Structure and dynamics of multicellular assemblies measured by coherent light scattering
Résumé
Determining the structure and the internal dynamics of tissues is essential to understand their functional organization. Microscopy allows for monitoring positions and trajectories of every single cell. Those data are useful to extract statistical observables, such as intercellular distance, tissue symmetry and anisotropy, and cell motility. However, this procedure requires a large and supervised computational effort. In addition, due to the large cross-section of cells, the light scattering limits the use of microscopy to relatively thin samples. As an alternative approach, we propose to take advantage of light scattering and to analyze the dynamical diffraction pattern produced by a living tissue illuminated with coherent light. In this article, we illustrate with a few examples that supra-cellular structures produce an exploitable diffraction signal. From the diffraction signal, we deduce the mean distance between cells, the anisotropy of the supra-cellular organization and, from its fluctuations, the mean speed of moving cells. This easy to implement technique considerably reduces analysis time, allowing real time monitoring.