
HAL Id: hal-03979883
https://hal.science/hal-03979883

Submitted on 9 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WoR Ontology: Modeling Resources in Web Connected
Environments

Lara Kallab, Richard Chbeir, Sana Sellami

To cite this version:
Lara Kallab, Richard Chbeir, Sana Sellami. WoR Ontology: Modeling Resources in Web Connected
Environments. 2022 IEEE International Conference on Web Services (ICWS), Jul 2022, Barcelona,
Spain. pp.286-295, �10.1109/ICWS55610.2022.00050�. �hal-03979883�

https://hal.science/hal-03979883
https://hal.archives-ouvertes.fr

WoR Ontology: A Web Resource Model for
Connected Web Environments

Lara Kallab1, Richard Chbeir2, and Sana Sellami3

1 Open Group, Levallois Perret, 92300, France
lara.kallab@open-groupe.com

2 Univ Pau & Pays Adour, E2S UPPA, LIUPPA, EA3000, Anglet, France
richard.chbeir@univ-pau.fr

3 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
sana.sellami@univ-amu.fr

Abstract. The Web of Things (WoT) describes a set of standards by
the World Wide Web Consortium (W3C) for the interoperability of dif-
ferent Internet of things (IoT) platforms, and different application do-
mains. Thus, it guarantees not only device-to-device interactions but
also application-to-application communications, despite their platform
heterogeneity. To identify and use the services (also called resources)
that are exposed by either the devices or the applications connected to a
Web environment, describing them using an open, shared and dynamic
knowledge representation is required, allowing them to interoperate on
both syntatic and semantic levels. In this paper, we propose WoR, a
Web of Resources ontology that provides a modular and a common vo-
cabulary to describe Web resources. WoR can: (1) ease the discovery, the
selection, and the composition of the different kind of resources (exposed
by connected Web devices or Web applications), (2) provide reasoning
means to discover new information, and (3) allow future extensibility and
adaptation to new domains needs. Experiments were made to evaluate
our proposed WoR ontology, showing promising results on the accuracy,
clarity, and performance levels.

Keywords: Web of Things · Web Resource · Semantic Resource Model.
Web Resource Composition

1 Introduction

The Internet of Things (IoT) is a concept that encompasses a wide range of
objects (e.g., smart devices), embedded with electronics, software, and sensors,
that are connected to the internet to collect and share data [22]. With the het-
erogeneity of objects trying to communicate with one another through various
ways of interaction, it is challenging to seamlessly build a single communica-
tion platform, in which all of the objects are interoperable and can communicate
together effectively. The same challenge appears in application-to-application in-
teractions, as applications may be developed on different platforms and may use
various programming languages. As a way to tackle such challenge, the Web [17]

has emerged as a technology that guarantees the communication between the
different connected objects and applications, despite their heterogeneity. Since
then, the Web has become a major medium of communication platform [16],
that leads to the emerging of the Web of Things [2] (WoT). In WoT, IoT ob-
jects are integrated into the Web, enabling them to expose their functions in
the most efficient manner in spite of their diversity. The Web platform has been
also broadly adopted to expose applications functions, to allow for language and
platform independence and to improve interoperability with other applications.

In the Web context, the functions of the objects and applications are provided
via Web services, i.e., self-contained, self-describing, modular components that
can be published, located, and invoked across the Web [23]. The REST architec-
tural style [21] has recently become the most used solution for implementing Web
services [10]. This is due to: (i) its simplicity and ease of use that make services
integration cost-effective, (ii) its support for different data formats (e.g., JSON4

and XML5), and (iii) its ability to support caching for better performance and
scalability. Hence, more and more objects and applications provide their func-
tions as REST-based Web services that follow the principles of the REST archi-
tectural style. These Web services should be defined in a way that allows them
to be largely adopted for interoperability purposes. The Web alone does not
solve the interoperability issues. In fact, it is well acknowledged that semantic
Web technologies hold the potential of achieving data and platform interoper-
ability [13]. This is done by describing and sharing knowledge on Web services
using unambiguous and machine-understandable vocabularies that attribute the
same meaning to the specified and exchanged data. One of the building blocks in
semantic Web Technologies, is the "Ontologies" [20], which provide a common
and a comprehensible vocabulary for publishing data through a formal explicit
specification of a domain conceptualisation. They facilitate knowledge sharing
between systems across different organizations, allowing them to interoperate by
solving the problem of interoperability on both syntatic and semantic levels.

Over the last decade, many semantic-based models (especially ontologies-
based models) [24][27][14][12] have been built to specify IoT/WoT domains, in-
cluding their exposed services (functions). These models are defined for different
reasons, among them, to represent a specific domain knowledge (e.g., specifying
the entities, relations, and activities involved in sensing data by smart devices)
in a machine-understandable way, allowing things with their functions (or ser-
vices) to be discoverable, aggregated, and remotely accessible. However, these
models have several limitations while describing the provided services. As such,
most models [9][12][27] have been defined to focus on describing the services of
connected objects, without considering the ones that can be provided by appli-
cations. Also, and despite that the majority of the models (as in [5] and [7])
include important concepts to describe a service provided by an object (as ob-
ject locations, their provided functions with their necessary inputs and outputs),
they lack in considering other important aspects, such as services semantic links

4 JavaScript Object Notation, http://json.org/
5 Extensible Markup Language

(e.g., similarity links which denote that a service is similar to another one as
they provide the same function). The services semantic links can be useful while
composing services, where services are linked together to form new value-added
services [26], when no single service can answer certain demands. Moreover,
within this context, most of the models do not include the description of com-
posed Web services, which can be used later in other different scenarios. And if
in few models it is included, such description is limited, and does not follow the
REST architecture style principles [11]. The latter criteria is important to con-
sider as REST-based Web services are lighter for IoT/WoT devices comparing
to SOAP-based Web services [25], which are considered by most of the current
existing models. In addition, recently, the concept of virtual devices (e.g., vir-
tual sensors [8]), has been emerged, to aggregate capabilities of IoT devices and
derive new services. These new services, referred to as virtual services in this
paper, and which are considered as value-added services besides the composed
services as they allow to simulate the behavior of services of the devices that can
not really exist, are not included within the existing IoT/WoT models.

To address the aforementioned limitations, we propose in this paper, an
ontology-based Web resource model, called WoR (standing for Web of Resource),
for connected Web environments, in which objects and applications can be con-
nected to the Web, to provide and exchange data. WoR provides a common
vocabulary that is used to describe exposed Web resources (REST-based Web
services) by both objects and applications. It is able to: (i) store and integrate re-
source specifications related to heterogeneous objects and applications, (ii) ease
the discovery, selection, and composition of the exposed resources, (iii) provide
reasoning means to discover new information, and (vi) allow future extensibility
and adaptation.

The rest of the paper is organized as follows. Section 2 presents a scenario
to motivate the usability and applicability of our work. Section 3 presents the
related work, and shows the originality of our model. Section 4 details the speci-
fications of our proposed Web resource model. Section 5 evaluates and validates
the solution. Finally, Section 6 summarizes the work and gives future directions.

2 Motivating Scenario

In order to motivate our work, we choose a scenario that can be applicable
in OpenCEMS6: a Web platform that provides solutions for energy data man-
agement in connected environments. The platform allows connecting objects
(stationary or mobile) and Web applications, both exposing Web resources for
either: collecting on-site data, or preprocessing collected data, or analyzing data.
In the scenario, we consider a facility manager of a smart mall connecting a set
of smart sensors (e.g., temperature sensors and humidity sensors), and providing
several Web applications (e.g., temperature and energy data predictions). The
facility manager wants to predict the energy consumption of a specific floor of
6 Connected Environment & Distributed Energy Data Management Solutions: https:
//opencems.sigappfr.org/

https://opencems.sigappfr.org/
https://opencems.sigappfr.org/

the mall, for the upcoming 2 days. The prediction results can help him monitor
the energy consumption of the corresponding floor, and allow for establishing
plans for energy supply and demand. Through a visualization interface provided

Collecting on-site data resource

Analyzing data resources
Preprocessing data resources

The required composed resource

Fig. 1: An OpenCEMS instance applied in a smart shopping center, with an
example of a composed resource

by OpenCEMS that is adapted to the smart shopping center, the facility man-
ager can visualize the set of the resources provided by the mall, to call the
most convenient ones answering his demand. In order to satisfy his need, several
resources are to be selected and linked together to form the necessary com-
posed resource, as shown in Figure 1: (i) data collection resources to collect the
necessary data (e.g., external temperature), (ii) preprocessing data resources to
prepare the collected data (e.g., temperature unit conversion), and (iii) advanced
data processing resources, such as the resource used to predict the energy con-
sumption data. However, the existing of numerous and heterogeneous resources
providing different functions, but also, in some cases, having the same required
functions, along with their different characteristics in terms of response time,
performance, etc., make resource identification and selection complex tasks for
the facility manager. To facilitate these tasks, it is important to describe the
exposed resources through a unified description model, that is expressed in a
human-comprehensible and a machine-readable vocabulary. Such model should
cover the following criteria:

1. A thorough model. Due to the various types of resources that can be
connected to the shopping mall, it is important that the model allows their
description to meet the different facility manager needs.
- Object and application resources: As the shopping center can con-
nect objects (e.g., smart sensors) and Web applications, it is important
that the model allows the description of the resources exposed by these
two different sources. In fact, the resources can be described using com-
mon concepts, such as the “Function" concept, which is a necessary to
consider for all kind of resources (i.e., whether exposed by a tempera-
ture sensor or by an energy consumption prediction application), to know

the exact function they provide. However, they can have, each, specific
concepts, e.g., “Location” and “Operation Range”, which can only be
assigned for the installed sensors.

- Composed resources: In some cases, there is no single resource that
can satisfy a specific user demand. However, the combination of two
or more resources, forming a composed resource (a composition), may
provide the required outputs. This is the case of the facility manager de-
mand that requires the use of several resources (for data collection, data
preprocessing, and advanced data processing). In order to enable the use
of already formed composed resources and avoid repeating the composi-
tion process from the start, which consumes time and resources (CPU,
memory, etc.), it becomes necessary to model and store the composed re-
sources. Figure 2 shows an example of a resource composition formed by
several resources, that can answer the facility manager demand. To avoid
repeating the composition process, and allow the facility manager to use
it later on, storing its necessary workflow, defined by the set of the used
resources with their links together, is important. As shown in Figure 2,
the stored composed resources can be considered as single resources to
be used in other scenarios.

Fig. 2: A stored resource composition behaving as a single resource

- Virtual resources: Some users demands may require to use data that
cannot be collected by actual physical devices. For example, the facility
manager may desire to collect temperature data from sensors that are
not physically placed in the corresponding floor (e.g., due to high cost
reasons). For such matters, virtual resources can be used to simulate
the behavior of these physical sensors, by using some existing data and
applying few calculations, in order to acquire the necessary results. Thus,
allowing the description of virtual resources gets to be efficient for several
cases.

2. An expressive model. Several description aspects should be taken into
consideration in order to represent, at best, each provided resource, to allow

its correct usage in different scenarios. Below we motivate the use of these
aspects.
- Provided function: It is the first main aspect to consider for each
resource, to help in identifying the suitable resources that can answer
the facility manager need. For example, when requesting to predict en-
ergy consumption data, it is important to be able to identify the set of
resources realizing such function.

- I/O: Describing the Inputs/Outputs (I/O) of a resource allows to know
the expected/returned data for/from each resource. As such, lets con-
sider the phase when the facility manager wants to collect the necessary
external temperature data surrounding the shopping center in °C, and
which will be later used to predict the energy consumption data required
for the corresponding floor. Figure 3(a) shows two possible resources that
can be used to convert the collected external temperature data to the
necessary unit, but each, requires different inputs. In order to select the
right one realizing user need, describing the necessary inputs required
for each resource is important. Moreover, resources I/O help in ensuring
that the resources are efficiently linked together while composing a re-
source. Figure 3(b), for instance, illustrates an example of an I/O type
mismatch between two linked resources that might affect the quality of
the predicted results.

(a) Two resources providing the same function but requiring different inputs

(b) I/O type mismatch between linked resources

Fig. 3: Examples showing the importance of describing resources I/O

- Location: In connected environments, like the smart shopping center,
several devices (stationary/mobile) are used to collect data. In order
to collect relevant data and provide pertinent predicted results, it is
crucial to consider devices location. As such, when predicting the energy
consumption of a specific floor of the shopping center, it is important to
collect the necessary data (humidity, temperature, etc.) from the set of
devices that are located in that floor.

- Links: Defining links between the provided resources of an environment,
can facilitate resource identification and selection, as well as ease resource
replacement whenever a resource is no more available. For instance, when
a resource is defined to be complementary to another (i.e,. provides a
function that is dependent of the other), the facility manager can know
what possible resources can choose after selecting a specific resource.
This is the case of the resource “Energy consumption data prediction"
shown in Figure 4, which is complementary to the “Temperature data
collection" resource. And when a resource is defined to be similar to
another (i.e., provides the same function), the facility manager can have
several resource options (candidates) that satisfy his need. The similarity
links between resources can also help in replacing a non-available resource
(e.g., disconnected from the environment) by another similar one.

Fig. 4: Semantic links examples between resources

3. A model supporting resource quality aspects. When several connected
resources provide the same needed function to answer the facility manager
demand, it is quite challenging to distinguish the most convenient one to his
request, among the others. Therefore, it is important to differentiate between
candidate resources having similar functions, by defining non-functional as-
pects, referred to as Quality of Service (QoS), which is in our case Quality
of Resource (QoR). However, with the presence of resources that can be
provided by either objects or applications, several QoR levels are to be con-
sidered:
- Physical level: refers to the attributes related to the physical devices
(e.g., Operation Range, Battery, etc.). As such, the facility manager may
prefer to collect temperature data using sensors that have the highest
operation range to acquire the most pertinent collected ambient data.

- Network level: designates the attributes related to the communica-
tion/transferred data between the devices/the application (e.g., Band-
width, Latency, etc.). For example, the facility manager may require fast
results, which can be affected by the amount of data transmitted between
objects and applications. Thus, considering the Bandwidth or/and the
Latency of the communicated data in the network is important.

- Application level: represents the attributes related to the quality of
services provided by each resource exposed either by a device or an ap-
plication (e.g., Usage, Response Time, etc.). In this context, the facility

manager may require using the resources that have been used many
times, denoting a high usage rate. As such, the more a resource is called
to answer user demands, the more it proves its efficiency in several sce-
narios.

In this paper, we embed the aforementioned criteria in a semantic Web re-
source model (ontology) explained in details in Section 4. The proposed ontology
model is expressed using a vocabulary that is human-comprehensible to facili-
tate the identification, the selection, and composition of resources by end-users.
Such vocabulary is also machine-readable that allows to automatically identify,
select, and compose resources.

3 State of the Art

In this section, we study several IoT and WoT-based services (or resources)
models, and compare them according to different criteria. The criteria, grouped
into 3 categories (as shown below), are mainly related to the concepts/properties
used to model the services exposed by the connected “Things” (e.g., Web objects
and Web applications):

1. Thorough model: denoting the ability of the model to describe different
types of services:
- Objects and applications services, referring to the services that can be
either exposed by connected objects, or connected applications

- Elementary services, referring to the services that are not linked to any
other resource, and whose behavior is not simulated

- Complex types of services, i.e., composed services and virtual services
- Categories, referring to the services categories (e.g., data collection ser-
vices and data preprocessing services), which can facilitate the explo-
ration of services, and the understanding of their behavior

2. Expressiveness: indicating the ability of the model to cover various criteria
representing the resource:
- Provided function
- I/O, referring to the inputs and outputs of the services
- Location, referring to the object location (whenever the services are ex-
posed by connected objects)

- Links, designating the links between the services provided by the con-
nected objects/applications

3. Resource quality: designating the ability of the model to define resource
qualities at various levels:
- Physical, referring to the physical properties of the connected objects
exposing services

- Network, denoting the quality aspects of the data transfer/communica-
tion that can be supported by the services

- Application, referring to the quality of the service provided by each re-
source

3.1 IoT/WoT-based Models

IoT-O [24], is a core-domain modular IoT ontology that proposes a vocabulary to
describe connected devices and their relation with their environment. As shown
in Figure 5, it includes five modules: (1) the Sensing module, which is based on
SSN ontology [6] to describe the sensors and their observations, (2) the Acting
module, which is based on SAN ontology7 to describe how IoT devices can
interact with the physical world (i.e., their performed actions), (3) the Lifecycle
module that models state machines to specify IoT devices life cycle and usage,
(4) the Service module, which describes the services provided by the IoT devices
using MSM8, a REST architecture style [11]-based ontology, and (5) the Energy
module that is defined by PowerOnt [4] to express power consumption profiles
for appliances.

Fig. 5: IoT-O main modules and concepts

DUL9 is an upper ontology that is used by these 5 modules. In the IoT-O model,
any connected element can provide a Service, whether it is a physical object
(ssn: Device) or an application (iot-o: Manager). Each Service is identifiable by
an address, and can provide some Operation callable using HTTP method (e.g.
GET and PUT). A method may have a set of inputs, outputs, and hypertexts
to link the outputs of the operation to other operations.

oneM2M10 is a global standard for Machine to Machine Communications and
the IoT, developed in an open and collaborative manner by many companies.
7 https://www.irit.fr/recherches/MELODI/ontologies/SAN.html
8 https://lov.linkeddata.es/dataset/lov/vocabs/msm
9 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

10 https://www.onem2m.org/technical/onem2m-ontologies

https://www.irit.fr/recherches/MELODI/ontologies/SAN.html
https://lov.linkeddata.es/dataset/lov/vocabs/msm
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
https://www.onem2m.org/technical/onem2m-ontologies

oneM2M allows to annotate application specific resources (M2M data) with se-
mantic description. It specifies a top-level Base ontology, illustrated in Figure 6,
that allows to create sub-classes (or equivalence classes) for application-level on-
tologies, e.g., Smart Appliances REFerence Ontology (SAREF)11. In the Base
ontology of oneM2M, a Device has a Service that exposes some Operation. An
Operation has some Operation Input and Operation Output, which are Variables
that describe an Aspect, e.g., Temperature.

Fig. 6: oneM2M Base ontology

SAREF ontology12 is a modular and domain-independent semantic layer for
smart appliances. It explicitly specifies recurring core concepts in the smart
applications domain, the main relationships between these concepts, and axioms
to constrain the usage of these concepts and relationships. Figure 7 shows an
overview of the SAREF ontology. In SAREF, a Service can represent one or
more Function offered by a Device. A Service also specifies the Device that is
offering the Service, the Function to be represented, and the input and output
parameters necessary to operate the Service.

WoT TD (Thing Description) [5] is a formal model and a common represen-
tation for the Web of Things that is defined within W3C’s WoT working group.
A Thing Description describes the metadata and interfaces of Things, where a
Thing is an abstraction of a physical or virtual entity that interacts and par-
ticipates in the Web of Things. Thing Descriptions provide a set of interactions
based on a small vocabulary that makes it possible to integrate diverse devices
and to allow diverse applications to interoperate. Thing Descriptions can be en-
coded either in a JSON format or in a JSON-LD description to represent the
knowledge about things in a machine-understandable way.

11 https://saref.etsi.org/core/v3.1.1/
12 https://saref.etsi.org/

https://saref.etsi.org/core/v3.1.1/
https://saref.etsi.org/

Fig. 7: Overview of the SAREF ontology

Fig. 8: WoT TD core vocabulary

The WoT TD model is based on four main vocabularies: (1) the core TD Vocab-
ulary, reflecting WoT’s paradigm of Properties, Actions and Events, (2) the Data
Schema Vocabulary, including the terms defined by JSON Schema (data types
and data validation), (3) the WoT Security Vocabulary, reflecting the security
mechanism and associated configuration requirements, and (4) the Hypermedia

Controls Vocabulary, encoding the main principles of RESTful communication
using Web links and forms. Figure 8 gives an overview of the WoT TD core vo-
cabulary. In the WoT TD model, Action is the function of the Thing, Property is
used for sensing and controlling parameters, Form refers to the manner to access
a function, and Links relates things together based on Web link specifications.

Published as a W3C recommendation and as an OGC (Open Geospatial Con-
sortium) implementation standard, SSN (Semantic Sensor Network) and SOSA
(Sensor, Observation, Sample, and Actuator) [15] are a set of ontologies that de-
scribe sensors, actuators, samplers as well as their observations, actuation, and
sampling activities. The set of ontologies adopts a modular architecture with
SOSA as a self-contained core that is extended by SSN and other modules to
add expressivity and breadth. SSN and SOSA mainly cover the physical aspect
of the IoT world (including sensors, actuators and samplers) and the modeling
of the corresponding data, as shown in Figure 9. However, the definition of the
interfaces and services (or operations) of such devices is not included.

Fig. 9: Overview of the SOSA/SSN ontology

The IoT-A model [9], presented in Figure 10(a), defines the main concepts
of the domain IoT and describes the relationships between them. The concepts
are the Entity, the Device, the Resource and the Service. Entity refers to “thing”
in the Internet of Things and can be a human, animal or automobile object.
The Device allows the entity to be part of the digital world by representing
interactions. The resource represents an actual software component that provides
information about the Entity or controls the Device. The Service provides a
well-defined and standardized interface, offering the necessary functionalities to
interact with entities. IoT-A therefore provides an architectural basis for other
IoT projects.

Wang model [27] is a semantic description ontology for the representation of
knowledge in the IoT domain. Figure 10(b) presents an overview of the seven

(a) Key concepts of the IoT-A model (b) Modules of the Wang model

Fig. 10: IoT-A and Wang ontology models

modules of the ontology, namely: (1) the IoT Services module, which exposes
the functionalities of the resources hosted on the devices, (2) the IoT Resources
module that extends the SSN ontology by including other important resources
in the IoT domain such as actuators, (3) the Observations and Measurements
module, which allows to describe the real data generated, (4) the Physical Lo-
cations module, which includes concepts used for the lookup and discovery of
IoT devices, (5) the Deployment Platform Networking module, which provides
descriptions on how the IoT resources are organised and deployed as well as the
system they form, (6) the Quality of Services and the Quality of Information
module that includes important concepts used in many fields, in particularly in
the composition and the adaptation of services for the providers and consumers
of IoT services, (7) the IoT Service Test module that allows testing and verifying
the functional and non-functional capabilities of IoT services during the design
and deployment stages.

ForwardDS-IoT [12] is a semantic description model based on existing ontolo-
gies for the semantic description of objects using the SSN and SAN ontologies,
their location by referring to the “Basic Geo” vocabulary13, which defines con-
cepts such as the latitude, longitude and altitude of a geographic location, and
IoT services using the OWL-S ontology14. Figure 11 gives an overview of the
ForwardDS-IoT semantic model.

SSN is an ontology that can be considered “too heavy” for a dynamic envi-
ronment because of the large number of concepts it offers and which are often
not used. IoT-Lite [3] is an instantiation of the SSN ontology to describe key IoT
concepts enabling interoperability and sensory data discovery in heterogeneous
IoT platforms through light semantics. Figure 12 illustrates the key concepts of
IoT-Lite model related to three main classes: Object, System and Service, the
latter being slightly described.

13 https://www.w3.org/2005/Incubator/geo/XGR-geo/
14 https://www.w3.org/Submission/OWL-S/

 https://www.w3.org/2005/Incubator/geo/XGR-geo/
https://www.w3.org/Submission/OWL-S/

Fig. 11: Overview of the ForwardDS-IoT model

Fig. 12: IoT-Lite ontology

3.2 Evaluation

In table 1, we show the evaluation summary of the existing IoT/WoT-based
models previously described, according to the criteria presented in the begin-
ning of Section 3. We used the “+” symbol to express a positive coverage for a
criterion, and the “-” symbol to express a lack of a criterion coverage. First, as
seen in Table 1, all of the existing models are not thorough. They mainly de-
scribe the elementary services, exposed only by devices. Few are the models that
include composed services aspects within their descriptions (knowing that these
models are SOAP-based and not REST-based), and none of the them consider
virtual services that simulate the behavior of real ones. Second, all of the mod-
els include the functions provided by the services in their service description,
and the majority describe services Input/Output parameters, as well as their
location. However, they all lack in defining services links, which is an important
criteria that can (1) facilitate service discovery and selection, and (2) ease service
replacement whenever a service is no more available. This is apart of the WoT
TD model [5], that although it supports services links (to know the services that
can be called next to a current services state), the latters are not semantically
defined. Third, although quality of services are covered by most of the IoT/WoT
models, they are related to two main levels: Physical and Network, with a less
attention to the application level.

Table 1: Evaluation of existing IoT/WoT-based models w.r.t. the identified cri-
teria

Thorough Model Expressiveness Service Quality
Objets
Services

Applications
Services

Elementary
Services

Composed
Services

Virtual
Services Categories

Provided
Function I/O Location Links Physical Network Application

IoT-O + + + - - - + + + - + - -
oneM2M + - + - - - + + - - - - -
SAREF + - + - - - + - - - - - -
WoT-TD + + + - - - + - - + - - -

SSN & SOSA + - + - - - + - + - + + -
IoT-A + - + - - - + - + - - - -

Wang Model + - + + - - + + + - + + +
ForwarDS-IoT + - + + - - + + + - + + -

IoT-Lite + - + - - - + - + - + + -

4 Web Resource Model

In order to facilitate the identification, selection, and composition of RESTful-
based Web services, i.e., exposed as resources either by WoT connected devices
or by Web applications, and allow for their automatic process, we describe, in
this section, a dedicated ontology called WoR (Web of Resource). WoR describes
Web resources in a normalized way, through a vocabulary that can be used by
different Web solutions/platforms.

4.1 WoR Ontology Features

WoR describes Web resources’ functional and non-functional aspects, including
their composition features (whenever they are composed together in the same
resource composition). It also includes resources’ visual characteristics, which
can facilitate the definition of the composed resources and ease the understand-
ing of their business process (e.g., syntactic and semantic linking, hierarchical
representations, etc.). WoR extends several ontologies:

• HSSN: it is an extension of the SSN ontology that is originally used to repre-
sent sensors, actuation information, and data observation and measurement
patterns. HSSN [19] adds to SSN, sensor mobility and multimedia data re-
lated concepts, in order to have a representation of hybrid sensor networks,
i.e., networks containing mobile/stationary sensors, scalar/multimedia prop-
erties, and infrastructures/devices as platforms where sensors are deployed.

• SOSA: it is used to model the interaction between the entities involved in
the acts of observation, actuation, and sampling [15].

Figure 13 shows the integration and extension of these ontologies in WoR.

Fig. 13: Overview of the proposed Web resource model

4.2 WoR Ontology Extensions

As shown in Figure 13, WoR extends the existing model ontologies by proposing
new concepts and relations, while remaining compliant with existing standards.
The extensions are related to:

(i) The thoroughness feature, by defining the “Exposes” relation that links
hssn:Device and sosa:Platform concepts to WoR:Resource entity, allowing
resources to be exposed by devices and application platforms. The con-
cept WoR:Resource is defined as an RDFS15 resource type. This is in-
spired from Hydra vocabulary that is used to describe RESTful services by
leveraging the power of Linked Data [18]. In addition, each WoR resource,
which can be related to specific categories (WoR:Category), can be either
an elementary resource (WoR:ElementaryResource), or a virtual resource
(WoR:VirtualResource), or a composite resource (WoR:CompositeResource).
Each composite resource has a workflow, WoR:Workflow, which is formed by
several components, WoR:Component ;

(ii) The expressiveness feature, by defining reflexive semantic links between the
resources, in addition to the resources provided function, defined inWoR:Ope-
ration, their I/O parameters, WoR:Parameters, and their location using
hssn:Location (whenever they are exposed by connected devices);

(iii) The resources quality aspects, by defining theWoR:QoR entity, which can be
eitherWoR:PhysicalQuality, orWoR:NetworkQuality, orWoR:ApplicationQu-
ality ;

(iv) The visual characteristics of resources, allowing to facilitate the understand-
ing of the behavior of linked resources, their required inputs parameters, etc.
This done by defining the concepts WoR:Position, WoR:VisualComponent,
and WoR:ConfigForm.

Extensions related to the thoroughness resource model feature: As
shown in Section 3, most of the IoT/WoT-based models focus on the resources
that are only exposed by connected devices, without considering the resources
published by Web applications. Therefore, and in order to allow the discovery,
the selection, and the composition of all kind of resources, we extended WoR by
adding the “Exposes” relation between each of the hssn:Device and sosa:Platform
entities (with the latter being equivalent to theWoR:Environment), andWoR:Re-
source concept, denoting that a resource can be exposed either by a device or by
an application platform. Resources can be grouped in different categories, e.g.,
“Data collection”, “Data pre-processing”, “Advanced data processing”, etc. Thus,
each resource can be linked to a category (WoR:Category), allowing to organize
the connected resources, and to facilitate the understanding of their Web related
environment.

Moreover, in some cases, there is no single resource that can answer user
request. However, combining two or more resources together in the same sce-
nario, referred to as a resource composition, can generate the required results.
To form a resource composition, resource discovery and selection are necessary,
before being executed by a dedicated orchestration process [1]. Once formed,
and in order to avoid re-executing both resource discovery and selection, which
consume several resources (e.g., CPU and memory) and time, it is important

15 Resource Description Framework Schema: https://www.w3.org/TR/rdf-schema/

https://www.w3.org/TR/rdf-schema/

to store the composed resource and model it with the rest of elementary re-
sources. For this aim, we distinguish in WoR between an elementary resource
(WoR:ElementaryResource) and a composite resource (WoR:CompositeResource).
The latter is formed by several other resources (composite or/and elementary
ones). In order to allow the re-execution of a stored composed resource, we added
the WoR:Worflow entity to detail the sequence process of the resources forming
each composite resource. Such process is described by at least 2 components
(WoR:Component) representing the resources included within the resource com-
position. The order of the resources is defined by the defined relations “Precedes”
and “Is-Parallel-To”.

Also, in order to allow to mimick the behavior of missing real resources, e.g.,
the resources exposed by physical devices that are very costly to use, we allow
in WoR to simulate such behavior, by defining virtual resources through the
WoR:VirtualResource entity, a sub-class of theWoR:Resource that can virtualize
both the WoR:ElementaryResource and the WoR:CompositeResource entities.

Extensions related to the expressiveness resource model feature: Hydra
model, from which we were inspired to define a Web resource as an RDFS type
resource, is a vocabulary that specifies a number of concepts that are used to
describe resources, while enabling a server to advertise valid state transitions
to a client. Within this context, Hydra defines the Link concept that enables
the dynamic discovery of the next resources that can be called next at runtime.
However, there are no semantic data about the type of the Link (e.g., whether
it is complementary or similar for instance), which can facilitate the automatic
resource discovery, selection, and composition, as well as the replacement of a
resource in case it is no more available. Therefore, we extended WoR by defining
reflexive semantic relations between the resources:

– “Same-As” link, denotes that the related resources provide the exact same
function

– “Follows” link, denotes that the related resources can be executed in a com-
plementary manner based on the dependency of their provided function

– “Similar-To” link, indicating that the related resources provide a similar func-
tion

– “Is-Related-To” link, indicating that the related resources are exposed by
devices installed in the same zone/location

The expressiveness model feature is also covered by defining the provided func-
tion attribute to the WoR:Operation of the exposed resources, with its in-
put parameters (through the “Expects” relation between WoR:Operation and
WoR:Parameter, its output parameters (through the “Returns” relation between
WoR:Operation andWoR:Parameter), as well as resources location (hssn:Locati-
on) whenever they are exposed by devices. We note that in our model, the
WoR:Operation represents the information necessary for clients to construct
valid HTTP requests in order to call/manipulate the resource. As such, each

WoR:Operation consists of a required HTTP method, optional input and out-
put parameters, and information about the function provided by each resource
Operation, such as “Collect temperature”, or “Predict energy consumption”, etc.

Extensions related to resources quality aspects: In many cases, there are
several resources that can be discovered having the same function. In order to dis-
tinguish between such resources, and select the most convenient ones answering
user request, we defined, in WoR model, quality of resources (WoR:QoR), which
can be divided into 3 main groups: (1) Physical quality (WoR:PhysicalQuality),
representing the aspects that describe the quality of the IoT/WoT devices ex-
posing the resources (e.g., Battery and Operation Range), (2) Network quality
(WoR:NetworkQuality), denoting the aspects that specify the quality of the data
transferred between the resources (e.g., Bandwidth and Latency) and (3) Appli-
cation quality (WoR:ApplicationQuality), representing the quality of the service
provided by the resources (e.g., Response Time, Availability, etc.).

Extensions related to resource visual characteristics: In order to facil-
itate the definition of composed resources and ease the understanding of their
business process (e.g., syntactic and semantic linking, hierarchical representa-
tions, etc.), we added in WoR several concepts to represent visually a resource
(elementary, composed, or virtual) with its characteristics. To do so, we use
WoR:ConfigForm to represent visually the configuration form of a resource,
which includes configurable parameters necessary to execute the resource (e.g.,
the “K” parameter related to the resource that applies the KNN (K-nearest
neighbors) clustering algorithm. We also added WoR:VisualComponent to rep-
resent visually each resource with an attached icon (i.e., an image). As for the
WoR:Position entity, it is used to describe the position of a resource on the user
interface.

5 Experimental Evaluation

In this section, we present the experimental protocol that we followed in order to
evaluate the WoR ontology, on both syntactic and semantic aspects. It is based
on 4 parts of evaluation:

1. Accuracy Evaluation: In which we aim to verify if the concepts/properties
defined in the ontology are able to meet the different objectives, presented
in Section 5.1 below, and to cover the criteria explained in Section 3.

2. Clarity Evaluation: In which we seek to verify whether the names or labels
used to describe the concepts/properties are clear, and that are not ambigu-
ous for users (experts and non-experts).

3. Performance Evaluation: In which we aim to study the response time of
different simple and complex queries, with the evolution of the resources
graph based on several variations (e.g., increasing the number of devices
exposing resources, and increasing the number of resources and functions).

4. Consistency Evaluation: This part is used to check if the added concepts/
properties generate inconsistencies within the ontology structure (e.g., check
if there are concepts that do not have no parents).

5.1 Accuracy Evaluation

In this part, we define the most useful queries that cover our objectives in terms
of: (i) Exploration, to search for the set of the resources that are connected, and
to have a better understating of the Web environment, (ii) Discovery, to identify
the necessary resources that respond to user demands, (iii) Selection, to select
among the candidate resources (the ones providing the same required functions)
the best ones answering user demands, and (iv) Composition/Execution, to link
the identified and selected resources together, forming a composition, and exe-
cute them according to their corresponding order. Moreover, we analyze these
queries according to their ability in supporting the necessary criteria presented
in Section 3.

In Table 2, we present the set of the queries that we find useful in covering
the required objectives and the necessary criteria. The queries are defined and
expressed in SPARQL16 in Appendix A.

Table 2: List of useful queries covering the required objectives and criteria
Objectives Criteria

Query Exploration Discovery Selection Composition/
Execution

Thorough
Model Expressiveness ResourceQuality

A Retrieve different types of Web resources + - - - + - -
B Retrieve the Web resources providing a given function - + + - - + -

C Retrieve the list of all the functions provided by the Web
environment + - - - - + -

D Retrieve the output parameters of a Web resource, and the
input parameters of another - - + - - + -

E Retrieve the Web resources exposed in a given location + + + - - + -

F Retrieve the Web resources that are the same (same-as) as a
Web resource - + + - - + -

G Retrieve the Web resources that are complementary (follows)
to a Web resource - + + - - + -

H Retrieve the workflow of a composed Web resource - - - + + - -

I Retrieve the sequential order of the workflow components of
a composed Web resource - - + + - -

J Retrieve the functions provided by the virtual Web
resources + - - - + + -

K Retrieve a Web resource providing a given function with a
quality criterion (e.g., Accuracy >80%) - + + - - + +

L Retrieve a Web resource collecting data within a location with
a quality criterion (e.g. Bandwidth>400 Mbits/sec) - + + - - + +

5.2 Clarity Evaluation

In order to evaluate the ambiguity of the labels used to describe some of the
newly defined WoR concepts and their object properties, we created a ques-
tionnaire consisting of 14 multiple choice questions, in which we have proposed

16 A standard query language and protocol for Linked Open Data on the Web, that
is able to retrieve and manipulate data stored in Resource Description Framework
(RDF) format.

several names alternatives for the defined concepts and properties. The ques-
tionnaire was filled by 20 male and female participants (i.e., Technical Designers,
Functional Designers, and R&D Engineers/Experts). The participants have been
asked to choose the best name, from a list of 3 choices synonyms in the domain,
that fit each new concept/property, and if needed, they could suggest other con-
cepts/properties which they find more suitable to use. The questionnaire was
divided into two parts: A part where we proposed several names alternatives
for some of the WoR concepts, and another part where we proposed several
names alternatives for some of the object properties linking concepts together.
Figure... shows that the terms used in the first part (for the WoR concepts) are
clear for the participants with an average of ... Figure... shows that labels used
in the second part (for the WoR object properties) were comprehensible to the
participants with an average of

5.3 Performance Evaluation

In order to evaluate the performance of the WoR ontology, we considered sev-
eral scenarios to study the impact of the evolution of the resources’ graph on
WoR’s performance. The performance is based on the execution of several queries
(picked from the list of queries defined in Section 5.1) in different scenarios con-
sisting on different resources’ graph settings: (1) varying the number of resources
with their provided functions, (2) varying the number of devices exposing data
collection resources and their distribution into different number of locations, (3)
varying the number of involved resource in a composition. In the experiments,
we show the query response time (ms) based on the average of 10 sequential
executions for each query. The tests were conducted on a Windows 10 Profes-
sional machine with an Intel i7-8665U CPU @ 1.90GHz 2.11GHz processor and
1 GB RAM, using Stardog (https://www.stardog.com/), an Enterprise Knowl-
edge Graph platform and graph DBMS with high availability, high performance
reasoning, and virtualization.

Resource and Function Impact.

57,1

60,1

62,7

64,6

67

69,4

56

61

66

71

100 200 400 600 800 1000

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Resource & Function Number

Resource & Function Number Impact on
Retrieving a Resource' Function

(a)

61,4

64,6

67,5

69,9

61

63

65

67

69

71

1000 2000 3000 4000

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Function Number

Function Number Impact on
Retrieving a Resource' Function

(b)

85,6

88

90,4

92,2

85

87

89

91

93

4000 8000 12000 16000

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Function Number

Function Number Impact on
Retrieving a Resource' Function

(c)

Fig. 14: Resource and Function number impact

In the first scenario (see Figure 14), we studied the impact of varying the
number of exposed resources with the number of their provided functions. In

https://www.stardog.com/

Figure 14-(a), the number of resources is equivalent to the number of functions,
where each resource provides one single function. In Figure 14-(b) and Fig-
ure 14-(c), we fixed the number of resources, respectively, on 500 and 4000, and
increased the number of functions. In the latters, a resource provides more than
one function. In each of these resources graph setups, we retrieved the list of
resources that provide a specific given function by applying the query B (see Ta-
ble 2) and measured its corresponding response time. The increase of the query
run-time in all of the graphs presented in Figure 14 is explained by the number of
additional resources and functions expanding the search environment. However,
we can see that the number of resources has more impact than the number of
functions, as the response time is almost the same (64,4 ms and 64,9 ms) when
having 1000 resources and 1000 functions (Figure 14-(a)) versus 500 resources
and 4000 functions (Figure 14-(b)).

Device and Location Impact. In the second scenario (see Figure 15-(a)
and Figure 15-(b)), we studied the impact of varying the number of devices ex-
posing data collection resources and their distribution ratio in different numbers
of locations. In Figure 15-(a), we increased the number of devices exposing Web
resources and distributed them, equally (i.e., each location contained the exact
same number of devices), on a fixed number of locations (50 locations). In these
tests, the distribution ratio, which is equal to the number of devices divided by
the number of locations, was thus evolving. In Figure 15-(b), we fixed the num-
ber of devices exposing resources (1000 devices) and distributed them, equally,
on a varied number of locations. In such cases, the distribution ratio was de-
creasing. For configuration set in Figures 15-(a) and 15-(b), we retrieved the list
of resources that are exposed in a specific given location by applying the query
E (see Table 2) and measured its corresponding response time. The increase
of the query run-time in the graphs is explained by the number of additional
devices and locations expanding the search environment. We can also observe
that the evolving number of locations in which the devices are distributed has
more influence than increasing the number of devices. This can be seen from the
response time that has risen more (from 59,1 ms to 72,4 ms) when multiplying
the number of locations by 10 (from 50 to 500), comparing to multiplying the
number of devices by 10 (from 100 to 1000) where the response time increased
from 59,1 ms to 68,1 ms.

59,1

61,8

63,9

66,1

67,7

58

60

62

64

66

68

70

100 200 400 600 800

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Device Number

Device Number Impact on
Retrieving a Resource in a Location

(a)

68,1

69,4

71

72,4

73,2

68

69

70

71

72

73

74

50 100 200 500 1000

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Location Number

Location Number Impact on
Retrieving a Resource in a Location

(b)

58,3

62,2

65,3

67,3
68,9

70,7

57

62

67

72

5 10 20 30 40 50

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Involved Resource Number in a Composition Workflow

Involved Resource Number Impact on
Retrieving a Composition Workflow

(c)

Fig. 15: Device and Location impact vs Involved Resources in a Composition
Workflow impact

Involved Resources in a Composition Workflow Impact. In the third
scenario (see Figure 15-(c)), we studied the impact of increasing the number of
resources involved in a composition workflow. In this scenario, we retrieved the
list of resources that form a compose Web resource by applying the query H (see
Table 2) and measured its corresponding response time. As shown in Figure 15-
(c), the response time evolves almost linearly with the increasing number of
resources, as there are more resources to get.

Discussion. The generated graphs in all of the different experimental scenar-
ios show a promising and positive linear curve, denoting that the query response
time increases linearly with the increasing number of resources, their provided
functions, the number of connected devices (exposing resources) and their dis-
tribution into many locations, as well as the number of resources forming a
resource composition. This indicates a proportional relation, which is a quasi-
constant increase between the different variables used and the response time of
the queries. The results also highlight that the growing number of resources and
the distribution of the connected devices in many locations, has more impact on
the increase of the queries response time, comparing to the other variables.

6 Conclusion

In this paper, we propose a Web of Resources ontology (WoR), that is used
to describe the services (the resources) provided by the devices and/or applica-
tions exposed by connected Web environments. It includes the functional and
non-functional aspects of the resources, as well as their composition features
(whenever they are composed together), and some visual characteristics to facil-
itate their composition and ease the understanding of their process. WoR mainly
reuses several existing known IoT-based models (i.e., HSSN, an extension of the
Semantic Sensor Network ontology (SSN), which adds sensor mobility and mul-
timedia data related concepts, and SOSA (Sensor, Observation, Sample, and
Actuator ontology), which describes sensors, actuators, samplers as well as their
observations, actuation, and sampling activities. We implemented WoR, and
evaluated its accuracy and performance in several scenarios that have shown
promising results. As future work, we seek to continue the evaluation of the on-
tology to test its clarity and consistency. Finally, we want to use the proposed
solution in the Web platform offered by OpenCEMS, and in ongoing Web-based
projects provided by Open Group ().

Appendix A Useful Queries Expressed in SPARQL
Covering the Required Objectives and
Criteria

Query A1: Retrieve the list of all Web resources

SELECT ?Res_id ?Res_title
WHERE {

?res rdf:type gradys:Resource; gradys:Id ?Res_id;
gradys:Title ?Res_title; gradys:Exposed_by ?plat .
?plat rdf:type gradys:Platform

}

Query A2: Retrieve the Web resources exposed by connected
objects

SELECT ?Res_id ?Res_title
WHERE {

?res rdf:type gradys:Resource; gradys:Id ?Res_id ;
gradys:Title ?Res_title; gradys:Exposed_by ?dev .
?dev rdf:type gradys:Device

}

Query A3: Retrieve the Web resources exposed by connected
objects

SELECT ?Res_id ?Res_title
WHERE {

?res rdf:type gradys:Resource; gradys:Id ?Res_id ;
gradys:Title ?Res_title; gradys:Exposed_by ?plat .
?plat rdf:type gradys:Platform
FILTER NOT EXISTS {

?res gradys:Exposed_by ?dev .
?dev rdf:type gradys:Device

}
}

Query A4: Retrieve the list of elementary Web resources

SELECT ?Res_id ?Res_title
WHERE {

?res rdf:type gradys:ElementaryResource;
gradys:Id ?Res_id; gradys:Title ?Res_title

}

Query A5: Retrieve the composed Web resources exposed by
platforms (which are not connected objects)

SELECT ?Res_id ?Res_title
WHERE {

?res rdf:type gradys:CompositeResource;
gradys:Id ?Res_id; gradys:Title ?Res_title;
gradys:Exposed_by ?plat .
?plat rdf:type gradys:Platform
FILTER NOT EXISTS {

?res gradys:Exposed_by ?dev .
?dev rdf:type gradys:Device

}
}

Query A6: Retrieve the Web resources belonging to a given
category

SELECT ?Res_id ?Res_title
WHERE {

?res rdf:type gradys:Resource .
?res gradys:Has_MainCategory ?cat .
?cat gradys:Category_value "Data Collection"^^xsd:string .
?res gradys:Id ?Res_id . ?res gradys:Title ?Res_title

}

Query A7: Retrieve the Web resources providing a given function

SELECT ?Res_id ?Res_title
WHERE {

?res rdf:type gradys:Resource;
gradys:Provides ?Operation .
?Operation gradys:Function "Collect Temperature" .
?res gradys:Id ?Res_id; gradys:Title ?Res_title

}

Query A8: Retrieve the list of all the functions provided by the
Web environment

SELECT ?fun
WHERE {

?res rdf:type gradys:Resource.
?res gradys:Provides ?Operation .
?Operation gradys:Function ?fun

}

Query A9: Retrieve the output parameters of a Web resource and
the input parameters of another

SELECT ?res1id ?res2id ?Paramin_name ?Paramin_datatype
?Paramout_name ?Paramout_datatype
WHERE {

{
?res1 rdf:type gradys:Resource .
?res1 gradys:Id "Res_4"^^xsd:string .
?res1 gradys:Id ?res1id .
?res1 gradys:Provides ?op .
?op gradys:Expects ?Paramin .
?Paramin gradys:Param_name ?Paramin_name .
?Paramin gradys:Param_datatype ?Paramin_datatype

}
UNION
{

?res2 rdf:type gradys:Resource .
?res2 gradys:Id "Res_2"^^xsd:string .
?res2 gradys:Id ?res2id .
?res2 gradys:Provides ?op .
?op gradys:Returns ?Paramout .
?Paramout gradys:Param_name ?Paramout_name .
?Paramout gradys:Param_datatype ?Paramout_datatype

}
}

Query A10: Retrieve the Web resources exposed in a given location

SELECT ?Res_id ?Res_title
WHERE {

?res rdf:type gradys:Resource .
?res gradys:Id ?Res_id .
?res gradys:Title ?Res_title .
?dev rdf:type hssn:Device .
?dev gradys:Exposes ?res .
?loc rdf:type hssn:Location .
?dev hssn:currentlyLocatedAt ?loc .
?loc gradys:Location_id "Zone 1"^^xsd:string

}

Query A11: Retrieve the Web resources that are the same
(same-as) as a Web resource

SELECT ?res_id
WHERE {

?res rdf:type gradys:Resource .
?res gradys:Id "Res_5"^^xsd:string .
?res gradys:Same_As ?otheres .
?otheres gradys:Id ?res_id

}

Query A12: Retrieve the Web resources that are complementary
(follows) to a Web resource

SELECT ?res_id
WHERE {

?res rdf:type gradys:Resource .
?res gradys:Id "Res_3"^^xsd:string .
?res gradys:Follows ?otheres .
?otheres gradys:Id ?res_id

}

Query A13: Retrieve the workflow of a composed Web resource

SELECT ?list_res_id
WHERE {

?res rdf:type gradys:CompositeResource .
?res gradys:Id "Res_co_1"^^xsd:string .
?res gradys:Has_Workflow ?wf .
?wf gradys:Has_Component ?comp .
?comp gradys:Represents ?list_res .
?list_res gradys:Id ?list_res_id

}

Query A14: Retrieve the sequential order of the workflow
components of a composed Web resource

SELECT ?list_res1_id ?list_res2_id
WHERE {

?res1 rdf:type gradys:CompositeResource .
?res1 gradys:Id "Res_co_1"^^xsd:string .
?res1 gradys:Has_Workflow ?wf .
?wf gradys:Has_Component ?comp .
?comp gradys:Represents ?list_res1 .
?list_res1 gradys:Id ?list_res1_id .
?comp gradys:Precedes ?othercomp .
?othercomp gradys:Represents ?list_res2 .
?list_res2 gradys:Id ?list_res2_id

}

Query A15: Retrieve the functions provided by the virtual Web
resources

SELECT ?fun
WHERE {

?res rdf:type gradys:VirtualResource.
?res gradys:Provides ?Operation .
?Operation gradys:Function ?fun

}

Query A16: Retrieve a Web resource providing a given function
with a quality criterion (e.g. Accuracy > %80)

SELECT ?Res_id ?Res_title
WHERE {

?res rdf:type gradys:Resource.
?res gradys:Provides ?Operation .
?Operation gradys:Function "Temperature Prediction" .
?res gradys:Id ?Res_id .
?res gradys:Title ?Res_title .
?res gradys:Has_QoR ?qor .
?qor gradys:QoR_name "Accuracy"^^xsd:string .
?qor gradys:QoR_value ?val .
FILTER (?val > 80)
}

Query A17: Retrieve a Web resource collecting data within a
location with a quality criterion (e.g. Bandwidth> 400 Mbits/sec)

SELECT ?Res_id ?Res_title
WHERE {

?res rdf:type gradys:Resource.
?res gradys:Has_MainCategory ?cat .
?cat gradys:Category_value "Data Collection"^^xsd:string .
?res gradys:Id ?Res_id .
?res gradys:Title ?Res_title .
?dev rdf:type hssn:Device .
?dev gradys:Exposes ?res .
?loc rdf:type hssn:Location .
?dev hssn:currentlyLocatedAt ?loc .
?loc gradys:Location_id "Zone 1"^^xsd:string .
?res gradys:Has_QoR ?qor .
?qor gradys:QoR_name "Bandwidth"^^xsd:string .
?qor gradys:QoR_value ?val .
FILTER (?val > 400)

}

References

1. U Arul and S Prakash. Toward automatic web service composition based on mul-
tilevel workflow orchestration and semantic web service discovery. International
Journal of Business Information Systems, 34(1):128–156, 2020.

2. Payam Barnaghi, Amit Sheth, and Cory Henson. From data to actionable knowl-
edge: Big data challenges in the web of things [guest editors’ introduction]. IEEE
Intelligent Systems, 28(6):6–11, 2013.

3. Maria Bermudez-Edo, Tarek Elsaleh, Payam Barnaghi, and Kerry Taylor. Iot-lite:
a lightweight semantic model for the internet of things and its use with dynamic
semantics. Personal and Ubiquitous Computing, 21(3):475–487, 2017.

4. Dario Bonino, Fulvio Corno, and Luigi De Russis. Poweront: An ontology-based
approach for power consumption estimation in smart homes. In International
Internet of Things Summit, pages 3–8. Springer, 2014.

5. Victor Charpenay and Sebastian Käbisch. On modeling the physical world as a
collection of things: The w3c thing description ontology. In European Semantic
Web Conference, pages 599–615. Springer, 2020.

6. Michael Compton, Payam Barnaghi, Luis Bermudez, Raul Garcia-Castro, Oscar
Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur
Herzog, et al. The ssn ontology of the w3c semantic sensor network incubator
group. Journal of Web Semantics, 17:25–32, 2012.

7. Laura Daniele, Frank den Hartog, and Jasper Roes. Created in close interaction
with the industry: the smart appliances reference (saref) ontology. In International
Workshop Formal Ontologies Meet Industries, pages 100–112. Springer, 2015.

8. Soumya Kanti Datta and Christian Bonnet. Extending datatweet iot architecture
for virtual iot devices. In 2017 IEEE International Conference on Internet of

Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pages 689–694. IEEE, 2017.

9. Suparna De, Payam Barnaghi, Martin Bauer, and Stefan Meissner. Service mod-
elling for the internet of things. In 2011 Federated Conference on Computer Science
and Information Systems (FedCSIS), pages 949–955. IEEE, 2011.

10. F De Carvalho Diniz. Composition of semantically enabled geospatial web services.
Master’s thesis, University of Twente, 2016.

11. Roy T Fielding, Richard N Taylor, Justin R Erenkrantz, Michael M Gorlick, Jim
Whitehead, Rohit Khare, and Peyman Oreizy. Reflections on the rest architec-
tural style and" principled design of the modern web architecture"(impact paper
award). In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 4–14, 2017.

12. Porfirio Gomes, Everton Cavalcante, Taniro Rodrigues, Thais Batista, Flavia C
Delicato, and Paulo F Pires. A federated discovery service for the internet of
things. In Proceedings of the 2nd Workshop on Middleware for Context-Aware
Applications in the IoT, pages 25–30, 2015.

13. Amelie Gyrard, Soumya Kanti Datta, and Christian Bonnet. A survey and analysis
of ontology-based software tools for semantic interoperability in iot and wot land-
scapes. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), pages
86–91. IEEE, 2018.

14. Armin Haller, Krzysztof Janowicz, Simon JD Cox, Maxime Lefrançois, Kerry Tay-
lor, Danh Le Phuoc, Joshua Lieberman, Raúl García-Castro, Rob Atkinson, and
Claus Stadler. The modular ssn ontology: A joint w3c and ogc standard specifying
the semantics of sensors, observations, sampling, and actuation. Semantic Web,
10(1):9–32, 2019.

15. Armin Haller, Krzysztof Janowicz, Simon JD Cox, Maxime Lefrançois, Kerry Tay-
lor, Danh Le Phuoc, Joshua Lieberman, Raúl García-Castro, Rob Atkinson, and
Claus Stadler. The sosa/ssn ontology: A joint w3c and ogc standard specifying
the semantics of sensors, observations, actuation, and sampling. Semantic Web-
Interoperability, Usability, Applicability an IOS Press Journal, 56:1–19, 2019.

16. Simon B Heilesen. A short history of designing for communication on the web.
In Designing for Networked Communications: Strategies and Development, pages
118–136. IGI Global, 2007.

17. Karwan Jacksi and Shakir M Abass. Development history of the world wide web.
Int. J. Sci. Technol. Res, 8(9):75–79, 2019.

18. Markus Lanthaler and Christian Gütl. Hydra: A vocabulary for hypermedia-driven
web apis. In LDOW, 2013.

19. Elio Mansour, Richard Chbeir, and Philippe Arnould. Hssn: an ontology for hy-
brid semantic sensor networks. In Proceedings of the 23rd International Database
Applications & Engineering Symposium, pages 1–10, 2019.

20. Sanju Mishra and Sarika Jain. Ontologies as a semantic model in iot. International
Journal of Computers and Applications, 42(3):233–243, 2020.

21. Snehal Mumbaikar, Puja Padiya, et al. Web services based on soap and rest
principles. International Journal of Scientific and Research Publications, 3(5):1–4,
2013.

22. Yusuf Perwej, Kashiful Haq, Firoj Parwej, M Mumdouh, and Mohamed Hassan.
The internet of things (iot) and its application domains. International Journal of
Computer Applications, 975(8887):182, 2019.

23. Jinghai Rao and Xiaomeng Su. A survey of automated web service composition
methods. In International Workshop on Semantic Web Services and Web Process
Composition, pages 43–54. Springer, 2004.

24. Nicolas Seydoux, Khalil Drira, Nathalie Hernandez, and Thierry Monteil. Iot-o,
a core-domain iot ontology to represent connected devices networks. In European
Knowledge Acquisition Workshop, pages 561–576. Springer, 2016.

25. Juris Tihomirovs and Jānis Grabis. Comparison of soap and rest based web services
using software evaluation metrics. Information Technology & Management Science
(Sciendo), 19(1), 2016.

26. Chen Wang, Hui Ma, Gang Chen, and Sven Hartmann. Evolutionary multitasking
for semantic web service composition. In 2019 IEEE Congress on Evolutionary
Computation (CEC), pages 2490–2497. IEEE, 2019.

27. Wei Wang, Suparna De, Gilbert Cassar, and Klaus Moessner. Knowledge repre-
sentation in the internet of things: semantic modelling and its applications. au-
tomatika, 54(4):388–400, 2013.

	WoR Ontology: A Web Resource Model for Connected Web Environments

