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Abstract. Multi-fault injection attacks are powerful since they allow
to bypass software security mechanisms of embedded devices. Assessing
the vulnerability of an application while considering multiple faults with
various effects is an open problem due to the size of the fault space to
explore. We propose SAMVA, a framework for efficiently searching vul-
nerabilities of applications in presence of multiple instruction-skip faults
with various widths. SAMVA relies solely on static analysis to determine
attack paths in a binary code. It is configurable with the fault injection
capacity of the attacker and the attacker’s objective. We evaluate the
proposed approach on eight PIN verification programs containing var-
ious software countermeasures. Our framework finds numerous attack
paths, even for the most hardened version, in very limited time.

Keywords: Fault Injection Attack · Multi-Fault · Static Analysis

1 Introduction

Fault injection attacks are a major concern for embedded systems since they
allow an attacker to overcome security mechanisms in order to retrieve secret
data or take over a device. To inject a fault, a physical perturbation must be
introduced in the circuit during the execution of the target program. Litera-
ture covers various means of injection [26], such as laser beams, electromagnetic
pulses, voltage or clock glitching. Throughout a fault propagation mechanism,
perturbations introduced at the hardware level impact the nominal execution of
the running program, corrupting variables, control-flow of the program, or both.

To protect against fault injections, several countermeasures have been pro-
posed. At software level, they often rely on redundancy [23]: sensitive checks or
computations are duplicated; constant values are encoded such that it is diffi-
cult to change their value consistently. Also, some variables are added in order to
monitor the executed path and check its validity with respect to the original pro-
gram [13]. As a consequence, attackers must inject multiple faults and/or faults
that impact several consecutive instructions in order to bypass countermeasures

https://orcid.org/0000-0003-4734-6466
https://orcid.org/0000-0003-2092-924X
https://orcid.org/0000-0002-8060-8360


2 A. Gicquel et al.

and reach their objectives. Recent works have shown that it is possible to inject
multiple faults [7] (i.e. at different instants) and to corrupt several consecutive
instructions [20,5,11,15,8,6]. Faults can have a width varying from a few up to
more than one hundred consecutively executed instructions. Therefore, multiple
and wide faults are now considered as a real threat and system security against
fault attacks must be evaluated considering such attacker capacity.

Security assessment eventually relies on real fault injection campaigns. How-
ever, some analysis dedicated to the discovery of attack paths is often used as
an early security evaluation process, i.e. before the final system is available.
Moreover, concerning real fault injection campaigns, there is also a need to de-
termine potential attack paths in order to reduce the time needed to prepare
an attack. While there exist several approaches to help designers and evaluators
to find attack paths, they are often limited by the combinatorial explosion that
arises when considering either large applications, or multiple faults with variable
widths or different effects. Existing approaches typically make use of fault sim-
ulation [22], symbolic execution [18] or model checking [4]. As a consequence,
we believe there is a need for a new kind of approaches able to scale with the
multiplicity and width of faults as well as the size of the target application.

In this paper, we go in this direction by proposing an approach only based on
static analysis to determine the possible attack paths when considering multi-
ple faults with various widths. Our framework named SAMVA implements this
analysis, it quantifies the vulnerability of a binary code, for example, on the
basis of the minimum number of faults necessary to perform an exploit or the
characteristics of the required faults.

Our approach works at the binary-level. We currently supports Arm binaries
and instruction-skip like faults. In addition to the binary, SAMVA takes as input
the attacker’s capacity as well as their goal. The goal is expressed with a list of
code addresses – mandatory steps to reach their objective, that must be executed
– and a set of code addresses that must never be executed – corresponding to
attack detection. Attacker capacity describes the possible number of faults as well
as their possible widths. The static analysis is based on a path search heuristic
in a graph representing the program and the effect of potential faults. The found
candidate paths are analyzed in order to determine when and which faults to
inject in order to make the attack path feasible. The analysis outputs the set of
paths that meet user-specified fault injection constraints. We evaluate SAMVA
on eight variations of PIN verification from the FISSC suite [9] while considering
different attacker capacities. We verify the validity of the attacks paths found
by SAMVA with a fault simulator based on the gem5 [2]. We show that SAMVA
is able to find in all implementations, even the most hardened, when and which
faults to inject in order to reach an objective. Furthermore, we show that the
required time to find attack paths is kept low even when considering hardened
applications and a large set of potential effects of fault injections.

The threat model is introduced in Sec. 2. Sec. 3 depicts the core of our
analysis for the search of attack paths. Our experimental setup and results are
discussed in Sec. 4. We review related work in Sec. 5. Sec. 6 concludes.
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2 Threat model

Since the seminal paper of Boneh et al. in 1997 [3], a lot of research has been
conducted around fault injection. While some research works demonstrate the
feasibility to retrieve sensitive data or to take over a device, some others aim
at characterizing fault injection effects in order to better harden target systems.
Fault effects can be modeled at different levels (logical level, RTL, assembly
code, source code) using a bottom-up approach. A lot of research works have
focused on the modelling of fault injection effects at ISA-level. Fault injections
can lead to several effects at this level such as an instruction replacement or the
frequent special case of an instruction skip [1,16,25]. While these papers report
single fault effects, recent works show that one fault injection or complex fault
injection means can lead to the corruption of several consecutive instructions.
Electromagnetic pulses can lead to the replay or the skip of several consecutive
instructions, from two up to a dozen [20,5,19,15]. Laser-based fault injection
techniques can also lead to the skip of few chosen instructions [8] or of a variable
number of consecutive instructions, from 1 to 300 depending on the laser pulse
duration [11]. Multiple instruction skips, from a few chosen ones up to almost
one hundred, can also be achieved using cheaper injection means such as clock
glitching [6]. Instruction skip is a fault model that encompasses many fault ef-
fects, such as instruction replacement with another one that does not alter the
execution, the replay of idempotent instructions, the replacement of the desti-
nation register of an instruction with a dead register, etc. It is powerful as it
allows to easily corrupt the control flow of the execution. Moreover, injecting
multiple instruction-skip faults allows an adversary to combine their effects to
realize even more powerful attacks: Péneau et al. [17] show that if precise and
numerous instruction skips can be injected, a binary program can be attacked in
many ways. They show that NOP-oriented programming is Turing-complete. In
this paper, we consider an attacker able to inject multiple and precise faults that
finally result in skipping the execution of one or several consecutive instructions.
The distance between two fault injections, the minimal and maximal number of
instructions that are skipped with one fault injection all depend on the injection
mean. We then consider them as input of the proposed analysis.

3 Method

We first provide an overview of the approach implemented in SAMVA. Then,
we detail the modeling of faults effects on the binary and finally the proposed
static analysis to determine the location of faults to be injected at run-time.

3.1 Overview

Fig. 1 gives an overview of the whole analysis dedicated to the search of attack
paths. The analysis takes as inputs the binary, the objective of the attacker and
the attacker’s capacity. The output of SAMVA is a list of up to N attack paths,
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N being defined by the user. An attack path contains the position of the required
faults with their corresponding width (thereafter denoted fw) that need to be
dynamically injected at run-time to achieve the attacker objective.

The objective of the attacker, denoted as exploit specifications in Fig. 1,
are composed of (1) an ordered list of code locations that must all be reached
during the execution in the specified order. This list composed of start addresses
of straight-line code is referred to as the targeted basic blocks; (2) a set of code
locations that must not be executed, for example it can correspond to code
related to fault attack detection. This set is referred to as forbidden basic blocks.

The capacity of the attacker is expressed using three fault parameters (cf.
Fig. 1): (1) fw_min indicates the minimal number of instructions skipped by one
fault injection; (2) fw_max gives the maximal number of instructions skipped;
(3) f_min_dist expresses the minimal number of instructions executed between
two fault injections as imposed by the injection means. As an exemple, the setup
of Dutertre et al. [11] (cf. Sec. 2) would be reflected by setting fw_min=1 and
fw_max=300. The f_min_dist would be set according to the frequency of the
targeted processor and the reloading time of the fault injection setup.

First, the analysis automatically generates the control-flow graph (CFG) of
the binary. A CFG is composed of basic blocks (BB) defined as a maximal
length sequence of straight-line (i.e. branch-free) code. Basic blocks are linked
with oriented edges to represent all possible execution paths of the program. The
CFG is extended and annotated to reflect the effects of possible fault injections,
noted hereafter ECFG. Then, potential attack paths are computed using the
ECFG as well as the attacker objective. Finally, the analysis infers a set of
attack paths that meet the attacker capacity. Each output attack path takes the
form of a list of BB with the faults to inject (location, width) in the instruction
trace generated by the execution of all the instructions of the BB list.

3.2 Fault effects modeling

Our approach implemented in SAMVA starts with the CFG of the binary pro-
gram which characterizes all the possible execution paths in the absence of at-
tack. We call it the nominal CFG in the remainder. It can be obtained by static
analysis or a combination of static and symbolic analysis. In SAMVA, we use
the angr framework [21] to build it. The ability to skip the execution of chosen
instructions allows an attacker to alter the control-flow of a program in a way to
force an existing execution path, or to create a new one. We model such poten-
tial effects of instruction skips by generating an ECFG from the nominal CFG.
This step is independent of the attacker as it models all potential fault effects
without considering the attacker capacity. In the following, we detail the two
transformations performed on the nominal CFG to generate the ECFG that is
later used by our attack paths finding heuristic.

Hijacked control-flow modeling. Being able to skip the execution of branch
instructions enables an attacker to force the execution of the instructions which
are located in memory right after these branch instructions.
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foo:
0x104dc push {fp}
…
0x104f4 bx lr
B1: (main)
0x104f8:      push    {fp, lr}
0x104fc:      add    fp, sp, #4
0x10500:     sub    sp, sp, #8
0x10504:     mov    r3, #0
0x10508:     str    r3, [fp, #-8]
0x1050c:     bl    104dc <foo>
B2:
0x10510:     str    r0, [fp, #-12]
0x10514:     ldr    r3, [fp, #-12]
0x10518:     cmp    r3, #4
0x1051c:     bgt    10530

B3:
0x10520:     ldr    r3, [fp, #-8]
0x10524:     add    r3, r3, #1
0x10528:     str    r3, [fp, #-8]
0x1052c:     b    1053c
B4:
0x10530:     ldr    r3, [fp, #-8]
0x10534:     sub    r3, r3, #1
0x10538:     str    r3, [fp, #-8]
B5:
0x1053c:     mov    r3, #0
0x10540:     mov    r0, r3
0x10544:     sub    sp, fp, #4
0x10548:     pop    {fp, pc}

B1

B2

B3

B4

B5

foo

B1

B2

B3

B4

B5

foonnnnns

    n…s

nnnnne

n…e

nnns

nnns

nnnn

nnne

0x104F8: neutral
0x104FC: neutral
0x10500: neutral
0x10504: neutral
0x10508: neutral
0x1050C: skip
0x10510: skip
0x10514: skip
0x10518: skip
0x1051C: skip
0x10520: skip
0x10524: skip
0x10528: skip
0x1052C: skip
0x10530: neutral
0x10534: neutral
0x10538: neutral

Path: B1→B2→B3→B4→B5

Attack path 1: B1→B2→B3→B4→B5 | 1 faults (at 0x1050C with width of 9)
Attack path 2: B1→foo→B2→B3→B4→B5 | 1 faults (at 0x1051C with width of 5)
Attack path 3: B1→B2→B3→B5 | 2 faults (at 0x1050C with width of 5; at 0x1052C with width of 1)
…
Attack path N: Basic Blocks | Faults
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● Exploit specifications
○ List of targeted Basic Blocks
○ Set of forbidden Basic Blocks

● Fault parameters
○ fw_min
○ fw_max
○ fw_min_dist

● N: Maximum number of attack paths

SAMVA

ECFG   Attack paths findingCFG

Attack path

Binary file Configuration file

Fig. 1: Platform overview. In the code example, the targeted BB are [B1, B2, B5] and
the set of forbidden BB is empty. Some found attack paths are given to illustrate the
output format.

For the case of unconditional jump, we can choose to execute or to skip it.
This allows an attacker to continue the execution with the instruction that comes
after the jump instruction, according to the memory layout. The previously
impossible control-flow is illustrated in Fig. 1 by the insertion of a new edge
between B1 and B2 in the ECFG.

Concerning the skipping of a conditional branch, it forces the execution of
the instruction that comes after the branch instruction, which corresponds to
the case where the condition does not hold. As SAMVA currently does not rely
on any dataflow analysis, and as each branch outcome must be statically known
to compute feasible paths, the conditional jumps must always be skipped. As a
consequence, the edges corresponding to the taken branches are removed of the
ECFG. In the ECFG example in Fig. 1, the edge from B2 to B4 has been removed.
Nonetheless, it is still possible, using several instruction skips, to execute the
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target BB of the conditional branch if it is placed further in the memory layout.
In the ECFG in Fig. 1, an attacker would have to skip the branch at the end of
both B2 and B3 to reach B4 from B2.

A limitation of our approach only based on control flow analysis and in-
struction skipping is that we cannot manage backward conditional branches, i.e.
forcing the execution of the target BB of a conditional branch when this BB is
at a lower address in the memory layout. This requires a data-flow analysis, to
determine if it is feasible using only instruction-skip faults to force the condition
to hold, or if this requires a fault outside our fault model (e.g. branch condition
inversion). We keep as future work the study of data-flow analysis in presence
of instruction-skip faults to force a backward conditional jump.

Edges annotations. This second step annotates the ECFG’s edges to reflect
if the corresponding control flow results from a fault injection on the branch
instruction of the source BB of the edge or not. To define the edge annotation,
we consider the following instruction types:
– execute (e) is the type of the instructions that must be executed;
– skip (s) is the type of the instructions that must be skipped;
– neutral (n) is the type of instructions that can either be skipped or executed

without affecting the control flow at the end of their basic block.
Every instruction of a BB is typed. The neutral type leaves room for po-

sitioning the fault injection according to the attacker capacity. Based on this
instruction type, an edge annotation can be derived by typing, in order, each
instruction of its source BB. Branch instructions are always typed as either skip
or execute to reflect the condition under which the edge must be followed during
the execution. By default, all other instructions of a basic block are typed as
neutral. These edge annotations are also illustrated in Fig. 1.

While this is enough for our attack paths finding heuristic, we refine the
typing strategy to avoid source of crashes when performing an attack. In fact,
inconsistent stack pointer updates during the execution may lead to a crash
of the attacked program. Moreover, inconsistent return address can make the
execution deviate from the expected execution path. As a consequence, we add
the two following typing rules:
– R1: Execution of stack pointer updates. Instructions writing into the stack

pointer register (SP register), such as push and pop instructions, are always
typed as execute. This guarantees that the memory allocated for the stack
is subsequently deallocated. For Arm architectures, the return from a callee
function to its caller uses a unique instruction, a pop pc instruction or equiv-
alent, to retrieve the return address on the stack, to update the stack pointer
and finally to return to the caller function. As the execution of pop instruc-
tions is forced by this typing rule, this ensures that a function call is either
skipped or the return to the caller will be correctly executed.

– R2: Execution of function returns using the link register. In case of leaf func-
tion, the link register lr, set by the call instruction bl, may be directly used
for returning to the caller, i.e. using a bx lr instruction or equivalent. This
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happens when the link register lr is not saved on the stack due to low regis-
ter pressure. This additional rule types as execute all the bx lr instructions.
As a consequence, a leaf function that does not save the link register on the
stack is either skipped or the return to the caller will be correctly executed.

3.3 Attack paths finding

In this section, we present our heuristic for finding attack paths. We first explore
the ECFG to generate a set of paths that are compliant with the attacker ob-
jective. These paths must contain the target basic blocks in the order specified
by the user and must not contain any forbidden basic blocks. Edge annotations
present on each path are then used to determine the position and the width
of fault injections to perform while conforming with the instruction types. The
position and the width of fault injections must be valid according to the attacker
capacity given as input to the analysis.

Candidate paths generation. A set of candidate paths is generated by ex-
ploring the ECFG. Such paths must reach, in the correct order, the BB specified
in the attacker objective and avoid the forbidden BB. Additionally, an ideal
candidate path should allow an easy fault injection positioning by spacing out
the execute and skip instructions, and reduce the number of fault injections by
favoring neutral and execute instructions. Therefore, we associate to each edge
of the ECFG a cost depending on its annotation.
– Cost=1: if instructions are all typed as neutral ;
– Cost=2: if instructions are only typed as neutral or execute;
– Cost=3: if instructions are only typed as neutral or skip;
– Cost=4: if there are some instructions typed as skip and some other ones

typed as execute.
This weighing policy hints the path search at finding more feasible attack paths.
Thus, for each pair of successive basic blocks in the list of targeted basic blocks,
a temporary set of paths is retrieved using the shortest paths algorithm [24]
according to edge weights. The complexity to find the K first shortest paths in
a CFG containing NBB basic blocks is then O(KNBB

3).
The final set of complete candidate paths Pcandidate_paths passing through all

the basic blocks specified in the attacker objective is then generated by making
the Cartesian product of the temporary sets. We iteratively combine the sets
corresponding to consecutive basic blocks and retain the K paths with the least
costs. This final set is composed of candidate paths that do not ensure the
possibility of the fault injection positioning according to the attacker capacity.
The next step aims at finding a valid set of fault injections to perform to make
a candidate path an attack path.

Fault injection positioning. The determination of fault injections to perform
in order to make feasible a given candidate path is based on the instructions



8 A. Gicquel et al.

types retrieved on the edges annotations and the attacker capacity. For a given
candidate path, we build a so-called “execution trace” which is a list of pairs
⟨instruction address, instruction type⟩. The fault injection positioning aims at
finding the position and width of faults to inject such that instructions typed as
skip are covered by a fault and instructions typed as execute are outside of any
fault. Instructions typed as neutral can be covered by a fault or not.

The width of any injected fault must be included in [fw_min, fw_max]. As
a consequence, there are potentially a lot of possibilities for the fault injection
position and width as shown in Fig. 2. Nevertheless, the distance between two
consecutive faults must be at least equal to the minimal distance f_min_dist.
Computing the whole set of possible fault positions and widths is not realistic,
as a consequence we use a two-step approach to determine a fixed-size set of
solutions: i) we first use simple rules to quickly determine when there is no valid
solution for the fault positioning based on the distance between instructions;
ii) then, the set of remaining fault configurations (i.e. position and width) is
explored using a backtracking algorithm in order to find a valid configuration
that make feasible a candidate path.

0x01077C 0x010780 0x010784 0x01078C 0x010790 0x010794 0x010798 0x01079C 0x0107A0 0x0107A4

neutral neutral neutral neutral skip skip neutral neutral neutral neutral

Minimum width
Maximum width

Fig. 2: Example of fault positioning on trace with fw_min = 3, fw_max = 5

Unsolvability verification. We use the following straightforward rules to quickly
detect the unsolvability of the fault positioning problem on an execution trace:
– If there is at least one instruction typed as skip between two instructions i0

and i1 typed as execute, then the distance between i0 and i1 must be greater
than or equal to fw_min the minimal width of a fault. Otherwise, any fault
covering the instruction typed as skip would at least impact i0 or i1, and so
the fault positioning problem is unsolvable;

– If there is at least one instruction typed as execute between two instructions
i0 and i1 typed as skip, then the distance between i0 and i1 must be greater
than or equal to f_min_dist the minimal distance between two faults. Oth-
erwise, the fault positioning problem is unsolvable.

Backtracking algorithm. The algorithm attempts to place faults in order to cover
all the instructions typed as skip in a trace or to prove the invalidity of the attack
path. Thus, we try to build a solution, consisting in a list of faults each having
a position and a width. Additionally, these faults must respect the fault width
constraints (fw_min, fw_max) and respect the distance between each other (i.e.
meet the minimal distance requirement fw_min_dist).

A solution is built incrementally with a backtracking approach using recur-
sion. Alg. 1 gives an overview of our implementation. First, the position of the
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Algorithm 1 Fault positioning algorithm using backtracking
function fault_positioning(trace, f_candidates, f_params)

next_pos ← find_next_skip(trace, f_candidates)
if next_pos = ∅ then

return True
for fw ∈ range(f_params.fw_max, f_params.fw_min, -1) do

for pos ∈ range(next_pos, next_pos - fw, -1) do
fault ← <pos, fw>
if is_valid(fault, trace, f_candidates, f_params) then

f_candidates.push(fault)
if fault_positioning(trace, f_candidates, fault_params) then

return True
else

candidate_faults.pop()
return False

next instruction typed as skip that is not yet covered by a fault is retrieved in
the execution trace. Then, we vary the width and position of the fault in order
to find a valid fault configuration.

To determine if a candidate fault configuration is valid, the following prop-
erties are verified:

– the fault position must fit in the trace, i.e. taking care of the trace bounds;
– the fault must not cover any instruction typed as execute;
– the fault must not overlap with the previous fault (if any) and their distance

must be greater than the minimal distance between two faults.

The recursive calls stop when a final solution meeting all the constraints
and covering all the instructions typed as skip is obtained. This happens when
the function find_next_skip no longer finds any uncovered instruction typed
as skip. During this process if we discover that the current solution will not
be valid, we backtrack, i.e. we go back to the previous step by removing the
last validated fault and try another fault configuration instead. Backtracking
algorithms use the depth-first search method. In order to minimize the number
of faults necessary to perform the attack, we first explore, as visible in the loops
order, the possible positions starting from the one of the instruction to cover
and then vary its width, starting with the widest one.

For the sake of performance, we do some optimizations to reduce the space
of possible fault configurations. First, when validating a position of a fault, we
also check if there is any instruction typed as skip further in the trace at a
distance of less than fw_min_dist that would be covered by a conflicting fault.
Consequently, even if the configuration of the fault is valid with the already
chosen faults, it is rejected to avoid useless recursive calls.

Additionally, we decompose our execution trace into several sub-traces that
are then handled independently. We apply a cut in the execution trace when
(1) two instructions typed as skip are separated only by instructions typed as
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neutral, and (2) the distance between these two instructions is larger than twice
the maximal fault width plus the minimal distance between two faults.

Fault trimming. Our fault positioning algorithm tries to make the faults as
large as possible in order to reduce their number. It can therefore find valid
solutions that nonetheless cover unnecessarily instructions typed as neutral. For
this reason, we apply a last pass that shortens the width of the faults when
possible. It shifts the beginning and the end of a fault towards the first and the
last instruction typed as skip while meeting the constraint of the minimal fault
width (fw_min). We thus obtain smaller faults, potentially easier to achieve, and
which reduce the risk of skipping critical instructions.

4 Experimentation

In this section, we evaluate the effectiveness of SAMVA. We first present the
experimental setup comprising the targeted applications, the considered attacker
capacity and our evaluation methodology. Then, we discuss the results.

4.1 Experimental setup

Benchmarks. We evaluate our analysis on all PIN verification programs from
the FISCC project [9]. This software collection contains eight implementations
of VerifyPIN, one naive implementation, as illustrated in Lst. 1 and seven other
implementations containing different set of countermeasures. The PIN code ver-
ification programs compare a user-provided PIN and the card PIN using the
function byteArrayCompare. The variable g_authenticated is set according to
its result. The number of tries is controlled by the variable g_ptc, initially set
to 3 and decremented after each failed authentication attempt. Authentication
is no longer permitted if g_ptc reaches zero, in order to avoid brute-forcing
the PIN code. For protected implementations, i.e. version higher than V0, a
fault handler is called when an attack is detected by a countermeasure. The
fault handler sets to true a variable added to any protected version and named
g_countermeasure. In the end, the evaluator is able to know afterward if the
attack has been detected by the countermeasures. The implemented countermea-
sures are described below. Table 1 reports the countermeasures implemented in
each VerifyPIN version as well as the number of instructions, BB and edges in
the ECFG considered in the analysis at the binary level.

– Hardened Booleans (HB): Booleans are encoded with two constants, instead
of 0 and 1, which are less sensitive to fault injection;

– Step counter (SC): some variables called step counters are added to the code
in order to protect against attacks disrupting the control flow integrity. The
number of loop iterations is checked at the loop exit in versions V2 to V5. All
the statements and control flow constructs are protected using such variables
in version V7;
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– Inlined calls (IC): function calls are inlined in order to prevent the skip of
the call. This also reduces the attack surface as there is no more instructions
to pass parameters to the calls;

– Backup copy (BC): the number of remaining attempts is duplicated to pre-
vent single fault attacks from targeting the attempt counter;

– Double test (DT): the call to the function verifying the PIN codes and all
the tests are duplicated to prevent a single fault from bypassing them.

The objective of an attacker is to obtain an authentication without knowing
the user PIN and without triggering any countermeasures. As a consequence,
our analysis searches for the faults enabling to hijack the control-flow of the
program in order to execute the authentication code (lines 4 and 5) without
executing any attack detection. For the experiments, we manually retrieve the
targeted and forbidden basic blocks for each implementation of VerifyPIN. The
attacks start at the beginning of the verification function and then we define
the targeted BBs as a list containing: the BB setting g_authenticated at true,
possibly the BB setting g_ptc at 3 if this code is not included in the previous
BB, and finally the BB in then main function that comes right after the call to
VerifyPIN. The set of forbidden BB only includes the BB calling the detection
function that sets the g_countermeasure variable.

The eight versions of VerifyPIN are compiled for Arm Thumb instruction set
architecture (ARMv7-M). The cross-compiler used is GNU GCC gnueabi version
8.5.0. We deactivate all compiler optimizations (-O0) to avoid the alteration of
the software countermeasures, as well as the use of predicated instructions that
are not yet supported in SAMVA.

Listing 1: Source code of VerifyPIN
without countermeasures (V0)

1 g_authenticated = 0;
2 if(g_ptc > 0) {
3 if(byteArrayCompare(...)) {
4 g_ptc = 3;
5 g_authenticated = 1;
6 } else {
7 g_ptc--;
8 }
9 }

Table 1: VerifyPIN suite description with the
included countermeasures, their number of in-
structions, BB and ECFG edges (+ edges
added to original CFG) at binary level

HB SC IC DT BC #Instr #BB #Edges
V0 142 24 46 (+12)
V1 ✓ 162 30 57 (+15)
V2 ✓ ✓ 172 32 58 (+15)
V3 ✓ ✓ ✓ 158 30 54 (+13)
V4 ✓ ✓ ✓ ✓ 221 41 79 (+20)
V5 ✓ ✓ ✓ 241 47 87 (+22)
V6 ✓ ✓ ✓ 177 36 68 (+17)
V7 ✓ ✓ ✓ ✓ 306 66 140 (+38)

Fault injection parameters. For each implementation of VerifyPIN, we con-
sider various fault injection parameters corresponding to various attacker ca-
pacities. We vary the width of the possible faults (using the fault parameters
fw_min and fw_max) as well as the minimal distance between two consecutive
faults (using the parameter named fw_min_dist). Our objective is to observe
the sensitivity of the included countermeasures to the fault injection parameters
required to perform an attack.
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Let W be the set of possible fault width values measured in number of in-
structions. It is defined as: W := {1}

⋃
{2n : n ∈ N | n ≤ 32}. Thus, the

minimum width varies over 1 and all even numbers between 2 to 64; the maxi-
mum width varies over the minimal width and all even numbers between 2 to 64
as well, such that: {(fw_min, fw_max) ∈ W ×W | fw_min ≤ fw_max}. Finally,
the minimal distance, in number of instructions, between two fault injections
varies over all the power of 2, such that: fw_min_dist ∈ {2n : n ∈ N | n ≤ 5}.

Moreover, we run SAMVA on all the versions of VerifyPIN considering in-
struction typing strategies (cf. Sec. 3.2). We pick three different strategies as fol-
lows: a first default one, denoted default, without any additional typing rule;
a second one featuring the R1 rule that forces the execution of stack pointer
updates; a third one, denoted R1 + R2, that applies both R1 and R2 rules.

In summary, we test SAMVA on a total of 3366 distinct fault parameters, on
each of the eight binary files, for each of the three instruction typing strategies,
with fault trimming enabled and disabled.

Evaluation

Early
rejection

No path

Simulation

Auth OK
Trace OK Attack OK

Trace KO

Auth KO

Correct trace Analysis KO

Crash Load/Store
KO

Wrong
control-flow Stack KO

LR KO

Fig. 3: Decision tree for attack results classification

Evaluation methodology. We iterate through the possible fault parameters
and binaries as described previously. For a given couple of binary and fault
parameters, we strive to generate a set of N distinct attack paths. In our exper-
iments, N equals 30, meaning that we expect to obtain up to 30 attacks paths,
depending on the possibilities offered by the instructions used and the binary
layout. The evaluation methodology followed to assess the results is depicted on
Fig. 3. We classify the results as explained below.

The set of attack paths found by the analysis can be empty if our analysis
does not find any candidate attack path for certain fault parameters (class “No
path” ). Additionally, the fault parameters may not fit the binary if fw_min,
the minimal fault width, is greater than the number of instructions distancing
the starting point and the first targeted instruction of the attack (class “Early
rejection” ), since the execution of targeted BB is mandatory.

Otherwise, if the resulting set is not empty, the attack paths are validated
by simulation of the instruction-skip fault model. The simulator used in our ex-
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periment is a modified version of gem5 [2] which is able to skip the execution of
chosen instructions in a specified order of occurrence. It takes as input the binary
program under analysis and the faults that must be injected for achieving an
attack path. Once the simulation terminates, without reporting a crash, we first
check the output containing the VerifyPIN variables. If the g_authenticated
is set to true, g_ptc equals 3 and g_countermeasure stays at false, the authen-
tication has been granted (node “Auth OK”). In this case, the execution trace
resulting from the simulation and the one intended by the analysis are compared
in order to make sure they match (class “Attack OK” ). We stop iterating the
set of attack paths after the first successful simulated attack. In the case of a
simulation crash or if we did not get authenticated at the end of the simulation
(node “Auth KO”), the simulated and expected execution traces are also ana-
lyzed. When they do not match, we determine the reason of the crash or of the
divergence of control-flow respectively (classes “LR KO”, “Stack KO” or “Load/-
Store KO”). The result is orange-colored (node “Crash” and “Wrong control-flow”

). Finally, we also measure the failure of our analysis for two particular cases
(class “Analysis KO” ). The first one is when the authentication fails despite
the matching of the execution traces and the expected authentication by the
analysis. The second case is when we get authenticated but the traces do not
match. These cases are sanity checks only, which should not happen. We did not
encounter them in our experiments.

4.2 Experimental results

Attack path evaluation results. Experiments aim to measure the effective-
ness of SAMVA in finding attack paths in the different benchmarks according
to the different typing instruction strategies. We consider three strategies with
and without fault trimming. Fig. 4 shows the classification of the evaluation
outcomes. The first row represents the results for the three strategies without
the fault trimming and the second one with trimming.

First of all, we are able to find many attack paths in all cases. The main dif-
ference between the default strategy and the other ones preserving the execution
of stack pointer updates is the higher number of crashes during the simulation
using the default strategy. However, fault trimming seems to sensibly mitigate
the number of crashes by reducing the number of instructions that must be
skipped, meaning, it reduces the risk of skipping an instruction that is neces-
sary for the execution of the program such as memory allocation for the stack.
Nonetheless, fault trimming has only an impact when no instruction typing rule
is enabled. Otherwise, the strategies guarantee the execution of some instruc-
tions reducing the number of crashes. Finally, the R1 + R2 strategy finds fewer
attack paths. This reduced number of attack paths can be explained by the con-
straints induced by the instruction typing rules, resulting in a more difficult fault
positioning. However, found attack paths lead to fewer crashes. This means that
the few attack paths found are more prone to be effective. Remaining crashes are
solely caused by invalid memory access due to instruction skips. To load or store
a value, the address location is usually stored in a register that is defined before
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Fig. 4: Results classification of attack path searches

by one or multiple instructions. If one of these instructions is skipped, then an
illegal access can cause a crash. Future work will study data-flow analysis to
handle these cases.

Fault injection parameters study. An alternative manner of representing the
results for the eight binaries is depicted on Fig. 5, which shows the classification
of the analysis outcomes according to the considered three fault parameters
(fw_min, fw_max, fw_min_dist). As expected, the general pattern that we can
observe is that the smaller fw_min and fw_min_dist are, the larger the fw_max
is, the more possibilities to find attack paths which result in successful attacks.
We can see that versions V1, V2 and V5 have similar results to V0, meaning
that the implemented countermeasures have only limited effect against multiple
skips. We can also see that in V4 and V6, the distance between two faults is
the main factor for the realization of the attack. This can be explained by the
necessity to make several faults if fw_max does not allow to make a sufficiently
large fault. Finally for V7, we only find few configurations that lead to successful
attacks. The fine-grained control-flow integrity countermeasure included in this
version forces to skip several small sets of instructions and thus require a higher
precision to inject the faults.



SAMVA: Static Analysis for Multi-Fault Attack Paths Determination 15

(a) VerifyPIN V0 (b) VerifyPIN V1 (c) VerifyPIN V2

(d) VerifyPIN V3 (e) VerifyPIN V4 (f) VerifyPIN V5

(g) VerifyPIN V6 (h) VerifyPIN V7

Attack
OK

Wrong CF
or Crash

Early
rejection

No
path

Fig. 5: Outcomes of every tested configuration, per VerifyPIN version, using the R1
strategy and fault trimming enabled

Characteristics of successful fault configurations. We now study the char-
acteristic of the fault configurations that lead to successful attacks. Since the
strategy featuring the additional typing rule R1 along with the fault trimming
gives the highest number of successful attack paths, we base our study on its
evaluation results. Fig. 7 presents the number of faults required for each suc-
cessful attacks. Our results show that versions from V0 to V3, V5 and V6 can be
attacked with a single fault. Version V4 can be attacked with at least two faults
and V7 requires at least three faults. The instruction typing obtained for a given
attack path is responsible for the minimum number of faults. For instance, if two
instructions are typed as skip with an instruction typed as execute in between,
then two faults are necessary. Depending on the code layout and instructions
induced by the countermeasures, the attack path may contain such constraints,
resulting in a higher number of faults required for the V4 and V7.

To better understand the effects of instruction typing on the fault position-
ing, Fig. 6 represents the characteristic of the faults on an attack path. These
different attack paths can report identical control-flow, although we can see some
patterns. Taking the V0 as an example, we can notice that according to the fault
injection parameters, SAMVA can choose to make one long fault to cover all the
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(a) VerifyPIN V0 (b) VerifyPIN V1 (c) VerifyPIN V2

(d) VerifyPIN V3 (e) VerifyPIN V4 (f) VerifyPIN V5

(g) VerifyPIN V6 (h) VerifyPIN V7

Fig. 6: Unique attacks found for each version of VerifyPIN. Each attack is represented
horizontally. The x-axis represents time (more precisely consecutively executed instruc-
tions). Each segment denotes a fault whose width is the length. For example, V1 can be
attacked with a single fault of width 12 (bottom segment ranging from x=10 to x=22);
but also with four narrower faults shown at y=41: a fault ranging from x=10 to x=15
followed by tree faults of width 3 at times x=23, x=33, and x=43. Attacks are sorted
vertically by their number of faults: fewer faults at the bottom, more towards the top.

instructions typed skip or to make several smaller faults to cover them individ-
ually. For some attacks, the BB restoring the variable g_ptc to its initial value
and the BB turning g_authenticated to true may be different. As a result, we
get mandatory checkpoints in the control-flow, which graphically manifests as
a column in the figures, because no fault is allowed to cover this section of the
attack path. Finally, we consider only fully predictable paths in our analysis.
Since we do not use data-flow analysis, we hijack conditional jumps that do not
necessarily require a fault. For instance, at the beginning of the VerifyPIN func-
tion the value of g_ptc is checked and must be greater than zero, as depicted
in Lst. 1 (line 2). As we consider only one try, during the attack this condition
always holds. In consequence, the branch instructions related to this check add
unnecessary constraints by adding an instruction typed as skip and result in
more faults than really required.
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Fig. 7: Number of faults needed for each
successful attack found for each version
of VerifyPIN, using the strategy R1 with
fault trimming enabled

Fig. 8: Time needed to generate the paths,
for each considered fault parameter and
per VerifyPIN, using the strategy R1 with
fault trimming enabled

Execution time. We measure the execution time of our framework in order
to assess its performance. Fig. 8 represents the time that our analysis took to
find up to 30 distinct attack paths for each version of VerifyPIN and for each
parameter configuration. These results do not include the simulation time. The
strategy used for these measurements is the typing rule R1 with fault trimming
enabled. We ran our benchmarks on a Xeon Gold 5218 CPU at 2.3 GHz featuring
32 physical cores, on which independent instances of SAMVA are launched. Each
instance of SAMVA is sequential, hence the times reported are independent of
the parallelism of the server. We obtain relatively short analysis times, most of
the results are under the threshold of half a second. For the V4 and V7 versions,
we can notice that the analysis times can rise significantly, up to 109 seconds
and this can be explained by the usage of the fault positioning algorithm which
uses backtracking. Indeed, the major part of the analysis time is actually spent
in this algorithm and according to the typing of the instructions, we may need
to backtrack a lot to prove the non-feasibility of an attack path.

5 Related work

In order to help both security evaluators and countermeasure designers, different
vulnerability and attack path search tools have been proposed.

Potet et al. [18] propose Lazart, a tool based on the modification of the CFG
at LLVM-IR level to establish using symbolic execution the absence of attacks
only based on multiple branch inversions. While convenient to early analyze
the effectiveness of software countermeasures, this solution does not consider
the binary layout and so requires a companion analysis at binary level. While
the authors do not report the time required by the analysis, this approach is
intrinsically limited by the symbolic execution engine that faces path or state
explosion in case of complex applications with symbolic inputs which impact
memory accesses or control flow.
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Bréjon et al. [4] propose the framework RobustB that uses formal verification
through SMT solving to find vulnerabilities in binary code. The considered faults
are either a single instruction skip or a single register corruption. The reported
verification times on the same benchmarks range from few minutes up to few
hours without details. We can however say that our approach is more efficient
as it requires less than two minutes in the worst case, and our attacker model
encompasses the single instruction-skip fault model.

Given-Wilson et al. [12] also propose an automated approach based on formal
verification to find vulnerabilities against fault attacks at binary code level. The
approach only considers permanent faults that are reflected in code mutants that
are then given to a model checker. This approach must then produce as many
code mutants as the number of fault configurations to explore. This would not
scale to multiple faults with various widths.

Werner et al. [22] extend the CELTIC simulation-based framework in order
to search for attack paths considering up to two faults. Considered fault models
are inferred from real experiments, as previously proposed by Dureuil et al. [10],
and the whole approach enables to select fault injection parameters. As other
simulation-based approach [14], it is however limited in the number of faults that
can be injected. While simulation is better suited than formal approaches for
analyzing large applications, the fault configurations space grows exponentially
when considering multiple faults with variable width. The convergence towards
successful fault configurations is dependent on the exploration strategy of the
fault configurations space. To the best of our knowledge, there is currently no
simulation-based approach able to consider a large number of such faults.

In summary, we believe that, even if only instruction-skip faults are supported
yet, SAMVA, which is only based on static analysis, is the first tool able to search
for multiple faults with variable width that leads to successful attacks.

6 Conclusion

In this paper, we propose SAMVA, a framework for assessing vulnerabilities of
a program binary against multiple instruction-skip attacks. SAMVA is based on
purely static analysis. We evaluate our approach by determining the required
faults to attack eight versions of PIN code verification programs hardened by
various countermeasures against faults. In our experiments, we explore numerous
fault injection capabilities and the results show the capacities of SAMVA to find
successful attack paths, even for the most hardened implementations. We also
report that our approach scales well, making it an effective way to explore a
wide range of fault configurations in limited time.

Future work will consider the extension of our threat model by integrating
instruction-replay for our fault positioning. Additionally, we plan to link the
attacks found by analysis with fault injection means to conduct physical attacks
in order to validate experimentally the found attacks. This will make the bridge
between our fault analysis and their realizations.
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