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COVARIANCE INEQUALITIES FOR CONVEX AND LOG-CONCAVE

FUNCTIONS

MICHEL BONNEFONT, ERWAN HILLION, AND ADRIEN SAUMARD

Abstract. Extending results of Hargé and Hu for the Gaussian measure, we prove
inequalities for the covariance Covµ(f, g) where µ is a general product probability
measure on R

d and f, g : Rd
→ R satisfy some convexity or log-concavity assumptions,

with possibly some symmetries.

1. Introduction

If µ is a probability measure on R
d and if f, g ∈ L2(dµ) are two square integrable

functions with respect to µ, their covariance is defined by

Covµ(f, g) =

∫ (

f −

∫

fdµ

)(

g −

∫

gdµ

)

dµ

and is a measure of the joint variability of the two functions. Here and in all the
sequel, we make the assumptions that f and g have enough integrability and regularity
conditions, so that all the written quantities are well defined.

Lying at the intersection of probability, analysis and geometry, covariance identities
and inequalities provide a variety of tools. Without trying to be exhaustive, let us
cite some of them: FKG inequalities ([FKG71]), (asymmetric) Brascamp-Lieb inequal-
ities ([MO13, CCEL13, ABJ18]), Stein kernels ([Cha07, NV09, LNP15, CFP19, Fat19,
Sau19]), concentration inequalities ([BGH01, HP02], [Led01a, Section 5.5]).

The proof techniques of these covariance identities and inequalities vary from semi-
group techniques, other types of integration by parts, measure transportation or stochas-
tic calculus. Gaussian measures offer a particularly fruitful framework in this perspective
and in Theorem 1.1 below, we recall famous covariance inequalities known for the stan-
dard Gaussian measure. The main point of this work is to discuss and extend partially
these results beyond the Gaussian assumption, to the case of general product measures.

Theorem 1.1. Let γ be the standard Gaussian distribution on R
d.

(1) [Hu97, Har04] Let f and g be two convex functions on R
d, then

Covγ(f, g) ≥ Covγ(f, x) · Covγ(g, x) (1.1)

where · denotes the standard scalar product on R
d.
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(2) [Har04] Let f be a log-concave function and g be a convex function. Assume
moreover that f is orthogonal to the linear functions – that is Covγ(f, x) = 0 –,
then

Covγ(f, g) ≤ 0. (1.2)

(3) [Roy14] Let f and g be some quasi-concave functions that are both even, then

Covγ(f, g) ≥ 0. (1.3)

The first point of Theorem 1.1 is due to Hu [Hu97] and was recovered by Hargé [Har04].
Hu’s proof is based on some Itô-Wiener chaos decomposition. This decomposition is
based on the interpolation of the covariance by the standard heat semi-group. Hargé’s
proof of the second point is based on optimal transport theory and Caffarelli’s contraction
theorem. Hargé obtained in fact an inequality when f is not necessarily orthogonal to
the linear functions, which by a limiting argument recovers (1).

Point (3) was proven by Royen [Roy14]. It is known as the Gaussian correlation in-
equality and was an open question during decades. We refer to [LaM17] and [Bar19]
for history of this result. Royen proved his result in its geometric form, for symmetric
convex bodies, by approximation with finite intersections of symmetric slabs. The main
ingredients are then an interpolation of some dependent and independent Gaussian mea-
sures through their covariance matrix and clever computations of the Laplace transform
of multivariate Gamma distributions. Royen thus proves its result for some family of
multivariate Gamma distributions. Subsequently, Eskenazis, Nayar and Tkocz [ENT18]
noticed that Theorem 1.1(3) still holds for product measures whose marginals are mix-
tures of centered Gaussian measures. In the Appendix, we also show that Theorem
1.1(2) is true in the latter situation.

The first main new results of this paper are devoted to dimension one. In dimension
one, the covariance inequalities of Theorem 1.1 are not limited to the Gaussian context
but actually hold for any probability measure on R having a finite variance.

Theorem 1.2. Let µ be any probability measure on R admitting a second moment.

(1) For any convex functions f and g, one has

Var(µ) Covµ(f, g) ≥ Covµ(f, x) Covµ(g, x). (1.4)

(2) Let f be a log-concave function and g be a convex function. Assume moreover
that f is orthogonal to the linear function x, then

Covµ(f, g) ≤ 0. (1.5)

(3) Let f and g be some quasi-concave functions that are both even, then

Covµ(f, g) ≥ 0. (1.6)

The fact that Theorem 1.2 holds for any probability measure whereas Theorem 1.1
seems limited to the Gaussian setting is striking and rises the following natural question:
what about general product measures? Before trying to answer this question, we shall
introduce some notations and the hypotheses.

Notations and hypotheses: In all the sequel of the paper, we consider µ = µ1 ⊗
· · · ⊗ µd to be a product measure on R

d. Moreover for each 1 ≤ k ≤ d, we denote by
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ak(xk) a positive function on R and by Ak its primitive, centered with respect to µk and
we assume that Ak ∈ L2(µk). When we apply the results with ak ≡ 1, we thus implicitly
assume that the measure µk admits a second moment. We assume that f, g ∈ L2(µ).
In order to apply the tensorization method and to exchange derivative and integral, we
also assume that all the first and second partial derivatives of f and g are integrable
with respect to µ.

Remark 1.3. It is actually possible to weaken the regularity assumptions on the second
order partial derivatives. It is indeed sufficient to assume that the first derivatives are
monotonic on R

d, at the price of standard approximation arguments. This is particularly
transparent with the pure determinantal approach. But for clarity and simplicity, we
prove the theorems by using the second order partial derivatives.

Arguably, the first basic idea to investigate general product measures is to use a
tensorization argument. This allows us to obtain the following extension of Theorem
1.2(1) to the higher dimensional case.

Theorem 1.4. Let µ be a product measure on R
d.

Let f and g be two functions on R
d such that for each pair 1 ≤ i, j ≤ d, the signs of

∂j

(

∂if(x)

ai(xi)

)

and ∂j

(

∂ig(x)

ai(xi)

)

(1.7)

are constant on R
d and equal. Then

Covµ(f, g) ≥
d
∑

i=1

1

Varµi
(Ai)

Covµ(f(x), Ai(xi)) Covµ(g(x), Ai(xi)).

Taking the functions ai ≡ 1 gives the following corollary.

Corollary 1.5. Let µ be a product measure on R
d. Let f and g be two functions on R

d

such that for each couple 1 ≤ i, j ≤ d, the signs of

∂i,jf(x) and ∂i,jg(x) (1.8)

are constant and equal. Then

Covµ(f, g) ≥
d
∑

i=1

1

Var(µi)
Covµ(f(x), xi) Covµ(g(x), xi).

A striking point is that Corollary 1.5 is not limited to the Gaussian setting, but holds
for any product measure with marginals having a finite second moment. Particularizing
to the Gaussian case, where µ = γ, the conclusion of Corollary 1.5 is the same as in
Theorem 1.1(1), but under different assumptions on the functions f and g. Even if they
coincide in dimension one, the two assumptions are different in higher dimensions and
are not included one into another. The assumption of Corollary 1.5 seems less classical
from a geometric point of view than the classical convexity assumption. Actually, such
assumption on the sign of the second partial derivatives also appears in the context
of Gaussian comparison theorems, see for instance [LT11, Theorem 3.11], that implies
Slepian’s lemma and Gordon’s min-max theorem. Note finally that in the Gaussian
setting, even if the statement of Corollary 1.5 seems to be new, its proof could be also
deduced from the arguments developed in the proof of Hu [Hu97].
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Remark 1.6. The conditions stated in (1.7) can also be written as the conjunction of
Conditions (1.9) and (1.10) below: for each 1 ≤ i ≤ d, the signs of

∂i

(

∂if(x)

ai(xi)

)

and ∂i

(

∂ig(x)

ai(xi)

)

(1.9)

are constant and equal and for each couple 1 ≤ i 6= j ≤ d, the signs of

∂ijf(x) and ∂ijg(x) (1.10)

are constant and equal. The condition described by Equation (1.9) can be interpreted as

follows: let Bi : Rd → R
d be the inverse bijection of

(x1, . . . , xd) 7→ (x1, . . . , Ai(xi), . . . , xd),

then Condition (1.9) means that the functions

xi 7→ (f ◦Bi)(x1, . . . , xd) , xi 7→ (g ◦Bi)(x1, . . . , xd)

are both convex or both concave. In the case where ai ≡ 1 for all i = 1, . . . , d, and
if moreover, all the signs in (1.9) are the same, then the functions f and g are both
coordinatewise convex or both coordinatewise concave.

We now want to investigate what happens when the functions are assumed to satisfy
some symmetries. As we shall see, the good notion that fits with the tensorization
argument is quite strong and is the unconditionality of (at least) one function.

We recall that a function f : Rd → R is said to be unconditional if it is symmetric
with respect to each hyperplan of coordinates : for all (x1, . . . , xd) ∈ R

d,

f(x1, . . . , xd) = f(ε1x1, . . . , εdxd).

holds for each choice of signs (ε1, . . . , εd) ∈ {−1, 1}d.
Theorem 1.7 below is a multi-dimensional extension of Theorem 1.2(1) with a sym-

metry assumption.

Theorem 1.7. Let µ = µ1 ⊗ · · · ⊗ µd be a product measure on R
d and assume that for

each 1 ≤ i ≤ d, the measure µi is even. Let f and g be two functions on R
d such that

for each 1 ≤ i ≤ d and all x ∈ R
d, the signs of

∂i

(

∂if(x)

ai(xi)

)

and ∂i

(

∂ig(x)

ai(xi)

)

(1.11)

are constant and equal. Assume moreover that one of the functions is unconditional.
Then

Covµ(f, g) ≥ 0.

The following corollary is directly obtained by setting again the functions ai to be
identically equal to 1.

Corollary 1.8. Let µ = µ1 ⊗ · · · ⊗ µd be a product measure on R
d and assume that for

1 ≤ i ≤ d, the measures µi are even. Let f and g be two functions on R
d such that for

each 1 ≤ i ≤ d, the signs of
∂i,if(x) and ∂i,ig(x) (1.12)

are constant and equal. Assume moreover that one of the functions is unconditional.
Then

Covµ(f, g) ≥ 0.
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With these symmetries, the tensorization method also leads to the following extension
of Theorem 1.2(2) and (3).

Theorem 1.9. Let µ = µ1 ⊗ · · · ⊗ µd be a product measure on R
d.

(1) Assume that for 1 ≤ i ≤ d, the marginals µi are even and log-concave. Let f =
e−φ be an unconditional positive log-concave function and g be a coordinatewise
convex function on R

d, then

Covµ(f, g) ≤ 0.

(2) Assume that f and g are both unconditional and coordinatewise quasi-concave.
Then

Covµ(f, g) ≥ 0.

A drawback of this tensorization approach is arguably that in Theorem 1.7 and Corol-
lary 1.8, we assume a strong symmetry property: the unconditionality of at least one
function.

In order to require less symmetry assumptions, it is natural to try to use, instead of
the tensorization argument, a more global approach. A first attempt would be to use the
interpolation with the associated Markov semi-group and the covariance representation
given in (8.4). Actually, we shall provide a slightly different covariance representation,
based on an argument of “duplication” of random variables (Lemma 7.1). The main
reason for this choice is that the latter approach is much simpler than the semi-group
approach and is also more effective. See more comments in Section 8. As expected, this
approach allows us to reduce drastically the symmetries required on the functions, but
at prize of considering some convexity type assumptions that are less common. Theorem
1.10 below provides an extension of Theorem 1.2(2) and (3).

Theorem 1.10. Let µ be a product measure on R
d.

(1) Let f = e−φ and g be two functions on R
d such that all x ∈ R

d,

∂i

(

∂iφ(x)

ai(xi)

)

≤ 0 and ∂i

(

∂ig(x)

ai(xi)

)

≥ 0 for all 1 ≤ i ≤ d, (1.13)

and

∂i,jφ(x) ≤ 0 and ∂i,jg(x) ≥ 0 for all 1 ≤ i 6= j ≤ d. (1.14)

Assume moreover that f is orthogonal to the functions Ai(xi) for all 1 ≤ i ≤ d,
then

Covµ(f, g) ≥ 0.

(2) Let f = e−φ and g = e−ψ be two functions on R
d such that for all x ∈ R

d,

∂i

(

∂iφ(x)

ai(xi)

)

≤ 0 and ∂i

(

∂iψ(x)

ai(xi)

)

≤ 0 for all 1 ≤ i ≤ d, (1.15)

and

∂i,jφ(x) ≤ 0 and ∂i,jψ(x) ≤ 0 for all 1 ≤ i 6= j ≤ d. (1.16)
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Assume moreover that the product measure µ is symmetric and the functions ai
are even for 1 ≤ i ≤ d and that also both f and g are even, then

Covµ(f, g) ≥ 0.

As before, the choice ak ≡ 1 is worth looking at and gives the following corollary.

Corollary 1.11. Let µ be a product measure on R
d.

(1) Let f = e−φ and g be two functions on R
d such that for all 1 ≤ i, j ≤ d and all

x ∈ R
d,

∂i,jφ(x) ≤ 0 and ∂i,jg(x) ≥ 0. (1.17)

Assume moreover that f is orthogonal to the coordinate functions xi for all 1 ≤
i ≤ d, then

Covµ(f, g) ≥ 0.

(2) Let f = e−φ and g = e−ψ be two functions on R
d such that for all 1 ≤ i, j ≤ d

and all x ∈ R
d,

∂i,jφ(x) ≤ 0 and ∂i,jψ(x) ≤ 0. (1.18)

Assume moreover that the product measure µ is symmetric and that both f and
g are even, then

Covµ(f, g) ≥ 0.

Outline. The paper is organized as follows. The case of the dimension one is inves-
tigated in Sections 2, 3 and 4. In Sections 2 and 3, we produce two different proofs of
Theorem 1.2. The first one, given in Section 2, is based on the use of determinants and
the so-called Andreev’s formula. The second one, detailed in Section 3, is based on a
covariance identity due to Hoeffding and the use on R

2 of the classical FKG inequality.
In Section 4, we notice that more structure is actually present in dimension one: the
kernel k in Hoeffding’s covariance identity is indeed totally positive in the sense of Kar-
lin [Kar68]. Consequently, determinantal covariance inequalities for general Chebyshev
systems follow (see Theorem 4.2 for the precise statement). The latter inequalities are
also recovered without using Hoeffding’s covariance identity, through a direct approach
with determinants and Andreev’s formula.

The tensorization method and the proofs of Theorems 1.4, 1.7 and 1.9 are given in
Section 5, except for the proofs of Theorem 1.2(3) and Theorem 1.9(2), that pertain to
the hypothesis of quasi-concavity and are detailed in Section 6. Indeed, the method for
proving Theorem 1.2(3) in dimension one is very specific and independent from the rest
of the paper. Theorem 1.9(2) is then obtained by tensorization.

In addition, a generalization of Hoeffding’s covariance identity for product measures,
obtained by a duplication argument, is provided in Section 7. A second proof of Theorem
1.4 and the proof of Theorem 1.10 are then given. As explained above, another natural
generalization of Hoeffding’s covariance identity would be given through the standard
semi-group interpolation. Comments on the difficulty of using this covariance represen-
tation are provided in Section 8. Some possible examples of applications are given in
Section 9. Finally, in the Appendix, we also prove that that Theorem 1.1(2) is true for
product measures whose marginals are mixtures of centered Gaussian measures.
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2. A determinantal approach in dimension one

This section is devoted to a first proof of Theorem 1.2(1) and (2). The proof is based
on properties of determinants, in particular on the intertwining between determinants
and the integral operator, a property known as Andreev’s formula. Similar arguments
will be used in Section 4 in the more general framework of Chebyshev systems.

2.1. Convexity and determinants.

Definition 2.1. A pair of real-valued functions (u,U) is said to satisfy Assumption (C)
if for any triple (x1, x2, x3) ∈ R

3 with x1 < x2 < x3, one has

D(x1, x2, x3) =

∣

∣

∣

∣

∣

∣

1 1 1
u(x1) u(x2) u(x3)
U(x1) U(x2) U(x3)

∣

∣

∣

∣

∣

∣

≥ 0.

In other terms, the couple (u,U) satisfies Assumption (C) if and only if the triple
(1, u, U) forms a Chebyshev system (see Definition 4.1). From elementary properties of
determinants, it follows that:

Proposition 2.2. Let (u,U) be satisfying Assumption (C) and D : R
3 → R be as

defined above. Let (x1, x2, x3) ∈ R
3. Let σ ∈ S3 be a permutation of {1, 2, 3} such that

xσ(1) ≤ xσ(2) ≤ xσ(3). Then

ε(σ)D(x1, x2, x3) ≥ 0

Proposition 2.3. A function f : R → R is convex if and only if, for any x ∈ R, the
pair (x, f(x)) satisfies (C).

Proof. Take (x1, x2, x3) ∈ R
3 with x1 < x2 < x3. Expanding the determinantD(x1, x2, x3)

gives:

D(x1, x2, x3) = (x2 − x1)(f(x3) − f(x2)) − (x3 − x2)(f(x2) − f(x1)).

Dividing by the positive quantity (x3−x2)(x2 −x1) > 0, we obtain that D(x1, x2, x3) ≥ 0
if and only if

f(x3) − f(x2)

x3 − x2
≥
f(x2) − f(x1)

x2 − x1
,

which is the slope inequality equivalent to convexity of f . �

Corollary 2.4. If U is an increasing bijection between R and some interval I, then
(1, u, U) satisfies (C) if and only if u ◦ U−1 is concave on I.

Proof. We notice that, for x1 < x2 < x3 we have

D(x1, x2, x3) = D(U−1(y1), U−1(y2), U−1(y3))

for some triple y1 < y2 < y3 ∈ I. Elementary properties of determinants then give:

D(x1, x2, x3) =

∣

∣

∣

∣

∣

∣

1 1 1
y1 y2 y3

(−u ◦ U−1)(y1) (−u ◦ U−1)(y2) (−u ◦ U−1)(y3)

∣

∣

∣

∣

∣

∣

and we conclude by applying Proposition 2.3. �
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Let us now consider some positive function f . Let F be a primitive of f . It is known
(see [Bob96]) that f is log-concave if and only if f ◦F−1 is concave. From the above, we
deduce the following proposition.

Proposition 2.5. A positive function f is log-concave if and only if the pair (f, F )
satisfies (C).

2.2. An Andreev-type formula. A key point in this approach is the following Andreev-
type formula which exchanges expectation and determinants.

Proposition 2.6. Let (fi)1≤i≤n and (gi)1≤i≤n be two n-uples of functions in L2(µ). We
have:

det (Eµ [fi(X)gj(X)]) =
1

n!
Eµ⊗···⊗µ [det (fi(Xj)) det (gi(Xj))] .

Proof. An elementary formula for determinant asserts that:

n! det (Eµ [fi(X)gj(X)]) =
∑

σ,σ′∈Sn

ε(σ)ε(σ′)
n
∏

i=1

Eµ

[

fσ(i)(X)gσ′(i)(X)
]

.

Fubini’s theorem allows us to write:

n! det (Eµ [fi(X)gj(X)]) =
∑

σ,σ′∈Sn

ε(σ)ε(σ′)Eµ⊗···⊗µ

[

n
∏

i=1

fσ(i)(Xi)gσ′(i)(Xi)

]

.

We thus have:

n! det (Eµ [fi(X)gj(X)]) = Eµ⊗···⊗µ





∑

σ,σ′∈Sn

ε(σ)ε(σ′)fσ(i)(Xi)gσ′(i)(Xi)





= Eµ⊗···⊗µ









∑

σ∈Sn

ε(σ)fσ(i)(Xi)









∑

σ′∈Sn

ε(σ′)gσ′(i)(Xi)









= Eµ⊗···⊗µ [det (fj(Xi)) det (gj(Xi))]

= Eµ⊗···⊗µ [det (fi(Xj)) det (gi(Xj))] .

�

Note that with the particular choice n = 2, f1 = 1, f2 = f , g1 = 1, g2 = g, Proposi-
tion 2.6 gives the so-called ”Chebyshev’s other inequality”:

Proposition 2.7 (Chebyshev). If f, g ∈ L2(µ) are both non-increasing or both non-
decreasing, then Covµ(f, g) ≥ 0.

2.3. A first proof of Theorem 1.2. The first proof of Theorem 1.2 will be deduced
from the following more general result.

Theorem 2.8. Let (u,U) and (v, V ) be two pairs of functions satisfying Assumption
(C). Then

Covµ(U, V )Covµ(u, v) ≥ Covµ(u, V )Covµ(U, v).
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Proof. We want to show that D ≥ 0, where

D =

∣

∣

∣

∣

Covµ(u, v) Covµ(u, V )
Covµ(U, v) Covµ(U, V )

∣

∣

∣

∣

.

But we also have:

D =

∣

∣

∣

∣

∣

∣

1 Eµ[v] Eµ[V ]
Eµ[u] Eµ[uv] Eµ[uV ]
Eµ[U ] Eµ[Uv] Eµ[UV ]

∣

∣

∣

∣

∣

∣

.

The latter equality can be proven by simply expanding the determinant. We now apply
Proposition 2.6 with f1 = 1, f2 = u, f3 = U and g1 = 1, g2 = v, g3 = V . This gives

D =

∫

R
3

∣

∣

∣

∣

∣

∣

1 1 1
u(x1) u(x2) u(x3)
U(x1) U(x2) U(x3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1
v(x1) v(x2) v(x3)
V (x1) V (x2) V (x3)

∣

∣

∣

∣

∣

∣

dµ(x1)dµ(x2)dµ(x3).

Let (x1, x2, x3) ∈ R
3 and σ ∈ S3 be such that xσ(1) < xσ(2) < xσ(3). As both pairs (u,U)

and (v, V ) satisfy (C), we apply Proposition 2.2 as follows,
∣

∣

∣

∣

∣

∣

1 1 1
u(x1) u(x2) u(x3)
U(x1) U(x2) U(x3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1
v(x1) v(x2) v(x3)
V (x1) V (x2) V (x3)

∣

∣

∣

∣

∣

∣

=



ε(σ)

∣

∣

∣

∣

∣

∣

1 1 1
u(x1) u(x2) u(x3)
U(x1) U(x2) U(x3)

∣

∣

∣

∣

∣

∣







ε(σ)

∣

∣

∣

∣

∣

∣

1 1 1
v(x1) v(x2) v(x3)
V (x1) V (x2) V (x3)

∣

∣

∣

∣

∣

∣



 ≥ 0,

from which we deduce D ≥ 0, as wanted. �

As we prove now, points (1) and (2) of Theorem 1.2 are particular cases of Theo-
rem 2.8, for a suitable choice for the pairs (u,U) and (v, V ).

Proof of Theorem 1.2(1) and (2). The first item is a direct consequence of Theorem 2.8
and Proposition 2.3 for the particular choice u(x) = x, U(x) = f(x), v(x) = x and
V (x) = g(x).

For the second item, we set u(x) = f(x), U(x) =
∫ x

0 f(t)dt, v(x) = x, V (x) = g(x).
Propositions 2.5 and 2.3 show that the pairs (u,U) and (v, V ) both satisfy Assumption
(C). By Theorem 2.8, we thus have:

Covµ(f, x)Covµ(U, g) ≥ Covµ(f, g)Covµ(U, x).

The orthogonality assumption gives Covµ(f, x) = 0. Moreover, as f is non-negative, the
function U is non-decreasing. Proposition 2.7 then gives Covµ(U, x) ≥ 0, so that the
inequlity Covµ(f, g) ≤ 0 holds, as desired.

�

3. The Hoeffding covariance identity approach in dimension one

This section is devoted to a second proof of Theorem 1.2(1) and (2). The proof will
follow from the Hoeffding covariance identity and the use of the FKG inequality for a new
probability measure on R

2. A key point is that the kernel of the Hoeffding representation
is totally positive.
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3.1. Hoeffding’s covariance identity. We start by recalling the following represen-
tation formula for the covariance, which is a consequence of a slightly more general
covariance identity due to Hoeffding. See [SW18] for more details about Hoeffding’s
covariance identity.

Theorem 3.1. Let µ be a probability measure on R and denote by Fµ its cumulative
distribution function, then for all functions f and g in L2(µ) and absolutely continuous,
one has

Covµ(f, g) =

∫∫

f ′(x)kµ(x, y)g′(y)dxdy, (3.1)

with
kµ(x, y) = Fµ(x ∧ y) − Fµ(x)Fµ(y)

and x ∧ y = min(x, y).

For simplicity, when it is clear from context, we shall write k = kµ in the sequel. We

now recall some properties of the kernel k : R2 → [0,+∞). Taking f(·) = 1[x,∞[(·) and
g(·) = 1[y,∞[(·), one sees that the kernel k is necessarily unique and can also be written

k(x, y) = Covµ
(

1{X≤x}, 1{X≤y}

)

.

This kernel is non-negative, bounded, continuous if µ is assumed to be a continuous
measure, but it is not differentiable on the line y = x. Let us emphasize the fact that the
kernel k is totally positive in the sense of Karlin [Kar68]. This result should be classical
but we could not find a reference of it in the literature.

Theorem 3.2. For all n ≥ 2, s1 ≤ · · · ≤ sn ∈ R and t1 ≤ · · · ≤ tn ∈ R,

det (k(si, tj))1≤i,j≤n ≥ 0.

Proof. The proof follows from Theorem 3.1 in Karlin [Kar68], or Theorem 4.2 in Pinkus
[Pin10], by showing that the matrix (k(si, tj))1≤i,j≤n is a Green matrix. One can also

directly use Corollary 3.1 in Karlin [Kar68] by writing

k(x, y) =

{

φ(x)ψ(y) if x ≥ y
ψ(x)φ(y) if x ≤ y

with φ(x) = F (x) non-decreasing and ψ(y) = 1 − F (y) non-increasing. �

In the case n = 2, Theorem 3.2 provides the following inequality.

Corollary 3.3. For all s1 ≤ s2 and t1 ≤ t2,

k(s1, t1)k(s2, t2) ≥ k(s1, t2)k(s2, t1). (3.2)

The conclusion of Corollary 3.3 is well known in the literature under different names.
Inequality (3.2), here in the case of R2, is sometimes referred to as the Holley condition
or the strong FKG condition. The kernel k is also called log-supermodular or multivariate
totally positive of order 2. We shall also the need the following extension:

Corollary 3.4. Let a and b be two positive functions on R and define the kernel ka,b on

R
2 by

ka,b(x, y) = a(x)k(x, y)b(y).

Then the kernel is totally positive and thus satisfies inequality (3.2).
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We recall now the classical result, due to Fortuin, Kasteleyn and Ginibre [FKG71],
which asserts that the Holley condition implies the FKG inequality. We first state the
definition of the FKG inequality in R

d.

Definition 3.5. Let d ≥ 1. A function f : Rd → R is said to be coordinate increasing
if it is non-decreasing along each coordinate, that is if:

for all x, y ∈ R
d, satisfying xi ≤ yi, 1 ≤ i ≤ d one has f(x) ≤ f(y). (3.3)

A probability measure ν on R
d is said to satisfy the FKG inequality if for all functions

f and g coordinate increasing, one has:

Covν(f, g) ≥ 0. (3.4)

Theorem 3.6. Let ν be a probability measure R
d with density k with respect to the

Lebesgue measure. Assume that for all x, y ∈ R
d,

k(x ∧ y)k(x ∨ y) ≥ k(x)k(y), (3.5)

where x ∧ y = (min(x1, y1), . . . ,min(xd, yd)) and x ∨ y = (max(x1, y1), . . . ,max(xd, yd)).
Then ν satisfies the FKG inequality.

Remark 3.7. Writing k = eH , the condition (3.5) writes:

H(x ∧ y) +H(x ∨ y) ≥ H(x) +H(y). (3.6)

In the case where k is smooth - more precisely when H is of class C2 here -, inequality
(3.6) is equivalent to the following condition on the second order cross-derivatives of H:

∂2

∂xi∂xj
H(x) ≥ 0 for 1 ≤ i 6= j ≤ d.

In this case, Bakry and Michel [BM92] proved the slightly stronger result that the asso-
ciated semi-group (see Section 8) preserves the class of coordinate increasing functions.
Finally note that the kernel kµ given in Theorem 3.1 above, is not smooth on the diagonal

of R2 and that ∂2
x,y ln kµ(x, y) = 0 for all x 6= y ∈ R

2.

Remark 3.8. Condition (3.5) is not equivalent to the FKG inequality. In the Gaussian

setting, for a Gaussian vector with non-singular matrix covariance Γ on R
d, the Holley

condition (3.5) is equivalent to (Γ−1)i,j ≤ 0 for 1 ≤ i 6= j ≤ d. But as proven by Pitt
[Pit82] in the Gaussian setting, the FKG inequality is equivalent to Γi,j ≥ 0 (see also
Tong [Ton90]). The condition on the coefficient of Γ−1 implies the one for Γ. But the
converse does not hold. The example 4.3.2 in Tong [Ton90] provides a covariance matrix
for d ≥ 3 such that Γi,j ≥ 0 for all 1 ≤ i, j ≤ d but not (Γ−1)i,j ≤ 0 for all 1 ≤ i 6= j ≤ d.

3.2. Hoeffding’s formula as a relation between covariances. The main result of
this section is Lemma 3.9 where we express the quantities appearing in Theorem 1.2 as a
covariance of the derivatives of the functions with respect to a new probability measure
on R

2. Let µ be a probability measure on R admitting a second moment. We recall that
k is the non-negative kernel:

k(x, y) = Fµ(x ∧ y) − Fµ(x)Fµ(y).



12 MICHEL BONNEFONT, ERWAN HILLION, AND ADRIEN SAUMARD

and that from Theorem 3.1, it satisfies
∫∫

k(x, y)dxdy = Varµ(x) = Var(µ). (3.7)

By assumption, this last quantity is finite and we denote by µ(1) the following probability
measure on R

2:

dµ(1)(x, y) =
k(x, y)

∫∫

k(x′, y′)dx′dy′
dxdy

In the case where f and g are some positive functions, we also denote,

dµ
(1)
f (x, y) =

f(x)k(x, y)
∫∫

f(x′)k(x′, y′)dx′dy′
dxdy

and

dµ
(1)
f,g(x, y) =

f(x)k(x, y)g(y)
∫∫

f(x′)k(x′, y′)dx′dy′
dxdy

The main result here is the following relation between the covariances of µ and µ(1). It
consists essentially in a rewriting of Hoeffding’s covariance identity (3.1) and to highlight
the slight difference, we call it “Hoeffding’s covariance relation”.

Lemma 3.9 (Hoeffding’s covariance relation). Let µ be a probability measure on R

admitting a second moment, with Var(µ) > 0. Let f, g : R → R be some absolutely
continuous functions that belong to L2(µ).

(1) Then,

Covµ(f(x), g(x))

Var(µ)
−

Covµ(f(x), x)

Var(µ)

Covµ(g(x), x)

Var(µ)
= Covµ(1)(f ′(x), g′(y)). (3.8)

(2) If moreover, f = e−φ is positive:

Covµ(f(x), g(x))

Zf
−

1

Z2
f

Covµ(f(x), x) Covµ(F (x), g(x)) = Cov
µ

(1)
f

(−φ′(x), g′(y)). (3.9)

(3) If moreover g = e−ψ is positive:

Covµ(f(x), g(x))

Zf,g
−

1

Z2
f,g

Covµ(f(x), G(x)) Covµ(F (x), g(x)) = Cov
µ

(1)
f,g

(φ′(x), ψ′(y)).

(3.10)

Here F and G are primitives of f and g and

Zf =

∫∫

f(x)k(x, y)dxdy = Cov(F (x), x) > 0,

and

Zf,g =

∫∫

f(x)k(x, y)g(y)dxdy = Cov(F (x), G(x)) > 0.
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Note that this approach is also linked to determinants in the sense that the left hand
sides of the equalities (3.8), (3.9) (3.10) can be written as determinants. For example,
formula (3.8) can be written as

Var(µ)2Covµ(1)(f ′(x), g′(y)) = det

(

Var(µ) Covµ(x, f(x))
Covµ(x, g(x)) Covµ(f, g)

)

. (3.11)

Proof. Using several times the covariance representation of Theorem 3.1, one has:

Covµ(f(x), g(x))

Var(µ)
=

∫∫

f ′(x)
k(x, y)

∫∫

k(x′, y′)dx′dy′
g′(y)dxdy

=Covµ(1)(f ′(x), g′(y))

+

(∫∫

f ′(x)
k(x, y)

∫∫

k(x′, y′)dx′dy′
dxdy

)(∫∫

g′(y)
k(x, y)

∫∫

k(x′, y′)dx′dy′
dxdy

)

=Covµ(1)(f ′(x), g′(y)) +
Covµ(f(x), x)

Var(µ)

Covµ(g(x), x)

Var(µ)
.

Similarly, if f = e−φ,

Covµ(f(x), g(x))

Zf
=

∫∫

(−φ′(x))
f(x)k(x, y)

Zf
g′(y)dxdy

=Cov
µ

(1)
f

(−φ′(x), g′(y)) +
1

Z2
f

(∫∫

f ′(x)k(x, y)dxdy

)(∫∫

f(x)k(x, y)g′(y)dxdy

)

=Cov
µ

(1)
f

(−φ′(x), g′(y)) +
1

Z2
f

Covµ(f(x), x) Covµ(F (x), g(x))

and if moreover g = e−ψ,

Covµ(f(x), g(x))

Zf,g
=

∫∫

(−φ′(x))
f(x)k(x, y)g(y)

Zf,g
(−ψ′(y))dxdy

=Cov
µ

(1)
f,g

(φ′(x), ψ′(y)) +
1

Z2
f,g

(∫∫

f ′(x)k(x, y)g(y)dxdy

) (∫∫

f(x)k(x, y)g′(y)dxdy

)

=Cov
µ

(1)
f,g

(φ′(x), ψ′(y)) +
1

Z2
f,g

Covµ(f(x), G(x)) Covµ(F (x), g(x)).

�

3.3. A second proof of Theorem 1.2. We are now ready to turn to the second proof
of Theorem 1.2(1) and (2) pertaining to dimension one. The last ingredient will be the
use of the FKG inequality.

Proofs of Theorem 1.2(1) and (2). Let µ be any probability measure R admitting a sec-
ond moment and let f and g be two convex functions on R. Using the first covariance
relation of Lemma 3.9, it is equivalent to prove that:

Covµ(1)(f ′(x), g′(y)) ≥ 0.

By Corollary 3.3 and Theorem 3.6, the probability measure µ(1) on R
2 satisfies the FKG

inequality. Since f and g are convex, the functions (x, y) → f ′(x) and (x, y) → g′(y)
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on R
2 are in particular increasing along coordinates in R

2, which implies the desired
inequality.

As for the second item, let f = e−φ be a log-concave function and g be a convex
function on R and such that f is orthogonal to the linear function x. By the second
covariance formula of Lemma 3.9, and since Covµ(f(x), x) = 0,

Covµ(f, g) = −Cov
µ

(1)
f

(φ′(x), g′(y)).

The second point follows similarly as above, since by Corollary 3.4 the kernel of the

probability measure µ
(1)
f is also totally positive. �

4. More covariance inequalities in dimension one for Chebyshev systems

In this section, we consider some generalizations in dimension one of Theorem 1.2,
involving formulations through determinants for Chebyshev systems. As for Theorem
1.2, we provide two proofs, one based only through determinantal identities and the
other taking advantage of the strong fact that the kernel kµ is totally positive.

4.1. Covariance inequalities for Chebyshev systems. Let us first define Chebyshev
systems.

Definition 4.1. A r-uple of functions (f1, . . . , fr) with fi : R → R is said to form a
Chebyshev system (of order r) if for all t1 ≤ · · · ≤ tr ∈ R,

det(fi(tj))1≤i,j≤r ≥ 0. (4.1)

The main result of this section is the following:

Theorem 4.2. Let n ≥ 1 and f1, . . . , fn : R → R and g1, . . . , gn : R → R be some
functions such that both the (n + 1)-uples (1, f1, . . . , fn) and (1, g1, . . . , gn) form two

Chebyshev systems. Denote F (x) =





f1(x)
. . .
fn(x)



 and G(x) =





g1(x)
. . .
gn(x)



, then:

det(Cov(F,G)) ≥ 0. (4.2)

4.2. A first proof using the determinantal approach. We produce here a proof of
Theorem 4.2 which is based on the methods introduced in Section 2.

We first claim that

det (Covµ(F,G))1≤i,j≤n = det
(

Eµ [figj ]0≤i,j≤n

)

, (4.3)

where we set f0(x) = 1 and g0(x) = 1. Indeed, let A be the matrix (Eµ [figj ])0≤i,j≤n. Let

C0, . . . , Cn denote the columns of the matrix A. Let us consider the matrix B obtained
by replacing, for every 1 ≤ j ≤ n, the column Cj by Cj − E[gj ]C0. As B is obtained
from A only by elementary operations, they have the same determinant. Moreover, B
can be written in block form:

B =

(

1 0
Eµ(F ) Cov(F,G)

)

.

This proves that det(A) = det (Cov(F,G)) and (4.3) follows.
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Proof of Theorem 4.2. By the equality (4.3) and the Andreev-type formula of Proposi-
tion 2.6, one has

det (Cov(F,G)) =
1

n!

∫

R
n+1

det (fi(xj))0≤i,j≤n det (gi(xj))0≤i,j≤n dµ(x0) · · · dµ(xn).

Let us fix (x0, . . . , xn) ∈ R
n+1. There exists a permutation σ ∈ Sn such that xσ(0) ≤

· · · ≤ xσ(n). As (f0, . . . , fn) and (g0, . . . , gn) are Chebyshev systems, one has

ε(σ) det (fi(xj))0≤i,j≤n ≥ 0 , ε(σ) det (gi(xj))0≤i,j≤n ≥ 0.

One then has det (fi(xj))0≤i,j≤n det (gi(xj))0≤i,j≤n ≥ 0, so

det (Cov(F,G)) ≥ 0

and the result follows. �

4.3. A second proof with the Hoeffding covariance identity. We turn now to the
proof of the covariance inequality of Theorem 4.2 using Hoeffding’s covariance identity
(3.1). The main point will be the use of a bivariate Andreev-type formula for bilinear
integral operators. Another key point is to transfer the assumption on the functions to
an assumption on their derivatives.

Proposition 4.3. Let n ≥ 1 and f1, . . . , fn : R → R be some C1 functions. The following
assertions are equivalent:

(1) The (n+ 1)-uple (1, f1, . . . , fn) forms a Chebyshev system.
(2) The n-uple (f ′

1, . . . , f
′
n) forms a Chebyshev system.

Proof. Assume (1), let x0 < x1 < · · · < xn and set f0 = 1. Then, replacing the i-th
column Ci by Ci −Ci−1 for 1 ≤ i ≤ n, yields

0 ≤ det(fi(xj))0≤i,j≤n = det(fi(xj) − fi(xj−1))1≤i,j≤n

=
n
∏

j=1

(xj − xj−1) det

(

fi(xj) − fi(xj−1)

xj − xj−1

)

1≤i,j≤n

.

Letting successively xj tend to xj−1 for j = 1, ..., n gives

det(f ′
i(xj−1))1≤i,j≤n ≥ 0

and (2) follows.
Now assume (2), for x0 < x1 < · · · < xn. Since one has f0 = 1, replacing the i-th

column Ci by Ci −Ci−1 for 1 ≤ i ≤ n, one gets

det(fi(xj))0≤i,j≤n = det(fi(xj) − fi(xj−1))1≤i,j≤n

= det

(

∫ xj

xj−1

f ′
i(uj)duj

)

1≤i,j≤n

=

∫ xn

xn−1

· · ·

∫ x2

x1

∫ x1

x0

det(f ′
i(uj))1≤i,j≤n du1du2 . . . dun

where the last line follows from an Andreev-type formula. Since u1 ≤ u2 ≤ · · · ≤ un, we
have det(f ′

i(uj)) ≥ 0 by (2), and (1) follows. �
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The second key point is the following bivariate Andreev-type formula for bilinear
kernel integral operators on R

2n. It is stated here without a proof.

Proposition 4.4. With the same notation as in Theorem 4.2,

det(Cov(F,G)) = det

(∫∫

x,y∈R

f ′
i(x)k(x, y)g′

j(y)dµ(x)dµ(y)

)

1≤i,j≤n

=

∫∫

D
det

(

f ′
i(xj)

)

det (k(xi, yj)) det
(

g′
i(yj)

)

dx1 . . . dxddy1 . . . dyd

where D is the domain of R2n defined by

D =
{

(x1, . . . , xn, y1, . . . , yn) ∈ R
2n : x1 < · · · < xn , y1 < · · · < yn

}

.

A second proof of Theorem 4.2 is then immediate.

Second proof of Theorem 4.2. By hypothesis and since the kernel k is totally positive,
the three determinants in the integral on the second line in the equality of Proposition
4.4 are non-negative and the result follows. �

4.4. Some applications. We shall use Theorem 4.2 under the following particular form.

Corollary 4.5. Let n ≥ 1 and φ1, . . . , φn : R → R and f, g : R → R be some functions

and denote F (x) =









φ1(x)
. . .
φn(x)
f(x)









and G(x) =









φ1(x)
. . .
φn(x)
g(x)









. Assume that (1, φ1, . . . , φn, f) and

(1, φ1, . . . , φn, g) form two Chebyshev systems, then:

det(Cov(F,G)) ≥ 0. (4.4)

It is well known that, if f is smooth and if we choose more precisely φ1(x) =
x, . . . , φn(x) = xn, the condition that (1, φ1, . . . , φn, f) forms a Chebyshev system is

equivalent to f (n+1)(x) ≥ 0, for all x ∈ R. This is a well known generalization of Propo-
sition 2.3, see [Kar68, Chapter 6 Example 4].

In the case where we consider n = 1, we recover Theorem 1.2(1). Indeed, in dimension
one, by Proposition 2.3, the convexity assumptions on f and g are equivalent to the fact
that (1, x, f) and (1, x, g) both form a Chebyshev system.

We now describe the result for n = 2 and φ1(x) = x, φ2(x) = x2.

Corollary 4.6. Let µ be probability measure on R admitting a fourth moment. Assume
that f (3)(x) ≥ 0 and g(3)(x) ≥ 0 for all x ∈ R, then

Covµ(f, g)
(

Varµ(x2)Varµ(x) − Covµ(x, x2)2
)

≥
(

Covµ(x, f) Covµ(x2, f)
)

(

Varµ(x2) −Covµ(x, x2)
−Covµ(x, x2) Varµ(x)

)(

Covµ(x, g)
Covµ(x2, g)

)

.

If moreover
∫

R
xdµ =

∫

R
x3dµ = 0, the latter inequality writes

Cov(f, g) ≥
1

Varµ(x)
Cov(x, f) · Cov(x, g) +

1

Varµ(x2)
Cov(x2, f) · Cov(x2, g).
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5. The tensorization method for product measures

We investigate here product measures on R
d with d ≥ 2, through the use of the

tensorization argument. This method consists in decomposing the covariance for the
product measure by the one-dimensional covariances of the marginals and then applying
the covariance inequalities previously obtained in dimension one.

5.1. The tensorization decomposition of the covariance.

Lemma 5.1. Let µ = µ1 ⊗ · · · ⊗ µd be a product measure. For a function f : Rd → R,
set

fk(x1, . . . xk) =

∫∫

f(x1, . . . xd)dµk+1(xk+1) . . . dµd(xd),

for 1 ≤ k ≤ d, and set f0 =
∫

fdµ. Then it holds,

Covµ(f, g) =
d
∑

k=1

∫∫

Covµk
(fk, gk)dµ1(x1) . . . dµk−1(xk−1). (5.1)

In the above lemma, the function fk is the conditional expectation of f knowing
(x1, . . . , xk) and Covµk

(fk, gk) is the covariance with respect to the one-dimensional
marginal µk of fk and gk ; that is the function depending on (x1, . . . , xk−1) given by:

Covµk

(

x 7→ fk(x1, . . . , xk−1, x), x 7→ gk(x1, . . . , xk−1, x)
)

.

This decomposition of the covariance is well known and implies the famous tensoriza-
tion property of the Poincaré inequality; see e.g. [BGL14]. To be complete, (5.1) is
stated for the variance in [Led01b], but it also applies to the covariance due to the
following polarization identity:

4 Cov(f, g) = Var(f + g) − Var(f − g).

5.2. A weighted Hoeffding’s covariance relation in dimension one. For the se-
quel, we shall need a slight generalization of the covariance relation of Lemma 3.9 in
dimension one, that we describe now.

Let µ be a probability measure on R. Let a be a positive function on R and let A be the
(centered) primitive of a, A =

∫

adx+ c. We assume that a is such that Varµ(A) < +∞.
With these notations and with also the same notations as in Section 3.2, we define

ka,a(x, y) := a(x)k(x, y)a(y)

and we set Za,a =
∫∫

ka,a(x, y)dxdy. By Theorem 3.1, one gets Za,a = Varµ(A). We will

also consider the measure µ
(1)
a,a, defined by

dµ(1)
a,a(x, y) =

ka,a(x, y)
∫∫

ka,a(x′, y′)dx′dy′
dxdy.

Since the kernel k is totally positive, by Corollary 3.3, one gets that the kernels ka,a are
also totally positive.

The following lemma provides a generalization of Lemma 3.9, which corresponds to
the case a ≡ 1.
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Lemma 5.2. Let f, g : R → R be some absolutely continuous functions that belong to
L2(µ).

(1) Then,

Covµ(f(x), g(x))

=Za,a

[

Cov
µ

(1)
a,a

(

f ′(x)

a(x)
,
g′(y)

a(y)

)

+
Covµ(f(x), A(x))

Za,a

Covµ(g(x), A(x))

Za,a

]

. (5.2)

(2) If moreover f = e−φ, then

Covµ(f(x), g(x))

=Zaf,a

[

Cov
µ

(1)
af,a

(

−φ′(x)

a(x)
,
g′(y)

a(y)

)

+
Covµ(f(x), A(x))

Zaf,a

Covµ(Fa(x), g(x))

Zaf,a

]

. (5.3)

(3) If moreover g = e−ψ, then

Covµ(f(x), g(x))

=Zaf,ag

[

Cov
µ

(1)
af,ag

(

φ′(x)

a(x)
,
ψ′(y)

a(y)

)

+
Covµ(f(x), Ga(x))

Zaf,ag

Covµ(Fa(x), g(x))

Zaf,ag

]

. (5.4)

Here Fa and Ga denotes respectively the primitives of af and ag and the constants Zaf,a
and Zaf,ag are defined as in Lemma 3.9.

5.3. Proofs of Theorems 1.4, 1.7 and 1.9. We first consider the proof of Theorem
1.4. We then state a similar result in Theorem 5.3, but with slightly different assump-
tions.

Proof of Theorem 1.4. First, we assume that f and g are such that all the quantities in
(1.9) and (1.10) are non-negative. By the tensorization of the covariance (5.1) and the
first covariance relation of Lemma 5.2, one has

Covµ(f, g)

=
d
∑

k=1

1

Zk,ak,ak

∫∫

Covµk
(fk, Ak(xk))Covµk

(gk, Ak(xk))dµ1(x1) . . . dµk−1(xk−1) (5.5)

+
d
∑

k=1

Zk,ak,ak

∫∫

Cov
µ

(1)

k,(ak,ak)

(

∂kfk(xk)

ak(xk)
,
∂kgk(yk)

ak(yk)

)

dµ1(x1) . . . dµk−1(xk−1), (5.6)

where more precisely

∂kfk(xk) = ∂kfk(x1, . . . , xk−1, xk) and ∂kgk(yk) = ∂kgk(x1, . . . , xk−1, yk).

We first prove that the sum in display (5.6) is non-negative. The assumption (1.9)

implies that both (xk, yk) 7→ ∂kf(xk)
ak(xk) and (xk, yk) 7→ ∂kg(yk)

ak(yk) are coordinatewise increasing

on R
2 for every fixed x1, . . . , xk−1. Since by Corollary 3.4, the measure µ

(1)
k,(ak,ak) satisfies

the FKG criterion on R
2, the term (5.6) is non-negative. We now turn to the sum in

display (5.5). With a similar notation for g, we set

Fk,ak
(x1, . . . xk−1) = Covµk

(fk, Ak(xk)).
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Since the hypotheses allow to exchange derivation and integrals, one has for 1 ≤ i ≤
(k − 1),

∂i Covµk
(fk, Ak(xk))

=

∫∫

xk,yk

(

∫∫

xk+1,...,xd

∂i,kf(x)dµk+1(xk+1) . . . dµd(xd)

)

kµk
(xk, yk)ak(yk)dxkdyk.

In particular, the assumptions (1.10) give that the above integrands are non-negative.

This implies that the functions Fk,ak
and Gk,ak

are both coordinate increasing on R
k−1.

By the standard FKG inequality for product measures, one gets that
∫∫

Fk,ak
Gk,ak

dµ1(x1) . . . dµk−1(xk−1)

≥

∫∫

Fk,ak
dµ1(x1) . . . dµk−1(xk−1) ·

∫∫

Gk,ak
dµ1(x1) . . . dµk−1(xk−1)

= Covµ(f(x), Ak(xk)) · Covµ(g(x), Ak(xk)).

Summing over the index k ends the proof in the case of non-negative signs in assump-
tions (1.9) and (1.10). Finally, analyzing the above proof, one sees that it is still valid
for general signs. Indeed, under the general case of assumption (1.9), the functions

(xk, yk) 7→ ∂kf(xk)
ak(xk) and (xk, yk) 7→ ∂kg(yk)

ak(yk) are either both coordinatewise increasing or

both coordinatewise decreasing on R
2 and thus have a non-negative covariance with re-

spect to the measure µ
(1)
k,(ak,ak). Secondly, the last argument relies on the FKG inequality

for product measures. In this case, the FKG inequality is in fact also valid if the func-
tions Fk,ak

and Gk,ak
are monotone along coordinates, with the same monotonicity along

each coordinate. This is the case under the general assumption (1.10) and the result
follows.

�

As announced in the beginning of this section, we also obtain with this tensorization
approach, a similar result under slightly different conditions.

Theorem 5.3. Let µ be a product measure on R
d. Assume that the marginals µk are

absolutely continuous with respect to the Lebesgue measure, with positive densities e−Vk ,
for smooth potentials Vk. Let f, g : Rd → R and assume that for each 1 ≤ k ≤ d, the
signs of

∂k

(

∂kf(x)

ak(xk)

)

and ∂k

(

∂kg(x)

ak(xk)

)

(5.7)

are constant and equal and that for each (j, k) with 1 ≤ j < k ≤ d, the signs of

∂j,k

(

f(x)
Ak(xk)

V ′
k(xk)

)

and ∂j,k

(

g(x)
Ak(xk)

V ′
k(xk)

)

(5.8)

are also constant and equal. Assume furthermore the following technical assumption:

lim
xk→±∞

fk(x1, . . . , xk)
Ak(xk)

V ′
k(xk)

e−Vk(xk) = 0, (5.9)
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where fk is defined in Lemma 5.1. Then, it holds

Covµ(f, g) ≥
d
∑

k=1

1

Varµk
(Ak)

Covµ(f(x), Ak(xk)) · Covµ(g(x), Ak(xk)).

Note that since each Ak vanishes exactly in one point, the hypothesis in (5.8) forces
each Vk to be unimodal (in the sense that Vk has only one zero). In particular, if each
potential Vk is strictly convex, one can specialize the result to the case Ak = V ′

k or
equivalently ak = V ′′

k . With this specific choice, Theorems 5.3 and 1.4 coincide.

Proof of Theorem 5.3. The proof is similar to the one of Theorem 1.4. The only differ-
ence is that we use integration by parts to get a different representation of Fk,ak

. We
obtain

Fk,ak
(x1, . . . xk−1) = Covµk

(

fk, V
′
k(xk)

Ak(xk)

V ′
k(xk)

)

=

∫

∂k

(

fk
Ak(xk)

V ′
k(xk)

)

dµk(xk).

Notice that the bracket terms in the integration by parts are zero due to Assump-
tion (5.9). Furthermore, by Assumption (5.8), the two functions Fk,ak

and Gk,ak
are

coordinatewise monotone with the same kind of monotony along each coordinate. The
result follows. �

We now add the symmetry assumptions and turn to the proofs of Theorem 1.7. and
1.9.

Proof of Theorem 1.7. We start by the same covariance formulae, given in (5.5), (5.6),
as in the proof of Theorem 1.4. As previously, in view of assumption (1.11), all terms
in (5.6) are non-negative. Now, we show that under the symmetry assumptions, all the
terms in (5.5) vanish. Indeed, since the product measure µ is symmetric, the function f
is unconditional and the function ak are even, we have that, for any 1 ≤ k ≤ d, and any
x1, . . . xk−1, the functions

xk 7→ fk(x1, . . . xk−1, xk)

are even and that the primitive functions Ak are odd. Hence, it holds that

Covµk
(fk, Ak(xk)) = 0 for each 1 ≤ k ≤ d and all x ∈ R

d

and all the terms in (5.5) vanish. The result follows. �

Proof of Theorem 1.9(1). With the same notations as above, writing φk = − ln fk and
using the second point of Lemma 5.2, one has

Covµ(f, g)

=
d
∑

k=1

∫∫

1

Zk,fk,1
Covµk

(fk, xk)

(∫∫

fk(xk)kµk
(xk, yk)∂kgk(yk)dxkdyk

)

dµ1 . . . dµk−1

+
d
∑

k=1

∫∫

Zk,fk,1Cov
µ

(1)

k,(fk,1)

(−∂kφk(xk), ∂kgk(yk)) dµ1 . . . dµk−1.

Since f is unconditional, for each fixed (x1, . . . , xk−1), the function fk is even, and thus

Covµk
(fk, xk) = 0
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and the terms of the sum in the right-hand side of the above equality vanish. Fur-
thermore, as f and the µi are log-concave, by stability through marginalization of log-
concavity (Prékopa’s theorem), the functions fk are log-concave, meaning that the func-

tions φk are convex. Since by Corollary 3.4, the measures µ
(1)
k,(fk,1) satisfy the FKG

inequality on R
2, one has for each fixed (x1, . . . , xk−1) ∈ R

k−1,

Cov
µ

(1)

k,(fk,1)

(−∂kφk(x1, . . . , xk−1, xk), ∂kgk(x1, . . . , xk−1, yk)) ≤ 0

and the proof is complete. �

The proof of Theorem 1.9(2) is given in the next section. One can note that we do not
state a version of Theorem 1.9 with the function ak or Ak. The reason is that we do not

know a natural hypothesis on f that would induce a sign for the quantities ∂k
(

∂kφk

ak

)

.

6. The quasi-concave case

This section is devoted to the proof of Theorem 1.2(3) and Theorem 1.9(2), related
to the quasi-concave case. This assumption indeed requires different techniques than
in the rest of the paper. The result in dimension one is obtained through the so-called
layer-cake representation of the functions (see (6.1)) and the result in dimension d ≥ 2
is then obtained by tensorisation. A similar result already appears in [SSZ98], but as
far as we know, the statement of Theorem 1.9(2) is new.

Recall that a quasi-concave function f on R
d is a real-valued function that satisfies,

for any x, y ∈ R
d and any λ ∈ [0, 1],

f(λx+ (1 − λ)y) ≥ min {f(x), f(y)} .

An equivalent formulation of quasi-concavity consists in requiring that the upper level
sets of the function are convex. In the following, we make use of a weaker notion than
quasi-concavity, that we term “coordinatewise quasi-concavity”:

Definition 6.1. A function f : Rd → R is said to be coordinatewise quasi-concave if
for all (x1, ..., xi−1, xi+1, ..., xd) ∈ R

d−1, the functions

xi ∈ R 7→ f(x1, ..., xi−1, xi, xi+1, ..., xd) ∈ R

are quasi-concave.

Another characterization is thus that for any λ ∈ [0, 1], any (x1, ..., xi−1, xi+1, ..., xd) ∈
R
d−1 and any x, y ∈ R,

f(x1, ..., xi−1, λxi + (1 − λ)yi, xi+1, ..., xd)

≥ min {f(x1, ..., xi−1, xi, xi+1, ..., xd), f(x1, ..., xi−1, yi, xi+1, ..., xd)} .

The above definition and its characterization directly imply that quasi-concave func-
tions are coordinatewise quasi-concave, but the converse is not true.

Note that the interpretation in terms of convex upper level sets does not hold anymore
for the notion of coordinatewise quasi-concavity. But still, the upper level sets of a
coordinatewise quasi-concave function are connected sets.

We now turn to the proof of Theorem 1.2 (3) in dimension one.
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Theorem 1.2 (3). Let f and g be two non-negative quasi-concave even function on R.
We write, for x ∈ R,

f(x) =

∫ ∞

0
1At(x)dt and g(x) =

∫ ∞

0
1Bt(x)dt (6.1)

where At and Bt for t ≥ 0 are the the level sets of f and g defined by

At := {x ∈ R, f(x) ≥ t} and Bt := {x ∈ R, f(x) ≥ t}.

The key point is here that since f and g are quasi-concave and even, the sets As and
Bt are symmetric intervals on R and therefore, for each s, t ≥ 0, As ⊂ Bt or Bt ⊂ As.
Therefore by Fubini-Tonelli, one has

∫

f(x)g(x)dµ(x) =

∫

x

∫ ∞

s=0

∫ ∞

t=0
1As(x)1Bt(x)dsdtdµ(x)

=

∫ ∞

s=0

∫ ∞

t=0
µ(As ∩Bt)dsdt

=

∫ ∞

s=0

∫ ∞

t=0
min(µ(As), µ(Bt))dsdt

≥

∫ ∞

s=0

∫ ∞

t=0
µ(As)µ(Bt)dsdt

=

∫

f(x)dµ(x)

∫

g(x)dµ(x);

which is precisely the desired inequality. �

We now prove Theorem 1.9(2) by the tenzorisation method. The main argument is en-
sured by the following lemma, which states the stability of unconditional coordinatewise
quasi-concavity by marginalization. Its proof can be found below.

Lemma 6.2. Consider an integer d ≥ 2 and take k ∈ {1, ..., d − 1}. Assume that a

function f on R
d is unconditional and coordinatewise quasi-concave. Then the function

fk(x1, . . . xk) =

∫

f(x1, . . . xd)dµk+1(xk+1) . . . dµd(xd)

is coordinatewise quasi-concave and unconditional.

Proof of Theorem 1.9(2). Let f and g be unconditional and coordinatewise quasi-concave
functions. Let us first recall the standard tensorization formula:

Covµ(f, g) =
d
∑

k=1

∫∫

Covµk
(fk, gk)dµ1 . . . dµk−1.

By Lemma 6.2 above, for any (x1, ..., xk−1) ∈ R
k−1 the functions fk(x1, ..., xk−1, ·)

and gk(x1, ..., xk−1, ·) are even and quasi-concave on R. By Theorem 1.2 (3), one has
Covµk

(fk, gk) ≥ 0 and the result follows. �

Proof of Lemma 6.2. Unconditionality of fk directly follows from unconditionality of
f . As for the coordinatewise quasi-concavity, we will make the reasoning for the first
coordinate x1 and the arguments readily extend to the other coordinates. Take a pair
(x1, y1) such that |x1| ≤ |y1|. Assume without loss of generality that y1 ≥ 0 (otherwise
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replace it by −y1). As f is unconditional and coordinatewise quasi-concave, for any
y ∈ [−y1, y1] and for any (x2, ..., xd) ∈ R

d−1, we have

f(y, x2, . . . , xd) ≥ min {f(−y1, x2, ..., xd), f(y1, x2, ..., xd)}

= f(y1, x2, ..., xd),

where the latter equality follows from unconditionality of f . In particular, as x1 ∈
[−y1, y1], we have for any (x2, ..., xd) ∈ R

d−1,

f(x1, x2, ..., xd) ≥ f(y1, x2, ..., xd).

This gives, for any λ ∈ [0, 1],

fk(λx1 + (1 − λ)y1, x2, . . . xk) =

∫

f(λx1 + (1 − λ)y1, x2, . . . xd)dµk+1 . . . dµd

≥

∫

f(y1, x2, . . . xd)dµk+1 . . . dµd

= min {fk(x1, x2, . . . xk), fk(y1, x2, . . . xk)} .

By symmetry, the case |y1| ≤ |x1| follows, which finishes the proof. �

7. A global approach for product measures

We provide in this section another proof of Theorem 1.4 and we provide the proof
of Theorem 1.10. The first main ingredient that will be used is a generalization of
Hoeffding’s covariance identity (3.1) for product measures. The two other ingredients are
a generalization to product measures of the Hoeffding’s covariance relations of Lemmas
3.9 and 5.2 and the use of FKG inequalities.

7.1. Duplication and a generalization of Hoeffding’s covariance identity. We
first present in Lemma 7.1 a duplication argument for the covariance of a product mea-
sure. Similar duplication representations are well known, see e.g. [Cha07]. We then
deduce in Proposition 7.2 a generalization of Hoeffding’s covariance identity for product
measures.

Lemma 7.1. Let µ = µ1 ⊗ · · · ⊗ µd be a product measure on R
d. Under suitable

integrable conditions one has

Covµ(f, g) =
1

2

d
∑

i=1

E[∆if(X,X ′)∆̃ig(X,X
′)], (7.1)

where X and X ′ are two independent random variables of law µ,

∆if(X,X ′) = f(X1, . . . ,Xi, . . . ,Xd) − f(X1, . . . ,X
′
i, . . . ,Xd)

and

∆̃ig(X,X
′) = g(X1, . . . ,Xi,X

′
i+1 . . . ,X

′
d) − g(X1, . . . ,X

′
i,X

′
i+1 . . . ,X

′
d).

Proof of Lemma 7.1. Let X ′ be an independent copy of X with law µ. By symmetriza-
tion and then the use of a telescopic sum, one has

Covµ(f, g) = E[f(X)(g(X) − g(X ′))]
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=
d
∑

i=1

E[f(X)∆̃ig(X,X
′)]

=
d
∑

i=1

E
[

Ui(X,X
′)
]

,

where we define Ui(X,X
′) = f(X)∆̃ig(X,X

′). Let us denote (X,X ′){j} to be the
random vector given by

(X,X ′){j} =
(

(X1, . . . ,Xj−1,X
′
j ,Xj+1, . . . ,Xd), (X1, . . . ,Xj−1,Xj ,X

′
j+1, . . . ,X

′
d)
)

We also write (X,X ′){j} =
(

X{j},X ′{j}
)

with the slight abuse of notation that X{j}

depends on (X,X ′). Since µ is a product measure, for each i, (X,X ′){i} is also of law
µ⊗ µ and thus

E
[

Ui(X,X
′)
]

= E

[

Ui
(

(X,X ′){i}
)]

= −E[f(X{i})∆̃ig(X,X
′)]

since ∆̃ig
(

(X,X ′){i}
)

= −∆̃ig(X,X
′) and thus

E
[

Ui(X,X
′)
]

=
1

2
E
[

Ui(X,X
′)
]

+
1

2
E

[

Ui
(

(X,X ′){i}
)]

=
1

2
E[∆if(X,X ′)∆̃ig(X,X

′)]

and the result follows. �

From the duplication argument, one obtains the following generalization to product
measures of Hoeffding’s covariance identity.

Proposition 7.2. Let µ = µ1 ⊗ · · · ⊗µd be a product measure on R
d. Let f, g : Rd → R

be some coordinatewise absolutely continuous functions in L2(µ), then

Covµ(f, g) =
d
∑

i=1

∫∫

x,x′∈R
d
∂if(x)kµi

(xi, x
′
i)∂ig(xi−1, x

′
i)dxidx

′
idµ(x−i)dµ(x′

−i) (7.2)

where for xi, x
′
i ∈ R, kµi

is the standard Hoeffding kernel for the marginal µi:

kµi
(xi, x

′
i) = Fµi

(xi ∧ x′
i) − Fµi

(xi)Fµi
(x′
i)

and for x, x′ ∈ R
d, (xi−1, x

′
i) = (x1, . . . , xi−1, x

′
i, . . . , x

′
d), x−i = (x1, . . . , xi−1, xi+1, . . . xd)

and dµ(x−i) = dµ1(x1) . . . dµi−1(xi−1)dµi+1(xi+1) . . . dµd(xd).

Proof of Proposition 7.2. We consider one term in the sum of the covariance formula of
Lemma 7.1. We have

E[∆if(X,X ′)∆̃ig(X,X
′)]

=

∫∫

x,x′∈R
d

(

f(xi−1, xi, xi+1)
−f(xi−1, x

′
i, xi+1)

)

(

g(xi−1, xi, x
′
i+1)

−g(xi−1, x
′
i, x

′
i+1)

)

dµ(x)dµ(x′)

=

∫∫

x,x′∈R
d

∫∫

si,ti∈R

∂if(xi−1, si, xi+1)∂ig(xi−1, ti, x
′
i+1)
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(

1{si≤xi} − 1{si≤x′

i
}

) (

1{ti≤xi} − 1{ti≤x′

i
}

)

dsidtidµ(x)dµ(x′).

Furthermore,
∫∫

xi,x
′

i
∈R

(

1{si≤xi} − 1{si≤x′

i
}

) (

1{ti≤xi} − 1{ti≤x′

i
}

)

dµi(xi)dµi(x
′
i)

= 2 (P(Xi ≥ max(si, ti)) − P(Xi ≥ si)P(Xi ≥ ti))

= 2 (Fµi
(si ∧ ti) − Fµi

(si)Fµi
(ti))

= 2kµi
(si, ti)

and the proof follows by Fubini theorem and by a change in the name of the letters in
the integral. �

We now study some symmetry properties of this covariance representation.

Lemma 7.3. Assume µi is a symmetric one dimensional measure, then the kernel kµi

is even, that is

kµi
(−si,−ti) = kµi

(si, ti).

Proof. Without loss of generality assume that s ≤ t, then −t ≤ −s, and

kµi
(−s,−t) = Fµi

(−t) − Fµi
(−s)Fµi

(−t)

= (1 − Fµi
(t)) − (1 − Fµi

(s))(1 − Fµi
(t))

= Fµi
(s) − Fµi

(s)Fµi
(t)

= kµi
(s, t).

�

As a consequence, one obtains the following result.

Lemma 7.4. Assume that µ is a symmetric product measure on R
d. Let f, g : Rn → R

be two even functions. Then, for any 1 ≤ i ≤ d,
∫∫

x,x′∈R
d
∂if(x)kµi

(xi, x
′
i)g(xi−1, x

′
i)dxidx

′
idµ(x−i)dµ(x′

−i) = 0.

Proof. The result follows from using the change of variables (a, b) = (−x,−x′) on R
2d

and the fact that ∂if is odd, g is even and that the kernel kµi
is even. �

We also derive the following formulas, that will be instrumental in our proofs.

Lemma 7.5. Assume µ is a product measure on R
d. For each 1 ≤ k ≤ d, let ak(xk)

be a positive function on R and let Ak be a primitive, centered with respect to µk. Let
f : Rn → R be a coordinatewise absolutely continuous function. Then for any 1 ≤ i ≤ d,
one has

∫∫

x,x′∈R
d
∂if(x)kµi

(xi, x
′
i)ai(x

′
i)dxidx

′
idµ(x−i)dµ(x′

−i) = Covµ(f,Ai(xi)).

In particular,
∫∫

x,x′∈R
d
∂if(x)kµi

(xi, x
′
i)dxidx

′
idµ(x−i)dµ(x′

−i) = Covµ(f, xi),
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where, by a slight abuse of notation, xi stands for the ith-coordinate function. It also
holds

∫∫

x,x′∈R
d
kµi

(xi, x
′
i)dxidx

′
idµ(x−i)dµ(x′

−i) = Varµ(xi) = Var(µi).

Proof. The proof is a direct application of Proposition 7.2 with g(x) = Ai(xi), noticing
that only one term in the sum is different from zero. �

7.2. Hoeffding’s covariance relation for product measures. The main result here
is Lemma 7.6 where a similar relation as in Lemma 3.9 is given for product measures.

Let µ = µ1 ⊗ · · · ⊗ µd be a product measure and write Γ = Γµ its covariance matrix.
Since µ is a product measure, it is diagonal with Γi,i = Varµ(xi) = Covµ(xi, xi).

Since the kernels kµi
are non-negative, one can introduce the probability measures on

R
2d, defined for 1 ≤ i ≤ d by

dµ
(1)
(i) (x, y) =

1

Γi,i
kµi

(xi, yi)dxidyidµ(x−i)dµ(y−i).

If f and g are positive and integrable, we also introduce the following probability mea-
sures,

dµ
(1)
(i),f (x, x′) =

1

Zi,f
f(x)kµi

(xi, x
′
i)dxidx

′
idµ(x−i)dµ(x′

−i),

with

Zi,f =

∫∫

x,x′

f(x)kµi
(xi, x

′
i)dxidx

′
idµ(x−i)dµ(x′

−i)

and

dµ
(1)
(i),f,g(x, x

′) =
1

Zi,f,g
f(x)kµi

(xi, yi)g(xi−1, x
′
i)dxidx

′
idµ(x−i)dµ(x′

−i),

with

Zi,f,g =

∫∫

x,x′

f(x)kµi
(xi, x

′
i)g(xi−1, x

′
i)dxidx

′
idµ(x−i)dµ(x′

−i).

The quantity Zi,f can still be written as a covariance with respect to µ: Zi,f = Covµ(Fi(x), xi)
where Fi is a function such that ∂iFi(x) = f(x). This is not anymore the case for Zi,f,g.

In the case of a product measure µ, Lemma 3.9 generalizes as follows.

Lemma 7.6. Let f, g : Rd → R be in L2(µ) and coordinatewise absolutely continuous.

(1) Then,

Covµ(f, g) =
d
∑

i=1

Γi,iCov
µ

(1)

(i)

(∂if(x), ∂ig(xi−1, x
′
i))

+
d
∑

i=1

1

Γi,i
Covµ(f(x), xi)Covµ(g(x), xi).

(2) If moreover f = e−φ, then

Covµ(f(x), g(x)) =
d
∑

i=1

Zi,fCov
µ

(1)

(i),f

(−∂iφ(x), ∂ig(xi−1, x
′
i))
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+
d
∑

i=1

Covµ(f(x), xi)

×

(

∫∫

f(x)
k

(1)
µi (xi, x

′
i)

Γi,i
∂ig(xi−1, x

′
i))dxidx

′
idµ(x−i)dµ(x′

−i)

)

.

In particular, if moreover f is orthogonal to the linear functions xi, 1 ≤ i ≤ d,

Covµ(f(x), g(x)) =
d
∑

i=1

Zi,fCov
µ

(1)

(i),f

(−∂iφ(x), ∂ig(xi−1, x
′
i)).

(3) If f = e−φ and g = e−ψ,

Covµ(f(x), g(x))

=
d
∑

i=1

Zi,f,gCov
µ

(1)

(i),f,g

(∂iφ(x), ∂iψ(xi−1, x
′
i))

+
d
∑

i=1

Zi,f,g

(

∫∫

∂if(x)
k

(1)
µi (xi, x

′
i)

Zi,f,g
g(xi−1, x

′
i))dxidx

′
idµ(x−i)dµ(x′

−i)

)

×

(

∫∫

f(x)
k

(1)
µi (xi, x

′
i)

Zi,f,g
∂ig(xi−1, x

′
i))dxidx

′
idµ(x−i)dµ(x′

−i)

)

.

In particular, if the measure µ is symmetric and if both f and g are even, then

Covµ(f(x), g(x)) =
d
∑

i=1

Zi,f,gCov
µ

(1)

(i),f,g

(∂iφ(x), ∂iψ(xi−1, x
′
i)).

In fact, we shall use in the sequel the following slight weighted generalization, similar
to the one of Lemma 5.2.

Lemma 7.7. Let f, g : Rd → R be in L2(µ) and coordinatewise absolutely continuous.

(1) Then,

Covµ(f, g) =
d
∑

i=1

Varµi
(Ai)Cov

µ
(1)

(i),ai,ai

(∂if(x), ∂ig(xi−1, x
′
i))

+
d
∑

i=1

1

Varµi
(Ai)

Covµ(f(x), Ai(xi))Covµ(g(x), Ai(xi)).

(2) If moreover f = e−φ and if f is orthogonal to the functions Ai(xi), 1 ≤ i ≤ d,
then

Covµ(f(x), g(x)) =
d
∑

i=1

Zi,aif,ai
Cov

µ
(1)

(i),aif,ai

(−∂iφ(x), ∂ig(xi−1, x
′
i)).
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(3) If moreover f = e−φ and g = e−ψ and if the measure µ is symmetric, the function
ak are even and both f and g are even, then

Covµ(f(x), g(x)) =
d
∑

i=1

Zi,aif,aigCov
µ

(1)

(i),aif,aig

(∂iφ(x), ∂iψ(xi−1, x
′
i)).

Since the other points are somehow similar, we only do the proof for the first item of
Lemma 7.6.

Proof for the first item of Lemma 7.6. From Proposition 7.2 and Lemma 7.5, one has

Covµ(f(x), g(x))

=
d
∑

i=1

∫∫

x,x′∈R
d
∂if(x)kµi

(xi, x
′
i)∂ig(xi−1, x

′
i)dxidx

′
idµ(x−i)dµ(x′

−i)

=
∑

i

Γi,iCov
µ

(1)

(i)

(∂if(x), ∂ig(xi−1, x
′
i))

+
∑

i

Γi,i

(

∫∫

∂if(x)
k

(1)
µi (xi, x

′
i)

Γi,i
dxidx

′
idµ(x−i)dµ(x′

−i)

)

×

(

∫∫

∂ig(xi−1, x
′
i)
k

(1)
µi (xi, x

′
i)

Γi,i
dxidx

′
idµ(x−i)dµ(x′

−i)

)

=
d
∑

i=1

Γi,i Cov
µ

(1)

(i)

(∂if(x), ∂ig(y)) +
d
∑

i=1

1

Γi,i
Covµ(f(x), xi) Covµ(g(x), xi).

�

7.3. Another proof of Theorem 1.4 and a proof of Theorem 1.10. Before we
turn to the announced proofs, we highlight with the next statement that under our
assumptions, the new probability measures on R

2d satisfy the Holley condition and thus
the FKG inequality.

Recall that µ = µ1 ⊗ · · · ⊗ µd is a product measure with marginals µk, k = 1, . . . , d,
admitting densities, denoted by exp(−Vk), with respect to the Lebesgue measure. For
some index i ∈ {1, . . . , d} and for f and g some positive functions on R

d, the kernel

k(i),f,g is defined on R
2d by

k(i),f,g = f(x)kµi
(xi, yi)g(x)

∏

j 6=i

e−Vj(xj)
∏

j 6=i

e−Vj(x′

j
).

The measure µ
(1)
(i),f,g has a density on R

2d equal to

dµ
(1)
(i),f,g(x, x

′) =
1

Zi,f,g
k

(1)
(i),f,gdxdx

′,

with

Zi,f,g =

∫∫

x,x′

f(x)kµi
(xi, x

′
i)g(xi−1, x

′
i)dxidx

′
idµ(x−i)dµ(x′

−i).

Proposition 7.8. Let µ = µ1 ⊗· · ·⊗µd be a product measure on R
d and grant the above

notations. One has
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(1) For all 1 ≤ i ≤ d, the measures µ
(1)
(i) and µ

(1)
(i),ai,ai

satisfy the Holley condition

(3.5). Moreover, for any choice of signs (ε1, . . . , εd) ∈ {+1,−1}d, the kernels
k̃(i) and k̃(i),ai,ai

defined by

k̃(i)(x, x
′) = k

(1)
(i) (εx, εx′) and k̃(i),ai,ai

(x, x′) = k(i),ai,ai
(εx, εx′)

with k(i),ai,ai
the density - up to the constant factor Varµi

(Ai) - of the measure

µ
(1)
(i),ai,ai

with respect to the Lebesgue measure on R
2d and

(εx, εx′) = (ε1x1, . . . , εdxd, ε1x
′
1, . . . , εdx

′
d),

satisfy the Holley condition (3.5).
(2) Assume that f = e−φ and that for all 1 ≤ i, j ≤ d with i 6= j,

∂i,jφ(x) ≤ 0

then for all 1 ≤ i ≤ d, the measures µ
(1)
(i),f and µ

(1)
(i),aif,ai

satisfy the Holley

condition (3.5).
(3) Assume that f = e−φ and g = e−ψ and that for all 1 ≤ i, j ≤ d with i 6= j,

∂i,jφ(x) ≤ 0 and ∂i,jψ(x) ≤ 0

then for all 1 ≤ i ≤ d, the measures µ
(1)
(i),f,g and µ

(1)
(i),aif,aig

satisfiy the Holley

condition (3.5).

Note that in the latter proposition, the signs of the second-order cross derivatives for
φ and ψ should be both non-positive.

Proof. The logarithm H
(1)
(i),ai,ai

of the density of µ
(1)
(i),ai,ai

with respect to the Lebesgue

measure on R
2d is given by

H
(1)
(i),ai,ai

(x, x′) = ln kµi
(xi, x

′
i) + ln ai(xi) + ln ai(x

′
i) −

∑

j 6=i

Vj(xj) −
∑

j 6=i

Vj(x
′
j).

Since kµi
is a totally positive kernel on R

2, it follows easily that H
(1)
(i),ai,ai

satisfies (3.6).

Now for (ε1, . . . , εd) ∈ {+1,−1}d fixed, the logarithm H̃
(1)
(i),ai,ai

of the kernel k̃
(1)
(i),ai,ai

is

given by:

H̃
(1)
(i),ai,ai

(x, x′) = ln kµi
(εixi, εix

′
i) + ln ai(εixi) + ln ai(εix

′
i) −

∑

j 6=i

Vj(εjxj) −
∑

j 6=i

Vj(εjx
′
j).

Since the kernel kµi
(εixi, εix

′
i) is still totally positive on R

2, the proof of the first point

follows. We turn to the proof of the second point. The logarithm H
(1)
(i),aif,ai

of the density

of µ
(1)
(i),aif,ai

with respect to the Lebesgue measure on R
2d satisfies

H
(1)
(i),aif,ai

(x, x′) = −φ(x) +H
(1)
(i),ai,ai

.

From assumption (1.17) and Remark 3.7, the function x → −φ(x) satisfies (3.6) on R
d

and thus clearly the function (x, x′) → −φ(x) also satisfies (3.6) on R
2d. Finally, by
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summation, Inequality (3.6) is also valid on R
2d for H

(1)
(i),aif,ai

. The proof for the third

point is similar and we omit the details. �

We now provide another proof of Theorem 1.4.

Another proof of Theorem 1.4. Let f and g be two functions on R
d satisfying (1.7). We

first assume that all the signs of the second derivatives in Assumption 1.7 are non-
negative. By Lemma 7.7, one has

Covµ(f, g) −
d
∑

i=1

1

Varµi
(Ai)

Covµ(f(x), Ai(xi))Covµ(g(x), Ai(xi))

=
d
∑

i=1

Varµi
(Ai)Cov

µ
(1)

(i),ai,ai

(

∂if(x)

ai(xi)
,
∂ig(xi−1, x

′
i)

ai(x′
i)

)

.

Furthermore, by Proposition 7.8(1), the measure µ
(1)
(i),ai,ai

, for i ∈ {1, . . . , d}, satisfies

the Holley condition (3.5). By condition (1.8) both functions (x, x′) → ∂if(x)/ai(xi)

and (x, x′) → ∂ig(xi−1, x
′
i)/ai(x

′
i) are coordinate increasing on R

2d and thus, for each
1 ≤ i ≤ d,

Cov
µ

(1)

(i),ai,ai

(

∂if(x)

ai(xi)
,
∂ig(xi−1, x

′
i)

ai(x
′
i)

)

≥ 0.

Summing these inequalities ends the proof in this specific case. In the general case, for
any ε = (ε1, . . . , εd) ∈ {+1,−1}d, by the change of variable (x̃, x̃′) = (εx, εx′), one has

Cov
µ

(1)

(i),ai,ai

(

∂if(x)

ai(xi)
,
∂ig(xi−1, x

′
i)

ai(x
′
i)

)

= Cov
µ̃

(1)

(i),ai,ai

(

∂if(εx)

ai(εixi)
,
∂ig(εxi−1, εx

′
i)

ai(εix
′
i)

)

and for each 1 ≤ i ≤ d, it is possible to find some vector ε = (ε1, . . . , εd) ∈ {+1,−1}d

such that ∂if(εx)
ai(ε ixi)

and
∂ig(εxi−1,εx

′
i)

ai(ε ix
′

i
) are both coordinate increasing. More precisely, it

suffices to take εj = sign ∂j
(

∂if
ai

)

. By Lemma 7.7(1), the measures µ̃
(1)
(i),ai,ai

also satisfy

the Holley condition and the result follows from the FKG inequality. �

We turn now to the proof of Theorem 1.11, where we add some symmetries.

Proof of Theorem 1.11. Let f = e−φ and g be two functions on R
d satisfying (1.13) and

(1.14) and assume that f is orthogonal to the functions Ai, 1 ≤ i ≤ d. By Lemma 7.7(2),
one has

Covµ(f(x), g(x)) =
d
∑

i=1

Zi,aif,ai
Cov

µ
(1)

(i),aif,ai

(

−
∂iφ(x)

ai(xi)
,
∂ig(xi−1, x

′
i)

ai(x′
i)

)

.

Now for each i, since φ satisfies (1.14), by Proposition 7.8(2) the measure µ
(1)
(i),aif,ai

satisfies the Holley condition. Moreover adding condition (1.17) both functions (x, x′) →
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∂iφ(x)
ai(xi)

and (x, x′) →
∂ig(xi−1,x

′
i)

ai(x′

i
) are coordinate increasing on R

2d, and thus by the FKG

inequality, for each 1 ≤ i ≤ d, one has:

Cov
µ

(1)

(i),aif,ai

(

−
∂iφ(x)

ai(xi)
,
∂ig(xi−1, x

′
i)

ai(x
′
i)

)

≥ 0.

Theorem 1.11(1) thus follows. The proof of Theorem 1.11(2) is similar, since by Lemma
7.7(3), the symmetry assumptions made on f = e−φ and g = e−ψ, give that

Covµ(f(x), g(x)) =
d
∑

i=1

Zi,aif,aigCov
µ

(1)

(i),aif,ai

(

∂iφ(x)

ai(xi)
,
∂iψ(xi−1, x

′
i)

ai(x′
i)

)

.

Finally, the assumptions (1.13) and (1.14) ensure that the measure µ
(1)
i,f,g satisfies the

Holley condition and that the functions in the covariance are coordinate increasing,
which gives the result. �

8. Comments on the standard semi-group interpolation

In this section, we explain what can be done using a standard covariance representation
obtained by interpolation with the associated diffusion semi-group (see (8.4) below) and
why we did not follow this natural approach, but rather used instead the covariance
representation of Proposition 7.2.

We consider here a probability measure µ = e−V dx with a smooth potential V . One
can associate to it a diffusion semi-group with generator L defined for f smooth with
compact support by

Lf = ∆f − ∇V · ∇f.

This diffusion operator is symmetric with respect to µ: for f, g ∈ C∞
c (Rd),

∫

fLgdµ =

∫

Lfgdµ = −

∫

∇f · ∇gdµ.

Under mild conditions on V , one we can define alternatively the semi-group associated
to L by the spectral theorem and functional calculus, or by a stochastic representation
(see [BGL14] for further details),

Ptf(x) = etL(f)(x) = E[f(Xx
t )]

for some Markov diffusion process (Xx
t )t≥0. We assume moreover that the operator

−L + HessV , with L = diag(L, . . . , L) acting on gradients, is invertible. Note that this
holds under some strong convexity of the potential V . In this situation, for f, g : Rd → R

satisfying some integrability conditions on f and g, one has

Covµ(f, g) =

∫

R
d

∇f(x) · (−L + HessV )−1∇g(x)dµ(x) (8.1)

and thus

Covµ(f, g) =

∫∫

R
d×R

d
∇f(x)K(x, y)∇g(y)dxdy
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where K is the matricial kernel (with respect to the Lebesgue measure) of the operator
(−L + HessV )−1. Moreover, the matricial kernel K(x, y) admits the following stochastic
Feynman-Kac representation,

K(x, y) = e−V (x)
∫ +∞

0
E[Yt,x|Xt = y]pt(x, y)e−V (y)dy, (8.2)

where pt stands for the heat kernel associated to Pt with respect to the measure µ and
Yt,x is the matrix satisfying the following ordinary (random) differential equation,

d

dt
Yt,x = −Yt,xHessV (Xx

t ) for t ≥ 0; Y0,x = Id. (8.3)

In the case of a product measure, we can write V (x) = V1(x1)+· · ·+Vd(xd), for some real
functions Vk. This gives the following generalization of Hoeffding’s covariance identity,

Covµ(f, g) =
d
∑

i=1

∫∫

x,y∈R
d
∂if(x)κi(x, y) ∂ig(y)dxdy, (8.4)

where for each 1 ≤ i ≤ d , ki : R2d → R+ is the kernel defined by

κi(x, y) =

∫ ∞

t=0
E

[

exp

(

−

∫ t

0
V ′′
i (Xxi,i

s )ds

)

|(Xxi,i
t = yi)

]

pt(x, y) dt e−V (x)e−V (y). (8.5)

This kernel also writes as

κi(x, y) =

∫ ∞

t=0
κi,t dt

with

κi,t(x, y) := p
V ′′

i
t,i (xi, yi)

d
∏

j=1,j 6=i

pt,j(xj , yj)e
−V (x)e−V (y),

where pt,j is the kernel of the one dimensional diffusion semi-group with generator given

by Ljf(xj) := f ′′(xj) − V ′
j (xj)f

′(xj) and where p
V ′′

i
t,i is the kernel of the one dimensional

Schrödinger semi-group, with generator given by L
V ′′

i
i f(xi) := Lif(xi) + V ′′

i (xi)f(xi). In

the case of the standard Gaussian measure, one has p
V ′′

i
t,i = e−tpt,i.

We highlight that we do not know whether, in dimension d ≥ 2, the probability
measure with density proportional to κi(x, y) satisfies the full FKG inequality on R

2d.
But one can also notice, that due to the coincidence formula, diffusion kernels and
Schrödinger kernels in dimension one are totally positive (see Karlin [Kar68]). As a
consequence, the kernels κi,t satisfy the Holley condition. And if slightly differently, one
has

κi(x, y) =

∫ ∞

t=0
κi,t dν(t)

for some probability measure ν on R+, one can use the following decomposition of the
covariance,

Covµκi
(u, v) =

∫ ∞

0
Covµκi,t

(u, v)dν(t) + Covν

(

t →

∫

u dµκi,t
, t →

∫

v dµκi,t

)

(8.6)

and apply it with u(x, y) := ∂if(x) and v(x, y) := ∂ig(y).
In view of proving Theorem 1.4, we were only able to pursue this approach when the

marginals of µκi,t
on R

d × R
d are constant for all t > 0. In this situation, if moreover,



COVARIANCE INEQUALITIES FOR CONVEX AND LOG-CONCAVE FUNCTIONS 33

(x, y) → u(x) and (x, y) → v(y), the term related to Covν appearing in the right-
hand side of 8.6 indeed vanishes and one obtains some partial FKG inequalities for the
measure µκi

on R
2d. Here, the terms “partial” means that it is applied only to coordinate

increasing functions of the form (x, y) → u(x) and (x, y) → v(y).
This property that the marginals µκi,t

are constant, holds for the standard Gaussian
measure and this approach may be pursued, with a second order covariance representa-
tion, to recover Theorem 1.1(1) for the standard Gaussian measure. Let us give some
details.

First, the first order representation (8.4) is well known for the standard Gaussian
measure (see [BGH01]). The measures γκi,t

are in fact independent of i, they are also

Gaussian measures on R
2d and they have fixed marginals on R

d × R
d. A second order

covariance representation for γ thus means a first order covariance of the new measure(s)
γκi,t

similar to (8.4). It can be obtained either by a change of variable since γκi,t
is still

a Gaussian measure or by solving explicitly the stochastic Feynman-Kac representation.
This method is similar to the one of [Hu97], except that the latter approach specifically
uses the fact that the Gaussian measure is the density at time 1 of the classical heat
semi-group, whereas instead we use here the Orstein-Uhlenbeck operator.

Finally, for general product measures, the “constant marginal property” also holds for
the modified kernels kµi,(ai,ai), with the choice ai(xi) = 1

g′

i
(xi)

where gi is (if it exists)

the first non-trivial eigenfunction associated to L. This leads to Theorem 1.4, but only
for this specific choice. More importantly, this constant marginal property is valid for
product measures under the symmetry assumptions of Theorem 1.10(2) and this route
may also be taken to provide another proof Theorem 1.10(2).

9. Examples

In this final section, we provide a couple of examples of possible applications of our
results.

First let µ be a product measure on R
d and for β > 0 and consider the free energy,

also known in the optimization community as the “soft max” function,

Fβ(x) :=
1

β
ln

(

d
∑

i=1

eβxi

)

.

By setting pi := eβxi
∑

j
e

βxj
, it satisfies

∂iFβ = pi ≥ 0,

∂iiFβ(x) = βpi(1 − pi) ≥ 0, ∂ijFβ(x) = −βpipj ≤ 0, i 6= j.

Thus, for any α, β > 0, Corollary 1.5 gives

Covµ(Fα, Fβ) ≥
d
∑

i=1

1

Var(µi)
Cov(Fα(x), xi)Cov(Fβ(x), xi). (9.1)

Note that when α = β, inequality (9.1) turns to the following Bessel inequality,

Varµ(Fβ) ≥
d
∑

i=1

1

Var(µi)
Cov(Fβ(x), xi)

2.
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We now turn to a second example. Let µ be a symmetric product measure on R
d.

Under some integrability condition, for J ≥ 0, we consider the probability measure:

dµJ(x) =
1

ZJ
eJ
∑d−1

i=1
xixi+1dµ(x), ZJ =

∫

R
d
eJ
∑d−1

i=1
xixi+1dµ(x).

Let θ = (θ1, . . . , θd) ∈ R
d with θi ≥ 0, 1 ≤ i ≤ d, then by Corollary 1.11, one has
∫

R
d
〈x, θ〉2dµJ(x) ≥

∫

R
d
〈x, θ〉2dµ(x). (9.2)

10. Appendix

We consider here some product probability measures on R
d whose marginals are mix-

tures of centered Gaussian variables. This class of probability measures was investigated
in [ENT18], where the authors prove that they satisfy (1.3) and provide interesting
examples. Here we show that those measures also satisfy (1.2).

We consider Gaussian mixtures of the form

µ =

∫∫

σ∈(0,∞)d
γΓσdν(σ), (10.1)

where γΓσ is the centered Gaussian random vector in R
d with covariance matrix Γσ =

diag(σ2
1 , . . . , σ

2
d) and where ν is also a product measure on (0,∞)d.

Theorem 10.1. Let µ be a product probability measure on R
d, whose marginals are

mixture of centered Gaussian variables. Then (1.2) holds.

The proof relies on the following Lemma, the key point of which being that no sym-
metry assumption is required in the convex situation.

Lemma 10.2. The following points hold.

(1) Let g be a convex function on R
d, then the function

(σ1, . . . , σd) ∈ (0,∞)d →

∫

g(y)dγΓσ (y)

is coordinatewise increasing on (0,∞)d.
(2) Let f be a quasi-concave and even function on R

d, then the function

(σ1, . . . , σd) ∈ (0,∞)d →

∫

f(y)dγΓσ (y)

is coordinatewise decreasing on (0,∞)d.

Proof of Theorem 10.1. Let f be a log-concave and even function and let g be a convex
function. Using the decomposition of the covariance (8.6), one has

Covµ(f, g) =

∫∫

(0,∞)d
CovγΓσ

(f, g)dν(σ)

+ Covν

(

σ ∈ (0,∞)d →

∫

fdγΓσ , σ ∈ (0,∞)d →

∫

gdγΓσ

)

.

The rest of the proof consists in showing that the two terms in the right-hand side of
the latter inequality are non-positive. Firstly, Hargé’s result (1.2) also applies to any
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(centered) Gaussian distribution (see [Har08]) and thus CovγΓσ
(f, g) ≤ 0. Secondly, we

use Lemma 10.2, since f is log-concave and even, it is also quasi-concave and even, and
thus the two functions

σ ∈ (0,∞)d →

∫

gdγΓσ and σ ∈ (0,∞)d →

∫

fdγΓσ

are respectively coordinatewise increasing and coordinatewise decreasing on (0,∞)2.
The measure ν being a product measure, by the FKG inequality for product measure,
the term Covν(·, ·) is non-positive and the result follows. �

We turn now to the proof of Lemma 10.2.

Proof of Lemma 10.2. Let g be a convex function on R
d. By a change of variable, one

directly has
∫

g(y)dγΓσ (y) =

∫

R
d
g(σ1x1, . . . , σdxd)dγ(x),

where we recall that γ is the standard Gaussian distribution. To prove the desired
property, we compute for 1 ≤ l ≤ d,

∂

∂σl

∫

R
d
g(σ1x1, . . . , σdxd)dγ(x) =

∫

R
d
xl ∂lg(σ1x1, . . . , σdxd)dγ(x)

= Covγ(xl, ∂lg(σ1x1, . . . , σdxd)).

Furthermore, by the covariance representation (8.4) for the standard Gaussian measure,
one has

Covγ(xl, ∂lg(σ1x1, . . . , σdxd)) =

∫∫

x,y∈R
d
κ(x, y)σl∂llg(σ1y1, . . . , σdyd)dxdy

and this quantity is non-negative since g is convex and κ(x, y) ≥ 0. The result follows.
For f quasi-concave and even, we use the layer cake representation of f :

f(x) =

∫ ∞

0
1At(x)dt and At := {x ∈ R, f(x) ≥ t}.

Here by assumption the At are convex and even. Since by Fubini,
∫

R
d
f(σ1x1, . . . , σdxd)dγ(x) =

∫ ∞

0

∫

R
d

1At(σ1x1, . . . , σdxd)dγ(x)dt.

the result follows from [ENT18] where the authors prove the following property: for each
t ≥ 0,

(σ1, . . . , σd) ∈ (0,∞)d →

∫

R
d

1At(σ1x1, . . . , σdxd)dγ(x)

is coordinatewise decreasing. �

References

[ABJ18] M. Arnaudon, M. Bonnefont, and A. Joulin. Intertwinings and generalized Brascamp-Lieb
inequalities. Rev. Mat. Iberoam., 34(3):1021–1054, 2018. 1
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Exp. No. 1124, 117–133. 2019. Séminaire Bourbaki. Vol. 2016/2017. Exposés 1120–1135. 1
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[Sau19] A. Saumard. Weighted Poincaré inequalities, concentration inequalities and tail bounds re-
lated to Stein kernels in dimension one. Bernoulli, 25(4B):3978–4006, 2019. 1

[SSZ98] G. Schechtman, Th. Schlumprecht, and J. Zinn. On the Gaussian measure of the intersection.
Ann. Probab., 26(1):346–357, 1998. 6

[SW18] A. Saumard and J. A. Wellner. Efron’s monotonicity property for measures on R
2. J. Multi-

variate Anal., 166C:212–224, 2018. 3.1
[Ton90] Y. L. Tong. The multivariate normal distribution. Springer Series in Statistics. Springer-

Verlag, New York, 1990. 3.8

(M. Bonnefont) UMR CNRS 5251, Institut de Mathématiques de Bordeaux, Université
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