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Introduction

If µ is a probability measure on R d and if f, g ∈ L 2 (dµ) are two square integrable functions with respect to µ, their covariance is defined by

Cov µ (f, g) = f -f dµ g -gdµ dµ
and is a measure of the joint variability of the two functions. Here and in all the sequel, we make the assumptions that f and g have enough integrability and regularity conditions, so that all the written quantities are well defined.

Lying at the intersection of probability, analysis and geometry, covariance identities and inequalities provide a variety of tools. Without trying to be exhaustive, let us cite some of them: FKG inequalities ([FKG71]), (asymmetric) Brascamp-Lieb inequalities ([MO13, CCEL13, ABJ18]), Stein kernels ([Cha07, NV09, LNP15, CFP19, Fat19, Sau19]), concentration inequalities ([BGH01, HP02], [Led01a, Section 5.5]).

The proof techniques of these covariance identities and inequalities vary from semigroup techniques, other types of integration by parts, measure transportation or stochastic calculus. Gaussian measures offer a particularly fruitful framework in this perspective and in Theorem 1.1 below, we recall famous covariance inequalities known for the standard Gaussian measure. The main point of this work is to discuss and extend partially these results beyond the Gaussian assumption, to the case of general product measures.

Theorem 1.1. Let γ be the standard Gaussian distribution on R d .

(1) [Hu97, Har04] Let f and g be two convex functions on R d , then

Cov γ (f, g) ≥ Cov γ (f, x) • Cov γ (g, x) (1.1)
where • denotes the standard scalar product on R d .
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(2) [Har04] Let f be a log-concave function and g be a convex function. Assume moreover that f is orthogonal to the linear functions -that is Cov γ (f, x) = 0 -, then Cov γ (f, g) ≤ 0.

(1.2) (3) [START_REF] Royen | A simple proof of the Gaussian correlation conjecture extended to some multivariate gamma distributions[END_REF] Let f and g be some quasi-concave functions that are both even, then Cov γ (f, g) ≥ 0.

(1.

3)

The first point of Theorem 1.1 is due to Hu [Hu97] and was recovered by Hargé [Har04]. Hu's proof is based on some Itô-Wiener chaos decomposition. This decomposition is based on the interpolation of the covariance by the standard heat semi-group. Hargé's proof of the second point is based on optimal transport theory and Caffarelli's contraction theorem. Hargé obtained in fact an inequality when f is not necessarily orthogonal to the linear functions, which by a limiting argument recovers (1).

Point (3) was proven by Royen [START_REF] Royen | A simple proof of the Gaussian correlation conjecture extended to some multivariate gamma distributions[END_REF]. It is known as the Gaussian correlation inequality and was an open question during decades. We refer to [START_REF] Lata | Royen's proof of the Gaussian correlation inequality[END_REF] and [Bar19] for history of this result. Royen proved his result in its geometric form, for symmetric convex bodies, by approximation with finite intersections of symmetric slabs. The main ingredients are then an interpolation of some dependent and independent Gaussian measures through their covariance matrix and clever computations of the Laplace transform of multivariate Gamma distributions. Royen thus proves its result for some family of multivariate Gamma distributions. Subsequently, Eskenazis, Nayar and Tkocz [ENT18] noticed that Theorem 1.1(3) still holds for product measures whose marginals are mixtures of centered Gaussian measures. In the Appendix, we also show that Theorem 1.1(2) is true in the latter situation.

The first main new results of this paper are devoted to dimension one. In dimension one, the covariance inequalities of Theorem 1.1 are not limited to the Gaussian context but actually hold for any probability measure on R having a finite variance.

Theorem 1.2. Let µ be any probability measure on R admitting a second moment.

(1) For any convex functions f and g, one has

Var(µ) Cov µ (f, g) ≥ Cov µ (f, x) Cov µ (g, x).

(1.4)

(2) Let f be a log-concave function and g be a convex function. Assume moreover that f is orthogonal to the linear function x, then Cov µ (f, g) ≤ 0.

(1.5)

(3) Let f and g be some quasi-concave functions that are both even, then

Cov µ (f, g) ≥ 0.

(1.6)

The fact that Theorem 1.2 holds for any probability measure whereas Theorem 1.1 seems limited to the Gaussian setting is striking and rises the following natural question: what about general product measures? Before trying to answer this question, we shall introduce some notations and the hypotheses.

Notations and hypotheses:

In all the sequel of the paper, we consider µ = µ 1 ⊗ • • • ⊗ µ d to be a product measure on R d . Moreover for each 1 ≤ k ≤ d, we denote by a k (x k ) a positive function on R and by A k its primitive, centered with respect to µ k and we assume that A k ∈ L 2 (µ k ). When we apply the results with a k ≡ 1, we thus implicitly assume that the measure µ k admits a second moment. We assume that f, g ∈ L 2 (µ). In order to apply the tensorization method and to exchange derivative and integral, we also assume that all the first and second partial derivatives of f and g are integrable with respect to µ.

Remark 1.3. It is actually possible to weaken the regularity assumptions on the second order partial derivatives. It is indeed sufficient to assume that the first derivatives are monotonic on R d , at the price of standard approximation arguments. This is particularly transparent with the pure determinantal approach. But for clarity and simplicity, we prove the theorems by using the second order partial derivatives.

Arguably, the first basic idea to investigate general product measures is to use a tensorization argument. This allows us to obtain the following extension of Theorem 1.2(1) to the higher dimensional case.

Theorem 1.4. Let µ be a product measure on R d .

Let f and g be two functions on R d such that for each pair 1 ≤ i, j ≤ d, the signs of

∂ j ∂ i f (x) a i (x i ) and ∂ j ∂ i g(x) a i (x i ) (1.7)
are constant on R d and equal. Then

Cov µ (f, g) ≥ d i=1 1 Var µ i (A i ) Cov µ (f (x), A i (x i )) Cov µ (g(x), A i (x i )).
Taking the functions a i ≡ 1 gives the following corollary.

Corollary 1.5. Let µ be a product measure on R d . Let f and g be two functions on R d such that for each couple 1 ≤ i, j ≤ d, the signs of ∂ i,j f (x) and ∂ i,j g(x)

(1.8) are constant and equal. Then

Cov µ (f, g) ≥ d i=1 1 Var(µ i ) Cov µ (f (x), x i ) Cov µ (g(x), x i ).
A striking point is that Corollary 1.5 is not limited to the Gaussian setting, but holds for any product measure with marginals having a finite second moment. Particularizing to the Gaussian case, where µ = γ, the conclusion of Corollary 1.5 is the same as in Theorem 1.1(1), but under different assumptions on the functions f and g. Even if they coincide in dimension one, the two assumptions are different in higher dimensions and are not included one into another. The assumption of Corollary 1.5 seems less classical from a geometric point of view than the classical convexity assumption. Actually, such assumption on the sign of the second partial derivatives also appears in the context of Gaussian comparison theorems, see for instance [LT11, Theorem 3.11], that implies Slepian's lemma and Gordon's min-max theorem. Note finally that in the Gaussian setting, even if the statement of Corollary 1.5 seems to be new, its proof could be also deduced from the arguments developed in the proof of Hu [Hu97].

Remark 1.6. The conditions stated in (1.7) can also be written as the conjunction of Conditions (1.9) and (1.10) below: for each 1 ≤ i ≤ d, the signs of

∂ i ∂ i f (x) a i (x i ) and ∂ i ∂ i g(x) a i (x i ) (1.9)
are constant and equal and for each couple 1 ≤ i = j ≤ d, the signs of

∂ ij f (x) and ∂ ij g(x) (1.10)
are constant and equal. The condition described by Equation (1.9) can be interpreted as follows: let B i : R d → R d be the inverse bijection of

(x 1 , . . . , x d ) → (x 1 , . . . , A i (x i ), . . . , x d ),
then Condition (1.9) means that the functions

x i → (f • B i )(x 1 , . . . , x d ) , x i → (g • B i )(x 1 , . . . , x d )
are both convex or both concave. In the case where a i ≡ 1 for all i = 1, . . . , d, and if moreover, all the signs in (1.9) are the same, then the functions f and g are both coordinatewise convex or both coordinatewise concave.

We now want to investigate what happens when the functions are assumed to satisfy some symmetries. As we shall see, the good notion that fits with the tensorization argument is quite strong and is the unconditionality of (at least) one function.

We recall that a function f : R d → R is said to be unconditional if it is symmetric with respect to each hyperplan of coordinates : for all (x 1 , . . . ,

x d ) ∈ R d , f (x 1 , . . . , x d ) = f (ε 1 x 1 , . . . , ε d x d ). holds for each choice of signs (ε 1 , . . . , ε d ) ∈ {-1, 1} d .
Theorem 1.7 below is a multi-dimensional extension of Theorem 1.2(1) with a symmetry assumption.

Theorem 1.7. Let µ = µ 1 ⊗ • • • ⊗ µ d be a product measure on R d and assume that for each 1 ≤ i ≤ d, the measure µ i is even. Let f and g be two functions on R d such that for each 1 ≤ i ≤ d and all x ∈ R d , the signs of

∂ i ∂ i f (x) a i (x i ) and ∂ i ∂ i g(x) a i (x i ) (1.11)
are constant and equal. Assume moreover that one of the functions is unconditional.

Then Cov µ (f, g) ≥ 0.
The following corollary is directly obtained by setting again the functions a i to be identically equal to 1.

Corollary 1.8. Let µ = µ 1 ⊗ • • • ⊗ µ d be
a product measure on R d and assume that for 1 ≤ i ≤ d, the measures µ i are even. Let f and g be two functions on R d such that for each

1 ≤ i ≤ d, the signs of ∂ i,i f (x) and ∂ i,i g(x)
(1.12) are constant and equal. Assume moreover that one of the functions is unconditional.

Then

Cov µ (f, g) ≥ 0.

With these symmetries, the tensorization method also leads to the following extension of Theorem 1.2(2) and (3). Theorem 1.9.

Let µ = µ 1 ⊗ • • • ⊗ µ d be a product measure on R d .
(1) Assume that for 1 ≤ i ≤ d, the marginals µ i are even and log-concave. Let f = e -φ be an unconditional positive log-concave function and g be a coordinatewise convex function on R d , then

Cov µ (f, g) ≤ 0.
(2) Assume that f and g are both unconditional and coordinatewise quasi-concave. Then Cov µ (f, g) ≥ 0.

A drawback of this tensorization approach is arguably that in Theorem 1.7 and Corollary 1.8, we assume a strong symmetry property: the unconditionality of at least one function.

In order to require less symmetry assumptions, it is natural to try to use, instead of the tensorization argument, a more global approach. A first attempt would be to use the interpolation with the associated Markov semi-group and the covariance representation given in (8.4). Actually, we shall provide a slightly different covariance representation, based on an argument of "duplication" of random variables (Lemma 7.1). The main reason for this choice is that the latter approach is much simpler than the semi-group approach and is also more effective. See more comments in Section 8. As expected, this approach allows us to reduce drastically the symmetries required on the functions, but at prize of considering some convexity type assumptions that are less common. Theorem 1.10 below provides an extension of Theorem 1.2(2) and (3).

Theorem 1.10. Let µ be a product measure on R d .

(1) Let f = e -φ and g be two functions on R d such that all x ∈ R d ,

∂ i ∂ i φ(x) a i (x i ) ≤ 0 and ∂ i ∂ i g(x) a i (x i ) ≥ 0 for all 1 ≤ i ≤ d, (1.13) and ∂ i,j φ(x) ≤ 0 and ∂ i,j g(x) ≥ 0 for all 1 ≤ i = j ≤ d. (1.14)
Assume moreover that f is orthogonal to the functions

A i (x i ) for all 1 ≤ i ≤ d, then Cov µ (f, g) ≥ 0.
(2) Let f = e -φ and g = e -ψ be two functions on R d such that for all x ∈ R d ,

∂ i ∂ i φ(x) a i (x i ) ≤ 0 and ∂ i ∂ i ψ(x) a i (x i ) ≤ 0 for all 1 ≤ i ≤ d, (1.15) and ∂ i,j φ(x) ≤ 0 and ∂ i,j ψ(x) ≤ 0 for all 1 ≤ i = j ≤ d. (1.16)
Assume moreover that the product measure µ is symmetric and the functions a i are even for 1 ≤ i ≤ d and that also both f and g are even, then

Cov µ (f, g) ≥ 0.
As before, the choice a k ≡ 1 is worth looking at and gives the following corollary.

Corollary 1.11. Let µ be a product measure on R d .

(1) Let f = e -φ and g be two functions on R d such that for all 1 ≤ i, j ≤ d and all

x ∈ R d , ∂ i,j φ(x) ≤ 0 and ∂ i,j g(x) ≥ 0.
(1.17)

Assume moreover that f is orthogonal to the coordinate functions

x i for all 1 ≤ i ≤ d, then Cov µ (f, g) ≥ 0.
(2) Let f = e -φ and g = e -ψ be two functions on R d such that for all

1 ≤ i, j ≤ d and all x ∈ R d , ∂ i,j φ(x) ≤ 0 and ∂ i,j ψ(x) ≤ 0. (1.18)
Assume moreover that the product measure µ is symmetric and that both f and g are even, then Cov µ (f, g) ≥ 0.

Outline. The paper is organized as follows. The case of the dimension one is investigated in Sections 2, 3 and 4. In Sections 2 and 3, we produce two different proofs of Theorem 1.2. The first one, given in Section 2, is based on the use of determinants and the so-called Andreev's formula. The second one, detailed in Section 3, is based on a covariance identity due to Hoeffding and the use on R 2 of the classical FKG inequality. In Section 4, we notice that more structure is actually present in dimension one: the kernel k in Hoeffding's covariance identity is indeed totally positive in the sense of Karlin [START_REF] Karlin | Total positivity[END_REF]. Consequently, determinantal covariance inequalities for general Chebyshev systems follow (see Theorem 4.2 for the precise statement). The latter inequalities are also recovered without using Hoeffding's covariance identity, through a direct approach with determinants and Andreev's formula.

The tensorization method and the proofs of Theorems 1.4, 1.7 and 1.9 are given in Section 5, except for the proofs of Theorem 1.2(3) and Theorem 1.9(2), that pertain to the hypothesis of quasi-concavity and are detailed in Section 6. Indeed, the method for proving Theorem 1.2(3) in dimension one is very specific and independent from the rest of the paper. Theorem 1.9(2) is then obtained by tensorization.

In addition, a generalization of Hoeffding's covariance identity for product measures, obtained by a duplication argument, is provided in Section 7. A second proof of Theorem 1.4 and the proof of Theorem 1.10 are then given. As explained above, another natural generalization of Hoeffding's covariance identity would be given through the standard semi-group interpolation. Comments on the difficulty of using this covariance representation are provided in Section 8. Some possible examples of applications are given in Section 9. Finally, in the Appendix, we also prove that that Theorem 1.1(2) is true for product measures whose marginals are mixtures of centered Gaussian measures.

A determinantal approach in dimension one

This section is devoted to a first proof of Theorem 1.2(1) and (2). The proof is based on properties of determinants, in particular on the intertwining between determinants and the integral operator, a property known as Andreev's formula. Similar arguments will be used in Section 4 in the more general framework of Chebyshev systems. 

(x 1 , x 2 , x 3 ) ∈ R 3 with x 1 < x 2 < x 3 , one has D(x 1 , x 2 , x 3 ) = 1 1 1 u(x 1 ) u(x 2 ) u(x 3 ) U (x 1 ) U (x 2 ) U (x 3 ) ≥ 0.
In other terms, the couple (u, U ) satisfies Assumption (C) if and only if the triple (1, u, U ) forms a Chebyshev system (see Definition 4.1). From elementary properties of determinants, it follows that: Proposition 2.2. Let (u, U ) be satisfying Assumption (C) and D : R 3 → R be as defined above. Let (x 1 , x 2 , x 3 ) ∈ R 3 . Let σ ∈ S 3 be a permutation of {1, 2, 3} such that

x σ(1) ≤ x σ(2) ≤ x σ(3) . Then ε(σ)D(x 1 , x 2 , x 3 ) ≥ 0 Proposition 2.3. A function f : R → R is convex if and only if, for any x ∈ R, the pair (x, f (x)) satisfies (C).
Proof. Take (x 1 , x 2 , x 3 ) ∈ R 3 with x 1 < x 2 < x 3 . Expanding the determinant D(x 1 , x 2 , x 3 ) gives:

D(x 1 , x 2 , x 3 ) = (x 2 -x 1 )(f (x 3 ) -f (x 2 )) -(x 3 -x 2 )(f (x 2 ) -f (x 1 )).
Dividing by the positive quantity (x 3 -x 2 )(x 2 -x 1 ) > 0, we obtain that D(x 1 , x 2 , x 3 ) ≥ 0 if and only if

f (x 3 ) -f (x 2 ) x 3 -x 2 ≥ f (x 2 ) -f (x 1 ) x 2 -x 1 ,
which is the slope inequality equivalent to convexity of f .

Corollary 2.4. If U is an increasing bijection between R and some interval I, then

(1, u, U ) satisfies (C) if and only if u • U -1 is concave on I.
Proof. We notice that, for x 1 < x 2 < x 3 we have

D(x 1 , x 2 , x 3 ) = D(U -1 (y 1 ), U -1 (y 2 ), U -1 (y 3 ))
for some triple y 1 < y 2 < y 3 ∈ I. Elementary properties of determinants then give:

D(x 1 , x 2 , x 3 ) = 1 1 1 y 1 y 2 y 3 (-u • U -1 )(y 1 ) (-u • U -1 )(y 2 ) (-u • U -1 )(y 3 )
and we conclude by applying Proposition 2.3.

Let us now consider some positive function f . Let F be a primitive of f . It is known (see [START_REF] Bobkov | Extremal properties of half-spaces for log-concave distributions[END_REF]) that f is log-concave if and only if f • F -1 is concave. From the above, we deduce the following proposition.

Proposition 2.5. A positive function f is log-concave if and only if the pair (f, F ) satisfies (C).

An Andreev-type formula.

A key point in this approach is the following Andreevtype formula which exchanges expectation and determinants.

Proposition 2.6. Let (f i ) 1≤i≤n and (g i ) 1≤i≤n be two n-uples of functions in L 2 (µ). We have:

det (E µ [f i (X)g j (X)]) = 1 n! E µ⊗•••⊗µ [det (f i (X j )) det (g i (X j ))] .
Proof. An elementary formula for determinant asserts that:

n! det (E µ [f i (X)g j (X)]) = σ,σ ′ ∈Sn ε(σ)ε(σ ′ ) n i=1 E µ f σ(i) (X)g σ ′ (i) (X) .
Fubini's theorem allows us to write:

n! det (E µ [f i (X)g j (X)]) = σ,σ ′ ∈Sn ε(σ)ε(σ ′ )E µ⊗•••⊗µ n i=1 f σ(i) (X i )g σ ′ (i) (X i ) .
We thus have:

n! det (E µ [f i (X)g j (X)]) = E µ⊗•••⊗µ   σ,σ ′ ∈Sn ε(σ)ε(σ ′ )f σ(i) (X i )g σ ′ (i) (X i )   = E µ⊗•••⊗µ     σ∈Sn ε(σ)f σ(i) (X i )     σ ′ ∈Sn ε(σ ′ )g σ ′ (i) (X i )     = E µ⊗•••⊗µ [det (f j (X i )) det (g j (X i ))] = E µ⊗•••⊗µ [det (f i (X j )) det (g i (X j ))] .
Note that with the particular choice n = 2, f 1 = 1, f 2 = f , g 1 = 1, g 2 = g, Proposition 2.6 gives the so-called "Chebyshev's other inequality": Proposition 2.7 (Chebyshev). If f, g ∈ L 2 (µ) are both non-increasing or both nondecreasing, then Cov µ (f, g) ≥ 0.

2.3.

A first proof of Theorem 1.2. The first proof of Theorem 1.2 will be deduced from the following more general result.

Theorem 2.8. Let (u, U ) and (v, V ) be two pairs of functions satisfying Assumption (C). Then

Cov µ (U, V )Cov µ (u, v) ≥ Cov µ (u, V )Cov µ (U, v).
Proof. We want to show that D ≥ 0, where

D = Cov µ (u, v) Cov µ (u, V ) Cov µ (U, v) Cov µ (U, V ) .
But we also have:

D = 1 E µ [v] E µ [V ] E µ [u] E µ [uv] E µ [uV ] E µ [U ] E µ [U v] E µ [U V ] .
The latter equality can be proven by simply expanding the determinant. We now apply Proposition 2.6 with

f 1 = 1, f 2 = u, f 3 = U and g 1 = 1, g 2 = v, g 3 = V . This gives D = R 3 1 1 1 u(x 1 ) u(x 2 ) u(x 3 ) U (x 1 ) U (x 2 ) U (x 3 ) 1 1 1 v(x 1 ) v(x 2 ) v(x 3 ) V (x 1 ) V (x 2 ) V (x 3 ) dµ(x 1 )dµ(x 2 )dµ(x 3 ). Let (x 1 , x 2 , x 3 ) ∈ R 3 and σ ∈ S 3 be such that x σ(1) < x σ(2) < x σ(3) .
As both pairs (u, U ) and (v, V ) satisfy (C), we apply Proposition 2.2 as follows,

1 1 1 u(x 1 ) u(x 2 ) u(x 3 ) U (x 1 ) U (x 2 ) U (x 3 ) 1 1 1 v(x 1 ) v(x 2 ) v(x 3 ) V (x 1 ) V (x 2 ) V (x 3 ) =   ε(σ) 1 1 1 u(x 1 ) u(x 2 ) u(x 3 ) U (x 1 ) U (x 2 ) U (x 3 )     ε(σ) 1 1 1 v(x 1 ) v(x 2 ) v(x 3 ) V (x 1 ) V (x 2 ) V (x 3 )   ≥ 0,
from which we deduce D ≥ 0, as wanted.

As we prove now, points (1) and (2) of Theorem 1.2 are particular cases of Theorem 2.8, for a suitable choice for the pairs (u, U ) and (v, V ).

Proof of Theorem 1.2(1) and (2).

The first item is a direct consequence of Theorem 2.8 and Proposition 2.3 for the particular choice u

(x) = x, U (x) = f (x), v(x) = x and V (x) = g(x).
For the second item, we set u

(x) = f (x), U (x) = x 0 f (t)dt, v(x) = x, V (x) = g(x)
. Propositions 2.5 and 2.3 show that the pairs (u, U ) and (v, V ) both satisfy Assumption (C). By Theorem 2.8, we thus have:

Cov µ (f, x)Cov µ (U, g) ≥ Cov µ (f, g)Cov µ (U, x).
The orthogonality assumption gives Cov µ (f, x) = 0. Moreover, as f is non-negative, the function U is non-decreasing. Proposition 2.7 then gives Cov µ (U, x) ≥ 0, so that the inequlity Cov µ (f, g) ≤ 0 holds, as desired.

The Hoeffding covariance identity approach in dimension one

This section is devoted to a second proof of Theorem 1.2(1) and (2). The proof will follow from the Hoeffding covariance identity and the use of the FKG inequality for a new probability measure on R 2 . A key point is that the kernel of the Hoeffding representation is totally positive.

3.1. Hoeffding's covariance identity. We start by recalling the following representation formula for the covariance, which is a consequence of a slightly more general covariance identity due to Hoeffding. See [SW18] for more details about Hoeffding's covariance identity.

Theorem 3.1. Let µ be a probability measure on R and denote by F µ its cumulative distribution function, then for all functions f and g in L 2 (µ) and absolutely continuous, one has

Cov µ (f, g) = f ′ (x)k µ (x, y)g ′ (y)dxdy, (3.1) with k µ (x, y) = F µ (x ∧ y) -F µ (x)F µ (y) and x ∧ y = min(x, y).
For simplicity, when it is clear from context, we shall write k = k µ in the sequel. We now recall some properties of the kernel k : R 2 → [0, +∞). Taking

f (•) = 1 [x,∞[ (•) and g(•) = 1 [y,∞[ (•)
, one sees that the kernel k is necessarily unique and can also be written

k(x, y) = Cov µ 1 {X≤x} , 1 {X≤y} .
This kernel is non-negative, bounded, continuous if µ is assumed to be a continuous measure, but it is not differentiable on the line y = x. Let us emphasize the fact that the kernel k is totally positive in the sense of Karlin [Kar68]. This result should be classical but we could not find a reference of it in the literature.

Theorem 3.2. For all n ≥ 2, s 1 ≤ • • • ≤ s n ∈ R and t 1 ≤ • • • ≤ t n ∈ R, det (k(s i , t j )) 1≤i,j≤n ≥ 0.
Proof. The proof follows from Theorem 3.1 in Karlin [START_REF] Karlin | Total positivity[END_REF], or Theorem 4.2 in Pinkus [Pin10], by showing that the matrix (k(s i , t j )) 1≤i,j≤n is a Green matrix. One can also directly use Corollary 3.1 in Karlin [START_REF] Karlin | Total positivity[END_REF] by writing

k(x, y) = φ(x)ψ(y) if x ≥ y ψ(x)φ(y) if x ≤ y with φ(x) = F (x) non-decreasing and ψ(y) = 1 -F (y) non-increasing.
In the case n = 2, Theorem 3.2 provides the following inequality.

Corollary 3.3. For all s 1 ≤ s 2 and t 1 ≤ t 2 , k(s 1 , t 1 )k(s 2 , t 2 ) ≥ k(s 1 , t 2 )k(s 2 , t 1 ). (3.2)
The conclusion of Corollary 3.3 is well known in the literature under different names. Inequality (3.2), here in the case of R 2 , is sometimes referred to as the Holley condition or the strong FKG condition. The kernel k is also called log-supermodular or multivariate totally positive of order 2. We shall also the need the following extension: We recall now the classical result, due to Fortuin, Kasteleyn and Ginibre [FKG71], which asserts that the Holley condition implies the FKG inequality. We first state the definition of the FKG inequality in R d .

Definition 3.5. Let d ≥ 1. A function f : R d → R is said to be coordinate increasing if it is non-decreasing along each coordinate, that is if: for all x, y ∈ R d , satisfying x i ≤ y i , 1 ≤ i ≤ d one has f (x) ≤ f (y).
(3.3)

A probability measure ν on R d is said to satisfy the FKG inequality if for all functions f and g coordinate increasing, one has:

Cov ν (f, g) ≥ 0. (3.4)
Theorem 3.6. Let ν be a probability measure R d with density k with respect to the Lebesgue measure. Assume that for all x, y ∈ R d ,

k(x ∧ y)k(x ∨ y) ≥ k(x)k(y), (3.5)
where x ∧ y = (min(x 1 , y 1 ), . . . , min(x d , y d )) and x ∨ y = (max(x 1 , y 1 ), . . . , max(x d , y d )).

Then ν satisfies the FKG inequality.

Remark 3.7. Writing k = e H , the condition (3.5) writes:

H(x ∧ y) + H(x ∨ y) ≥ H(x) + H(y). (3.6)
In the case where k is smooth -more precisely when H is of class C 2 here -, inequality (3.6) is equivalent to the following condition on the second order cross-derivatives of H:

∂ 2 ∂x i ∂x j H(x) ≥ 0 for 1 ≤ i = j ≤ d.
In this case, Bakry and Michel [START_REF] Bakry | Sur les inégalités FKG[END_REF] proved the slightly stronger result that the associated semi-group (see Section 8) preserves the class of coordinate increasing functions. Finally note that the kernel k µ given in Theorem 3.1 above, is not smooth on the diagonal of R 2 and that ∂ 2 x,y ln k µ (x, y) = 0 for all x = y ∈ R 2 . Remark 3.8. Condition (3.5) is not equivalent to the FKG inequality. In the Gaussian setting, for a Gaussian vector with non-singular matrix covariance Γ on R d , the Holley condition (3.5) is equivalent to (Γ -1 ) i,j ≤ 0 for 1 ≤ i = j ≤ d. But as proven by Pitt [START_REF] Pitt | Positively correlated normal variables are associated[END_REF] in the Gaussian setting, the FKG inequality is equivalent to Γ i,j ≥ 0 (see also Tong [Ton90]). The condition on the coefficient of Γ -1 implies the one for Γ. But the converse does not hold. The example 4.3.2 in Tong [START_REF] Tong | The multivariate normal distribution[END_REF] 

provides a covariance matrix for d ≥ 3 such that Γ i,j ≥ 0 for all 1 ≤ i, j ≤ d but not (Γ -1 ) i,j ≤ 0 for all 1 ≤ i = j ≤ d.

Hoeffding's formula as a relation between covariances.

The main result of this section is Lemma 3.9 where we express the quantities appearing in Theorem 1.2 as a covariance of the derivatives of the functions with respect to a new probability measure on R 2 . Let µ be a probability measure on R admitting a second moment. We recall that k is the non-negative kernel:

k(x, y) = F µ (x ∧ y) -F µ (x)F µ (y).
and that from Theorem 3.1, it satisfies k(x, y)dxdy = Var µ (x) = Var(µ).

(3.7)

By assumption, this last quantity is finite and we denote by µ (1) the following probability measure on R 2 :

dµ (1) (x, y) = k(x, y) k(x ′ , y ′ )dx ′ dy ′ dxdy
In the case where f and g are some positive functions, we also denote,

dµ (1) f (x, y) = f (x)k(x, y) f (x ′ )k(x ′ , y ′ )dx ′ dy ′ dxdy and dµ (1) f,g (x, y) = f (x)k(x, y)g(y) f (x ′ )k(x ′ , y ′ )dx ′ dy ′ dxdy
The main result here is the following relation between the covariances of µ and µ (1) . It consists essentially in a rewriting of Hoeffding's covariance identity (3.1) and to highlight the slight difference, we call it "Hoeffding's covariance relation".

Lemma 3.9 (Hoeffding's covariance relation). Let µ be a probability measure on R admitting a second moment, with Var(µ) > 0. Let f, g : R → R be some absolutely continuous functions that belong to L 2 (µ).

(1) Then,

Cov µ (f (x), g(x)) Var(µ) - Cov µ (f (x), x) Var(µ) Cov µ (g(x), x) Var(µ) = Cov µ (1) (f ′ (x), g ′ (y)). (3.8)
(2) If moreover, f = e -φ is positive:

Cov µ (f (x), g(x)) Z f - 1 Z 2 f Cov µ (f (x), x) Cov µ (F (x), g(x)) = Cov µ (1) f (-φ ′ (x), g ′ (y)). (3.9)
(3) If moreover g = e -ψ is positive:

Cov µ (f (x), g(x)) Z f,g - 1 Z 2 f,g Cov µ (f (x), G(x)) Cov µ (F (x), g(x)) = Cov µ (1) f,g (φ ′ (x), ψ ′ (y)).
(3.10)

Here F and G are primitives of f and g and

Z f = f (x)k(x, y)dxdy = Cov(F (x), x) > 0,
and

Z f,g = f (x)k(x, y)g(y)dxdy = Cov(F (x), G(x)) > 0.
Note that this approach is also linked to determinants in the sense that the left hand sides of the equalities (3.8), (3.9) (3.10) can be written as determinants. For example, formula (3.8) can be written as

Var(µ) 2 Cov µ (1) (f ′ (x), g ′ (y)) = det Var(µ) Cov µ (x, f (x)) Cov µ (x, g(x))
Cov µ (f, g) .

(3.11)

Proof. Using several times the covariance representation of Theorem 3.1, one has:

Cov µ (f (x), g(x)) Var(µ) = f ′ (x) k(x, y) k(x ′ , y ′ )dx ′ dy ′ g ′ (y)dxdy =Cov µ (1) (f ′ (x), g ′ (y)) + f ′ (x) k(x, y) k(x ′ , y ′ )dx ′ dy ′ dxdy g ′ (y) k(x, y) k(x ′ , y ′ )dx ′ dy ′ dxdy =Cov µ (1) (f ′ (x), g ′ (y)) + Cov µ (f (x), x) Var(µ) Cov µ (g(x), x) Var(µ) . Similarly, if f = e -φ , Cov µ (f (x), g(x)) Z f = (-φ ′ (x)) f (x)k(x, y) Z f g ′ (y)dxdy =Cov µ (1) f (-φ ′ (x), g ′ (y)) + 1 Z 2 f f ′ (x)k(x, y)dxdy f (x)k(x, y)g ′ (y)dxdy =Cov µ (1) f (-φ ′ (x), g ′ (y)) + 1 Z 2 f Cov µ (f (x), x) Cov µ (F (x), g(x)
)

and if moreover g = e -ψ , Cov µ (f (x), g(x)) Z f,g = (-φ ′ (x)) f (x)k(x, y)g(y) Z f,g (-ψ ′ (y))dxdy =Cov µ (1) f,g (φ ′ (x), ψ ′ (y)) + 1 Z 2 f,g f ′ (x)k(x, y)g(y)dxdy f (x)k(x, y)g ′ (y)dxdy =Cov µ (1) f,g (φ ′ (x), ψ ′ (y)) + 1 Z 2 f,g Cov µ (f (x), G(x)) Cov µ (F (x), g(x)).

3.3.

A second proof of Theorem 1.2. We are now ready to turn to the second proof of Theorem 1.2(1) and (2) pertaining to dimension one. The last ingredient will be the use of the FKG inequality.

Proofs of Theorem 1.2(1) and (2).

Let µ be any probability measure R admitting a second moment and let f and g be two convex functions on R. Using the first covariance relation of Lemma 3.9, it is equivalent to prove that:

Cov µ (1) (f ′ (x), g ′ (y)) ≥ 0.
By Corollary 3.3 and Theorem 3.6, the probability measure µ (1) on R 2 satisfies the FKG inequality. Since f and g are convex, the functions (x, y) → f ′ (x) and (x, y) → g ′ (y) on R 2 are in particular increasing along coordinates in R 2 , which implies the desired inequality.

As for the second item, let f = e -φ be a log-concave function and g be a convex function on R and such that f is orthogonal to the linear function x. By the second covariance formula of Lemma 3.9, and since Cov µ (f (x), x) = 0,

Cov µ (f, g) = -Cov µ (1) f (φ ′ (x), g ′ (y)).
The second point follows similarly as above, since by Corollary 3.4 the kernel of the probability measure µ

(1) f is also totally positive.

More covariance inequalities in dimension one for Chebyshev systems

In this section, we consider some generalizations in dimension one of Theorem 1.2, involving formulations through determinants for Chebyshev systems. As for Theorem 1.2, we provide two proofs, one based only through determinantal identities and the other taking advantage of the strong fact that the kernel k µ is totally positive. 

. A r-uple of functions (f 1 , . . . , f r ) with f i : R → R is said to form a Chebyshev system (of order r) if for all t 1 ≤ • • • ≤ t r ∈ R, det(f i (t j )) 1≤i,j≤r ≥ 0. (4.1)
The main result of this section is the following: Theorem 4.2. Let n ≥ 1 and f 1 , . . . , f n : R → R and g 1 , . . . , g n : R → R be some functions such that both the (n + 1)-uples (1, f 1 , . . . , f n ) and (1, g 1 , . . . , g n ) form two Chebyshev systems. Denote

F (x) =   f 1 (x) . . . f n (x)   and G(x) =   g 1 (x) . . . g n (x)   , then: det(Cov(F, G)) ≥ 0. (4.2)
4.2. A first proof using the determinantal approach. We produce here a proof of Theorem 4.2 which is based on the methods introduced in Section 2. We first claim that

det (Cov µ (F, G)) 1≤i,j≤n = det E µ [f i g j ] 0≤i,j≤n , (4.3) 
where we set f 0 (x) = 1 and g 0 (x) = 1. Indeed, let A be the matrix (E µ [f i g j ]) 0≤i,j≤n . Let C 0 , . . . , C n denote the columns of the matrix A. Let us consider the matrix B obtained by replacing, for every 1 ≤ j ≤ n, the column C j by C j -E[g j ]C 0 . As B is obtained from A only by elementary operations, they have the same determinant. Moreover, B can be written in block form:

B = 1 0 E µ (F ) Cov(F, G) .
This proves that det(A) = det (Cov(F, G)) and (4.3) follows.

Proof of Theorem 4.2. By the equality (4.3) and the Andreev-type formula of Proposition 2.6, one has

det (Cov(F, G)) = 1 n! R n+1 det (f i (x j )) 0≤i,j≤n det (g i (x j )) 0≤i,j≤n dµ(x 0 ) • • • dµ(x n ).
Let us fix (x 0 , . . . , x n ) ∈ R n+1 . There exists a permutation σ ∈ S n such that

x σ(0) ≤ • • • ≤ x σ(n) .
As (f 0 , . . . , f n ) and (g 0 , . . . , g n ) are Chebyshev systems, one has

ε(σ) det (f i (x j )) 0≤i,j≤n ≥ 0 , ε(σ) det (g i (x j )) 0≤i,j≤n ≥ 0.
One then has det (f i (x j )) 0≤i,j≤n det (g i (x j )) 0≤i,j≤n ≥ 0, so det (Cov(F, G)) ≥ 0 and the result follows.

4.3.

A second proof with the Hoeffding covariance identity. We turn now to the proof of the covariance inequality of Theorem 4.2 using Hoeffding's covariance identity (3.1). The main point will be the use of a bivariate Andreev-type formula for bilinear integral operators. Another key point is to transfer the assumption on the functions to an assumption on their derivatives.

Proposition 4.3. Let n ≥ 1 and f 1 , . . . , f n : R → R be some C 1 functions. The following assertions are equivalent:

(1) The (n + 1)-uple (1, f 1 , . . . , f n ) forms a Chebyshev system.

(2) The n-uple

(f ′ 1 , . . . , f ′ n ) forms a Chebyshev system. Proof. Assume (1), let x 0 < x 1 < • • • < x n and set f 0 = 1. Then, replacing the i-th column C i by C i -C i-1 for 1 ≤ i ≤ n, yields 0 ≤ det(f i (x j )) 0≤i,j≤n = det(f i (x j ) -f i (x j-1 )) 1≤i,j≤n = n j=1 (x j -x j-1 ) det f i (x j ) -f i (x j-1 ) x j -x j-1 1≤i,j≤n
.

Letting successively x j tend to x j-1 for j = 1, ..., n gives det(f ′ i (x j-1 )) 1≤i,j≤n ≥ 0 and (2) follows. Now assume (2), for

x 0 < x 1 < • • • < x n . Since one has f 0 = 1, replacing the i-th column C i by C i -C i-1 for 1 ≤ i ≤ n, one gets det(f i (x j )) 0≤i,j≤n = det(f i (x j ) -f i (x j-1 )) 1≤i,j≤n = det x j x j-1 f ′ i (u j )du j 1≤i,j≤n = xn x n-1 • • • x 2 x 1 x 1 x 0 det(f ′ i (u j )) 1≤i,j≤n du 1 du 2 . . . du n
where the last line follows from an Andreev-type formula. Since and (1) follows.

u 1 ≤ u 2 ≤ • • • ≤ u n , we have det(f ′ i (u j )) ≥ 0 by (2),
The second key point is the following bivariate Andreev-type formula for bilinear kernel integral operators on R 2n . It is stated here without a proof. 

f ′ i (x)k(x, y)g ′ j (y)dµ(x)dµ(y) 1≤i,j≤n = D det f ′ i (x j ) det (k(x i , y j )) det g ′ i (y j ) dx 1 . . . dx d dy 1 . . . dy d
where D is the domain of R 2n defined by

D = (x 1 , . . . , x n , y 1 , . . . , y n ) ∈ R 2n : x 1 < • • • < x n , y 1 < • • • < y n .
A second proof of Theorem 4.2 is then immediate.

Second proof of Theorem 4.2. By hypothesis and since the kernel k is totally positive, the three determinants in the integral on the second line in the equality of Proposition 4.4 are non-negative and the result follows.

4.4. Some applications. We shall use Theorem 4.2 under the following particular form.

Corollary 4.5. Let n ≥ 1 and φ 1 , . . . , φ n : R → R and f, g : R → R be some functions and denote

F (x) =     φ 1 (x) . . . φ n (x) f (x)     and G(x) =     φ 1 (x) . . . φ n (x) g(x)     . Assume that (1, φ 1 , . . . , φ n , f ) and
(1, φ 1 , . . . , φ n , g) form two Chebyshev systems, then:

det(Cov(F, G)) ≥ 0. (4.4)
It is well known that, if f is smooth and if we choose more precisely φ 1 (x) = x, . . . , φ n (x) = x n , the condition that (1, φ 1 , . . . , φ n , f ) forms a Chebyshev system is equivalent to f (n+1) (x) ≥ 0, for all x ∈ R. This is a well known generalization of Proposition 2.3, see [START_REF] Karlin | Total positivity[END_REF]Chapter 6 Example 4].

In the case where we consider n = 1, we recover Theorem 1.2(1). Indeed, in dimension one, by Proposition 2.3, the convexity assumptions on f and g are equivalent to the fact that (1, x, f ) and (1, x, g) both form a Chebyshev system.

We now describe the result for n = 2 and φ 1 (x) = x, φ 2 (x) = x 2 . Corollary 4.6. Let µ be probability measure on R admitting a fourth moment. Assume that f (3) (x) ≥ 0 and g (3) (x) ≥ 0 for all x ∈ R, then

Cov µ (f, g) Var µ (x 2 )Var µ (x) -Cov µ (x, x 2 ) 2 ≥ Cov µ (x, f ) Cov µ (x 2 , f ) Var µ (x 2 ) -Cov µ (x, x 2 ) -Cov µ (x, x 2 ) Var µ (x) Cov µ (x, g) Cov µ (x 2 , g) .
If moreover R xdµ = R x 3 dµ = 0, the latter inequality writes

Cov(f, g) ≥ 1 Var µ (x) Cov(x, f ) • Cov(x, g) + 1 Var µ (x 2 ) Cov(x 2 , f ) • Cov(x 2 , g).

The tensorization method for product measures

We investigate here product measures on R d with d ≥ 2, through the use of the tensorization argument. This method consists in decomposing the covariance for the product measure by the one-dimensional covariances of the marginals and then applying the covariance inequalities previously obtained in dimension one. 

µ = µ 1 ⊗ • • • ⊗ µ d be a product measure. For a function f : R d → R, set f k (x 1 , . . . x k ) = f (x 1 , . . . x d )dµ k+1 (x k+1 ) . . . dµ d (x d ),
for 1 ≤ k ≤ d, and set f 0 = f dµ. Then it holds,

Cov µ (f, g) = d k=1 Cov µ k (f k , g k )dµ 1 (x 1 ) . . . dµ k-1 (x k-1 ).
(5.1)

In the above lemma, the function f k is the conditional expectation of f knowing (x 1 , . . . , x k ) and Cov µ k (f k , g k ) is the covariance with respect to the one-dimensional marginal µ k of f k and g k ; that is the function depending on (x 1 , . . . , x k-1 ) given by:

Cov µ k x → f k (x 1 , . . . , x k-1 , x), x → g k (x 1 , . . . , x k-1 , x) .
This decomposition of the covariance is well known and implies the famous tensorization property of the Poincaré inequality; see e.g. [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]. To be complete, (5.1) is stated for the variance in [Led01b], but it also applies to the covariance due to the following polarization identity: 4 Cov(f, g) = Var(f + g) -Var(f -g).

A weighted Hoeffding's covariance relation in dimension one.

For the sequel, we shall need a slight generalization of the covariance relation of Lemma 3.9 in dimension one, that we describe now.

Let µ be a probability measure on R. Let a be a positive function on R and let A be the (centered) primitive of a, A = adx + c. We assume that a is such that Var µ (A) < +∞. With these notations and with also the same notations as in Section 3.2, we define k a,a (x, y) := a(x)k(x, y)a(y) and we set Z a,a = k a,a (x, y)dxdy. By Theorem 3.1, one gets Z a,a = Var µ (A). We will also consider the measure µ

(1) a,a , defined by

dµ (1) a,a (x, y) = k a,a (x, y) k a,a (x ′ , y ′ )dx ′ dy ′ dxdy.
Since the kernel k is totally positive, by Corollary 3.3, one gets that the kernels k a,a are also totally positive.

The following lemma provides a generalization of Lemma 3.9, which corresponds to the case a ≡ 1. Lemma 5.2. Let f, g : R → R be some absolutely continuous functions that belong to L 2 (µ).

(1) Then,

Cov µ (f (x), g(x)) =Z a,a Cov µ (1) a,a f ′ (x) a(x) , g ′ (y) a(y) + Cov µ (f (x), A(x)) Z a,a
Cov µ (g(x), A(x)) Z a,a .

(5.2)

(2) If moreover f = e -φ , then

Cov µ (f (x), g(x)) =Z af,a Cov µ (1) af,a -φ ′ (x) a(x) , g ′ (y) a(y) + Cov µ (f (x), A(x)) Z af,a
Cov µ (F a (x), g(x)) Z af,a .

(5.3)

(3) If moreover g = e -ψ , then

Cov µ (f (x), g(x)) =Z af,ag Cov µ (1) af,ag φ ′ (x) a(x) , ψ ′ (y) a(y) + Cov µ (f (x), G a (x)) Z af,ag Cov µ (F a (x), g(x)) Z af,ag . (5.4)
Here F a and G a denotes respectively the primitives of af and ag and the constants Z af,a and Z af,ag are defined as in Lemma 3.9.

5.3. Proofs of Theorems 1.4, 1.7 and 1.9. We first consider the proof of Theorem 1.4. We then state a similar result in Theorem 5.3, but with slightly different assumptions.

Proof of Theorem 1.4. First, we assume that f and g are such that all the quantities in (1.9) and (1.10) are non-negative. By the tensorization of the covariance (5.1) and the first covariance relation of Lemma 5.2, one has

Cov µ (f, g) = d k=1 1 Z k,a k ,a k Cov µ k (f k , A k (x k ))Cov µ k (g k , A k (x k ))dµ 1 (x 1 ) . . . dµ k-1 (x k-1 ) (5.5) + d k=1 Z k,a k ,a k Cov µ (1) k,(a k ,a k ) ∂ k f k (x k ) a k (x k ) , ∂ k g k (y k ) a k (y k ) dµ 1 (x 1 ) . . . dµ k-1 (x k-1 ), (5.6) 
where more precisely

∂ k f k (x k ) = ∂ k f k (x 1 , . . . , x k-1 , x k ) and ∂ k g k (y k ) = ∂ k g k (x 1 , . . . , x k-1 , y k ).
We first prove that the sum in display (5.6) is non-negative. The assumption (1.9) implies that both (

x k , y k ) → ∂ k f (x k ) a k (x k ) and (x k , y k ) → ∂ k g(y k ) a k (y k )
are coordinatewise increasing on R 2 for every fixed x 1 , . . . , x k-1 . Since by Corollary 3.4, the measure µ (1) k,(a k ,a k ) satisfies the FKG criterion on R 2 , the term (5.6) is non-negative. We now turn to the sum in display (5.5). With a similar notation for g, we set

F k,a k (x 1 , . . . x k-1 ) = Cov µ k (f k , A k (x k )).
Since the hypotheses allow to exchange derivation and integrals, one has for 1 ≤ i ≤ (k -1),

∂ i Cov µ k (f k , A k (x k )) = x k ,y k x k+1 ,...,x d ∂ i,k f (x)dµ k+1 (x k+1 ) . . . dµ d (x d ) k µ k (x k , y k )a k (y k )dx k dy k .
In particular, the assumptions (1.10) give that the above integrands are non-negative. This implies that the functions F k,a k and G k,a k are both coordinate increasing on R k-1 . By the standard FKG inequality for product measures, one gets that

F k,a k G k,a k dµ 1 (x 1 ) . . . dµ k-1 (x k-1 ) ≥ F k,a k dµ 1 (x 1 ) . . . dµ k-1 (x k-1 ) • G k,a k dµ 1 (x 1 ) . . . dµ k-1 (x k-1 ) = Cov µ (f (x), A k (x k )) • Cov µ (g(x), A k (x k )).
Summing over the index k ends the proof in the case of non-negative signs in assumptions (1.9) and (1.10). Finally, analyzing the above proof, one sees that it is still valid for general signs. Indeed, under the general case of assumption (1.9), the functions

(x k , y k ) → ∂ k f (x k ) a k (x k ) and (x k , y k ) → ∂ k g(y k ) a k (y k )
are either both coordinatewise increasing or both coordinatewise decreasing on R 2 and thus have a non-negative covariance with respect to the measure µ (1) k,(a k ,a k ) . Secondly, the last argument relies on the FKG inequality for product measures. In this case, the FKG inequality is in fact also valid if the functions F k,a k and G k,a k are monotone along coordinates, with the same monotonicity along each coordinate. This is the case under the general assumption (1.10) and the result follows.

As announced in the beginning of this section, we also obtain with this tensorization approach, a similar result under slightly different conditions. Theorem 5.3. Let µ be a product measure on R d . Assume that the marginals µ k are absolutely continuous with respect to the Lebesgue measure, with positive densities e -V k , for smooth potentials V k . Let f, g : R d → R and assume that for each 1 ≤ k ≤ d, the signs of

∂ k ∂ k f (x) a k (x k ) and ∂ k ∂ k g(x) a k (x k ) (5.7)
are constant and equal and that for each (j, k) with 1 ≤ j < k ≤ d, the signs of

∂ j,k f (x) A k (x k ) V ′ k (x k ) and ∂ j,k g(x) A k (x k ) V ′ k (x k ) (5.8)
are also constant and equal. Assume furthermore the following technical assumption:

lim x k →±∞ f k (x 1 , . . . , x k ) A k (x k ) V ′ k (x k ) e -V k (x k ) = 0, (5.9)
where f k is defined in Lemma 5.1. Then, it holds

Cov µ (f, g) ≥ d k=1 1 Var µ k (A k ) Cov µ (f (x), A k (x k )) • Cov µ (g(x), A k (x k )).
Note that since each A k vanishes exactly in one point, the hypothesis in (5.8) forces each V k to be unimodal (in the sense that V k has only one zero). In particular, if each potential V k is strictly convex, one can specialize the result to the case

A k = V ′ k or equivalently a k = V ′′ k .
With this specific choice, Theorems 5.3 and 1.4 coincide. Proof of Theorem 5.3. The proof is similar to the one of Theorem 1.4. The only difference is that we use integration by parts to get a different representation of F k,a k . We obtain

F k,a k (x 1 , . . . x k-1 ) = Cov µ k f k , V ′ k (x k ) A k (x k ) V ′ k (x k ) = ∂ k f k A k (x k ) V ′ k (x k ) dµ k (x k ).
Notice that the bracket terms in the integration by parts are zero due to Assumption (5.9). Furthermore, by Assumption (5.8), the two functions F k,a k and G k,a k are coordinatewise monotone with the same kind of monotony along each coordinate. The result follows.

We now add the symmetry assumptions and turn to the proofs of Theorem 1.7. and 1.9.

Proof of Theorem 1.7. We start by the same covariance formulae, given in (5.5), (5.6), as in the proof of Theorem 1.4. As previously, in view of assumption (1.11), all terms in (5.6) are non-negative. Now, we show that under the symmetry assumptions, all the terms in (5.5) vanish. Indeed, since the product measure µ is symmetric, the function f is unconditional and the function a k are even, we have that, for any 1 ≤ k ≤ d, and any x 1 , . . . x k-1 , the functions

x k → f k (x 1 , . . . x k-1 , x k ) are even and that the primitive functions A k are odd. Hence, it holds that

Cov µ k (f k , A k (x k )) = 0 for each 1 ≤ k ≤ d and all x ∈ R d
and all the terms in (5.5) vanish. The result follows.

Proof of Theorem 1.9(1). With the same notations as above, writing φ k = -ln f k and using the second point of Lemma 5.2, one has

Cov µ (f, g) = d k=1 1 Z k,f k ,1 Cov µ k (f k , x k ) f k (x k )k µ k (x k , y k )∂ k g k (y k )dx k dy k dµ 1 . . . dµ k-1 + d k=1 Z k,f k ,1 Cov µ (1) k,(f k ,1) (-∂ k φ k (x k ), ∂ k g k (y k )) dµ 1 . . . dµ k-1 .
Since f is unconditional, for each fixed (x 1 , . . . , x k-1 ), the function f k is even, and thus

Cov µ k (f k , x k ) = 0
and the terms of the sum in the right-hand side of the above equality vanish. Furthermore, as f and the µ i are log-concave, by stability through marginalization of logconcavity (Prékopa's theorem), the functions f k are log-concave, meaning that the functions φ k are convex. Since by Corollary 3.4, the measures µ

(1)

k,(f k ,1) satisfy the FKG inequality on R 2 , one has for each fixed (x 1 , . . . ,

x k-1 ) ∈ R k-1 , Cov µ (1) k,(f k ,1) (-∂ k φ k (x 1 , . . . , x k-1 , x k ), ∂ k g k (x 1 , . . . , x k-1 , y k )) ≤ 0
and the proof is complete.

The proof of Theorem 1.9(2) is given in the next section. One can note that we do not state a version of Theorem 1.9 with the function a k or A k . The reason is that we do not know a natural hypothesis on f that would induce a sign for the quantities

∂ k ∂ k φ k a k .

The quasi-concave case

This section is devoted to the proof of Theorem 1.2(3) and Theorem 1.9(2), related to the quasi-concave case. This assumption indeed requires different techniques than in the rest of the paper. The result in dimension one is obtained through the so-called layer-cake representation of the functions (see (6.1)) and the result in dimension d ≥ 2 is then obtained by tensorisation. A similar result already appears in [SSZ98], but as far as we know, the statement of Theorem 1.9(2) is new.

Recall that a quasi-concave function f on R d is a real-valued function that satisfies, for any x, y ∈ R d and any λ ∈ [0, 1],

f (λx + (1 -λ)y) ≥ min {f (x), f (y)} .
An equivalent formulation of quasi-concavity consists in requiring that the upper level sets of the function are convex. In the following, we make use of a weaker notion than quasi-concavity, that we term "coordinatewise quasi-concavity": Definition 6.1. A function f : R d → R is said to be coordinatewise quasi-concave if for all (x 1 , ..., x i-1 , x i+1 , ..., x d ) ∈ R d-1 , the functions

x i ∈ R → f (x 1 , ..., x i-1 , x i , x i+1 , ..., x d ) ∈ R are quasi-concave.
Another characterization is thus that for any λ ∈ [0, 1], any (x 1 , ..., x i-1 , x i+1 , ..., x d ) ∈ R d-1 and any x, y ∈ R,

f (x 1 , ..., x i-1 , λx i + (1 -λ)y i , x i+1 , ..., x d ) ≥ min {f (x 1 , ..., x i-1 , x i , x i+1 , ..., x d ), f (x 1 , ..., x i-1 , y i , x i+1 , ..., x d )} .
The above definition and its characterization directly imply that quasi-concave functions are coordinatewise quasi-concave, but the converse is not true.

Note that the interpretation in terms of convex upper level sets does not hold anymore for the notion of coordinatewise quasi-concavity. But still, the upper level sets of a coordinatewise quasi-concave function are connected sets.

We now turn to the proof of Theorem 1.2 (3) in dimension one.

Theorem 1.2 (3). Let f and g be two non-negative quasi-concave even function on R. We write, for x ∈ R,

f (x) = ∞ 0 1 At (x)dt and g(x) = ∞ 0 1 Bt (x)dt (6.1)
where A t and B t for t ≥ 0 are the the level sets of f and g defined by

A t := {x ∈ R, f (x) ≥ t} and B t := {x ∈ R, f (x) ≥ t}.
The key point is here that since f and g are quasi-concave and even, the sets A s and B t are symmetric intervals on R and therefore, for each s, t ≥ 0, A s ⊂ B t or B t ⊂ A s . Therefore by Fubini-Tonelli, one has

f (x)g(x)dµ(x) = x ∞ s=0 ∞ t=0 1 As (x)1 Bt (x)dsdtdµ(x) = ∞ s=0 ∞ t=0 µ(A s ∩ B t )dsdt = ∞ s=0 ∞ t=0 min(µ(A s ), µ(B t ))dsdt ≥ ∞ s=0 ∞ t=0 µ(A s )µ(B t )dsdt = f (x)dµ(x) g(x)dµ(x);
which is precisely the desired inequality.

We now prove Theorem 1.9(2) by the tenzorisation method. The main argument is ensured by the following lemma, which states the stability of unconditional coordinatewise quasi-concavity by marginalization. Its proof can be found below. Lemma 6.2. Consider an integer d ≥ 2 and take k ∈ {1, ..., d -1}. Assume that a function f on R d is unconditional and coordinatewise quasi-concave. Then the function

f k (x 1 , . . . x k ) = f (x 1 , . . . x d )dµ k+1 (x k+1 ) . . . dµ d (x d )
is coordinatewise quasi-concave and unconditional.

Proof of Theorem 1.9(2). Let f and g be unconditional and coordinatewise quasi-concave functions. Let us first recall the standard tensorization formula:

Cov µ (f, g) = d k=1 Cov µ k (f k , g k )dµ 1 . . . dµ k-1 .
By Lemma 6.2 above, for any (x 1 , ..., x k-1 ) ∈ R k-1 the functions f k (x 1 , ..., x k-1 , •) and g k (x 1 , ..., x k-1 , •) are even and quasi-concave on R. By Theorem 1.2 (3), one has Cov µ k (f k , g k ) ≥ 0 and the result follows.

Proof of Lemma 6.2. Unconditionality of f k directly follows from unconditionality of f . As for the coordinatewise quasi-concavity, we will make the reasoning for the first coordinate x 1 and the arguments readily extend to the other coordinates. Take a pair (x 1 , y 1 ) such that |x 1 | ≤ |y 1 |. Assume without loss of generality that y 1 ≥ 0 (otherwise replace it by -y 1 ). As f is unconditional and coordinatewise quasi-concave, for any y ∈ [-y 1 , y 1 ] and for any (x 2 , ..., x d ) ∈ R d-1 , we have

f (y, x 2 , . . . , x d ) ≥ min {f (-y 1 , x 2 , ..., x d ), f (y 1 , x 2 , ..., x d )} = f (y 1 , x 2 , ..., x d ),
where the latter equality follows from unconditionality of f . In particular, as x 1 ∈ [-y 1 , y 1 ], we have for any (x 2 , ...,

x d ) ∈ R d-1 , f (x 1 , x 2 , ..., x d ) ≥ f (y 1 , x 2 , ..., x d ).
This gives, for any λ ∈ [0, 1],

f k (λx 1 + (1 -λ)y 1 , x 2 , . . . x k ) = f (λx 1 + (1 -λ)y 1 , x 2 , . . . x d )dµ k+1 . . . dµ d ≥ f (y 1 , x 2 , . . . x d )dµ k+1 . . . dµ d = min {f k (x 1 , x 2 , . . . x k ), f k (y 1 , x 2 , . . . x k )} .
By symmetry, the case |y 1 | ≤ |x 1 | follows, which finishes the proof.

A global approach for product measures

We provide in this section another proof of Theorem 1.4 and we provide the proof of Theorem 1.10. The first main ingredient that will be used is a generalization of Hoeffding's covariance identity (3.1) for product measures. The two other ingredients are a generalization to product measures of the Hoeffding's covariance relations of Lemmas 3.9 and 5.2 and the use of FKG inequalities. 7.1. Duplication and a generalization of Hoeffding's covariance identity. We first present in Lemma 7.1 a duplication argument for the covariance of a product measure. Similar duplication representations are well known, see e.g. [Cha07]. We then deduce in Proposition 7.2 a generalization of Hoeffding's covariance identity for product measures.

Lemma 7.1. Let µ = µ 1 ⊗ • • • ⊗ µ d be a product measure on R d . Under suitable integrable conditions one has Cov µ (f, g) = 1 2 d i=1 E[∆ i f (X, X ′ ) ∆i g(X, X ′ )], (7.1) 
where X and X ′ are two independent random variables of law µ,

∆ i f (X, X ′ ) = f (X 1 , . . . , X i , . . . , X d ) -f (X 1 , . . . , X ′ i , . . . , X d ) and ∆i g(X, X ′ ) = g(X 1 , . . . , X i , X ′ i+1 . . . , X ′ d ) -g(X 1 , . . . , X ′ i , X ′ i+1 . . . , X ′ d ).
Proof of Lemma 7.1. Let X ′ be an independent copy of X with law µ. By symmetrization and then the use of a telescopic sum, one has

Cov µ (f, g) = E[f (X)(g(X) -g(X ′ ))] = d i=1 E[f (X) ∆i g(X, X ′ )] = d i=1 E U i (X, X ′ ) ,
where we define U i (X, X ′ ) = f (X) ∆i g(X, X ′ ). Let us denote (X, X ′ ) {j} to be the random vector given by (X,

X ′ ) {j} = (X 1 , . . . , X j-1 , X ′ j , X j+1 , . . . , X d ), (X 1 , . . . , X j-1 , X j , X ′ j+1 , . . . , X ′ d )
We also write (X, X ′ ) {j} = X {j} , X ′{j} with the slight abuse of notation that X {j} depends on (X, X ′ ). Since µ is a product measure, for each i, (X, X ′ ) {i} is also of law µ ⊗ µ and thus

E U i (X, X ′ ) = E U i (X, X ′ ) {i} = -E[f (X {i} ) ∆i g(X, X ′ )]
since ∆i g (X, X ′ ) {i} = -∆i g(X, X ′ ) and thus

E U i (X, X ′ ) = 1 2 E U i (X, X ′ ) + 1 2 E U i (X, X ′ ) {i} = 1 2 E[∆ i f (X, X ′ ) ∆i g(X, X ′ )]
and the result follows.

From the duplication argument, one obtains the following generalization to product measures of Hoeffding's covariance identity.

Proposition 7.2. Let µ = µ 1 ⊗ • • • ⊗ µ d be a product measure on R d . Let f, g : R d → R be some coordinatewise absolutely continuous functions in L 2 (µ), then Cov µ (f, g) = d i=1 x,x ′ ∈R d ∂ i f (x)k µ i (x i , x ′ i )∂ i g(x i-1 , x ′ i )dx i dx ′ i dµ(x -i )dµ(x ′ -i ) (7.2)
where for x i , x ′ i ∈ R, k µ i is the standard Hoeffding kernel for the marginal µ i :

k µ i (x i , x ′ i ) = F µ i (x i ∧ x ′ i ) -F µ i (x i )F µ i (x ′ i ) and for x, x ′ ∈ R d , (x i-1 , x ′ i ) = (x 1 , . . . , x i-1 , x ′ i , . . . , x ′ d ), x -i = (x 1 , . . . , x i-1 , x i+1 , . . . x d ) and dµ(x -i ) = dµ 1 (x 1 ) . . . dµ i-1 (x i-1 )dµ i+1 (x i+1 ) . . . dµ d (x d ).
Proof of Proposition 7.2. We consider one term in the sum of the covariance formula of Lemma 7.1. We have

E[∆ i f (X, X ′ ) ∆i g(X, X ′ )] = x,x ′ ∈R d f (x i-1 , x i , x i+1 ) -f (x i-1 , x ′ i , x i+1 ) g(x i-1 , x i , x ′ i+1 ) -g(x i-1 , x ′ i , x ′ i+1 ) dµ(x)dµ(x ′ ) = x,x ′ ∈R d s i ,t i ∈R ∂ i f (x i-1 , s i , x i+1 )∂ i g(x i-1 , t i , x ′ i+1 ) 1 {s i ≤x i } -1 {s i ≤x ′ i } 1 {t i ≤x i } -1 {t i ≤x ′ i } ds i dt i dµ(x)dµ(x ′ ). Furthermore, x i ,x ′ i ∈R 1 {s i ≤x i } -1 {s i ≤x ′ i } 1 {t i ≤x i } -1 {t i ≤x ′ i } dµ i (x i )dµ i (x ′ i ) = 2 (P(X i ≥ max(s i , t i )) -P(X i ≥ s i )P(X i ≥ t i )) = 2 (F µ i (s i ∧ t i ) -F µ i (s i )F µ i (t i )) = 2k µ i (s i , t i )
and the proof follows by Fubini theorem and by a change in the name of the letters in the integral.

We now study some symmetry properties of this covariance representation.

Lemma 7.3. Assume µ i is a symmetric one dimensional measure, then the kernel

k µ i is even, that is k µ i (-s i , -t i ) = k µ i (s i , t i ).
Proof. Without loss of generality assume that s ≤ t, then -t ≤ -s, and

k µ i (-s, -t) = F µ i (-t) -F µ i (-s)F µ i (-t) = (1 -F µ i (t)) -(1 -F µ i (s))(1 -F µ i (t)) = F µ i (s) -F µ i (s)F µ i (t) = k µ i (s, t).
As a consequence, one obtains the following result.

Lemma 7.4. Assume that µ is a symmetric product measure on R d . Let f, g : R n → R be two even functions. Then, for any

1 ≤ i ≤ d, x,x ′ ∈R d ∂ i f (x)k µ i (x i , x ′ i )g(x i-1 , x ′ i )dx i dx ′ i dµ(x -i )dµ(x ′ -i ) = 0.
Proof. The result follows from using the change of variables (a, b) = (-x, -x ′ ) on R 2d and the fact that ∂ i f is odd, g is even and that the kernel k µ i is even.

We also derive the following formulas, that will be instrumental in our proofs.

Lemma 7.5. Assume µ is a product measure on R d . For each 1 ≤ k ≤ d, let a k (x k )
be a positive function on R and let A k be a primitive, centered with respect to µ k . Let f : R n → R be a coordinatewise absolutely continuous function. Then for any

1 ≤ i ≤ d, one has x,x ′ ∈R d ∂ i f (x)k µ i (x i , x ′ i )a i (x ′ i )dx i dx ′ i dµ(x -i )dµ(x ′ -i ) = Cov µ (f, A i (x i )).
In particular,

x,x ′ ∈R d ∂ i f (x)k µ i (x i , x ′ i )dx i dx ′ i dµ(x -i )dµ(x ′ -i ) = Cov µ (f, x i ),
where, by a slight abuse of notation, x i stands for the ith-coordinate function. It also holds

x,x ′ ∈R d k µ i (x i , x ′ i )dx i dx ′ i dµ(x -i )dµ(x ′ -i ) = Var µ (x i ) = Var(µ i ).
Proof. The proof is a direct application of Proposition 7.2 with g(x) = A i (x i ), noticing that only one term in the sum is different from zero.

7.2. Hoeffding's covariance relation for product measures. The main result here is Lemma 7.6 where a similar relation as in Lemma 3.9 is given for product measures. Let µ = µ 1 ⊗ • • • ⊗ µ d be a product measure and write Γ = Γ µ its covariance matrix. Since µ is a product measure, it is diagonal with Γ i,i = Var µ (x i ) = Cov µ (x i , x i ).

Since the kernels k µ i are non-negative, one can introduce the probability measures on R 2d , defined for 1 ≤ i ≤ d by

dµ (1) (i) (x, y) = 1 Γ i,i k µ i (x i , y i )dx i dy i dµ(x -i )dµ(y -i ).
If f and g are positive and integrable, we also introduce the following probability measures,

dµ (1) (i),f (x, x ′ ) = 1 Z i,f f (x)k µ i (x i , x ′ i )dx i dx ′ i dµ(x -i )dµ(x ′ -i ), with Z i,f = x,x ′ f (x)k µ i (x i , x ′ i )dx i dx ′ i dµ(x -i )dµ(x ′ -i )
and dµ

(1)

(i),f,g (x, x ′ ) = 1 Z i,f,g f (x)k µ i (x i , y i )g(x i-1 , x ′ i )dx i dx ′ i dµ(x -i )dµ(x ′ -i ), with Z i,f,g = x,x ′ f (x)k µ i (x i , x ′ i )g(x i-1 , x ′ i )dx i dx ′ i dµ(x -i )dµ(x ′ -i ).
The quantity Z i,f can still be written as a covariance with respect to µ: Z i,f = Cov µ (F i (x), x i ) where F i is a function such that ∂ i F i (x) = f (x). This is not anymore the case for Z i,f,g .

In the case of a product measure µ, Lemma 3.9 generalizes as follows.

Lemma 7.6. Let f, g : R d → R be in L 2 (µ) and coordinatewise absolutely continuous.

(1) Then,

Cov µ (f, g) = d i=1 Γ i,i Cov µ (1) (i) (∂ i f (x), ∂ i g(x i-1 , x ′ i )) + d i=1 1 Γ i,i Cov µ (f (x), x i )Cov µ (g(x), x i ).
(2) If moreover f = e -φ , then

Cov µ (f (x), g(x)) = d i=1 Z i,f Cov µ (1) (i),f (-∂ i φ(x), ∂ i g(x i-1 , x ′ i )) + d i=1 Cov µ (f (x), x i ) × f (x) k
(1)

µ i (x i , x ′ i ) Γ i,i ∂ i g(x i-1 , x ′ i ))dx i dx ′ i dµ(x -i )dµ(x ′ -i ) .
In particular, if moreover f is orthogonal to the linear functions

x i , 1 ≤ i ≤ d, Cov µ (f (x), g(x)) = d i=1 Z i,f Cov µ (1) (i),f (-∂ i φ(x), ∂ i g(x i-1 , x ′ i )).
(3) If f = e -φ and g = e -ψ ,

Cov µ (f (x), g(x)) = d i=1 Z i,f,g Cov µ (1) (i),f,g (∂ i φ(x), ∂ i ψ(x i-1 , x ′ i )) + d i=1 Z i,f,g ∂ i f (x) k
(1)

µ i (x i , x ′ i ) Z i,f,g g(x i-1 , x ′ i ))dx i dx ′ i dµ(x -i )dµ(x ′ -i ) × f (x) k (1) µ i (x i , x ′ i ) Z i,f,g ∂ i g(x i-1 , x ′ i ))dx i dx ′ i dµ(x -i )dµ(x ′ -i ) .
In particular, if the measure µ is symmetric and if both f and g are even, then

Cov µ (f (x), g(x)) = d i=1 Z i,f,g Cov µ (1) (i),f,g (∂ i φ(x), ∂ i ψ(x i-1 , x ′ i )).
In fact, we shall use in the sequel the following slight weighted generalization, similar to the one of Lemma 5.2. Lemma 7.7. Let f, g : R d → R be in L 2 (µ) and coordinatewise absolutely continuous.

(1) Then,

Cov µ (f, g) = d i=1 Var µ i (A i )Cov µ (1) (i),a i ,a i (∂ i f (x), ∂ i g(x i-1 , x ′ i )) + d i=1 1 Var µ i (A i ) Cov µ (f (x), A i (x i ))Cov µ (g(x), A i (x i )).
(2) If moreover f = e -φ and if f is orthogonal to the functions

A i (x i ), 1 ≤ i ≤ d, then Cov µ (f (x), g(x)) = d i=1 Z i,a i f,a i Cov µ (1) (i),a i f,a i (-∂ i φ(x), ∂ i g(x i-1 , x ′ i )).
(3) If moreover f = e -φ and g = e -ψ and if the measure µ is symmetric, the function a k are even and both f and g are even, then

Cov µ (f (x), g(x)) = d i=1 Z i,a i f,a i g Cov µ (1) (i),a i f,a i g (∂ i φ(x), ∂ i ψ(x i-1 , x ′ i )).
Since the other points are somehow similar, we only do the proof for the first item of Lemma 7.6.

Proof for the first item of Lemma 7.6. From Proposition 7.2 and Lemma 7.5, one has Cov µ (f (x), g(x))

= d i=1 x,x ′ ∈R d ∂ i f (x)k µ i (x i , x ′ i )∂ i g(x i-1 , x ′ i )dx i dx ′ i dµ(x -i )dµ(x ′ -i ) = i Γ i,i Cov µ (1) (i) (∂ i f (x), ∂ i g(x i-1 , x ′ i )) + i Γ i,i ∂ i f (x) k
(1)

µ i (x i , x ′ i ) Γ i,i dx i dx ′ i dµ(x -i )dµ(x ′ -i ) × ∂ i g(x i-1 , x ′ i ) k
(1)

µ i (x i , x ′ i ) Γ i,i dx i dx ′ i dµ(x -i )dµ(x ′ -i ) = d i=1 Γ i,i Cov µ (1) (i) (∂ i f (x), ∂ i g(y)) + d i=1 1 Γ i,i Cov µ (f (x), x i ) Cov µ (g(x), x i ).
7.3. Another proof of Theorem 1.4 and a proof of Theorem 1.10. Before we turn to the announced proofs, we highlight with the next statement that under our assumptions, the new probability measures on R 2d satisfy the Holley condition and thus the FKG inequality.

Recall that µ = µ 1 ⊗ • • • ⊗ µ d is a product measure with marginals µ k , k = 1, . . . , d, admitting densities, denoted by exp(-V k ), with respect to the Lebesgue measure. For some index i ∈ {1, . . . , d} and for f and g some positive functions on R d , the kernel k (i),f,g is defined on R 2d by

k (i),f,g = f (x)k µ i (x i , y i )g(x) j =i e -V j (x j ) j =i e -V j (x ′ j ) .
The measure µ

(1) (i),f,g has a density on R 2d equal to

dµ (1) (i),f,g (x, x ′ ) = 1 Z i,f,g k (1) (i),f,g dxdx ′ , with Z i,f,g = x,x ′ f (x)k µ i (x i , x ′ i )g(x i-1 , x ′ i )dx i dx ′ i dµ(x -i )dµ(x ′ -i ).
Proposition 7.8. Let µ = µ 1 ⊗ • • • ⊗ µ d be a product measure on R d and grant the above notations. One has summation, Inequality (3.6) is also valid on R 2d for H

(1) (i),a i f,a i . The proof for the third point is similar and we omit the details.

We now provide another proof of Theorem 1.4.

Another proof of Theorem 1.4. Let f and g be two functions on R d satisfying (1.7). We first assume that all the signs of the second derivatives in Assumption 1.7 are nonnegative. By Lemma 7.7, one has

Cov µ (f, g) - d i=1 1 Var µ i (A i ) Cov µ (f (x), A i (x i ))Cov µ (g(x), A i (x i )) = d i=1 Var µ i (A i )Cov µ (1) (i),a i ,a i ∂ i f (x) a i (x i ) , ∂ i g(x i-1 , x ′ i ) a i (x ′ i )
.

Furthermore, by Proposition 7.8(1), the measure µ

(1) (i),a i ,a i , for i ∈ {1, . . . , d}, satisfies the Holley condition (3.5). By condition (1.8) both functions (x,

x ′ ) → ∂ i f (x)/a i (x i ) and (x, x ′ ) → ∂ i g(x i-1 , x ′ i )/a i (x ′
i ) are coordinate increasing on R 2d and thus, for each

1 ≤ i ≤ d, Cov µ (1) (i),a i ,a i ∂ i f (x) a i (x i ) , ∂ i g(x i-1 , x ′ i ) a i (x ′ i ) ≥ 0.
Summing these inequalities ends the proof in this specific case. In the general case, for any

ε = (ε 1 , . . . , ε d ) ∈ {+1, -1} d , by the change of variable (x, x′ ) = (εx, εx ′ ), one has Cov µ (1) (i),a i ,a i ∂ i f (x) a i (x i ) , ∂ i g(x i-1 , x ′ i ) a i (x ′ i ) = Cov μ(1) (i),a i ,a i ∂ i f (εx) a i (ε i x i ) , ∂ i g(εx i-1 , εx ′ i ) a i (ε i x ′ i )
and for each 1 ≤ i ≤ d, it is possible to find some vector ε

= (ε 1 , . . . , ε d ) ∈ {+1, -1} d such that ∂ i f (ε x) a i (ε i x i ) and ∂ i g(ε x i-1 ,εx ′ i ) a i (ε i x ′ i )
are both coordinate increasing. More precisely, it suffices to take ε j = sign ∂ j ∂ i f a i . By Lemma 7.7(1), the measures μ(1) (i),a i ,a i also satisfy the Holley condition and the result follows from the FKG inequality.

We turn now to the proof of Theorem 1.11, where we add some symmetries.

Proof of Theorem 1.11. Let f = e -φ and g be two functions on R d satisfying (1.13) and (1.14) and assume that f is orthogonal to the functions

A i , 1 ≤ i ≤ d. By Lemma 7.7(2), one has Cov µ (f (x), g(x)) = d i=1 Z i,a i f,a i Cov µ (1) (i),a i f,a i - ∂ i φ(x) a i (x i ) , ∂ i g(x i-1 , x ′ i ) a i (x ′ i )
. Now for each i, since φ satisfies (1.14), by Proposition 7.8(2) the measure µ

(1) (i),a i f,a i satisfies the Holley condition. Moreover adding condition (1.17) both functions (x, x ′ ) →

∂ i φ(x) a i (x i ) and (x, x ′ ) → ∂ i g(x i-1 ,x ′ i ) a i (x ′ i )
are coordinate increasing on R 2d , and thus by the FKG inequality, for each 1 ≤ i ≤ d, one has:

Cov µ (1) (i),a i f,a i - ∂ i φ(x) a i (x i ) , ∂ i g(x i-1 , x ′ i ) a i (x ′ i ) ≥ 0.
Theorem 1.11(1) thus follows. The proof of Theorem 1.11(2) is similar, since by Lemma 7.7(3), the symmetry assumptions made on f = e -φ and g = e -ψ , give that

Cov µ (f (x), g(x)) = d i=1 Z i,a i f,a i g Cov µ (1) (i),a i f,a i ∂ i φ(x) a i (x i ) , ∂ i ψ(x i-1 , x ′ i ) a i (x ′ i )
.

Finally, the assumptions (1.13) and (1.14) ensure that the measure µ

(1) i,f,g satisfies the Holley condition and that the functions in the covariance are coordinate increasing, which gives the result.

Comments on the standard semi-group interpolation

In this section, we explain what can be done using a standard covariance representation obtained by interpolation with the associated diffusion semi-group (see (8.4) below) and why we did not follow this natural approach, but rather used instead the covariance representation of Proposition 7.2.

We consider here a probability measure µ = e -V dx with a smooth potential V . One can associate to it a diffusion semi-group with generator L defined for f smooth with compact support by Lf = ∆f -∇V • ∇f.

This diffusion operator is symmetric with respect to

µ: for f, g ∈ C ∞ c (R d ), f Lgdµ = Lf gdµ = -∇f • ∇gdµ.
Under mild conditions on V , one we can define alternatively the semi-group associated to L by the spectral theorem and functional calculus, or by a stochastic representation (see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] for further details),

P t f (x) = e tL (f )(x) = E[f (X x t )
] for some Markov diffusion process (X x t ) t≥0 . We assume moreover that the operator -L + HessV , with L = diag(L, . . . , L) acting on gradients, is invertible. Note that this holds under some strong convexity of the potential V . In this situation, for f, g : R d → R satisfying some integrability conditions on f and g, one has

Cov µ (f, g) = R d ∇f (x) • (-L + HessV ) -1 ∇g(x)dµ(x) (8.1) and thus Cov µ (f, g) = R d ×R d ∇f (x)K(x, y)∇g(y)dxdy
where K is the matricial kernel (with respect to the Lebesgue measure) of the operator (-L + HessV ) -1 . Moreover, the matricial kernel K(x, y) admits the following stochastic Feynman-Kac representation,

K(x, y) = e -V (x) +∞ 0 E[Y t,x |X t = y]p t (x, y)e -V (y) dy, (8.2)
where p t stands for the heat kernel associated to P t with respect to the measure µ and Y t,x is the matrix satisfying the following ordinary (random) differential equation,

d dt Y t,x = -Y t,x HessV (X x t ) for t ≥ 0; Y 0,x = Id. (8.3)
In the case of a product measure, we can write

V (x) = V 1 (x 1 )+• • •+V d (x d )
, for some real functions V k . This gives the following generalization of Hoeffding's covariance identity,

Cov µ (f, g) = d i=1 x,y∈R d ∂ i f (x) κ i (x, y) ∂ i g(y)dxdy, ( 8.4) 
where for each 1 ≤ i ≤ d , k i : R 2d → R + is the kernel defined by

κ i (x, y) = ∞ t=0 E exp - t 0 V ′′ i (X x i ,i s )ds |(X x i ,i t = y i ) p t (x, y) dt e -V (x) e -V (y) . (8.5)
This kernel also writes as

κ i (x, y) = ∞ t=0 κ i,t dt with κ i,t (x, y) := p V ′′ i t,i (x i , y i ) d j=1,j =i p t,j (x j , y j )e -V (x) e -V (y) ,
where p t,j is the kernel of the one dimensional diffusion semi-group with generator given by L j f (x j ) := f ′′ (x j ) -V ′ j (x j )f ′ (x j ) and where p V ′′ i t,i is the kernel of the one dimensional Schrödinger semi-group, with generator given by L

V ′′ i i f (x i ) := L i f (x i ) + V ′′ i (x i )f (x i ).
In the case of the standard Gaussian measure, one has p V ′′ i t,i = e -t p t,i . We highlight that we do not know whether, in dimension d ≥ 2, the probability measure with density proportional to κ i (x, y) satisfies the full FKG inequality on R 2d . But one can also notice, that due to the coincidence formula, diffusion kernels and Schrödinger kernels in dimension one are totally positive (see Karlin [Kar68]). As a consequence, the kernels κ i,t satisfy the Holley condition. And if slightly differently, one has

κ i (x, y) = ∞ t=0 κ i,t dν(t)
for some probability measure ν on R + , one can use the following decomposition of the covariance,

Cov µκ i (u, v) = ∞ 0 Cov µκ i,t (u, v)dν(t) + Cov ν t → u dµ κ i,t , t → v dµ κ i,t (8.6)
and apply it with u(x, y) := ∂ i f (x) and v(x, y) := ∂ i g(y).

In view of proving Theorem 1.4, we were only able to pursue this approach when the marginals of µ κ i,t on R d × R d are constant for all t > 0. In this situation, if moreover, (x, y) → u(x) and (x, y) → v(y), the term related to Cov ν appearing in the righthand side of 8.6 indeed vanishes and one obtains some partial FKG inequalities for the measure µ κ i on R 2d . Here, the terms "partial" means that it is applied only to coordinate increasing functions of the form (x, y) → u(x) and (x, y) → v(y).

This property that the marginals µ κ i,t are constant, holds for the standard Gaussian measure and this approach may be pursued, with a second order covariance representation, to recover Theorem 1.1(1) for the standard Gaussian measure. Let us give some details.

First, the first order representation (8.4) is well known for the standard Gaussian measure (see [BGH01]). The measures γ κ i,t are in fact independent of i, they are also Gaussian measures on R 2d and they have fixed marginals on R d × R d . A second order covariance representation for γ thus means a first order covariance of the new measure(s) γ κ i,t similar to (8.4). It can be obtained either by a change of variable since γ κ i,t is still a Gaussian measure or by solving explicitly the stochastic Feynman-Kac representation. This method is similar to the one of [Hu97], except that the latter approach specifically uses the fact that the Gaussian measure is the density at time 1 of the classical heat semi-group, whereas instead we use here the Orstein-Uhlenbeck operator.

Finally, for general product measures, the "constant marginal property" also holds for the modified kernels k µ i ,(a i ,a i ) , with the choice a i (x i ) = 1 g ′ i (x i ) where g i is (if it exists) the first non-trivial eigenfunction associated to L. This leads to Theorem 1.4, but only for this specific choice. More importantly, this constant marginal property is valid for product measures under the symmetry assumptions of Theorem 1.10(2) and this route may also be taken to provide another proof Theorem 1.10(2).

Examples

In this final section, we provide a couple of examples of possible applications of our results.

First let µ be a product measure on R d and for β > 0 and consider the free energy, also known in the optimization community as the "soft max" function,

F β (x) := 1 β ln d i=1 e βx i .
By setting p i := e βx i j e βx j , it satisfies We now turn to a second example. Let µ be a symmetric product measure on R d . Under some integrability condition, for J ≥ 0, we consider the probability measure:

∂ i F β = p i ≥ 0, ∂ ii F β (x) = βp i (1 -p i ) ≥ 0, ∂ ij F β (x
dµ J (x) = 1 Z J e J d-1 i=1 x i x i+1 dµ(x), Z J = R d e J d-1 i=1 x i x i+1 dµ(x).
Let θ = (θ 1 , . . . , θ d ) ∈ R d with θ i ≥ 0, 1 ≤ i ≤ d, then by Corollary 1.11, one has

R d x, θ 2 dµ J (x) ≥ R d
x, θ 2 dµ(x). (9.2)

Appendix

We consider here some product probability measures on R d whose marginals are mixtures of centered Gaussian variables. This class of probability measures was investigated in [ENT18], where the authors prove that they satisfy (1.3) and provide interesting examples. Here we show that those measures also satisfy (1.2).

We consider Gaussian mixtures of the form µ = σ∈(0,∞) d γ Γσ dν(σ), (10.1)

where γ Γσ is the centered Gaussian random vector in R d with covariance matrix Γ σ = diag(σ 2 1 , . . . , σ 2 d ) and where ν is also a product measure on (0, ∞) d . Theorem 10.1. Let µ be a product probability measure on R d , whose marginals are mixture of centered Gaussian variables. Then (1.2) holds.

The proof relies on the following Lemma, the key point of which being that no symmetry assumption is required in the convex situation.

Lemma 10.2. The following points hold.

(1) Let g be a convex function on R d , then the function The rest of the proof consists in showing that the two terms in the right-hand side of the latter inequality are non-positive. Firstly, Hargé's result (1.2) also applies to any (centered) Gaussian distribution (see [START_REF] Hargé | Reinforcement of an inequality due to Brascamp and Lieb[END_REF]) and thus Cov γ Γσ (f, g) ≤ 0. Secondly, we use Lemma 10.2, since f is log-concave and even, it is also quasi-concave and even, and thus the two functions σ ∈ (0, ∞) d → gdγ Γσ and σ ∈ (0, ∞) d → f dγ Γσ are respectively coordinatewise increasing and coordinatewise decreasing on (0, ∞) 2 . The measure ν being a product measure, by the FKG inequality for product measure, the term Cov ν (•, •) is non-positive and the result follows.

We turn now to the proof of Lemma 10. Here by assumption the A t are convex and even. Since by Fubini, 

2. 1 .
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 4 Let a and b be two positive functions on R and define the kernel k a,b on R 2 by k a,b (x, y) = a(x)k(x, y)b(y). Then the kernel is totally positive and thus satisfies inequality (3.2).
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 1 Covariance inequalities for Chebyshev systems. Let us first define Chebyshev systems. Definition 4.1
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 4 With the same notation as in Theorem 4.2, det(Cov(F, G)) = det x,y∈R
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 1 The tensorization decomposition of the covariance. Lemma 5.1. Let

  ) = -βp i p j ≤ 0, i = j. Thus, for any α, β > 0, Corollary 1.5 givesCov µ (F α , F β ) ≥ d i=1 1 Var(µ i ) Cov(F α (x), x i )Cov(F β (x), x i ). (9.1)Note that when α = β, inequality (9.1) turns to the following Bessel inequality,Var µ (F β ) ≥ d i=1 1 Var(µ i ) Cov(F β (x), x i ) 2 .
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 1 , . . . , σ d ) ∈ (0, ∞) d → g(y)dγ Γσ (y)is coordinatewise increasing on (0, ∞) d .(2) Let f be a quasi-concave and even function on R d , then the function(σ 1 , . . . , σ d ) ∈ (0, ∞) d → f (y)dγ Γσ (y) is coordinatewise decreasing on (0, ∞) d .Proof of Theorem 10.1. Let f be a log-concave and even function and let g be a convex function. Using the decomposition of the covariance (8.6), one hasCov µ (f, g) = (0,∞) d Cov γ Γσ (f, g)dν(σ) + Cov ν σ ∈ (0, ∞) d → f dγ Γσ , σ ∈ (0, ∞) d → gdγ Γσ .
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 20 Proof of Lemma 10.2. Let g be a convex function on R d . By a change of variable, one directly hasg(y)dγ Γσ (y) = R d g(σ 1 x 1 , . . . , σ d x d )dγ(x),where we recall that γ is the standard Gaussian distribution. To prove the desired property, we compute for 1≤ l ≤ d, ∂ ∂σ l R d g(σ 1 x 1 , . . . , σ d x d )dγ(x) = R d x l ∂ l g(σ 1 x 1 , . . . , σ d x d )dγ(x) = Cov γ (x l , ∂ l g(σ 1 x 1 , . . . , σ d x d )).Furthermore, by the covariance representation (8.4) for the standard Gaussian measure, one hasCov γ (x l , ∂ l g(σ 1 x 1 , . . . , σ d x d )) = x,y∈R d κ(x, y)σ l ∂ ll g(σ 1 y 1 , . . . , σ d y d )dxdyand this quantity is non-negative since g is convex and κ(x, y) ≥ 0. The result follows.For f quasi-concave and even, we use the layer cake representation of f :f (x) =∞ At (x)dt and A t := {x ∈ R, f (x) ≥ t}.
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  (σ 1 x 1 , . . . , σ d x d )dγ(x) = At (σ 1 x 1 , . . . , σ d x d )dγ(x)dt.the result follows from [ENT18] where the authors prove the following property: for each t ≥ 0,(σ 1 , . . . , σ d ) ∈ (0, ∞) d → R d At (σ 1 x 1 , . . . , σ d x d )dγ(x)is coordinatewise decreasing.

(1) For all 1 ≤ i ≤ d, the measures µ (1) (i) and µ

(1) (i),a i ,a i satisfy the Holley condition (3.5). Moreover, for any choice of signs (ε 1 , . . . , ε d ) ∈ {+1, -1} d , the kernels k(i) and k(i),a i ,a i defined by

with k (i),a i ,a i the density -up to the constant factor Var µ i (A i ) -of the measure µ (1) (i),a i ,a i with respect to the Lebesgue measure on R 2d and (εx,

, satisfy the Holley condition (3.5).

(2) Assume that f = e -φ and that for all f andµ (1) (i),a i f,a i satisfy the Holley condition (3.5).

(3) Assume that f = e -φ and g = e -ψ and that for all

Note that in the latter proposition, the signs of the second-order cross derivatives for φ and ψ should be both non-positive.

Proof. The logarithm H

(1) (i),a i ,a i of the density of µ

(1) (i),a i ,a i with respect to the Lebesgue measure on R 2d is given by

Since k µ i is a totally positive kernel on R 2 , it follows easily that H

(1) (i),a i ,a i satisfies (3.6). Now for (ε 1 , . . . , ε d ) ∈ {+1, -1} d fixed, the logarithm H(1) (i),a i ,a i of the kernel k(1) (i),a i ,a i is given by:

) is still totally positive on R 2 , the proof of the first point follows. We turn to the proof of the second point. The logarithm H

(1) (i),a i f,a i of the density of µ

(1) (i),a i f,a i with respect to the Lebesgue measure on R 2d satisfies

From assumption (1.17) and Remark 3.7, the function x → -φ(x) satisfies (3.6) on R d and thus clearly the function (x, x ′ ) → -φ(x) also satisfies (3.6) on R 2d . Finally, by