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S U M M A R Y
To improve our understanding of the Earth’s interior, seismologists often have to deal with
enormous amounts of data, requiring automatic tools for their analyses. It is the purpose of
this study to present SeisLib, an open-source Python package for multiscale seismic imaging.
At present, SeisLib includes routines for carrying out surface-wave tomography tasks based
on seismic ambient noise and teleseismic earthquakes. We illustrate here these functionalities,
both from the theoretical and algorithmic point of view and by application of our library to
seismic data from North America. We first show how SeisLib retrieves surface-wave phase
velocities from the ambient noise recorded at pairs of receivers, based on the zero crossings
of their normalized cross-spectrum. We then present our implementation of the two-station
method, to measure phase velocities from pairs of receivers approximately lying on the same
great-circle path as the epicentre of distant earthquakes. We apply these methods to calcu-
late dispersion curves across the conterminous United States, using continuous seismograms
from the transportable component of USArray and earthquake recordings from the permanent
networks. Overall, we measure 144 272 ambient-noise and 2055 earthquake-based dispersion
curves, that we invert for Rayleigh-wave phase-velocity maps. To map the lateral variations in
surface-wave velocity, SeisLib exploits a least-squares inversion algorithm based on ray theory.
Our implementation supports both equal-area and adaptive parametrizations, with the latter al-
lowing for a finer resolution in the areas characterized by high density of measurements. In the
broad period range 4–100 s, the retrieved velocity maps of North America are highly correlated
(on average, 96 per cent) and present very small average differences (0.14 ± 0.1 per cent) with
those reported in the literature. This points to the robustness of our algorithms. We also produce
a global phase-velocity map at the period of 40 s, combining our dispersion measurements with
those collected at global scale in previous studies. This allows us to demonstrate the reliability
and optimized computational speed of SeisLib, even in presence of very large seismic inverse
problems and strong variability in the data coverage. The last part of the manuscript deals with
the attenuation of Rayleigh waves, which can be estimated through SeisLib based on the seismic
ambient noise recorded at dense arrays of receivers. We apply our algorithm to produce an at-
tenuation map of the United States at the period of 4 s, which we find consistent with the relevant
literature.

Key words: Inverse theory; Seismic tomography; Surface waves and free oscillations.

1 I N T RO D U C T I O N

The wealth of publicly available seismic data has been steadily
increasing for the last few decades, and with it, our ability to

image the Earth’s interior at increasingly high resolution. Ev-
ery year, hundreds of seismometers are installed or redeployed
across our planet, with the precise purpose of better resolving fea-
tures of the Earth that can only be probed indirectly. As a result,
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seismologists have to deal with an amount of data that could be
considered overwhelming, if it were not for the possibility of using
automated tools in their analysis.

In recent years, Python has established itself as one of the most
popular programming languages among scientific researchers (e.g.,
Millman & Aivazis 2011). Besides being open source and charac-
terized by a relatively shallow learning curve (e.g., Nagar 2017), its
popularity can be ascribed to its very active community, as testified
by the wide variety of packages that continuously become available
for installation.

In the field of seismology, the rapid increase in the popularity
of Python can probably be traced back to the publication of Ob-
sPy (Beyreuther et al. 2010), which has provided its users with an
all-round framework for seismic data analysis. Since then, and es-
pecially in the last few years, several Python packages have been
designed to tackle more or less specific tasks in seismic imaging. For
example, rf (Eulenfeld 2020) allows for calculating receiver func-
tions. MSNoise (Lecocq et al. 2014) and NoisePy (Jiang & Denolle
2020) provide routines for monitoring and extracting group veloci-
ties of surface waves generated by seismic ambient noise; PyKonal
(White et al. 2020) and scikit-fmm (https://github.com/scikit-fmm)
implement the fast-marching method (Sethian 1996) to track wave-
fronts propagating in heterogeneous media; and this list could be
further extended.

It is the purpose of this study to present SeisLib, an open source
Python package for multiscale seismic imaging (https://pypi.org/p
roject/seislib/). SeisLib is the result of a long-term effort of our
team to gather, optimize and make open source some of the Python
codes behind our seismological publications over the last few years.
As opposed to most of the seismological Python packages available
to date, SeisLib has been conceived to encompass a wide variety of
algorithms to obtain seismic images of the Earth’s interior.

At the time of writing, our library is in rapid expansion, and
includes routines to (i) download and process continuous seismic-
ambient-noise recordings to extract phase velocities of Rayleigh
and Love waves (e.g., Boschi et al. 2013; Kästle et al. 2016) as
well as Rayleigh-wave attenuation as a function of frequency (e.g.,
Boschi et al. 2019; Magrini & Boschi 2021; Magrini et al. 2021);
(ii) download and process surface-wave recordings generated by
teleseismic earthquakes, to retrieve Rayleigh and Love phase ve-
locities based on pairs of receivers lying on the same great-circle
path as the epicentre (e.g., Meier et al. 2004; Magrini et al. 2020a)
and (iii) least-squares imaging of lateral variations in surface-wave
velocity, based on both equal-area and adaptive parametrizations
(e.g., Boschi & Dziewonski 1999; Schaefer et al. 2011). A diagram
of the main modules included in SeisLib is shown in Fig. 1.

The manuscript is structured so as to illustrate the background
theory and our algorithmic implementation inherent to each of the
above modules. Sections 2 and 3 deal with the calculation of surface-
wave dispersion curves from seismic ambient noise and teleseismic
earthquakes, respectively. In this paper, examples are restricted to
Rayleigh waves, but Love-wave velocities as well can be measured
via SeisLib routines. Section 4 concerns the mapping of spatial
variations in surface-wave velocity from the local to the global scale.
Our strategy to retrieve Rayleigh-wave attenuation is presented in
Section 5. At the end of each of these sections, an application of our
library to a real-world seismological task is presented. This allows
us to both illustrate the potential of SeisLib in seismic imaging and
cross-validate our results against previous studies.

Upon reading this paper, some readers wishing to make practical
use of SeisLib might want to learn more about technical aspects of
the package. They should be aware that the software comes with

a detailed documentation (https://seislib.readthedocs.io/en/latest/)
that will hopefully answer most of their questions.

2 P H A S E V E L O C I T Y F RO M S E I S M I C
A M B I E N T N O I S E

2.1 Empirical Green’s function

As shown in several theoretical studies, the cross correlation of
seismic ambient noise can be related to the surface-wave Green’s
function between the two points of observation (for a review see,
e.g., Campillo et al. 2014; Boschi & Weemstra 2015). In case of a
diffuse ambient wavefield recorded at two receivers on the vertical
component, the empirical Rayleigh-wave Green’s function has a
relatively simple expression, that can be used to constrain the ve-
locity structure of the Earth’s interior. In the frequency domain, this
is proportional to a zeroth order Bessel function of the first kind
(J0), and reads

�{ρ(xA, xB, ω)
} ≈ J0

(
ω�

c

)
e−α� (1)

(e.g., Nakahara 2012; Magrini & Boschi 2021), where �, ω and c
denote interstation distance, angular frequency and phase velocity,
respectively, ρ the statistical expectation of the normalized cross-
spectrum associated with the two ambient-noise recordings, and
R{···} maps a complex number into its real part. Consistent with
Magrini & Boschi (2021), the exponential damping term in eq. (1)
accounts for the (possibly frequency-dependent) attenuation of the
Rayleigh waves propagating between the two receivers xA and xB,
through the coefficient α.

In ambient-noise seismology, where continuous seismograms of
relatively long duration (months or years) are used, the statistical
expectation of ρ is replaced by an ensemble average of the cross-
spectra calculated over a relatively large number of time windows.
This contributes to approximating the condition of a diffuse am-
bient wavefield (e.g., Boschi & Weemstra 2015), allowing the use
of the above equation to measure the (average) interstation phase
velocity. In practice, since phase velocity is related to the phase of
the empirical Green’s function, but not to its amplitude, the expo-
nential damping term in eq. (1) is often neglected (e.g., Kästle et al.
2018; Magrini et al. 2020b), simplifying the problem of retrieving
c from the data. This approach resulted in numerous successful ap-
plications of velocity imaging and monitoring, and can nowadays
be considered standard in ambient-noise tomography (e.g., Nakata
et al. 2019, and references therein).

2.2 Velocity ambiguity

To retrieve fundamental-mode Rayleigh-wave phase velocities,
SeisLib implements an automated algorithm. Given a pair of re-
ceivers, it first subdivides their simultaneous recordings into pos-
sibly overlapping time windows (e.g., Seats et al. 2012). Cross-
correlation is then performed in the frequency domain for each
time window, and the resulting cross-correlations are normalized
by spectral whitening (e.g., Bensen et al. 2007); finally, ensemble
averaging the normalized cross-correlations ensures the retrieval of
a unique, robust cross-spectrum, corresponding to ρ in the left-hand
side (LHS) of eq. (1) (Fig. 2).

To better constrain the phase of the cross-spectrum, SeisLib pre-
processes it following a three-steps procedure (Sadeghisorkhani
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Surface-wave tomography using SeisLib 1013

Figure 1. Workflow diagram showing all the main features of SeisLib. The modules seislib.an and seislib.eq contain Python classes to download, process and
extract dispersion curves from recordings of seismic ambient noise (Section 2) and teleseismic earthquakes (Section 3), respectively. The retrieved dispersion
curves can then be inverted for spatial variations in surface-wave phase velocity at different periods (Section 4), through the SeismicTomography class of the
seislib.tomography module. The seislib.an module also allows for measuring Rayleigh-wave attenuation based on dense seismic arrays (Section 5). Spatial
variations in velocity and attenuation can be visualized using the routines included in seislib.plotting. SeisLib also comes packed with the scientific colourmaps
of Fabio Crameri (Crameri 2018), which can be accessed through seislib.colomaps.

Figure 2. Top panel: location of the receivers (triangles) of the transportable component of USArray used in this study. The yellow triangles refer to the
two receivers used to obtain the dispersion curve shown in the bottom-left-hand panel (red line). The dispersion curve was retrieved from the zero crossings
(blue dots) of the real part of the cross-spectrum (black line in the bottom-right-hand panel) of their continuous seismograms, as explained in Section 2.3. For
illustration purposes, the imaginary part of the cross-spectrum is shown in grey. Station codes, interstation distance, and amount simultaneous recordings (in
days) available for the two receivers are reported in the bottom right-hand panel.
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et al. 2018; Magrini & Boschi 2021). (i) It inverse-Fourier trans-
forms the cross-spectrum; (ii) it zero-pads the resulting signal (in
the time-domain) at times corresponding to interstation phase ve-
locities that are much slower or much faster than those typical of
a Rayleigh-wave fundamental mode in the microseism frequency
band (i.e. ∼1.5–4.5 km s–1) and (iii) the padded signal is finally
brought back into the frequency domain via forward Fourier trans-
form. The above operations have the effect of both smoothing the
spectrum and filtering out most of the arrivals that are not associ-
ated with fundamental-mode Rayleigh waves, overall benefiting the
subsequent analysis.

Once the cross-spectrum has been computed, its real part is taken
and possible values of phase velocity can be found at discrete an-
gular frequencies ωn, associated with the zero crossings of R{ρ}
(Fig. 2). In fact, if we consider the discrete set of values zm (m =
1, 2, ···, M) such that J0(zm) = 0, found by estimating a realistic
minimum value for c(ω), then

c(ωn) = ωn�

zm
(2)

(e.g., Ekström et al. 2009; Boschi et al. 2013) identifies all the
possible (frequency-dependent) phase velocities for which the zero
crossings of R{ρ} coincide with those of J0. Eq. (2) states that,
at a given angular frequency ωn, M values of c are in principle
possible, resulting in a velocity ambiguity that needs to be overcome
algorithmically. Our implementation of such algorithm relies on the
works of Kästle et al. (2016, 2021), and is briefly summarized below.

2.3 Resolution of the ambiguity

Kästle et al. (2016) noted that the number of possible phase veloc-
ities can be conveniently halved by accounting for only those zero
crossings where the derivatives of J0 and R{ρ} have the same sign.
The problem can be further simplified introducing a reference dis-
persion curve, that allows for eliminating all values of c that are too
far away from the reference. This is especially helpful at relatively
low frequencies, where the velocity ambiguity in question is rela-
tively small and consists of only few options largely spaced apart
from each other (Fig. 3b). Our algorithm starts picking the disper-
sion curve exactly at such relatively low frequencies, and extends
the dispersion curve iterating over progressively larger ones.

As in Kästle et al. (2021), instead of picking the phase velocities
at each zero crossing directly, we first create a heatmap from cosine
kernels around each crossing (see Fig. 3). The approach is similar to
a 2-D kernel-density estimation (KDE) (Parzen 1962). In practice,
for each zero crossing, we define an intensity that equals one at
its origin (i.e. at the value of frequency and velocity corresponding
to the zero crossing itself) and that decays with distance from it
as a cosine, so as to be zero at the border of the kernel (Fig. 3d).
This yields elliptical-shaped kernels around each zero crossing,
that overlap with each other. The final heatmap simply results from
the summation over all the overlapping kernels (Fig. 3b). Low-
quality crossings (i.e. those that are too close to each other or where
the amplitude of the adjacent maximum/minimum in the cross-
spectrum is too low (Fig. 3a), are ignored in the heatmap creation.

As anticipated, the picking of the dispersion curve starts at rel-
atively low frequencies (where the velocity ambiguity is not pro-
nounced) and continues iteratively towards larger ones. Successive
picks are taken where the intensity of the heatmap is maximized,
and the research for such maxima is guided by the derivative with
frequency of the reference curve together with the velocity value
picked at the last iteration. Whenever the heatmap intensity is too

low, or the slope of the thus retrieved dispersion curve deviates
too much from the reference curve, the iteration is skipped and no
velocity value is taken. The algorithm stops when the frequency
range spanned by the skipped iterations is larger than three times
the frequency spacing between adjacent zero crossings.

Finally, it is worth mentioning that SeisLib also allows for re-
trieving dispersion curves of Love and radially-polarized Rayleigh
waves, albeit not discussed in this study. These are calculated in a
very similar fashion as above, with the only differences that (i) cross-
correlations are performed on transverse- and radial-component
recordings and (ii) the zero crossings of J0(z) − J2(z) (with J2 de-
noting the second order Bessel function of the first kind) replace
those of J0 in the determination of the ambiguous velocities via
eq. (2) (Kästle et al. 2016).

2.4 Application to USArray data

To test the above implementation, we download vertical-component
recordings from the transportable component of USArray, consist-
ing of over 400 broad-band seismometers deployed in 1600 different
locations across the conterminous United States (Fig. 2). We pre-
process each seismogram so as to remove mean and linear trends,
before tapering (5 per cent) and bandpass filtering between 0.01 and
0.5 Hz; the pre-processed seismograms were also deconvolved with
the instrument response to get displacement, and downsampled to
1 Hz. (All the above operations are carried out automatically in
SeisLib.) The thus acquired data set covers a period range between
May 2004 and September 2019.

Similar to Ekström (2014), owing to the very large size of the
data set, we only cross-correlate station pairs characterized by inter-
station distances of 600 km or less, and for which at least six months
of simultaneous recordings are available. We carry out the cross-
correlations over one-hour-long time windows, overlapping with
each other by 50 per cent. Application of our algorithm resulted in,
overall, 144 272 dispersion curves spanning surface-wave periods
between 3 and 40 s. These have been selected so as to be charac-
terized by relatively large ratios between inter-station distance and
wavelength (>2) (e.g., Bensen et al. 2007).

Examples of dispersion curves, together with average, standard
deviation and number of measurements as a function of period are
illustrated in Fig. 4.

3 P H A S E V E L O C I T Y F RO M
T E L E S E I S M I C E A RT H Q UA K E S

3.1 Two-station method

To retrieve earthquake-based phase-velocity measurements, SeisLib
implements a two-station method (e.g., Meier et al. 2004; Soomro
et al. 2016; Magrini et al. 2020a). The two-station method builds
on the assumption that a fundamental-mode surface wave that has
travelled large distances (� 20◦) from the epicentre of a strong
earthquake (magnitudes �5.5) can be decomposed into a sum of
monochromatics, or plane waves (e.g., Ekström et al. 1997). This
assumption is particularly convenient if we consider two receivers
approximately lying on the same great-circle path as the epicentre.
As the wave front propagates from the first receiver to the sec-
ond, its amplitude gets modified (by interstation attenuation and/or
site effects) and its phase gets shifted according to interstation dis-
tance � and average velocity of propagation c. If attenuation is
small, the phase shift can be expressed, in the frequency domain, as
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(a) (c)

(b) (d)

Figure 3. Illustration of SeisLib’s algorithm (2.3) to extract dispersion curves from seismic ambient noise, applied to the receiver pair shown in Fig. 2. The
real part of the cross-spectrum (a) is first used to retrieve all possible velocities associated with its zero crossings (dots in b, coloured to better distinguish the
different branches). From the zero crossings (in the frequency–velocity plane), a heatmap is then created (background colour in b) using a KDE-like method,
through cosine kernels centred on them. This is illustrated in (d) for a single zero crossing, while (c) highlights the relation between the zero crossings seen in
(d) and the cross-correlation amplitude. The width and height of the kernels are tunable parameters in our algorithm, and are expressed in units relative to the
frequency spacing between adjacent crossings and the velocity spacing between parallel branches, respectively. In this study, we set them to 3 and 1.2. As seen
in (b), heatmaps are only computed in the most relevant area of the dispersion diagram, to optimize computational speed.

φ2(ω) − φ1(ω) = ω�/c(ω) (e.g., Magrini et al. 2020a), where the sub-
scripts denote the receiver and φ the phase.

It is understood that the observed phase delay is invariant under
2π translations, giving rise to an ambiguity in phase velocity

c(ω) = ω�

φ2(ω) − φ1(ω) + 2nπ
, (3)

where n is integer. In other words, the delay in the arrival time of the
wave front at the second receiver can be explained by different aver-
age interstation phase velocities (Fig. 5). And similar to Section 2.1,
such ambiguity needs to be solved algorithmically.

Retrieving (ambiguous) dispersion measurements is relatively
simple, and SeisLib’s implementation follows closely the iterative
procedure described, for example in Soomro et al. (2016) and Ma-
grini et al. (2020a). Consider two seismograms recording a strong
teleseismic earthquake, and assume the two receivers lie on the same
great-circle path as the epicentre. At a given frequency, (i) we first
narrow bandpass filter the two seismogram about this frequency;
then (ii) taper them, in the time domain, about (here, ±30 per cent)
the arrival time predicted by a reference model; finally, (iii) cross
correlate the resulting signals in the frequency domain to obtain
the phase delay in eq. (3). Having computed the phase delay, (iv)
we calculate c(ω) by simply replacing n with a finite set of integer
numbers (in our code, between –10 and 10), and discard all the
resulting values of c that fall outside of a plausible velocity range.
The dispersion measurements in Fig. 5 (and throughout the rest of

the section) were obtained following the same procedure, where we
discarded all velocities smaller than 2.5 or larger than 5 km s–1.

The above analysis is carried out on vertical-component record-
ings to measure the dispersion of vertically polarized Rayleigh
waves, and on horizontal-component recordings to measure that of
Love and radially polarized Rayleigh waves (transverse and radial
components, respectively). It has been pointed out that Love-wave
observations made by the two-station method are likely to be less
accurate than Rayleigh-wave ones, owing to overtone interference
(Foster et al. 2014b; Hariharan et al. 2022).

3.2 The issue of quality selection

To obtain an interstation dispersion curve based on the two-station
method, what can be considered as the ‘standard’ procedure consists
of collecting, for a given pair of receivers, dispersion measurements
from a relatively large number of teleseismic earthquakes (e.g.,
Meier et al. 2004; Darbyshire et al. 2004; Darbyshire & Lebe-
dev 2009). For each earthquake, one dispersion curve is typically
extracted based on arbitrary quality-selection criteria; these can in-
volve, for example, the distance of the picked velocities from a ref-
erence model, the smoothness of the considered picks, or the length
of the retrieved dispersion curve (Soomro et al. 2016). Such crite-
ria allow for assessing whether or not the dispersion curve should
be accepted, or what parts of it should be considered reliable, and
are motivated by the not uncommon occurrence of noisy dispersion
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Figure 4. (a) and (c): zero crossings (blue dots) and dispersion curves (red lines) obtained from continuous recordings of seismic ambient noise at different
pairs of receivers, as explained in Section 2. (b) and (d): ensemble of dispersion measurements (red dots) and dispersion curves obtained from earthquake
recordings at two different station pairs, as explained in Section 3. The background colour indicates the density of dispersion measurements (Pd). The bottom
panels report some statistics on the compiled data sets of dispersion curves. On the left, the median phase velocities (thick lines) and 10th and 90th percentiles
(colour shades) measured in the conterminous United States from seismic ambient noise (red) and teleseismic earthquakes (blue). The number of measurements
obtained for the two data sets as a function of period is reported on the right.

Figure 5. Left-hand panel: teleseismic earthquake (magnitude 6.5) recorded on the vertical component of a pair of receivers lying on the same great-circle
path as the epicentre. Right-hand panel: ambiguous dispersion measurements obtained from the recordings. Station codes and interstation distance are reported
in the title. The time associated with the recordings is expressed in seconds after the origin time of the earthquake.
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measurements. Once all earthquakes have been processed, and a
minimum number of dispersion curves has been retrieved for the
station pair considered, their average over frequency is generally
taken as the final, ‘robust’ interstation dispersion curve. In addi-
tion, those frequencies characterized by relatively large standard
deviations are optionally discarded (e.g., Soomro et al. 2016).

As a result of the above quality selections, a cumbersome re-
search for the optimal compromise between the quality of the re-
trieved dispersion curves and the number of station pairs rejected
in the procedure is often demanded by the data (e.g., Magrini et al.
2020a). Not finding the optimal compromise would therefore result
either in low-quality measurements or in a scarcity of them, with
implications, in both circumstances, for the subsequent velocity
imaging of the area of interest.

3.3 SeisLib’s approach

To overcome the above issue, we have designed an innovative pro-
cedure. Instead of extracting one dispersion curve for each event
and then taking their average over frequency, we compute the final
dispersion curve directly from all the available (ambiguous) disper-
sion measurements, using them as an ensemble. This is illustrated
in Fig. 6, where the dispersion measurements collected from 51
teleseisms have been gathered together and used to measure phase
velocity as a function of surface-wave period. The main ideas behind
our approach can be enumerated as follows.

(i)A reference model can be seen as the prior probability Pm that
a wave-train propagates, at a given period (or frequency), with a
certain speed (Fig. 6a).
(ii)The dispersion measurements collected from several events are
likely to cluster into different branches in the period-velocity plane;
these branches are expected to be more or less coherent depending
on the noisiness of the individual measurements, and one of those
will correspond to the average, true dispersion curve (Fig. 6b).
(iii)Similar to our Section 2.3, the density of dispersion measure-
ments can be mapped via a KDE-like approach; in turn, the resulting
map can be interpreted as the probability of observation Pd (Fig. 6b).
(iv)Such mapping allows for reducing the intrinsic noise of the
individual dispersion measurements without discarding any mea-
surement through arbitrary quality-selection criteria. In principle,
this favours reproducibility.
(v)Multiplying the probability of observation by the prior probabil-
ity should contribute to identifying the correct branch, by down-
weighting those regions in the period-velocity plane that are less
likely to describe the wave-train propagation according to the ref-
erence model (Fig. 6c).

In our codes, we define Pm as a m × n matrix, where m and
n denote the number of discrete velocities and periods that finely
sample the period-velocity plane (Fig. 6a). Each jth column of Pm

is initialized to a Gaussian function evaluated at each ith velocity v
(associated with the rows of Pm) and centred onto the reference ve-

locity μ (associated with the jth period), that is 1
σ
√

2π
exp(− (vi −μ)2

2σ 2 ).
(The possibly period-dependent standard deviation σ should be cho-
sen a priori.) The column is then normalized so that its maximum
is equal to one.

Note that, since each column of Pm is normalized by its maxi-
mum (rather than its sum), referring to the jth column of Pm as the
prior probability that a wave train propagates at speed μ is tech-
nically incorrect. In the following, however, we will stick to such

terminology, as the normalization criterion should affect neither the
effectiveness of our method nor its probabilistic interpretation.

The probability of observation Pd is defined in a very similar
fashion to the above, with the only difference that its entries are
initialized to the density of dispersion measurements; this is calcu-
lated, as in Section 2.3, through a KDE approach. Each column of
Pd is then normalized by its maximum (Fig. 6b).

Finally, we define the weighted probability of observation Pw =
Pm � Pd (� denotes element-wise multiplication), which incorpo-
rates the information associated with both the data and the reference
model (Fig. 6c). This is used to pick the inter-station dispersion
curve, as explained in the following.

3.4 Retrieval of the dispersion curve

The algorithm for picking the dispersion curve, based on the values
of Pw, can be described as a two-steps procedure. In both steps,
the key aspect considered by the algorithm (at a given period) is the
probability that the dispersion curve passes through a given velocity.
Such probability, as a function of velocity, typically resembles a
series of peaks and valleys (Fig. 6), where only one maximum
corresponds to the true phase velocity.

The first step begins with the identification of the correct disper-
sion branch in the phase-velocity ambiguity. This is done iterating
over the jth index of Pw, from longer periods (where the ambiguity is
less pronounced) to shorter periods. Whenever the probability pro-
file associated with the jth period presents a global maximum that (i)
exceeds a minimum value Pmin = 0.6 and (ii) is at least 100 per cent
higher than all the other maxima, the corresponding phase velocity
is included in the dispersion curve (Fig. 6d). This stage ensures that
only the most robust velocity branch in Pw is taken, and terminates
when for three consecutive iterations the above conditions are not
verified (Fig. 6e).

The second step involves picking the dispersion curve at shorter
periods. The logic is similar to the above, with only one main differ-
ence. At the jth period, the phase velocity of the following (shorter)
period is predicted by the slope of the reference curve. The pre-
dicted value cpred is then used to further ‘filter’ the probability pro-
file corresponding to the (j + 1)th column of Pw, multiplying it by
a skewed Gaussian whose maximum is centred onto cpred (Figs. 6f
and e). The use of a skewed Gaussian (rather than a Gaussian)
has the precise purpose of downweighting all probability peaks as-
sociated with faster velocities than cpred. This is justified by the
assumption that phase velocity decreases (approximately) linearly
with decreasing period, which is especially reasonable in the period
range investigated by a two-station method (∼15–150 s). In the re-
sulting (‘filtered’) probability profile, the phase velocity associated
with the global maximum is included in the dispersion curve only
if the peak in question (i) exceeds a minimum value of Pmin chosen
by the user (we found optimal values in the range 0.15–0.35) and
(ii) is at least 30 per cent higher than all the other peaks. If, at any
point of this second step, a value of phase velocity is rejected, the
iterations terminate.

3.5 Application to permanent stations from North
America

To verify the effectiveness of our approach, we download vertical-
component recordings of strong (magnitudes between 6 and 8.5)
teleseismic earthquakes from 90 permanent stations deployed in
North America (Fig. 7). We use all publicly-available seismic data
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1018 F. Magrini et al.

Figure 6. Illustration of our algorithm for retrieving earthquake-based phase velocities. (a) Prior probability Pm corresponding to a reference curve (blue
line). Note the dependency of the standard deviation of the prior model as a function of period: in this study, we chose it to decrease geometrically from 0.7
at 15 s to 0.4 at 150 s. (b) Density (or probability) of observations Pd associated with dispersion measurements (red dots) from 51 teleseismic earthquakes.
(c) Weighted probability of observation Pw = Pm � Pd used to retrieve a dispersion curve (red). Cross-sections of (c), corresponding to the coloured vertical
lines, are shown in (d), (e), (f) and (g). Panel (e) corresponds to the ending of the first step of the procedure described in Section 3.4 (the height of the global
maximum is slightly smaller than twice the second highest peak). The second step of such procedure is illustrated in (f) and (g). Multiplication of the probability
profile (pink line) by the skewed Gaussian (black line) is not shown for simplicity. When the resulting (‘filtered’) probability profile does not present a global
maximum which is at least 30 per cent larger than the other peaks, or that does not exceed Pmin (0.25 in this study) the iterations terminate. This circumstance
is shown in (g).

from January 2001 to June 2021, and selected shallow (<50 km)
earthquakes characterized by epicentral distances between 20◦ and
140◦ from a given receiver. We pre-process each seismogram so
as to remove mean and linear trends, before tapering (5 per cent)
and bandpass filtering between 0.01 and 0.5 Hz. We remove the
instrumental response to convert the downloaded seismograms to
displacement, and downsample to 1 Hz.

We first identify triplets of epicentres-receivers approximately
lying on the same great-circle path (maximum azimuthal deviation
of 7◦). Overall, we find 2092 station pairs with interstation distance
of 3000 km or less and aligned with at least 8 epicentres, to be used
in the calculation of dispersion curves. For each of such triplets, we
then collect dispersion measurements as explained in Section 3.1,
by analysing 75 discrete surface-wave periods linearly spaced in the
range 15–150 s. Finally, application of our two-station algorithm
on the dispersion measurements resulted in 2055 Rayleigh-wave
interstation dispersion curves, one for each pair of receivers.

Visual inspection of the thus retrieved dispersion curves points
to their robustness, and hence of our method. These are smooth
and faithfully reproduce the average trend with period of the den-
sity of observations (Pd) corresponding to the correct branch in the
ambiguous dispersion measurements. This is illustrated in Fig. 4,
together with the average dispersion curve and the number of mea-
surements as a function of period.

3.6 Reliability of the two-station method

In previous studies, it has been noticed that the phase velocities mea-
sured through a two-station method tend to be faster (on average, by
∼1 per cent) than those obtained, based on the same station pairs,
from the analysis of seismic ambient noise (e.g., Yao et al. 2006;
Foster et al. 2014a; Kästle et al. 2016). Such a systematic bias can be
attributed to the fact that, in the presence of structural heterogeneity,
the true propagation path of a surface wave between two receivers
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Surface-wave tomography using SeisLib 1019

Figure 7. Top panel: location of the 90 receivers (triangles) used to measure Rayleigh-wave dispersion curves from teleseismic earthquakes. These belong to
three different permanent networks, as indicated by the colours. Bottom panel: epicentres (stars) of the earthquakes used in the analysis.

is necessarily longer than the corresponding great-circle path. Be-
cause of the stronger spatial variations in surface-wave velocity at
relatively short periods (corresponding to larger deviations from
the predicted propagation path), the reported bias generally tends
to decrease with period (Chen et al. 2018; Magrini et al. 2020a).
A similar pattern is observed in our average dispersion curves in
Fig. 4, with slightly faster earthquake-based phase velocities at all
periods, from ∼1.2 per cent at 15 s to ∼0.5 per cent at 40 s, with a
minimum of ∼0.4 per cent at 32 s.

In principle, the above discrepancy could be addressed by estimat-
ing the impinging angle, as a function of period, of the earthquake-
generated wavefronts at the considered station pairs, so as to convert
the (measured) apparent phase velocities into ‘true’ ones. In Foster
et al. (2014a) and Chen et al. (2018), for example, the impinging
angles were sought using arrays of receivers, through a sort of grid-
search based on a beamforming-like analysis. To decrease the com-
putational burden inherent to that approach, Magrini et al. (2020a)
defined a cost function based on individual pairs of receivers, to
minimize the misfit between the vertical-component seismograms
and the Hilbert-transformed radial components rotated at different
angles.

Arrival-angle corrections, however, typically lead to discard rel-
atively large amounts of seismograms (for technical details, see
Foster et al. 2014a; Magrini et al. 2020a); as previously mentioned,
this is likely to negatively impact the outcome of a tomographic
study, especially when only few years of recordings are available.
Moreover, neither of the above approaches allows for estimating the

impinging angle of Love waves at the receivers; in the former case,
mainly due to overtone-interference effects (Foster et al. 2014a),
in the latter, simply because Love waves do not cause displace-
ment on the vertical components. Considering that the calculation
of Rayleigh- and Love-wave phase velocities often represents a pre-
liminary step before a joint inversion for, e.g., shear-wave velocity
and/or radial anisotropy, the benefits of correcting only one kind
of surface-wave velocity are to be carefully evaluated. Because of
these limitations, at the time of writing SeisLib does not natively
allow for estimating the impinging angles. We plan to work on this
matter in the future. In the meanwhile, we invite the interested read-
ers to consider the work of Magrini et al. (2022), where a simple
a posteriori correction was applied to the inter-station dispersion
curves at different periods; this significantly reduced the discrep-
ancy between ambient-noise and earthquake-based phase velocities
(for both Rayleigh and Love waves), without discarding potentially
important seismograms.

4 L E A S T - S Q UA R E I M A G I N G O F
L AT E R A L VA R I AT I O N S I N
S U R FA C E - WAV E V E L O C I T Y

Having calculated Rayleigh-wave dispersion curves, we show in
this section how such measurements can be used to map spatial
variations in surface-wave velocity. After giving a theoretical back-
ground on the inversion inherent to this task, we invert our data
set of phase velocities at different periods. In doing so, we show
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two different applications: the first focusing on the conterminous
United States, the second involving a much larger data set including
measurements collected at global scale.

4.1 An ill-conditioned problem

To map lateral variations in surface-wave velocity, SeisLib imple-
ments a least-square inversion scheme based on ray theory (e.g.,
Boschi & Dziewonski 1999). This method has been used in sev-
eral seismological studies (e.g., Zhang & Tanimoto 1991; Ekström
2014; Lu et al. 2018), and rests on the assumption that surface
waves propagate, from a given point on the Earth’s surface to an-
other, without deviating from the great-circle path connecting them.
Under this assumption, the traveltime along the great-circle path can
be written t = ∫

paths(φ(l), θ (l))dl, where φ and θ denote longitude
and latitude, and s the sought Earth’s slowness.

Let us consider a discrete parametrization of the Earth’s surface,
and assume each block (or grid cell) of such a parametrization
has constant slowness. The above integral expression can then be
reformulated in the discrete form

s = 1

L

∑
n

snln, (4)

where L is the length of the great-circle path and l the distance
travelled by the surface wave through the nth block. Eq. (4) repre-
sents the forward calculation that allows for retrieving the average
velocity of propagation between two points on the Earth’s surface
(that is what we measured in Sections 2 and 3), provided that the
(discrete) spatial variations in velocity (or slowness) are known. If
we now define the m × n matrix such that Ai j = l j/Li , where Li is
the length of the great circle associated with ith observation, we can
switch to matrix notation and write

A · x = d, (5)

where d is an m-vector whose kth element corresponds to the mea-
sured slowness, and x the sought n-vector whose kth element cor-
responds to the model coefficient sk.

Matrix A can be computed numerically in a relatively simple
fashion. For each pair of receivers for which a velocity measure-
ment is available, its ith entries can be found by calculating the
fraction of great-circle path connecting them through each of the
n blocks associated with the parametrization. In real-world seismo-
logical applications, however, the system of equation in (5) is often
strongly overdetermined, i.e. the number of data points is much
larger than the number of model parameters (m 	 n). This implies
that, although A is known, it is not invertible, and therefore (5)
cannot be solved exactly for x.

As pointed out by Boschi & Dziewonski (1999), the standard
procedure for overcoming the above issue would involve finding a
solution of (5) in least-squares sense, i.e. minimizing ‖A · x − d‖,

where ‖ v ‖= (
vT · v

) 1
2 is the Euclidean norm of a vector v. The

minimum x = (AT · A)−1AT · d can, indeed, be found analytically
(e.g., Menke 2012), but a further complication arises from the fact
that also (AT · A) is generally very close to being singular. In other
words, small perturbations in A might result in large changes in (AT

· A)−1, hence in the solution x.

4.2 Regularized least-squares solution

To overcome the above issues, we regularize the seismic inverse
problem by imposing a constraint on the smoothness of the model

parameters. This corresponds to the condition that the roughness
of the solution s(φ, θ ) be minimum, i.e.

∫

‖∇s(φ, θ )‖2d
 =

min (Boschi & Dziewonski 1999), where the surface gradient
∇ = 1

cos θ
φ̂ ∂

∂φ
+ θ̂ ∂

∂θ
, and φ̂ and θ̂ are the versors corresponding

to the directions of increasing longitude and latitude, respectively.
In discrete form, the above constraint can be written

‖R · x‖2 = xT · RT · R · x = min (6)

(e.g., Sambridge 1990), where the roughness operator R is depen-
dent on the parametrization. If we now assume that a solution x0 ∼
x is approximately known (which is generally the case at seismic
frequencies), the regularized least-squares solution

x = x0 + (
AT · A + μ2RT · R

)−1 · AT · (d − A · x0) (7)

(e.g., Aster et al. 2018) allows for retrieving the sought spatial
variations in velocity, where the scalar weight μ should be chosen
via L-curve analysis (Hansen 1999).

In our implementation of the imaging described thus far, the
Earth’s surface is parametrized by means of equal-area grids. These
prevent from artificially increasing the resolution of the resulting
maps at latitudes different than zero (the effect is more prominent
nearby the poles), and should therefore be preferred to Cartesian
grids when investigating relatively large areas. Similar to Bijwaard
et al. (1998) and Schaefer et al. (2011), SeisLib also allows for
adaptive parametrizations, with finer resolution in the areas charac-
terized by relatively high density of measurements. If we consider
a given block intersected by more than a certain number of intersta-
tion great-circle paths, the finer resolution is achieved by splitting
it in four sub-blocks, at the midpoint along both latitude and lon-
gitude. (In SeisLib, the operation can be performed an arbitrary
number of times.) It is the purpose of the following sections to pro-
vide a robust definition of the roughness operator R for both kinds
of parametrizations.

4.3 Roughness operator: equal-area parametrizations

For an equal-area grid consisting of n blocks spaced by � along
both φ̂ and θ̂ , the components of the surface gradient of a generic
model m evaluated at block i can be approximated as

1

cos θ

(
∂m

∂φ

)
i

≈ mi − mi E

�(
∂m

∂θ

)
i

≈ mi − mi S

�

(8)

(e.g., Boschi & Dziewonski 1999), where the subscripts E and S
denote the blocks bounding i in the eastern and southern directions,
respectively (Fig. 8). Plugging (8) into the integral expression for
the roughness of m, we can write∫




∥∥∇m (θ, φ)
∥∥2

d
 ≈
n∑

i=1

[(
mi − mi E

�

)2

+
(

mi − mi S

�

)2
]

�2

≈
n∑

i=1

[
(mi − mi E )2 + (mi − mi S)2] . (9)

To constrain the regularized least-squares solution (7) through
eq. (9), we define the n × n matrixes RE and RS (n is the number
of model parameters) incorporating the coefficients associated with
the partial derivatives (8) along the eastern and southern directions,
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respectively. Since the minimum of (9) does not depend on �, RE

and RS can be computed such that the only non-zero elements of
the kth row of RE are the kth and kEth ones, and the only non-zero
elements of RS are the kth and kSth ones, with their values being 1
and –1, respectively. Then

RT · R = RT
E · RE + RT

S · RS (10)

can substituted into eq. (7) to constrain the smoothness of the final
solution.

4.4 Roughness operator: adaptive parametrizations

We now consider an adaptive parametrization, characterized by a
non-constant spacing of the grid cells along θ̂ and φ̂, depending
on the density of measurements (Fig. 8). The area of each block is
therefore a function of location, and the right-hand side (RHS) of
eq. (9) should be modified accordingly.

To tackle this problem, first note that the number of blocks
in the parametrization could be increased by iteratively split-
ting the larger ones into four sub-blocks (as explained in Sec-
tion 4.2), until a constant spacing � remains across the whole
parametrization. This would correspond to translating the adaptive
grid into an equal-area one, whose roughness can be computed
as in eq. (9). Importantly, this procedure does not need to be car-
ried out in practice, but the inherent idea leads to useful algebraic
simplifications.

Consider, for example, the case of an adaptive parametrization
defined by square blocks of only two different dimensions, where
the area of the smaller ones is �2. By definition, the larger blocks in
such grid will have areas equal to 4�2, i.e., can be thought of as to be
constituted by four ‘fundamental blocks’ (Fig. 8). In general, if we
consider an adaptive grid that has been refined an arbitrary number
of times, the area of the ith block �2

i = ki�
2, where ki denotes the

number of fundamental blocks belonging to i and is either 1 (if i is a
fundamental block itself), 4, or a multiple of 4. The components of
the surface gradient of m evaluated at block i can then be expressed
as the average partial derivatives

〈
1

cos θ

(
∂m

∂φ

)
i

〉
≈ 1

ki

ki∑
j=1

mi j − mi j E

�

〈(
∂m

∂θ

)
i

〉
≈ 1

ki

ki∑
j=1

mi j − mi j S

�
,

(11)

where the subscript j identifies the fundamental blocks in i (Fig. 8)
and, if ki = 1, the two components correspond to those in (8).

It follows that

∥∥∇m (θ, φ)i

∥∥2 ≈ 1

k2
i

⎡
⎢⎣
⎛
⎝ ki∑

j=1

mi j − mi j E

�

⎞
⎠

2

+
⎛
⎝ ki∑

j=1

mi j − mi j S

�

⎞
⎠

2
⎤
⎥⎦ , (12)

and the LHS of eq. (9) can be rewritten

∫



∥∥∇m (θ, φ)
∥∥2

d
 ≈
n∑

i=1

1

k2
i

⎡
⎢⎣
⎛
⎝ ki∑

j=1

mi j − mi j E

�

⎞
⎠

2

+
⎛
⎝ ki∑

j=1

mi j − mi j S

�

⎞
⎠

2
⎤
⎥⎦�2

i

≈
n∑

i=1

1

ki

⎡
⎢⎣
⎛
⎝ ki∑

j=1

mi j − mi j E

⎞
⎠

2

+
⎛
⎝ ki∑

j=1

mi j − mi j S

⎞
⎠

2
⎤
⎥⎦ . (13)

Note that, if ki = 1 for all blocks i, expression (13) coincides with
(9), as expected for an equal-area parametrization.

Importantly, this allows us to regularize the least-squares solu-
tion (7) based on adaptive parametrizations that have been refined
an arbitrary number of times. Similar to the previous section, the
minimum of (13) does not depend on �, and computing the co-
efficients of RE and RS from (11) is straightforward. To fix ideas,
we might consider the extremely simple case of a fundamental grid
consisting of only 9 blocks, 4 of which are merged to form a larger
adaptive cell (Fig. 8). According to our convention, in this case the
roughness operators are

RE =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 0 0 0
0 0 0 0.5 −0.25 −0.25
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)

and

RS =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−0.25 −0.25 0 0.5 0 0
0 0 −1 0 1 0
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (15)

In practice, the definition of RS is slightly complicated by the lat-
itudinal changes in the longitudinal extent of blocks within any
equal-area grid. This results in many pairs of east–west strings of
blocks, sharing their southern–northern boundary, being offset with
respect to one another, as apparent from Fig. 8. Whenever this is the

case, the jth term in the sum 1
ki

∑ki
j=1

(
mi j − mi j S

)2
in eq. (13) are

weighted by the length of south–north boundary shared by blocks ij

and ijS.

4.5 Numerical validation

To verify the validity of the above derivation, we carried out a numer-
ical test. In practice, we first defined an equal-area parametrization
consisting of 5◦ × 5◦ blocks at the equator (the increment in longi-
tude between neighbouring blocks is gradually increased from the
equator to the poles to preserve the area). We then refined all blocks
of longitudes −120◦ < φ < 120◦ and latitudes −60◦ < θ < 60◦,
splitting them in four sub-blocks. The same operation was repeated
so as to refine a second time all blocks of longitudes −60◦ < φ <
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Figure 8. Our definition of the partial derivatives of a generic model m with respect to φ and θ , in the cases of equal-area (left-hand panel) and adaptive
(right-hand panel) parametrizations. Block indexes are reported, in bold, on their upper left. In general, an adaptive parametrization is characterized by the
presence of blocks of different size. The smallest ones can be thought of as the fundamental blocks of larger ones (as shown by red indexes and dashed lines).
The idea can be exploited to approximate the roughness of the model, via eq. (13), and to compute RE and RS via eqs. (14) and (15). On the right-hand side, to
decrease the notational burden, the subscript j in eq. (11) has been omitted in the model parameters m1, m2, m3, m5 and m6, where it has a constant value of 1.

60◦ and latitudes −30◦ < θ < 30◦. The thus obtained parametriza-
tion, illustrated in Fig. 9, consists of 7822 blocks: 694 of 5◦ × 5◦,
2744 of 2.5◦ × 2.5◦ and 4384 of �2 = 1.25◦ × 1.25◦.

We then defined the arbitrary function

f (φ, θ ) = [
sin(aφ) + sin(bθ )

]
cos

(
πθ

180

)
sin

(
πφ

180

)
, (16)

where a = π/60 and b = π/30 (Fig. 9), and found analytical formulae
for its partial derivatives

∂ f

∂φ
= 1

180
cos

(
πθ

180

)(
π cos

(
πφ

180

)[
sin(aφ) + sin(bθ )

]

+ 180a sin

(
πφ

180

)
cos(aφ)

)

∂ f

∂θ
= 1

180
sin

(
πφ

180

)(
180b cos

(
πθ

180

)
cos(by)

−π sin

(
πθ

180

)[
sin(aφ) + sin(bθ )

])
. (17)

Finally, we used (17) to calculate the norm of the gradient of f for
each block of the parametrization. We did so both analytically,

∥∥∇m (θi , φi )
∥∥ =

√(
∂ f

∂φ
(θi , φi )

)2

+
(

∂ f

∂θ
(θi , φi )

)2

, (18)

and numerically,

∥∥∇m (θi , φi )
∥∥ ≈

√(
RE

�
· m

)2

i

+
(

RS

�
· m

)2

i

, (19)

where m is the vector of 7822 elements whose ith element consists
of f(φi, θ i).

By comparison of the lateral variations of (18) and (19), shown in
Fig. 10, we conclude that the approximate expression (13) is essen-
tially correct. Discrepancies are limited to the boundaries between
regions of different adaptive-grid density, and are comparable with

the errors inherent in discretizing a relatively rapidly varying func-
tion on a relatively coarse grid. We conclude that expression (13) is
a valid measure of adaptive-grid model roughness.

4.6 Phase-velocity maps of the conterminous United
States

We apply in this section our least-squares inversion algorithm to the
previously calculated dispersion curves, to obtain phase-velocity
maps of the conterminous United States. At surface-wave periods
less or equal to 40 s, corresponding to the period range spanned
by our ambient-noise phase velocities, we initially parametrize the
study area with equal-area blocks of 2◦ × 2◦ (Figs. 11a and d). We
then refine, up to a maximum number of three times, all blocks in-
tersected by at least 500 interstation great-circle paths, so as to reach
a fine resolution of 0.25◦ in the areas characterized by a relatively
high density of measurements (Figs. 11b and e). At longer periods
(>40 s), where we have a relatively small number of (earthquake-
based) measurements (see Fig. 4), we initialize the parametrization
with 1.5◦ × 1.5◦ blocks, and refine all those intersected by more
than 20 rays up to two times, to obtain a maximum resolution of
0.35◦. (Note that the thresholds involved in the refinement of the
parametrization, e.g., 500 or 20, are necessarily arbitrary: in SeisLib,
they can be tuned by the user in a very simple fashion, according to
the details of the considered tomographic application.)

At all investigated periods, we first compile the coefficients of the
data kernel A and of the roughness operator RT · R, as explained in
the previous sections. We then solve eq. (7) for x, using a constant
reference model x0 corresponding to the average interstation slow-
ness at the considered period, and an appropriate roughness damping
μ based on L-curve analysis. Finally, we retrieve the sought phase-
velocity structure by taking the inverse of x. (In SeisLib, all these
operations are carried out automatically.) Phase-velocity maps at
the periods of 8 and 30 s are shown in Fig. 11 (panels c and f).
Several other maps are shown in the supplementary information
associated with this paper.
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Figure 9. Adaptive grid and lateral variations of the function f defined in eq. (16), used to verify the validity of the approximate expression (13).

Figure 10. Results of the numerical test to verify the validity of the approximate expression (13). Top panel: lateral variations of the norm of the gradient of
f, defined in eq. (16), as calculated through the direct implementation of eq. (18) (left-hand panel) and eq. (19) (right-hand panel). Bottom panel: discrepancy
between the above maps calculated at each parametrization block, shown as a function of latitude and longitude (left-hand panel) or as a histogram (right-hand
panel). The discrepancies are generally close to zero compared to the values of the functions that are compared, confirming that our approach is valid.
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Figure 11. Illustration of the procedure followed to obtain phase-velocity maps (panels c and f, in km s–1) at surface-wave periods of 8 s (left-hand panel) and
30 s (right-hand panel). At both periods, we defined an initial, equal-area parametrization of 2◦ × 2◦ (a and d). We then refined each block iteratively up to
a maximum number of three times, if intersected by at least 500 interstation great-circle paths. The resulting adaptive grids are shown in panels (b) and (e),
where the background colour indicates the ray-count per block. In general, a higher resolution is achieved in the central part of the study area, as constrained
by a larger number of dispersion measurements.

Visual inspection of the thus retrieved images suggests that the
spatial variations in phase-velocity reflect actual Earth’s features
at all periods. At relatively long periods (≥20 s), the maps show a
large-scale division of the continent into a slower west and a faster
east. Such division is well documented (e.g., Nettles & Dziewoński
2008; Ekström 2014, 2017), and ascribed to the transition between
the tectonically deformed west and the stable, cratonic part of North
America. At shorter periods, we observe relatively strong lateral
variations in velocity, corresponding to known geologic domains.
Among the most prominent ones, we find relatively low velocities
in regions characterized by thick sedimentary strata (e.g., Gulf of
Mexico) and/or undergoing active tectonics processes (i.e. most of
the Pacific Mountain system). We also find evidence of the surface
expression of the mid-continent rift, in the form of lower-than-
average velocities extending from Lake Superior to Kansas.

To further substantiate the robustness of our results, we compare
them quantitatively with the Rayleigh-wave velocity maps obtained
by Jin & Gaherty (2015) and Ekström (2017). To do so, we inter-
polate their maps on our grid and calculate, at a given period, (i)
the Pearson correlation coefficient, to quantify the extent of spatial
correlation between our maps and theirs and (ii) the relative differ-
ences in velocity at each block of the parametrization. The outcome
of this analysis is illustrated in Fig. 12. At all periods, we find that
our maps are highly correlated both with those of Jin & Gaherty

(2015) and with those of Ekström (2017), with an overall average
correlation coefficient of 0.96. Moreover, we observe very small
mean relative differences, with average absolute values of 0.14 ±
0.1 per cent. These results not only point to the robustness of our
inversion scheme, but also to the goodness of the algorithms, ex-
plained in Sections 2 and 3, used to calculate ambient-noise and
earthquake-based phase velocities.

4.7 Global-scale phase-velocity maps

SeisLib was designed to allow for an effortless joint use of mul-
tiple data sets, with in mind those areas for which independent
measurements (possibly from different studies) are available. To
conclude this section, we show an application of our library to a
similar circumstance, and in particular to the least-squares imaging
of Rayleigh-wave velocity at global scale.

To do this, we join our North American phase-velocity measure-
ments at 40 s (involving both our ambient-noise and earthquake-
based dispersion curves) with two different, independent data
sets: one collected by Kästle et al. (2018) in a large region
covering most of central Europe; the other consisting of one-
station dispersion measurements collected at global scale by
Ekström et al. (1997). Overall, this joint data set consists of 289 706
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Figure 12. Pearson correlation coefficient (top panel) and relative differences (bottom panel) between our phase-velocity maps and those of Jin & Gaherty
(2015) (blue) and Ekström (2017) (red). In the bottom panel, the extent of the vertical bars defines the standard deviation of the relative differences, with the
mean reported in the middle as a thin horizontal line. Positive percentage values correspond to larger values in our maps. In the period range 15–40 s, indicated
by the yellow shades, we derived our maps from a joint inversion of earthquake-based and ambient-noise dispersion curves.

measurements: 179 657 from Ekström et al. (1997) and 19 194 from
Kästle et al. (2018).

Similar to the previous section, we initially adopt an equal-area
parametrization defined by 1,654 relatively large blocks of 5◦ × 5◦

(Fig. 13a). In three steps, we then refine all blocks intersected by
at least 5000 (first step), 4000 (second step) and 3500 (third step)
great-circle paths, each associated with a velocity measurement. The
resulting adaptive grid consists of 3205 blocks, and is characterized
by a finest resolution of 0.625◦ (Fig. 13b). Finally, we solve the
inverse problem in the same fashion as above.

The retrieved lateral variations, shown in Fig. 13, should be com-
pared with global-scale surface-wave velocity images obtained in
previous studies (e.g., Ekström et al. 1997; Larson & Ekström
2001). Similar to these studies, we find relatively low velocities
associated with active plate boundaries, while higher velocities char-
acterize tectonically stable regions. Such structures can be seen at
a relatively coarse resolution (i.e. 5◦) across most of the globe. In
North America and in central Europe, however, our maps are char-
acterized by a relatively high resolution, owing to the dense number
of measurements available in these regions. In North America, the
enhanced resolution allows us to discriminate most of the features
already discussed in the previous section. In Europe, we can clearly

identify the relatively low velocities associated with the Alpine
chain contrasting with the higher ones in northern Europe, as in
Kästle et al. (2018).

Based on these results, we conclude that SeisLib allows for ro-
bustly retrieving lateral variations in surface-wave velocity at global
scale, even in presence of strong inhomogeneities in the data cov-
erage. Overall, loading the data into memory, defining and refin-
ing the parametrization, and solving such a large inverse prob-
lem took 51.5 s on the first author’s machine, a 6-core (AMD
Ryzen 5 5600H) laptop with 16 Gb of RAM. This testifies the
computational efficiency of SeisLib, which exploits the Cython
compiler framework to compute the coefficients of the A matrix
at C-like speed. The high resolution achieved in North America
and Europe, in general, also points to the effectiveness of adap-
tive grids in seismic imaging. Adaptive tomography is the best
way to maximize resolution in global models, wherever data cover-
age makes it possible; global models parametrized with uniformly
distributed, local basis functions (or global basis functions such
as spherical harmonics) would require a much more significant
computational effort to achieve the same resolution in well sam-
pled areas—and resolution would still be poor in undersampled
ones.
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Figure 13. Same as Fig. 11, but obtained at global scale combining our North American phase velocities at 40 s with those of Ekström et al. (1997) (from a
global distribution of earthquakes and stations) and Kästle et al. (2018) (collected in central Europe).

5 R AY L E I G H - WAV E AT T E N UAT I O N
F RO M S E I S M I C A M B I E N T N O I S E

As anticipated, SeisLib also allows for estimating Rayleigh-wave
attenuation as a function of frequency, based on seismic ambient
noise recordings. As opposed to the problem of calculating phase
velocities, which are only related to the phase of the empirical
Green’s function, estimates of attenuation should rely on its ampli-
tude. Previous studies showed how the amplitude of the empirical
Green’s function should be treated with caution, because of its
sensitivity to parameters such as the distribution of noise sources
(e.g., Tsai 2011). Accordingly, Magrini & Boschi (2021) designed a
procedure that should contribute to ‘regularizing’ the subsequent in-
version for the Rayleigh-wave attenuation coefficient α, as verified
by a suite of numerical tests. Such procedure builds on the previous
work of Boschi et al. (2019, 2020), and is summarized in the next
section.

5.1 Grid-search for the attenuation coefficient

Let us consider a relatively dense array of receivers, and focus on two
of them located at xA and xB. Following Magrini & Boschi (2021),
we can rewrite the Rayleigh-wave empirical Green’s function

�
{

u(xA, ω)u∗(xB, ω)〈|u(x, ω)|2〉
x

}
≈ J0

(
ω�

c

)
e−α(ω)�, (20)

where u denotes the ambient-noise recording in the frequency do-
main, ∗ complex conjugation and � interstation distance. As in
eq. (1), the LHS of (20) is calculated by ensemble averaging the
normalized cross-spectra associated with the receiver pair in ques-
tion, over a sufficiently large number of time windows. The normal-
ization term 〈|u(x, ω)|2〉x corresponds to the average power spectral
density (PSD) recorded by the seismic array. Similar to empirical
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normalization terms such as whitening (used in Section 2) or one-
bit (e.g., Bensen et al. 2007), PSD-normalization serves to mitigate
the effect of anomalous signals such as large or nearby earthquakes,
but should be considered preferable to more robustly constrain the
amplitude of the empirical Green’s function (Boschi et al. 2019).

Eq. (20) allows to formulate an inverse problem to constrain α

from the data. The strategy proposed by Magrini & Boschi (2021),
implemented in SeisLib, consists of minimizing the cost function

C(α, ω) =
∑
i, j

�2
i j

∣∣∣∣∣env

[
�
{

u(xi , ω)u∗(x j , ω)〈|u(x, ω)|2〉
x

}]

− env

[
J0

(
ω�i j

ci j (ω)

)
e−α(ω)�i j

]∣∣∣∣∣
2

, (21)

where the subscripts i and j denote the pair of receivers and the
weight �2

i j is used to compensate for the decrease in the amplitude
of J0 with interstation distance, due to geometrical spreading. The
envelope function env is implemented by fitting a combination of
cubic splines to the maxima of the absolute value of its argument,
and has beneficial effects on the stability of the inversion (e.g.,
Boschi et al. 2019).

In eq. (21), phase velocity c is assumed to be known, i.e., it should
be calculated in a preliminary step as explained in Section 2. The
minimum of C(α, ω) can then be found via ‘grid-search’ over α, for a
discrete set of values of ω. The alert reader might notice at this point
that, since the sum is carried out over all possible combinations of
station pairs belonging to the considered array, only one attenuation
curve can be extracted from such minimization. This strategy, albeit
in a sense restrictive, has been shown to yield robust estimates of
the frequency dependency of α even in presence of a heterogeneous
distribution of noise sources (Magrini & Boschi 2021). If the array
has good azimuthal coverage, using all station pairs as an ensemble
in the minimization of C(α, ω) allows for sampling most azimuths
of wave propagation. In turn, this should ‘regularize’ the inversion
by decreasing unwanted effects due to inhomogeneities in the dis-
tribution of the noise sources, or compensating for a non-perfectly
diffuse ambient seismic field.

5.2 Lateral variations of the attenuation coefficient:
conterminous United States

To illustrate the potential of SeisLib in estimating the lateral varia-
tions in the Rayleigh-wave attenuation coefficient, we apply it here
to the continuous seismograms from the transportable component
of USArray, previously used in Section 2. For this purpose, US-
Array represents an ideal playground: its very dense distribution
of receivers can be exploited to subdivide the study area in many
sub-arrays, so as to retrieve one attenuation curve for each of them.

To do so, we subdivide the study area in relatively large, equal-
area blocks of 2.5◦ × 2.5◦, overlapping along both longitude and
latitude by 50 per cent. Each of these overlapping blocks identifies
a subset of receivers of the whole USArray (Fig. 14), which is then
processed by SeisLib to (i) subdivide their simultaneous recordings
into relatively small time windows (here, 6-hour long); for each
of these time windows, SeisLib (ii) cross-correlates the recordings
from all pairs of receivers and (iii) normalizes the cross-correlations
by the average PSD of the subarray. Having computed the PSD-
normalized cross-correlations, these are used to (iv) retrieve the
LHS of eq. (20), by ensemble average. For the same station pairs

used to obtain the cross-spectra, (v) their corresponding Bessel func-

tions J0

(
ω�

c(ω)

)
are then computed, where phase velocity c should

be retrieved in a preliminary step, as in Section 2. Finally, (vi) the
envelopes of the normalized cross-spectra and of the corresponding
Bessel functions are taken, and eq. (21) is used to retrieve α as a
function of frequency (Fig. 14). Here, we search for the minimum
of C(α, ω) among 350 values of α, geometrically spaced between 5
× 10−8 and 10−4 m−1.

Having retrieved one attenuation curve per subarray, these can
be used to map the lateral variations of α at discrete frequencies. In
SeisLib, this is done by first creating a new equal-area grid, whose
blocks should be smaller than those used to identify the overlapping
subarrays described above. Then, the attenuation value attributed to
the ith block of such parametrization is

α′
i (ω) =

∑
k αk(ω)Nk∑

k Nk
, (22)

where the subscript k denotes each block of the coarsest parametriza-
tion (corresponding to the kth subarray) that intersects (or contains)
the block i, and the weight Nk the number of cross-spectra used in
the inversion for αk. Incidentally, Magrini et al. (2021) weighted
the above average by the lengths of ray-path segments crossing
the block i associated with each receiver pair, resulting in slightly
different results.

An example of a Rayleigh-wave attenuation map, obtained at the
surface-wave period of 4 s through eq. (22) and using a parametriza-
tion of 1◦ × 1◦, is shown in Fig. 14. A detailed interpretation of the
map in question is beyond the scope of this study (the interested
reader will find a thorough discussion in Magrini et al. 2021). In
general, the features visible in our image are analogous to those in
Magrini et al. (2021). We observe relatively high attenuation in the
western North America and in large sedimentary basins (e.g., Gulf
of Mexico), as opposed to the lower attenuation associated with the
(tectonically more stable) east.

6 C O N C LU S I O N S

The purpose of this paper was to illustrate the functionalities of
SeisLib, an open-source Python package for seismic imaging from
the local to the global scale. As opposed to several other packages
available for download (e.g., Jiang & Denolle 2020; White et al.
2020), SeisLib has been designed to encompass a wide variety of
tools to obtain seismic images of the subsurface. At the time of
writing, these involve routines to download, process, and invert
surface-wave velocity measurements, and we plan to implement
additional features for body-wave analysis in the near future.

We structured this article so as to emulate a real-world applica-
tion of surface-wave tomography, based on the calculation of both
seismic-ambient-noise and earthquake-based Rayleigh-wave phase
velocities. In doing so, we first illustrated the theoretical and algo-
rithmic background of each SeisLib module, and then applied them
to seismic data (downloaded and pre-processed through SeisLib
itself) from North America. Earthquake-based dispersion curves
are calculated in SeisLib using the two-station method (e.g., Meier
et al. 2004), which we implemented by revisiting and improving the
earlier work of Magrini et al. (2020a). The algorithm for retrieving
ambient-noise dispersion curves builds on the study of Kästle et al.
(2016) and has been optimized to process very large data sets such
as that of USArray.

To map lateral variations in surface-wave velocity, SeisLib re-
lies on a least-squares inversion scheme based on ray theory
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Figure 14. Normalized cost function C(α, ω) (top panel) obtained from the inversion of two different subarrays (bottom left-hand panel) of the USArray. The
red and yellow dots in the top panels indicate the minima of the cost function, i.e., the retrieved attenuation curve for the two seismic arrays (which are coloured
accordingly). The bottom right-hand panel shows the attenuation map retrieved at the period of 4 s through eq. (22), based on an equal-area parametrization of
1◦ × 1◦ (Section 5.2).

(e.g., Boschi & Dziewonski 1999). Our implementation allows for
both equal-area and adaptive parametrizations, with the latter be-
ing characterized by a finer resolution in the regions of relatively
high density of measurements. We defined rigorously the roughness
operator (used to regularize the seismic inverse problem) for both
circumstances, and verified our findings numerically. The roughness
of a generic model is given, in discrete form, by eq. (13). Impor-
tantly, this equation holds for both equal-area grids and adaptive
grids that have been refined an arbitrary number of times, as far as
the area of the larger blocks in the considered parametrization is a
multiple of that of the finest blocks. To our knowledge, this general
result does not appear in the earlier seismological literature.

We applied the above inversion scheme to our phase-velocity
measurements, amounting to 144 272 ambient-noise and 2055
earthquake-based dispersion curves. In the broad period range 4–
100 s, our maps of North America are highly correlated (on aver-
age, 96 per cent) with those of Ekström (2014, 2017) and Jin &
Gaherty (2015), obtained with data and methods that are entirely
independent from ours. Very small mean relative differences (0.14
± 0.1 per cent) are also found between our maps and those of the
same authors, confirming the robustness of the algorithms used to
calculate the dispersion curves and to map the lateral variations.

In the last section of the manuscript, we briefly illustrated the
potential of SeisLib in retrieving Rayleigh-wave attenuation as a
function of frequency, from seismic ambient noise. Our implemen-
tation builds on the strategy of Magrini & Boschi (2021), which ex-
ploits a dense seismic array to obtain one attenuation curve from the
inversion of all available cross-spectra, using them as an ensemble
of measurements. This approach can be used to map Rayleigh-wave
attenuation, by identifying several (spatially overlapping) subarrays
in the area of interest so as to calculate one attenuation curve for
each of them. We followed this logic to obtain a Rayleigh-wave
attenuation map of the conterminous United States, at the period of
4 s, which is consistent with the existing literature.

Our results suggest that SeisLib can be used reliably in seis-
mic imaging. Importantly for novice programmers, its modular

architecture makes it easy to carry out long processing tasks in
an automated fashion, and its optimized speed allows to handle
very large data sets even in presence of limited computational re-
sources. The latest release of our library can be downloaded at
https://pypi.org/project/seislib/.
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Kästle, E.D., Molinari, I., Boschi, L. & Kissling, E., the AlpArray Working
Group, 2021. Azimuthal anisotropy from eikonal tomography: example
from ambient-noise measurements in the AlpArray network, Geophys. J.
Int., 229(1), 151–170.

Larson, E.W. & Ekström, G., 2001. Global models of surface wave group
velocity, in Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Sur-
face Waves, pp. 1377–1399, Springer.

Lecocq, T., Caudron, C. & Brenguier, F., 2014. MSNoise, a python package
for monitoring seismic velocity changes using ambient seismic noise,
Seismol. Res. Lett., 85(3), 715–726.

Lu, Y., Stehly, L., Paul, A. & Group, A.W., 2018. High-resolution surface
wave tomography of the European crust and uppermost mantle from
ambient seismic noise, Geophys. J. Int., 214(2), 1136–1150.

Magrini, F. & Boschi, L., 2021. Surface-wave attenuation from seismic
ambient noise: numerical validation and application, J. geophys. Res.,
126(1), e2020JB019865.

Magrini, F., Diaferia, G., Boschi, L. & Cammarano, F., 2020a. Arrival-angle
effects on two-receiver measurements of phase velocity, Geophys. J. Int.,
220(3), 1838–1844.

Magrini, F., Diaferia, G., Fadel, I., Cammarano, F., van der Meijde, M.
& Boschi, L., 2020b. 3-D shear wave velocity model of the lithosphere
below the Sardinia–Corsica continental block based on Rayleigh-wave
phase velocities, Geophys. J. Int., 220(3), 2119–2130.

Magrini, F., Boschi, L., Gualtieri, L., Lekić, V. & Cammarano, F., 2021.
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Figure S1. Phase velocity maps of the conterminous United States
at different periods. Note the size of the different blocks constituting
the parametrization, which varies with location and period depend-
ing on the density of measurements. In general, a higher resolution
is achieved in the central part of the study area, as constrained by a
larger number of interstation dispersion curves.

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/231/2/1011/6613195 by C

N
R

S user on 08 April 2023

http://dx.doi.org/10.1111/j.1365-246X.2011.05263.x
http://dx.doi.org/10.1073/pnas.93.4.1591
http://dx.doi.org/10.1093/gji/ggv462
http://dx.doi.org/10.1029/2011JB008483
http://dx.doi.org/10.1785/0220190318
http://dx.doi.org/10.1111/j.1365-246X.2006.03028.x
http://dx.doi.org/10.1016/0031-9201(91)90075-S
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggac236#supplementary-data

