1.100±0.839 80.25 90.08 96.83 98.92 

8 4 1.107±0.834 79.50 90.08 97.00 99.08 
16 2 1.127±0.853 78.58 89.50 97.17 99.00 

 

(a) (b) (c) (d)  
Figure 8. Visualizations of outputs of the appearance (b) and the geometric 

constraint (c) and the final prediction heatmap (d) on the associated sagittal 

slice (a) of the identified landmark when inputting a down-sampled 
volumetric CBCT. Examples of Nasal and Infradentale for the same case are 

shown in the top and bottom rows. 

 

and 4.1% relative improvements are obtained on MRE and 

SD evaluation criteria respectively. A similar observation is 

shown in SDR metrics as well. This demonstrates that an 

accurate estimation of the pixel values near the mode of the 

regressed heatmap can be achieved. The effect of combining 

transformers, GC, and Awing loss is therefore positive and 

with a slight loss in time computation (refer to Table 1). As 

shown in Table 4, transformer with multi-head attention 

performs better than that with single-head attention. Besides, 

we find that the strategy of increasing the depth of the 

network does not bring a significant improvement. 

2) Evaluation on Scaling: We perform different 

combinations to choose the optimal parameter settings 

(number of heads and transformers) for CMF-Net as 

summarized in Table 5. We set the number of heads to 8, the 

performance begins to saturate using 2 transformers. Scaling 

the size of heads brings no performance enhancement in our 

implementation.  

5.4 Visualization 

To explain how the proposed CMF-Net uses appearance 

information and prior knowledge to localize the predefined 

landmarks, we visualized the outputs of both branches during 

inference. We randomly choose an image from Test1 and its 

visualization results are presented in Fig. 8. 
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Figure 9. Comparisons of localization U-Net, SCN, and CMF-Net in terms 

of convergence speed and landmarking accuracy over iterations.  

 

 
Figure 10. Comparisons of CMF-Net and SCN methods on SDR (%) and 

MRE±SD (mm) when trained on different percentages of training images, 

i.e., 10%, 20%, 50%, and 100%. An enlarged picture of the curves above the 

red line corresponding to 90% is also displayed. 

 

We can see that the appearance branch generates an 

ambiguous response with multiple peaks, especially in the 

bottom row, ignoring the latent distribution between the 

landmarks. While the geometric constraint ensures the 

detected landmark is contained within a large feasible region 

as shown in the third column. By combining with it, a precise 

heatmap being generated facilitate the model to robustly 

locate the corresponding landmark. This demonstrates that 

the geometric constraint branch uses prior knowledge to 

learn the implicit spatial relationships and screen out unlikely 

predictions. 

5.5 Effectiveness of training optimization 

The validation loss and the localization error of CMF-Net, 

SCN, and U-Net are shown in Fig. 9. We normalized the 

training loss to stay in the range [0,1] for comparison 

purpose because different loss functions were applied (their 

values at the first and last iterations are used to do that). 

CMF-Net optimizes the training process by accelerating the 

training speed and improving localization precision. 

Benefitting from the long-range dependency of the 

appearance branch with two transformers and the class-

balanced AWing loss, CMF-Net provides a faster 

convergence speed and a lower localization error than SCN 

and U-Net. SCN presents a higher landmarking accuracy in 

comparison with U-Net because its spatial configuration 

eliminates locally similar anatomical structures. However, 

the objective function is difficult to converge as the 

validation loss and error oscillate at 15k, likely owing to a 

lack of long-range contextual understanding and spatial 

dependencies. 

5.6 Influence of the amount of training data 

The availability of large image datasets in medicine is an 

important issue due to strict ethical rules applied to patient 

privacy and the cost of expert-specific annotations. It is 

therefore important to understand how the performance 

evolves according to the amount of data used. We investigate 

this issue by considering 10%, 20%, 50%, and 100% of our 

training dataset with a comparison between the best two 

methods, SCN and CMF-Net. Fig. 10 shows the cumulative 

successful detection distribution versus discrete precision 

thresholds (the MRE±SD is also specified in each case). The 

CMF-Net consistently performs better than SCN at all 

different ratios of training images with an average error of 

1.44 mm using only 10% of the training images. It proves 

that our CMF-Net can effectively learn representative 

features and generalize well on unseen data using limited sets 

of medical images, even in the presence of patients who 

suffer from severe malformations. Looking at the zoom 

displayed in the upper part of Fig. 10, we can see that the 

localization accuracy trained on 50% medical images has 

little difference from that trained on 100%, demonstrating 

that the embedded prior knowledge permits the model to 

effectively learn the implicit spatial relationships between the 

landmarks from very few annotated images. 

5.7 Discussion 

It is of major importance to fulfill the minimal medical 

requirements to see any algorithmic application potentially 

transferable to clinical settings. They cover both the method 

accuracy and the robustness but also other considerations like 

time computations, easiness to use, adaptability to future 

technology and so on. Only two methods fit the accuracy 

clinical constraint, SCN, and CMF-Net with an advantage 

over the latter. Regarding the time overheads, the results 

displayed in Table 1 clearly show that multiple landmarks up 

to 24 can be inferred simultaneously using CMF-Net in 4.68 

s for a given CBCT dental volume, almost half of the time 

needed by SCN. The encouraging detection performance is 

ascribed to: 1) the appearance branch can accurately identify 

candidates due to the global context and long-range 

dependency incorporated with the transformers, and the 

geometric constraint branch can robustly determine the 

locations of these landmarks using implicit spatial 

relationships; 2) the exact estimation of the pixel values near 

the mode of the prediction heatmap with the AWing loss 

function.  

6. Conclusion 
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In this paper, we have developed a trainable end-to-end 

localization approach referred to as CMF-Net by detecting up 

to 24 anatomical landmarks in 3D dental CBCT volumes. 

Despite low image quality, aliasing artifacts, and severe 

morphological variations, the proposed approach fulfills the 

clinical requirements in terms of both accuracy and 

robustness using a limited number of scans. The transformer 

was first introduced to the appearance branch to capture 

global context information and identify candidates with high 

accuracy, while the geometric constraint branch implicitly 

encoded prior knowledge for filtering out unlikely 

predictions. Then, the incorporation of the AWing loss 

allows estimating the pixel values of the prediction heatmaps 

precisely, especially for those near the mode of the Gaussian 

distribution. The experiments conducted so far show that this 

approach can save a significant amount of time for 

orthodontists in their landmark pointing. A local refinement 

strategy can also be adopted to further improve the 

localization performance at the expense of the computation 

time. Additionally, because our model does not rely on 

pretrained backbone networks to avoid overfitting, it can be 

easily extended to localization tasks on other medical data 

dealing with different modalities and organs. 

Although the present method has achieved encouraging 

results relying on a small set of labeled images compared to 

state-of-the-arts, the work under progress concerns the use of 

this method in clinical environments in order to get a user 

feedback and identify the potential solutions for the most 

difficult landmarks to be detected. Furthermore, a CBCT 

volume must be down-sampled before passing it into our 

CMF-Net due to the limited computational resources of a 

graphics processing unit (GPU) which will result in local 

details loss. It may be solved by a cascaded coarse-to-fine 

style while preserving global-local dependence.   
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