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Surface Electromyographic Signals as a Tool for Biomechanics 

and Muscle Coordination Analysis.  

Introduction 

The surface electromyographic signal (EMG1) is a recorded variation of electrical 

potential in a given point of the skin, created due to electrical activity of the muscle of interest. 

The electrical activity always accompanies muscle mechanical activity and may be used to 

analyze the latter. EMG is used in medicine, biomechanical studies, analysis of motor control 

strategies and rehabilitation. The purpose of this chapter is to present the bases of EMG signal 

generation physiology, EMG acquisition techniques and their limitations, as well as the possible 

applications of EMG signal in biomechanics and muscle coordination analysis. A reader, 

interested in learning more about electromyography can find a detailed and complete 

presentation of EMG in textbooks [1–4] and in survey article [5]. The detailed recommendations 

about the EMG acquisition procedure may be found in European project SENIAM 

recommendations [6] or more recent CEDE project [7]. 

Physiological bases of the surface electromyographic signal generation  

The activity of the muscle as a whole is determined by activity of the motor units (MU) 

of the muscle, which are the smallest functional units of the motor system. Each MU consists of 

a set of extrafusal (standard) muscle fibers and an α-motor neuron, innervating these fibers. The 

number of fibers, innervated by the same motor neuron is known as an innervation number. 

Below we will show how the EMG signal is created, starting from the muscle fiber and finishing 

by a whole muscle. 

 

Figure 1. EMG generation. (a) A single fiber action potential (SFAP) generation. A depolarized zone in a muscle 

fiber, located between the letters A and B, propagates rightwards. The circular lines show the current flow around 

the depolarized zone, which consist in ionic and capacitive current. (b) A motor unit action potential (MUAP) 

generation. An activation from α-motor neuron propagates to underlying muscle fibers and creates action 

potentials, propagating in both sides from the innervation zone. A jitter between action potentials in different fibers 

is shown. (c) An EMG signal generation. Different MUs are recruited according to size principle, from smallest 

(MU1) to largest (MU2). 

                                                           
1 The surface electromyographic signal may be denoted as sEMG, when one wants emphasize 

that the signal is recorded with surface electrodes, contrary to intramuscular recordings. In this 

chapter only the surface EMG will be discussed, therefore we will use an acronym EMG to 

denote the surface electromyographic signal. 



The action potential of single fiber  

The action potential arrives from motor neuron to a motor end plate (neuromuscular 

junction) of a muscle fiber, which is usually located in the middle of a fiber. It results in a local 

depolarization of the muscle-fiber membrane (the sarcolemma), creating a single fiber action 

potential (SFAP, Figure 1a). Next, two depolarized zones start to propagate along the muscle 

fiber from the neuromuscular junction towards both fiber endings. One depolarized zone has a 

length of few millimeters. In Figure 1a, one depolarized zone is shown between the letters AB. 

The velocity with which the action potential propagates depends principally on fiber type and 

diameter, and is called a conduction velocity (CV). The typical CV values are 3-5 m/s. When the 

single fiber action potential vanishes at the tendon junction, it generates a non-propagating burst. 

This phenomenon is known as end-of-fiber effect. 

The depolarization zone is surrounded by electric current flow, which consists in ionic 

and conductive current (Noble, 1966). This electric current flow passes through by biological 

tissues, which act as volume conductor, and creates a SFAP “image”, observed at the skin, which 

may be measured by surface electrodes [9].  

The activation, arriving from a motor neuron, activates all muscle fibers, composing the 

same motor unit, which results in motor unit action potential generation. 

The action potential of individual motor unit  

The action potential arriving from a motor neuron separates to different branches 

(telodendria) and consequently activates all underlying muscle fibers. The activity of all muscle 

fibers of a MU forms motor unit action potential (MUAP). The activation arrives to all muscle 

fiber end plates almost simultaneously; however, the conduction time for different SFAPs may 

be different because of the differences in end-plate locations and SFAP propagation velocities.  

The latter are results of the variability of fiber diameters and lengths. Hence, the constituent 

SFAPs, generated by different fibers of the MU, are not perfectly synchronous. Consequently, 

the difference between from single fiber to MUAP is not simply the amplification of SFAP 

amplitude and the waveform of a MUAP is more complicated than a waveform of composing 

SFAPs. The muscle consists of different numbers of MUs, which may be of different type and 

size. 

The resulting interferential pattern of a muscle 

All active MUs in the muscle contribute in creating an interferential pattern, which is a 

distribution of the potential on the skin. This spatial and temporal interference pattern is the 

result of many physiological and anatomical factors, among them the firing behavior of MUs and 



fiber type composition of the muscle [5]. When these potentials are recorded from the skin, the 

obtained signal is called a surface electromyographic signal. The EMG is a sum of MUAP train 

from different MUs of the muscle, recruited according to the size principle from smallest to 

largest. The surface EMG signal from the muscle is acquired by means of surface electrodes, 

according to a procedure, presented in the next section.  

EMG signal acquisition methods 

Below we briefly introduce the basis of surface EMG acquisition. The surface EMG 

signal is recorded by surface electrodes placed at the skin over the muscle of interest, therefore 

the surface electrodes are easier in use than intramuscular electrodes and their application is 

painless. According to use of conductive gel, the electrodes may be wet or dry. Wet electrodes 

contain a contact area, which is either already covered by a conductive gel (pre-gelled electrode) 

or must be covered with a gel by a user before application. Dry electrodes usually represent a 

metallic contact area, which is applied directly to the skin. Wet electrodes allow lower electrode-

skin contact impedance; dry electrodes has a higher impedance and may be applied when the use 

of wet electrodes is not possible (e.g., prosthesis control).  

The physics of surface electrode recordings 

An electrode, either dry or wet, contains a conductive element, which is put in contact 

with an electrolyte. In case of wet electrodes, the electrolyte is a conductive gel, covering the 

electrode, which is, in turn, in contact with the electrolyte of the skin (e.g. a sweat, extracellular 

and intracellular fluid). In case of dry electrodes, the electrolyte is a physiological electrolyte of 

the skin. An electrode with electrolyte forms an electrochemical half-cell (Figure 2). The carries 

of charge are electrons in electrode and ions in electrolyte. The interface between the electrode 

and electrolyte forms an electrical double layer. The electrode side of the double layer is formed 

by the excess (or deficiency) of the electrons. The electrolyte side of double layer is formed by 

ions, cations (or anions). There is a distance between the two layers, because each ion as well as 

the electrode surface is covered by a shell of solvent molecules. Therefore, the double layer acts 

like a capacitor. In Figure 2 this capacitor is represented by Ceg. Besides the capacitive effects, 

redox reactions may be possible at the electrode surface, allowing the direct transfer of charge 

from the electrode to electrolyte and vice-versa. In Figure 2 this effect is represented by the 

resistance Reg. The electrode for which only the capacitive effect occurs is called an ideal 

polarizable (polarized) electrode. The electrode, for which current passes freely through the 

electrode-electrolyte interface (only resistive effect occurs), is called an ideal non-polarizable 

electrode. Ideal polarizable and non-polarizable electrodes do not really exists, however, the 

electrodes, fabricated from the noble metals act close to ideal polarizable electrodes, and the 



silver/silver chloride (Ag/AgCl) electrodes act close to ideal non-polarizable electrode. Finally, 

the half-cell potential occurs at the electrode-electrolyte interface. In Figure 2 this effect is 

represented by a DC-battery Eeg. 

 

Figure 2. Wet surface electrode schematic view. 1 – gel, 2 – epidermis, 3 – derma, 4 – subcutaneous layer. The 

equivalent electric circuit is shown in the left. Electrode-gel interface: Eeg – the half cell potential, Ceg, Reg – 

capacity and resistance of electrode-gel interface, Rg – resistance of gel. Gel-body electrolyte interface: Ege – gel-

body electrolyte potential, Cge, Rge – capacity and resistance of gel-body-electrolyte interface, Re – resistance of 

dermis. 

It should be noticed that there is a concentration difference between the ions in gel and 

body electrolyte in case of wet electrode use, which creates the gel-body electrolyte potential 

(Ege in Figure 2) and also has an impedance (Cge, Rge and Rs in Figure 2). 

The commonly used EMG recording consists in using one EMG channel by muscle. 

Below we describe the principle techniques for single-channel potential recording. 

Single channel EMG recording. 

An electrical potential in a given point of skin may be measured only relatively to another 

point on skin, therefore measuring EMG requires at least two electrodes, one placed over the 

muscle of interest and a second one, placed in the area with no muscle activity. However, EMG 

signal recording is usually performed inside a clinical or research environment, containing 

electric power cables (220 V/110 V of voltage alternating at 50 Hz/60 Hz according to a 

country).  

These cables (phase and ground) create an additional potential on the body by means of 

electrical capacity of surrounding medium, e.g. the air and footwear. This potential, introduced 

by power cables, is considered the same in all points of the body (common mode). However, this 

potential may influence the EMG recording. To reduce this common mode signal the differential 

amplifiers are usually used, which requires three inputs: two differential inputs and a ground 

input. From the circuit design point of view, a differential amplifier is usually represented by an 

instrumentation amplifier. Therefore, recording a single channel EMG signal from one muscle 



usually requires at least three electrodes. The differential amplifier intensifies the difference 

between two inputs, measured with reference to a ground electrode. These electrodes may be 

placed over the skin in different configurations, which are presented below. 

Bipolar configuration 

The most commonly used electrode configuration is a single differential (bipolar) 

electrode configuration. Bipolar configuration consists in two signal electrodes (Siga  and Sigb), 

placed along the muscle fiber direction.  Both signals electrodes must be located between the 

innervation zone and muscle-tendon junction. A third, ground electrode is usually placed in the 

area with no EMG activity (e.g. a wrist). The EMG signal, measured in differential mode, 

represents a signal in the first electrode minus signal in a second electrode. Both signals are 

recorded with reference to a ground electrode. As the signal propagates from the innervation 

zone to muscle-tendon junction, passing through both electrodes, the electrode Sigb receives a 

similar signal that the electrode Siga, but delayed in time. Making the difference between the 

signals on these electrodes results in subtracting the delayed version of the signal from the same 

signal. This subtraction, firstly, eliminates the common mode from power line, and, secondly, 

reduces no-propagating components of the signal which are similar at both electrodes 

(principally, the activity from distant muscles). 

 

Figure 3. The schematic representation of a bipolar electrode placement. Two electrodes, Siga and Sigb are located 

over the muscle of interest. IED is the interelectrode distance. 

When choosing the size of electrode it should be noticed that increase of the electrode 

size reduces the impedance, but also reduces the electrode’s selectivity. Indeed, the potential 

recorded by an electrode is an average of the potential over the electrode area. Hence, bigger the 

electrode is, larger is the averaging area and less is the electrode’s selectivity. SENIAM suggest 

to use the surface electrodes with the maximal size of 10 mm in the direction of muscle fibers 

[6]. If one aims in recording the activity of individual motor units, the electrodes generally must 

be smaller. 



The interelectrode distance (IED) is defined as the distance between the centers of the 

signal electrodes. SENIAM reports that the optimal IED is 20 mm, but it must be less than 1/4 of 

the muscle fiber length.  

We recall that the electrode-electrolyte interface is characterized by a half-cell and gel-

electrolyte potential, as well as the impedance of the electrode-gel and gel-electrolyte interfaces. 

The DC voltage created by a half-cell and gel-electrolyte potential may be compensate if both 

signal electrodes Siga and Sigb are the same, therefore it is important to use both signal 

electrodes of the same material and form, and to treat the skin under both electrodes at the same 

manner. Moreover, if the impedance of two electrodes differs, the common-mode signal 

rejection quality will decrease. At the same time, these impedances must be kept as small as 

possible, which may be achieved by skin pretreatment. Thus, the skin must be pretreated before 

the electrode application to minimize the impedances of both electrode-electrolyte interfaces and 

to equalize them. The standard skin treatment consists in washing the skin with soap, razing the 

hair and rubbing the skin with medical abrasive paste.  

Finally, the displacement of the electrode causes the modification of the electrical double 

layer, which results in movement artefacts in the signal. To avoid them, the electrode cables 

must be fixed on the skin with the double sided tape or elastic band. 

We presented the principles of EMG signal acquisition in a bipolar configuration. 

However, the other configuration may be also used to record an EMG signal. Below we present 

them briefly.  

Monopolar configuration 

In a monopolar configuration, only one electrode is placed over the muscle (Figure 5a, 

left panel). This configuration usually requires two additional electrodes, reference and ground. 

The reference and the ground electrodes are usually placed in the area with no EMG activity. 

The signal, recorded by EMG channel in such configuration represents muscle activity recorded 

by a signal electrode minus the signal in reference electrode. All signals are recorded with 

reference to a ground electrode. In this case, subtracting a signal from the reference electrode 

results only in reducing the common mode, introduced by power line. The monopolar 

configuration may be useful if one is interested in a MUAP form analysis, because this 

configuration does not change the signal form, as bipolar configuration. 

Double differential and Laplacian configurations 

Moreover, more sophisticated electrode system configuration may be proposed, for 

example, a double differential (Figure 5c, left panel). and Laplacian configuration. Their 

principle is similar with differential configuration. In case of double differential configuration, 

three signal electrodes are used (Siga. Sigb and Sigc in Figure 5c). The output signal is 



represented as a sum of signal from lateral electrodes, Siga and Sigc, minus double signal in a 

central electrode Sigb. All the signals are recorded with reference to a ground electrode. In case 

of Laplacian configuration, five signal electrodes are used (located as a cross around the central 

electrode), and the output signal is represented as a sum of signal from lateral electrodes minus a 

signal in a central electrode, multiplied by four. All signals are recorded with reference to a 

ground electrode. The advantage of these techniques is the higher reduction of interfering signals 

from distant sources. 

We presented the methods of single-channel acquisition, which may be used to obtain 

one signal from the muscle. When several electrodes are used to record the signals from several 

zones they usually have the same ground electrode (or ground and reference electrode in case of 

monopolar recordings). More advanced techniques consist in using a high number of electrodes, 

placed over the area of interest as a column or a matrix (high density surface EMG, HD-EMG). 

These electrodes provide a multichannel signal from the area of interest.   

HD-EMG recording. 

The matrix of monopolar electrodes (Figure 4) can represent an activity of the muscle as 

a whole, providing information about the potential in high number of individual locations over 

the skin. The size of electrodes in the matrix may be sufficiently small to distinguish the activity 

of individual motor units.  

 

Figure 4. The 8-by-8 HD-EMG matrix with 10 mm interelectrode distance, developed in LISiN (courtesy of LISiN 

laboratory, Politecnico di Torino).  

The signal from electrode matrix provides information about the change of the potential 

in both time and in space. Furthermore, we will call “a map” the recorded distribution of the 

potential over the space, either instantaneous or averaged during a certain time window. Hence, 

the Nyquist criterion must be satisfied in both frequency domain (by choosing appropriate 

sampling frequency) and spatial frequency domain (by choosing appropriate interelectrode 

distance). Moreover, the electrodes act like filters in spatial domain. Hence, the form of electrode 



changes the transfer function of the filter and has an important influence on recorded potential 

map [10].  

An HD-EMG matrix usually represents an array of electrodes in monopolar 

configuration, therefore it requires a reference and a ground electrode. An array of monopolar 

signal, recorded with an HD-EMG matrix may be numerically transformed into an array of 

bipolar, double differential or Laplacian signals by summation of the weighed signals from the 

monopolar array.  

EMG signal preprocessing 

The EMG signal is converted to digital form by analog-to digital converter with a 

sampling frequency which is usually fixed at 1000 Hz for general purpose application. If one is 

interested in MUAP waveform analysis, the sampling frequency must be up to 10 000 Hz. The 

digital signal may be filtered with a digital low pass filter with a cut-of frequency 10-20 Hz to 

remove the baseline drift and reduce the movement artefacts. As it was mentioned above, the 

difference between electrode-electrolyte interface impedance among the electrode results in 

decrease of common-mode reduction performance. Thus, to reduce the remaining 50 Hz (60 Hz) 

and its harmonics from the signal several techniques may be used. One possibility is to use a 

notch filter. However, if the reader is interested in analyzing the propagation of individual 

MUAPs it is recommended to use instead an adaptive filter or spectral interpolation, which does 

not modify the phase spectrum of the signal. 

Crosstalk reduction methods 

Several approaches may be used to reduce the crosstalk from different muscles. Among 

them, there are instrumental methods, such as using differential and double differential electrode 

systems, which reduce the amount of signals captured from distant muscles. Moreover, a special 

attention must be payed to proper electrode placement. From the other hand, there are 

computational methods, such as blind source separation methods (BSS). These methods may 

perform additional crosstalk reduction once the instrumental methods were applied. 

Instrumental methods 

Differential and double differential electrodes reduce crosstalk introduced by deeper 

muscles with reference to monopolar recordings. These methods reduce the signal from distant 

sources.  

To illustrate how the acquisition mode influences the signal-to-crosstalk ratio, we 

simulated two overlapping muscles, using the simulator developed by Farina and Merletti 

(2001). Each muscle was represented by a set of 30 MU with parallel fibers. One muscle was 

deeper then another; the muscle centers were located at 4 mm and 9 mm depth. The fiber 



direction was -10° for the first muscle and 10° for the second one. We simulated EMG signals in 

monopolar, bipolar and double differential configuration from these muscles. Two muscles were 

simulated to be active alternately during the same time. 

We considered that the superficial muscle was a muscle of interest and the deep muscle 

was an interfering muscle. Thus, we calculated the signal-to-crosstalk ratio as the ratio of the 

superficial muscle signal power to the deeper muscle signal power:  
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Where ix is the k-th sample of the signal x , which may be a monopolar, bipolar and 

double differential signal. The deeper muscle was active for the values of i from 1 to N, and the 

superficial muscle was active for i values from N+1 to 2N.  

We also calculated a gain of each acquisition mode with reference to a monopolar one, 

which was calculated as a gain difference in current mode and monopolar mode. Figure 5 

illustrates the signal in monopolar (a), bipolar (b) and double differential (c) configurations. 

Solid line shows the envelope of the rectified EMG signal (in gray).  

 

 

 



 

 

 

 

 

Figure 5. The signal from two overlapping muscles in monopolar (a), bipolar (b) and double differential (c) 

configuration. It may be seen how the signal from the deeper muscle is attenuated in bipolar and double differential 

configuration with reference to monopolar configuration. 

It can be seen from the figure that the bipolar and double-differential configuration 

provides higher attenuation of the signal from deep muscle than the monopolar configuration 

(SCR 4.61 dB and 7.86 dB vs 0.62 dB).  

Designed filters may also be effective to reduce crosstalk on sampled signals. Differential 

and double differential methods as well as Laplacian filters can be used as selective filters with a 

small detection volume on the muscle of interest. However, in this way, to remove the potential 

coming from the nearby muscles, also most of the EMG produced by the muscle under 

investigation may be discarded. Above classical spatial filters, Mesin [12] proposed an optimal 

spatio-temporal filter (OSTF). Its coefficients are computed on a training set to optimize the 

signal to crosstalk ratio on the set. 

Blind source separation 

Blind source separation (BSS) aims at recovering source signals 𝑠 from several mixtures 

when no a priori information is available on source properties (source spatial position etc.). To 

reduce the crosstalk from neighbor muscles, BSS is applied to recorded signals x  that are 



supposed to be transformed vectors of source signals 𝑠 and each muscle is thought to be a source. 

Most of mixing transformations are supposed to be linear instantaneous or linear convolutive.  

A linear instantaneous model can be used in the case of small muscles located close to each other 

[13]. However, validity of the instantaneity hypothesis is very sensitive to electrode location 

[14]. Merletti [15] explained the limitations of the instantaneous model by a convolutive effect of 

a volume conductor and by action potential propagation.  

To estimate the source signals independent component analysis (ICA) is usually used 

[16]. ICA was first used to the decomposition of the signal of a single muscle into a number of 

motor unit action potentials MUAP before to be used to the crosstalk problem (several muscles 

mixed in the observations) [17]. ICA is a group of methods that lead to the transformation of a 

set of recordings into a set of independent source signals. ICA could be performed in time-

domain if instantaneous model is chosen, or in time frequency domain in the case of convolutive 

model.  

In both cases, the time or frequency observations vectors x  are modeled as: 

x = As + N , (2) 

where N represents an additive white noise vector and A is an unknown real or complex mixing 

matrix. 

Principal Component Analysis (PCA) is usually used as a first step to reduce the data space by 

projection in the source subspace by spatial whitening [18–20]. The whitening matrix W is 

estimated from data and the whiten observations 𝑧 are therefore linked to the sources by a 

remaining unknown unitary matrix Π : 

z = Wx = Πs , (3) 

ICA looks for a demixing matrix 1−
Π  such that the estimated sources 1−

Π z  are not only 

uncorrelated but also independent. Different types of diversity can be used to perform the 

estimation of the unitary matrix 1−
Π  and test independence: non-gaussianity (Infomax [21], 

FastICA [22], EFFICA, JADE [23], EBM, RADICAL), sample dependence (AMUSE, SOBI 

[18], WASOBI) or nonstationarity [24,13]. Many studies use the first type of diversity to 

perform BSS on EMG signals. Naik [25] performed a comparison of JADE, FastICA and 

Infomax ICA methods. They applied ICA on EMG signals, preliminary decomposed into 

intrinsic mode functions by the ensemble mode decomposition algorithm. The separated sources 

were used to classify each EMG recording as normal or pathological one. The classification 

performance was significantly higher when FastICA method was used. 

The methods, using the second type of diversity were first developed by Belouchrani 

(SOBI) [18] and look for uncorrelated sources at different time delays. The BSS technique based 



on second-order moments SOBI assumes instantaneous mixtures. Jiang and Farina [26] proposed 

an extension of SOBI for the case of sources being delayed in the mixtures and used it to 

separate the EMGs. The proposed method was based on the transformation of the delayed 

mixtures to the mixtures of original sources and their first derivatives by the first-order Taylor 

approximation. The method is applicable only to mixtures with small delays. 

BSS using nonstationarity diversity was first developed by Pham and Cardoso [24]. Non 

stationarity is taken into account by joint diagonalization of correlation matrices [24] or spectral 

matrices [27]. It is very popular in audio separation and Farina et al [13]. applied the concept to 

EMGs. They investigated linear instantaneous mixtures of EMG signals using joint 

diagonalization of Spatial Time-Frequency Distributions.  

However, blind source separation methods rely on assumptions that may not be totally 

valid for some EMG recordings. A necessary hypothesis concerns the spatial diversity which 

roughly means that the mixing process is invertible, whatever it is matrix or filters matrix. This 

means that when using a BSS method, both estimated sources and demixing matrices must be 

checked to validate the results. 

In second-order methods using joint diagonalization of correlation matrices, spectral 

matrices or other, a relying assumption is that correlation functions or spectra of sources are 

different enough to bring additive information in the joint diagonalization. If not, it leads to error 

in the estimation of the unitary matrix Π . The waveforms issued from two distinct muscles may 

be very close as the physiological process is the same.  However, some differences may appear if 

the muscle widths and so the fibers number or forces are different enough. 

Methods based on source independence [14] may also fail in separation of the signals 

from individual muscles because each muscle consists of motor units, which also may be 

considered as individual sources by a source separation algorithm. Hence, there is no evidence if 

the separated sources are the signals produced by different muscles or from different motor units 

(MU) of the same muscles.  

Moreover, the question if the EMG signals produced by different muscles are always 

statistically independent remains open. They may be temporally overlapped that could make the 

sources no more independent, because the MUAPs’ waveforms are similar. This can happen in 

case of high force levels when the MU number increases. 

Below we show the results of convolutive JADE (performed in frequency domain) 

applied on simulated signals. The convolutive JADE was applied on two simulated signals, x1 

and x2, from two monopolar electrodes, Sig 1 and Sig 2, located in direction, perpendicular to 

muscle fibers (Figure 6). Two sources, s1 and s2, were estimated as which may be related with 

activities of two muscles. For two sources, the signal to crosstalk ratios were calculated:  



 

SCR1 is the SCR of the first source, related to the superficial muscle, which is calculated as the 

ratio of the power of the superficial muscle contribution to this source to the power of the deep 

muscle contribution to this source. SCR2 is the SCR of the second source, related to the deep 

muscle, which is calculated as the ratio of the power of the deep muscle contribution to this 

source to the power of the superficial muscle contribution to this source. 

 
 

Figure 6. The results of blind source separation application to estimate two sources from the mixtures. 

It is seen from the figure that BSS may be used to separate two EMG mixtures into two 

sources, s1 and s2, corresponding to activities of superficial and deep muscles. For superficial 

muscle, the SCR is 8.47, which is higher than the SCR for double differential method.  

MUAP classification algorithm 

We recently proposed a peak classification algorithm, which may be also used to reduce a 

crosstalk from the signals [28]. This algorithm is based on detection of individual peaks in one 

channel of matrix EMG signal Sig (i,j) (Figure 7), estimating the propagation direction and depth 

and classifying them in two classes according to active muscle. This method may shows high 

performance, however, it may fail to separate the mixtures of EMG signals from two muscles 

active at the same time when the energy of the signal from one muscle is significantly lower than 

from the second.  
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Figure 7. The result of MUP classification algorithm to estimate two sources. 

Similarly with BSS, peak classification algorithm may be used to estimate the activities 

of both sources, superficial and deep muscle. 

Descriptive features of EMG signal 

Once the EMG signal is preprocessed and separated from the crosstalk, the signal is 

usually segmented into a series of overlapping on non-overlapping time windows. These 

windows may be used to calculate some informative characteristics or properties of the signals, 

characterizing the activity of the muscle of interest and called the descriptive features of the 

signal. The procedure of passing from signals to a set of estimated features is called the feature 

extraction. The increase of  window size increases the feature estimation performance due to 

lower variance but reduces the temporal resolution and operation speed for real-time system. In 

real-time system the window length together with processing time should not be more than 300 

ms [29]. For processing time equal to 50 ms the window size may be between 32 and 250 ms 

[29]. This section firstly presents the feature extraction from single EMG channel and, secondly, 

presents the feature estimation in case of electrode matrix use.  

Feature extraction from single channel EMG 

The muscular force is regulated by two main mechanisms: the additional MU recruitment 

and the increment in the firing rate of MU already actives, both combined in different 

proportions in diverse muscles. The surface EMG amplitude depends on the same mechanisms, 

leading to a direct relation between EMG and muscular force estimation, allowing the evaluation 

of individual muscles contribution to the total force of a synergic group. However, several 

factors affect the EMG and force relation, such as electrode localization, fiber direction related to 

acquisition system, subcutaneous tissue, subject variability, session repeatability, and so on. For 

this reason, is impossible to establish a unique amplitude-force relation. The experimental 

construction of this relation is even more difficult when the selective activation of a muscular 



group is pathological or when other muscles (agonist or antagonist) are involved but is not 

reflected in a single EMG channel.  

Nevertheless, the EMG amplitude remains as a muscular activation estimator and a 

qualitative index of the change related to a reference condition. In the frequency domain, mean 

and median power spectral frequencies are been proposed as muscular force estimators, because 

they reflect the recruitment of new and progressively larger and faster MU, associated to an 

increment in muscular force. However, spectral characteristics of the EMG are closely related to 

muscular fatigue and cannot be a reliable estimator of force.  

For classification or control purposes, the EMG processing is intended to assign a 

numeric value to the myolectric level activity, usually associated with MU activation and force, 

isolating the physiological information for the electric and environmental noise.  

A number of studies addresses the question of feature evaluation and selection [30–35]. 

Below we will present the most relevant and useful features for rehabilitation and biomechanical 

analysis. In all cases, xk is the kth sample and N is the sample window size for computation. 

▪ Integral of Absolute Value (IAV):  

1

1
| |

N

k

kIAV x
N =

=  . (5) 

▪ Variance: the variance is an indicator of the aleatory variable dispersion with reference to the 

mean value. In signal processing context this feature is used as a power measure of zero-mean 

signal.  
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▪ where x is a mean value of EMG signal (expected to be equal to zero). 

▪ Standard Deviation (STD): the STD is an indicator of the aleatory variable dispersion with 

reference to the mean value and expressed the same units as the signal.  
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(7) 

▪ Root-mean-square (RMS): root-mean square is a classical power measure of a signal.  

2

1

1
k

N

k

RMS x
N =

=  . (8) 

▪ High-order statistics (HOS): above-presented features are based on calculating the first and 

second moments of signal. Higher-order statistics deals with third and higher moments. HOS 

provide a tool to model non-Gaussian and non-linear signals [36], and can be used in EMG 

signals as in the work of Nazarpour [37] and Orosco et al. [38]. The bispectrum is a third-order 



frequency-domain measurement computed as the double Fourier transform of the third-order 

cumulant sequences, obtaining a complex matrix that needs simplification methods to be used 

for control or classification purposes. For a detailed explanation see the work of Orosco et al. 

[38].  

▪ Low pass filtered rectified signal: the low-pass filtering (below 5 Hz) of the signal is widely 

used with rectified EMG. Bessel or Butterworth coefficients provide the best response in terms 

of overshoot and smoothing of the resulting signal. 

▪ Zero-Cross (ZC): zero-cross is a simple frequency measure, which can be obtained counting the 

number of times that a signal crosses the zero potential line [39]. Given two consecutive data, 

xk and xk+1  : 

1

1

( )
N

k k

k

ZC x x +

=

= − , 

1 0
( )

0

if x
x

otherwise



= 


, 

(9) 

where ( )x  is a Heaviside function. It is generally applicable to introduce a threshold ε to 

eliminate zero crossings induced by recording system noise, i.e. take into account only such pairs 

xk and xk+1  for which a following condition is satisfied: 

1k kx x +−  . (10) 

The threshold ε depends on recording system noise.  

▪ Waveform Length (WL): This feature provides information about signal complexity in each 

window [39]. The resulting value combine amplitude, frequency and duration in a single 

feature, simply computing the cumulative length of the signal in the window:  
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| |
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WL x
=

=  , 

1k k kx x x − = − .

 

(11) 

▪ Willison Amplitude (WAMP): WAMP [40] indicates the count number for each change in the 

EMG amplitude that exceeds a predefined threshold ε. It reflects the action potential firing of 

MUs and therefore the level of contraction [31,35]. 

( )1
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WAMP f x x +

=

= − , 

1
( )

0

if n
f n

otherwise


= 

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(12) 

▪ Time series modelling: A stationary Gaussian stochastic signal can be modeled as an 

autoregressive linear time series (AR), as in the classical approach by Box and Jenkins [41]. 
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where ai represents the AR coefficients, p the order of the model and ek the residual noise. 

Since the spectrum of the signal changes with the contractile state of the muscle it is possible to 

estimate it by monitoring the AR or ARMA coefficients [42]. This consideration is not strictly 

correct because this model involves stationary signals, but it can be done in data windows to 

overcome this inconvenience. So, it is possible to segment the areas where resting phases 

alternate with contraction phases, and then make the model identification toolbox using an 

ARMA model. In bibliography, it was found that polynomials of 8th order or higher provide a 

good representation of the signal  

 

Figure 8. Temporal Domain Features extracted from a typical EMG signal: IAV, RMS, ZC, WL, WAMP. (A) Raw 

EMG signal (Sample Frequency of 1 kHz), samples in x axis. (B) Rectified signal and mean value (red line). C to G 

Figures show temporal features performed in windows of 200 samples with an overlap of 100 samples. In this case, 

x axis indicates the window number. (C) IAV (D) RMS (E) ZC (F) WL (G) WAMP.  

Feature extraction from matrix EMG 

The signal from an electrode of the electrode matrix may be used to estimate the features 

in temporal domain, presented above. Moreover, using the electrode matrix or array gives an 

information about the muscle contour or active region (spatial features), the velocity and 

direction of activation propagation within a muscle, the depth of muscular activity, and location 



of muscle innervation zones. Jordanic et al. [43] demonstrated that using special features can 

improve performance of muscular activity classification on patients with incomplete spinal cord 

injury. Below we present an example of two spatial features. Rojas-Martinez et al. [44] used the 

coordinates of the center of gravity CG and maximal intensity MX of the active region under the 

matrix to distinguish among the different motor tasks. The x and y components of CG are: 
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where ( , )RMS i j  is a root mean square value of EMG calculated for the electrode located 

in i-th row and j-th column of the matrix, Nr and Nc are the number of electrodes in one row and 

one column of matrix. The values ( , )x i j  and ( , )y i j  are x and y coordinates of the electrode, 

located in i-th row and j-th column of the matrix. 

The components of MX are: 

max max

max max

max max

( , )

( , )

( , ) max
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y

MX x i j

MX y i j

RMS i j

=

=

=

, (15) 

where imax and jmax are the numbers of electrode row and column for which the RMS 

value is maximal in given temporal sample window.  

Moreover, EMG matrix signals may be used to extract individual MUAP trains and 

identify the features of each MUAP train separately. The number of MU to be separately 

identified depends on muscle activation level. The state-of art decomposition technics allows 

identifying up to 20 MUAP for moderate muscle activation level [45].  

The practical use of EMG signal 

The use of EMG in biomechanical studies 

The EMG signal is widely used in biomechanics as an indicator of muscle force. 

Previously presented features (low-pass filtered rectified signal, RMS, IAV) are related with 

muscle activation level. Biomechanics is interested in estimating the force, performed by muscle 



and expressed in Newtons (N). Therefore, biomechanics aims at transforming the features of 

EMG signal into a force value. In previous sections, we represented the EMG signals as 

functions of discrete sample number k. Below we assume that both the force and the EMG 

envelope are functions of continues time t for simplicity. One should also notice the EMG-force 

relationships, presented below, may be accepted only for isometric tasks. In dynamics tasks, 

muscle force must be considered as a function of muscle state (fiber elongation and contraction 

velocity). Below we also neglect an electromechanical delay between the variation of EMG and 

force. 

Direct force estimation from single-channel EMG 

There is a monotonic relationship between the envelope of EMG and force of muscle 

( )F t . To obtain signal envelope one can use, for example, the low-pass filtered rectified signal, 

RMS, or IAV. This relationship depends on anatomical and detection conditions. The simplest 

relationship is a linear one, which is widely used [1,46]:  

( ) ( )F t x t= , (16) 

where is a parameter of the model and ( )x t  is a normalized envelope of the EMG 

signal ( )x t . The envelope is normalized by its peak value, attained when a subject performs a 

maximum voluntary contraction (MVC). In this case, a parameter   corresponds to the force, 

attained by a muscle during MVC. This coefficient may be related with physiological cross-

sectional area of the muscle as  

max PCSA =  , (17) 

where max is a maximal force, which may be produced by a muscle section with unitary 

PSCA (maximum muscle stress, specific tension). For example, Chao et al. [47] reports PCSA 

equal to 1.5±0.6 cm2 for abductor pollicis brevis muscle and 10.0±3.0 cm2 for flexor capri 

ulnaris muscle. A maximum muscle stress was reported to be 35 N/cm2 by Zajac et al. [48]. 

A nonlinear model between EMG and force was used by Potvin et al. [49] and Lloyd et 

al. [50] 
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where  and β are the parameters of the model. 

Direct force estimation from matrix EMG 

One can benefit from using matrix EMG signal, which cover the large surface of the 

muscle and provides the distribution of the potential over its surface to make a more precise 

estimation of muscle force. Staudenmann et al. [51,52] studied improvement of muscle force 

estimation precision in case of using a matrix of electrodes, compared to single-channel EMG 

recording. In [51], the authors rectified the signals from a number of HD-EMG matrix channels, 

averaged them, and applied low-pass filtering to estimate the force from HD-EMG recording. 

They reported 30% improvement of muscle force estimation precision compared to single-

channel EMG recording. In [52], the authors firstly applied principal component analysis to 

transform the signals from HD-EMG matrix into a set of principle modes. Next, they chose an 

optimal combination of principal modes, rectified this combination, and applied low-pass 

filtering. In case of using PCA the authors reported 40% improvement of muscle force 

estimation precision compared to single-channel EMG recording. 

Force estimation by a biomechanical model assisted by EMG 

If one aims in estimating a force of a muscle, actuating the extremity, using the EMG 

signal is not the only way to do it. The unknown muscle force is related with the force produced 

by an extremity. If the extremity is fixed (i.e. a static isometric problem), the force produced by 

it may be measured directly. Therefore, an unknown muscle force may be calculated from the 

measured extremity force by means of a biomechanical model. However, it is difficult to find a 

case, in which the extremity force is produced by action of only one muscle. In most cases, it is a 

result of multiple muscle activations. For example, the force of a middle finger tip, applied to a 

keyboard button when typing a text, is produced by activation of six muscles, flexor digitorum 

profundus, flexor digitorum superficialis, two interosseus, lumbriacal and extensor digitiorum 

communis. The last muscle is an antagonist for flexor muscles; however, it can be involved in 

this pushing action (muscle coactivation phenomenon). Therefore, the problem becomes the 

following: one have to estimate a set of muscle forces, which produces a known force and torque 

at the end of extremity. It is an ill-posed problem, which may have an infinite number of 

solutions. One of the promising possibilities to find an appropriate set of muscle forces is to use 

a biomechanical model assisted by EMG. There are a lot of different variations of this approach. 

One method of muscle force set estimation was proposed by Vigouroux et al. [53] for an 

extremity, fixed in static conditions. The method is based on the following idea. One must solve 

an optimization problem and to find such a set of muscle forces ( )iF t , which minimizes some 

physiological cost-function, which may be an overall stress in active muscles. In this case, i 



represents an index number of a muscle in a set. The solution must satisfy two conditions. 

Firstly, the solution must satisfy the biomechanical equilibrium equations. Secondly, for each ith 

muscle, for which the EMG signal ( )ix t  is measured, the estimated force ( )iF t  must not deviate 

from the value, estimated with the help of one direct EMG-force models, e.g. (16), more than for 

a predefined threshold : 

( ) ( )i iF t x t −  . (19) 

Therefore, this method combines the information from the EMG electrodes, measured 

from several muscles, and the force measured from the end of extremity to estimate the forces in 

all muscles, actuating the extremity. The threshold   depends on quality of EMG signal 

recording, including the quantity of crosstalk. The better the signal quality is, the less the 

threshold   may be. The EMG-assisted force estimation may be a powerful method when 

estimating the forces from deep muscles, which may difficult to characterize by direct EMG-

force modeling. 

In this paragraph, we presented different techniques of muscle force estimation based on 

EMG signal. Whatever technique is chosen, the muscle force estimation precision depends on 

quality of EMG signals, including the crosstalk quantity. For example, if the single-channel 

EMG recording from a muscle is perturbed by a crosstalk from a nearby muscle active at the 

same time, such as the power of crosstalk is 25% of the signal power of EMG from the muscle of 

interest (SCR of 6 dB), using a linear relationship (14) to estimate a force in a muscle of interest 

will lead to a force estimation error of 12%2. Therefore, an attention must be paid to EMG signal 

quality prior to force estimation. 

                                                           
2 In this example we assume that EMG of muscle of interest and crosstalk are independent processes and that the 

standard deviation of EMG of muscle of interest is equal to σ1 and the standard deviation of crosstalk is equal to 

σ2 = 0.5σ1, which corresponds to 25% of muscle of interest EMG power. Therefore, the standard deviation of the 

sum of the muscle of interest EMG and crosstalk is equal to 2 2

1 23 1
1.12   = +   , which is 12% higher than the 

standard deviation of muscle of interest EMG. If the linear relationship between the force and root-mean square 

value of EMG signal is used, it will lead to a force estimation error of 12%. 



The use of EMG in Muscle Coordination Analysis 

Human movement and behavior are the result of complex dynamics between the nervous 

system, proprioceptive receptors and muscles. The Central Nervous System (CNS) is able to 

choose between several possible options when performing a motor task due to the redundancy of 

the musculoskeletal system [54]. In this context the concept of Muscular Synergy (MS) appears, 

whose usefulness is determined by its ability to faithfully describe patterns of muscle activation 

using fewer dimensions than the number of registered muscles [55]. However, it is still a 

research topic how the SNC combines these modules in different ways to perform specific tasks. 

The concept of Muscle Synergy in EMG was introduced approximately two decades 

ago [56] and has gained popularity in recent years. In a simple way, a MS is defined as a group 

of muscles that are activated in a coordinated way during the execution of a motor task. In the 

spatial domain (between muscles), MS captures the specific relationship in muscle activation 

amplitudes. Considering a set of d muscles, a MS can be expressed as a d-dimensional vector w 

of weighting coefficients that specify the balance of activation between the muscles [57]. 

Different levels of activation can be generated by a single muscular synergy by scaling the entire 

vector in amplitude: 

c=m w , (20) 

where m is a vector that specifies a muscle activation pattern given by the level of recruitment of 

each muscle and by a scale coefficient c. More generally, a set of N synergies {wi}, i = 1 ... N, 

can generate many different muscle patterns by linear combination: 

1 1 2 2

1

... N

i

i i

N

Nc c c c
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= + + + =m w w w w , (21) 

where ci is the scaling coefficient for the ith synergy. 

Since the muscle activation vectors involved in most behaviors depend on time, 

relationships between muscles synergies can also be found in the temporal domain. With respect 

to time, a synergy can be invariant or variant over time. A synergy is invariant over time if the 

same muscle activation balance, expressed by a vector w, is maintained at all times, that is, for 

all activation vectors that vary over time and that comprise muscle patterns (the muscles are 

activate in sync with fixed weights). If all synergies are invariant over time, then: 

1
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i itt c
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=m w , (22) 



where ( )tm  is muscle activation vector at time t and ( )ic t  is the scale coefficient for the ith 

synergy at time t. Since each invariable synergy over time contributes to the waveform of 

different muscles with the same ( )ic t  waveform, the muscle waveforms associated with each 

synergy are synchronous. In contrast, a time-varying synergy is composed of a collection of 

waveforms, each specific to a muscle, and therefore not necessarily synchronous. These 

waveforms can be expressed by a time-varying synergy vector ( )tw  that can be written with a 

scale coefficient ci and a time delay ti for each synergy: 

1
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i

i tt c t
=

= −m w . (23) 

In this case, the temporal dependence of the muscle activation waveforms is captured by 

the temporal structure of the synergies and their relative delays. Variable synergies over time 

represent motor output because, once synergies occur, a few scale and delay coefficients are 

sufficient to specify many muscle patterns. Muscular synergy constitutes the coordinated 

activation of muscle groups with fixed profiles that vary over time. 

Research suggests that the CNS produces different movements by controlling the muscles 

through the flexible combination of these synergies [58]. The MS acquire the role of movement 

building blocks that define characteristic activation patterns for each individual, which has a 

great implication in the understanding of the organization and structure of the CNS, and gives a 

way through which motor intentions at the level of a task are translated into low-level muscle 

activation patterns. Many studies analyze EMG data through correlational and computational 

methods in order to see if muscle synergies exist and if these synergies are relevant to the task 

[59–61]. 

A proposed analysis method combines the quantification of kinematics and 

electromyographic evaluation. For example, in [62] it is interpreted that different neuromuscular 

synergies are involved in the execution of the movement and it is hypothesized that the 

feedforward motor commands involved in trajectory planning are different. Muceli et al. [63] 

investigate the possibility of describing a task by a linear combination of a set of MS common to 

multiple directions through the surface EMG record. The registration of surface 

electromyographic signals of 12 muscles of the upper limb is performed for different proposed 

movements involved both one and several joints and were generated in 12 directions of the 

horizontal plane. Motion kinematics was recorded using a motion analysis system. Muscular 

synergies were extracted, the results of which indicate that a large set of multiarticular 



movements can be generated by a synergistic matrix of limited dimensionality and common to 

all directions if synergies are extracted from a representative number of directions.  

A recent work proposes the use of techniques such as coherence and causality to obtain 

MS in order to associate them with the generation of a given movement [61]. Coherence analysis 

was used to evaluate the relation of two sets of EMG signals in the frequency domain. The 

coherence spectra is defined as the magnitude squared of the cross spectrum, normalized by the 

product of the auto spectra of the two individual data sets [60]. Equation (24) shows the formula 

for coherence between two signals, x(t) and y(t).  
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G f
C f
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where Gxy is the cross-spectral density between x(t) and y(t). Gxx and Gyy are the autospectral 

density of x and y respectively.  

Coherence analysis provides an information about the degree of linear dependency 

between x and y for different frequencies f of the signals. For each frequency, ( )xyC f  has the 

value between 0 (no dependency) and 1 (perfect dependency). 

Wiener-Granger Causality (GC) is a popular method used in econometrics and allows to 

identifying “causal” connectivity between signals. Let ( )x t  and ( )y t  be two signals taken from 

two data channels. Suppose that the temporal dynamics of ( )x t  and ( )y t  are suitably represented 

by the following bivariate autoregressive process: 
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(25) 

 

Here a11, a12, a21, a22 represent regression coefficients; e1, e2 represent the regression 

residuals and 𝑝 the time lags. A variable x “G-Cause” a variable y if the past of x contains 

information that helps predict the future of y over and above information already in the past of y. 

The method provides a statistical description of observed responses. Computation of G-causality 

requires specification of the regression model order. Two suitable criteria are the Akaike 

information criterion [64] and the Bayesian information criterion [65–67]. The figure below was 

modified from [61] and shows a graphic representation of GC connections found during a wrist 



flexion movement. Here the numbers 1, 2, 3 represent the EMG signals recorded from electrodes 

placed on three different muscles (flexor carpi radialis, brachioradialis, flexor carpi ulnaris 

respectively). 

 

Figure 9. GC connections during a Wrist Flexion Motion. Numbers represent the EMG signals recorded from 

electrodes placed on different muscles. The graph shows causal relationships between channels 1 (flexor carpi 

radialis), 2 (brachioradialis) and 3 (flexor carpi ulnaris). 

The use of EMG in myoelectric control 

As was pointed out in this chapter, electromyographic signal has a wide range of 

applications, in biomechanics, diagnoses, sensorimotor integration, prostheses control, and 

rehabilitation. The information extracted for the EMG can provide a useful tool for quantitative 

measurement and analysis of conduction velocity, motor unit recruitment, synergies, muscular 

force and tone, and other physiological variables, as well as control signal for rehabilitation 

devices.  

Restoration and assessment of motor function is the main objective of 

neurorehabilitation, in which technological and robotic systems can produce an important 

breakthrough in clinical practice. This is especially important in post stroke patients, when 

cerebral lesions change motor control ability of the CNS to perform voluntary movements, 

leading to inadequate planification and muscular co-contraction. In this case, the EMG 

(sometimes combined with brain evaluation trough images or electroencephalographic signals) 

appears as a method to estimate the motor plan reorganization and establish, redefine or modify a 

personalized rehabilitation therapy.  

In terms of myoelectric control, it is possible to establish a simple scheme to represent the 

main parts of any assistive device driven by EMG signal, as is pointed out in Figure 10. 

 



 

Figure 10. Flowchart describing a classical scheme of myoelectric control. The Processing stage correspond to 

signal conditioning, filters and windowing, obtaining emg(k) as the myoelectric signal in each k sampled time. The 

muscle contraction amplitude is estimated in Feature Extraction block and transformed in a control action, i.e. a 

reference qref(k) for the assistive device. Control feedback is performed through internal sensors to obtain q(k). The 

user feedback has two main components: Visual and proprioceptive. (Modified from [68]) 

The natural control that a person wields on his musculoskeletal system depends on a 

closed loop system comprising the generation of command motor signals from the central 

nervous system (CNS) used in the direct loop and feedback by sensory signals from 

proprioceptive receptors muscle and vision (Figure 10). An ideal robotic assistance system 

should provide an interface with the remaining neuromuscular system as close to the 

physiological as possible. In this context there are still many limitations both in the motor loop 

and in the sensory (tactile) and proprioceptive feedback. 

The myoelectric control can be implemented with one or two channels, since in the latter 

case two sites of muscular activity are sensed and the channel with the highest level is 

chosen [68]. In addition, once the operating state is selected, the device can be activated 

(ON/OFF control) or determined by the level of myoelectric activity (proportional control).  

The best performance of the system is obtained when the affected muscles are 

commanded in the same way as they were used before the neuromotor lesion or disease, because 

the patient retains a cortical image of the movement and is able to repeat a complex pattern of 

muscle activation to get it. 

However, the result depends on the type of device control strategies and user training. In 

general, low acceptance rates of success occur when the patient perceives inadequate 

controllability, a gap between intuitive and expert control. The control problem is more complex 

and has led to the development of new and better techniques for statistical signal processing and 

classifiers to extract more information from the signal. In recent decades, significant progress has 

occurred both in the optimization and miniaturization of associated electronics and mechanics; as 

in the development of new and better processing techniques, classification through neural 

networks, reinforcement learning, and so on.  

Achieving user motivation during rehabilitation is an important concern. Different 

strategies have been analyzed to improve patient adhesion during robot-assisted rehabilitation 

[70]. The collaborative use of EMG and haptic or virtual reality devices can improve the 



subject’s participation in rehabilitation. Yoo et al. [71] analyze the effect of using Virtual Reality 

(VR) games and EMG feedback on neuromotor control in patients with cerebral palsy. Van de 

Meent et al. [71] evaluate the potential use of VR and EMG in a rehabilitation device for critical 

diseases. On the other hand, devices that combine EMG signals with haptic feedback have also 

had a great development and their effect has been studied in several works [73,74]. Myoelectric 

gaming appears as a good proposal to improve the rehabilitation process of patients with 

different pathological conditions [75].  
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