Jawhar Chebbi 
email: jawhar.chebbi@donecle.com
  
Yves Briere 
  
  
  
Robust active disturbance rejection control for systems with internal uncertainties: Multirotor UAV application

Keywords: aerial robotics, extreme environments, multirotor, robust control

Active Disturbance Rejection Control (ADRC) has recently stood out as a viable alternative to the proportional-integral-derivative controllers. An interesting field of application of this approach is the control of multirotor unmanned aerial vehicles (UAVs) which are inevitably subject to various force and torque disturbances. What makes ADRC attractive is the enhanced trajectory tracking and disturbance rejection capabilities that it allows while requiring minimal knowledge about the system.

Although in theory, large uncertainties on the few required system parameters do not affect the stability of the ADRC's closed-loop, they cause performance deterioration and can lead to dangerous oscillations that result in instability in practice. In this study, we design a robust ADRC for multirotor UAVs that allows maintaining the performance despite large parameter variations, without changing the initial control gains tuning. Simulation and experimental results support the theoretical findings.

several works. For instance, in [START_REF] Castillo | Robust design of the uncertainty and disturbance IFAC-PapersOnLine[END_REF], stability conditions based on LMI are formulated and an optimisation procedure to find valid control and observer gains accordingly is proposed, but the input matrix parameters are assumed to be known. In [START_REF] Li | Robust ADRC for nonlinear timevarying system with uncertainties[END_REF] though, a robust augmentation for ADRC is proposed allowing to deal with parametric uncertainties. Also in [START_REF] Zhou | Analysis and tuning of general linear active disturbance rejection controllers[END_REF], the effect of the input gain parameter is studied and it is shown that it is not an essential part for disturbance rejection, as long as the control and observer parameters are adjusted to remove the effect of uncertainty on this parameter. In this study however we propose another approach, we want to start with a nominal ADRC scheme designed for a fixed input parameter (best available knowledge) and try to adjust any uncertainty later. Additional works on general stability principles of ADRC are also available like in [START_REF] Ahi | Linear active disturbance rejection control from the practical aspects[END_REF] where it is shown that the boundedness of the derivative of total disturbance is not enough to ensure ADRC stability because of the uncertainties effect. Also in [START_REF] Ahi | Linear active disturbance rejection control from the practical aspects[END_REF], the input gain parameter is supposed to be an additional tuning parameter and its real value is assumed to be known.

In this study, we focus on the stability and performances of ADRC for multirotor UAVs when parametric uncertainties are not neglected. ADRC has already been successfully applied for the control of this kind of aerial vehicles, mostly on the attitude control loop like in [START_REF] Castillo | A quaternion-based and active disturbance rejection attitude control for quadrotor[END_REF], [START_REF] Yang | Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind[END_REF], [START_REF] Yuan | Position tracking and attitude control for quadrotors via active disturbance rejection control method[END_REF] and Castillo et al. (2019) or attitude and altitude as in [START_REF] Lechekhab | Robust error-based active disturbance rejection control of a quadrotor[END_REF], but also for both position and attitude control like in [START_REF] Zhang | A novel control scheme for quadrotor UAV based upon active disturbance rejection control[END_REF] and [START_REF] Xu | Backstepping slidingmode and cascade active disturbance rejection control for a quadrotor UAV[END_REF]. It was demonstrated that the uncertainties on model parameters (the uncertainties of mass, inertia and actuation efficiency) can be considered as additional disturbances to be estimated by the observer and that they do not affect the stability under some conditions (existence of upper bounds). However, little attention was given to the influence of these uncertainties, almost inevitable for multirotor vehicles, on the overall performance of the controller. Here are some nonetheless works that dealt explicitly with the uncertainties in the design process: in [START_REF] Chen | Disturbance observer-based control for small nonlinear UAV systems with transient performance constraint[END_REF], the uncertainty effect (among others) is mitigated in an innovative way by adding transient performance constraints on the observer estimations. A different approach is adopted in [START_REF] Shao | Disturbance observer-based discretetime neural control for unmanned aerial vehicles with uncertainties and disturbances[END_REF] where additional nonlinear uncertainties (typically aerodynamic torques) are estimated using a Neural Network that is then injected in the disturbance observer, but the effect of the uncertainty on the input matrix is not considered.

We propose to analyse the effect of model mismatch and to adapt the approach proposed in [START_REF] Jasim | A robust controller for multi rotor UAVs[END_REF] to improve ADRC's sensitivity to parametric uncertainties by adding a robust term. This augmentation is computed using Lyapunov theory and the knowledge of upper bounds on the uncertainties. The differences of our approach compared with Jasim and Veres (2020) are the following:

• In addition to the reference tracking error term, we use for the robust term the estimation error used in the ESO of the ADRC.

• We take advantage of the disturbance estimation dynamics to compute a new time-variable upper bound on the uncertainties that make the control law less aggressive than using a fixed upper bound.

• We propose a new regularisation of the sign function (used in the robust term) that allows one to avoid the overexcitation of the system when this is not needed.

• A discrete version of the technique is presented, it allows one to make sure that low sampling rates do not affect the robustness of the controller.

Thanks to this robust modification of ADRC, one can keep the default tuning of the controller even when there is a change in the payload or a loss of the propellers' efficiency. And since the new term is mostly based on the knowledge of the upper bounds on the system parameters, the approach does not require much trial and error tuning and is very well adapted to practical implementation.

The rest of the paper is structured as follows: we start in Section 2 by a reminder of the type of dynamics we are dealing with for multirotor UAV control. In Section 3 the design procedure of the new robust ADRC is presented, along with some stability analysis and tuning guidelines by considering simplified dynamics relevant to the multirotor application. In Section 4 the application of the modified ADRC design to the position and attitude control of a multirotor UAV is shown and compared with a normal ADRC controller: in Section 4.4 the approach is tested on a simulated multirotor UAV, and in Section 4.5 three experimental validation tests are presented:

1. mass drop, 2. hovering in front of wind source, 3. trajectory tracking in a windy environment with an attached swinging mass.

Notations

We introduce the following acronyms, notations and symbols All vectors and matrices are noted in bold font. When the same symbol is used in nonbold, it refers by default to a component of the same vector (or matrix).

| MULTIROTOR UAV DYNAMICS AND CONTROL

A unidirectional underactuated multirotor UAV is an aerial vehicle whose propellers can only generate thrust along one body direction. These vehicles can balance their weight and hover while keeping a horizontal attitude. They can be described using Newton-Euler equations. Let us first define the air translational and rotational speeds:

⊤        v R v v Ω Ω Ω = ( - ), = - .
air wind air wind

(1)

The position dynamics can then be written as

                                                                p v v R F v Ω R ˙= , ˙= - 0 0 + ( , , ). T m m 1 d air m F act act  (2)
And the attitude dynamics in the following way:

         R RΩ Ω J Q Ω JΩ Q Ω R v ˙= , ˙= ( - + ( , , )), × -1 act × d air air (3) 
where the subscript × refers to the transformation of a vector to its cross-product equivalent skew symmetrical matrix. The force and torque disturbances F d and Q d are a combination of several effects: aerodynamic drag (viscous, induced drag, …), rotors flapping, centre of mass displacement, and so forth.

The actuation signals are here

                                T F R = 0 0 act act
and Q act . However these are not directly equal to the ones requested by the controllers.

They depend on the actuators static and dynamic behaviour. The former can be usually easily characterised, and the latter is more challenging to identify because of its nonlinear nature. It is nonetheless usually approximated using first-order linear dynamics, by identifying a time constant τ act which leads to the following approximated model for the dynamics of thrust f rot and torque q rot of each rotor 1

               f f f q q q ˙= ( - ), ˙= ( - ). τ τ rot 1 sp rot rot 1 sp rot act act (4) 
Leading to the same dynamics on the collective thrust and torque (control allocation being a linear operation) (5)

               T T T Q Q Q ˙= ( - ), ˙= ( - ).
Actuator dynamics are usually neglected since they are faster than the desired dynamics, but it is possible to have an estimation of this firstorder using a motors test bench which is the case in our work. The remaining uncertainties on these dynamics can be taken into account as suggested in [START_REF] Cao | L1 adaptive controller for systems in the presence of unmodelled actuator dynamics[END_REF] by introducing constant multiplicative uncertain parameters (ω f and ω q ) along with additive uncertain time-varying parameters (σ f and σ q ) such as

       f ω f σ q ω f σ = + , = + , f f q q rot sp rot sp (6) 
which lead to the same type of equations on collective actuation thrust and torques

                                                                      σ T ω T σ ω ω ω Q Q = + , = 0 0 0 0 0 0 + , ω f T f f q Q act sp act act Q act sp act (7) 1
More precisely the dynamics are on the rotation speeds of the propellers, but since they cannot be always measured, we consider these simplified linear dynamics to be directly on the thrust and torque

where σ Tact and σ Qact refer to the additive lumped uncertainties on the actuation thrust and torque, respectively. This allows one to make the UAV dynamics compatible with the design of ADRC, so we use this form for the design of our controllers.

The different dynamic equations introduced above can be depicted in the diagram shown in Figure 1, where the inherent hierarchical structure is depicted.

Note that the disturbances F d and Q d depend on the system's state but also on the completely unknown external signals v wind and Ω wind . So the common assumption in ADRC design that the external disturbance is generated by an exogenous system and does not depend on the state is not completely true, however in practice, the drag components for a multirotor UAV are of a negligible magnitude compared with the actuation forces and torques, and the assumption that the disturbance is only exogenous can be tolerated when the UAV is flying at low speeds and not performing aggressive manoeuvres, which is not the case we consider here.

The autopilot of a multirotor UAV is designed in an inverted hierarchical scheme to the one shown in Figure 1, it consists of using a slow position/velocity controller providing a faster attitude/rates controller with an attitude setpoint. The available measurements on such vehicles come usually from an inertial measurement unit (IMU) providing the angular rates and a position sensing system (external or internal) providing the position with reference to a fixed observer. Moreover, the considered control inputs for this unidirectional underactuated multirotor are the total thrust and the roll/pitch/yaw torques, so we assume that the actuator behaviour is more or less known and a model-based mixer is available allowing to transform a desired thrust and torque into an equivalent PWM (or RPM) command as in [START_REF] Chebbi | Novel modelbased control mixing strategy for a coaxial push-pull multirotor[END_REF].

This control structure (red part of Figure 1) is depicted in Figure 2.

Knowing this, to reject disturbances on a unidirectional multirotor UAV, one needs to estimate the additive force and torque disturbances shown in Figure 1 and subtract them from the desired force and torque commands computed, respectively, by the velocity and angular rates controllers, this action along with the disturbance observer blocks is shown in Figure 3. In this study, we use the control structure shown in Figure 3. The force and torque disturbances are estimated using Linear

ESOs.

In Section 3 we analyse the proposed ADRC on the 1D angular rate canonical system before applying the procedure on the three-dimensional (3D) dynamics. Let us first introduce a simpler and more encapsulated form for the dynamic equations. In fact, we take advantage of Equation ( 7) that we combine with Equations ( 2) and ( 3), which gives the dynamics in the following form:

⏟              σ p v v F ˙= , ˙= - ( + ), ω m α F act f f sp  (8)                 ω σ R RΩ Ω J Q ˙= , ˙= ( + ) , α Q Q × -1 act Q sp ( 9 
)
where  is the gravity vector expressed in the inertial frame, σ F and σ Q are lumped force and torque disturbances (containing wind and drag components in addition to actuators unmodelled dynamics). The control inputs here are then

                                T F R = 0 0 act sp sp sp
and Q actsp , they are also noted for simplicity as

                          T u Q = .
act sp sp (10)

| CONTROL DESIGN IN THE CASE OF SIMPLIFIED DYNAMICS

We consider the following second-order linear system that can represent the dynamics of position along one axis or of a rotation angle of the UAV (assumption of small angles). So x can refer to either a position or an angle, and v to the linear or angular speed: 

F I G U R E
               x v v α u σ u u u ˙= , ˙= ( + ), ˙= ( - ), τ act act 1 act act (11) 
where α represents the gain of the system, it is equal to the inverse of the inertia (or mass) J and multiplied by the thrust efficiency ω

α ω J = , (12) 
σ here represents an external disturbance normalised by the thrust efficiency. u act can represent either the collective thrust if the altitude dynamics are considered, or the thrust projected on one horizontal North-East-Down (NED) axis if the position along the North/East axes is considered, or the torque along one body axis if the rotation angle is considered. τ act is the first-order time constant modelling the dynamics of u act and it is neglected in the control design process because it is hard to model and it is usually considerably faster than the position or attitude dynamics. For the designer, the parameter α is only partially known, an estimation α ˆis available, along with upper and lower bounds:

α α α ≤ ≤ . min max (13) 
The lumped disturbance σ has a known upper bound:

∥ ∥ σ σ ≤ . max (14) 
The determination of the bounds on α ˆis possible when some knowledge of the system is available (like the accuracy of the motors static model, the accuracy of the inertia estimation and the minimum and maximum payload the UAV is supposed to carry). As for σ max , it is more difficult since it depends on the disturbance magnitude which cannot be preknown. However, in the case of multirotor applications, the choice of motors is usually done in a way to withstand some amount of force and torque disturbance. So σ max can be set as a ratio of the maximum force and torque than the motors can generate. In other words, we assume that the disturbance stays within an interval that corresponds to the operating area of the motors. Besides, σ ˙has to be bounded (∥ ∥ ∥ ∥ σ σ ˙≤ ˙max ) and σ is assumed to be independent of the state, for the classical ADRC stability conditions to hold.

The outputs of this system are x and v which are either measured or estimated by an external estimator (typically a Kalman filter) assumed to be without significant delay (thus equipped with a predictor).

| Basic ADRC design

The ADRC controller for this system can be represented as in Figure 4 and is written as

u α v k v v σ = 1 ˆ(˙+ ( -)) -ˆ, t ref ref (15) 
where

• v ref and v ˙ref are generated by a TD, which is simply a linear filter with a cutoff frequency f TD . The input of this filter is the desired speed target v sp that can be obtained using a proportional con- troller from the position (or angle) target x sp as

v k x x = ( -). sp sp (16) 
Then in the case of a first-order TD, we have

v πf v v ˙= 1 2 ( - ). ref TD sp ref (17) 
The choice of f TD , when a first-order TD is used, can be made equivalent to the use of a proportional controller on the speed

error, that is, k v v ( -) p sp , by setting πf α k 2 = ˆp TD
. Now the choice of k p is easy using linear control techniques like pole placement.

For example, by choosing a damping coefficient ρ and a 95% step- response time tr 95% , k and k p can be computed as

             k k f = , = s o = , γ ρ tr ρ p kρ α kρ π ( ) 2 4 ˆTD 4 2 95% 2 2 ( 18 
)
where γ is the function relating the second-order damping to the reduced response time, which is fairly well documented and accessible on a chart. Typical values of interest are γ γ (0.7) = 3, (0.9) = 4 and γ (1) = 5. When a second-order TD is used, which is the case of the rate controller we implement (see Equation 59), the frequency f TD has to be adjusted to have a similar time profile for reference. More precisely, f TD can be chosen to achieve the same first-order step-response time used for k (Equation 18) with a damping equals 1 which gives f k = .

π TD 10 3

• k t is the trajectory tracking gain, it can be related to a frequency

f track as k πf = 2 . t track
• σ ˆis generated by an ESO tuned to have a frequency f ESO as its bandwidth. This observer can be of second-or third-order depending on the measurements available: in general, the x state is measured when it refers to the position, and the v state is mea- sured when it refers to the angular rate. We consider here the latter case to simplify the analysis of the closed loop (without loss of generality), the other case where the position measurement is used is presented in Equation (44).

                          v α u σ l v v σ v u u u ˆ= ˆ(ˆ+ ˆ) + ( -ˆ) , ˆ= ~, ˆ= ( -ˆ), v l α τ act 0 ãct 1 ˆact 1 act (19) such that l πf l π f = 4 , = 4 . 0 E S O 1 2 ESO 2 (20)
The choice of f ESO depends mainly on the dynamics of the ac- tuators (given by τ act in Equation 11). Let the bandwidth of the actuators be in the general case f (Hz) act . To avoid oscillations, the requested estimation bandwidth (f TD and f ESO ) has to be smaller than f act . The tracking frequency f track however can be chosen bigger than f ESO and even than f act , in fact it does not interfere with the stability since it only serves to track already achievable dynamics. A good tuning rule of the thumb is to choose those frequencies as

F I G U R E 4 Schematic illustration of the Active Disturbance Rejection Control (ADRC) structure f c f f c f = , =4 , ESO act track ESO (21) 
where c 0 < < 1, an acceptable value is c = 0.5.2 Now the choice of the TD cutoff frequency f TD depends on the type of the available target. If it is already feasible by the controller, then f TD can be only set to make this target smooth and noise-free (so f TD can be high). But when the available target is a step (or any signal that cannot be achieved by the system) then f TD will serve to generate an achievable reference model and in this case it has to be smaller than f track .

• α ˆis the available estimation of α.

• τ ˆact is the available estimation of τ act . Since this time constant is only an approximation, it is better to use a lower bound value so as to be sure that the actuator dynamics effect is not filtered out from the disturbance estimation.

| Note

In the original ADRC [START_REF] Guo | Active disturbance rejection control for nonlinear systems-An introduction[END_REF] the state estimations provided by the extended observer (x ˆand v ˆ) are the ones used within the control signal, instead of the measurement (x and v), however in this study we assume that the measurements are good enough to be used directly. This is also commonly done in the literature like in Castillo et al. (2019). Additionally, this form leads to simpler closed-loop equations that are easier to analyse.

| Robustness to parametric uncertainty on α

The α parameter cannot be perfectly known, and it can vary during the operation of the system. It is then important to understand how the closed loop behaves when the estimate of the parameter used for the design of the control law deviates from the true value. To do so, we plot the closed-loop root locus when α α ˆvaries. The results are shown in Figures 5 and6 with the following colour code: the black diamonds are the closed-loop poles when α is perfectly known, so the requested dynamics by the controller are achieved, the red dots correspond to the closed-loop poles when α is overestimated, and conversely the blue dots correspond to the underestimation of α. The darker the colour (red or blue), the bigger the uncertainty (i.e., the difference between α and α ˆ).

We notice that this uncertainty does not necessarily bring the system to instability as can be seen in Figure 5, but it happens for even smaller ratios α α ˆas can be seen in Figure 6. From Figure 5, we can deduce the differences between the underestimation and the overestimation of α on the behaviour of the closed loop. On the one hand, when α is overestimated, the system becomes slower and slower (darker and darker red dots) which is explained by the fact that from the controller's point of view the system is more reactive than it really is, which produces low gains. On the other hand, the underestimation of α does not considerably modify the bandwidth of the system, but amplifies the oscillations (lower and lower damping), which in practice can lead to instability. This is because from the controller's point of view the system is less responsive than it really is, and the calculated control gains are then higher than necessary. These tendencies will be verified on the simulation examples (Sections 3.7 and 4.4). 

| Robust ADRC design

To reduce the ADRC's sensitivity to parametric uncertainties, we are inspired by the robust approach in [START_REF] Jasim | A robust controller for multi rotor UAVs[END_REF]. It consists in adding a "robust" term u r to the control law which guarantees that the system will remain stable if the uncertainties do not exceed an upper limit known in advance. We extend the method to systems with estimation error dynamics in addition to trajectory tracking, which is the case of the ADRC.

Let us first formalise the error dynamics of the closed-loop system. As the disturbance is assumed to be matched, that is, it enters the system via the same channel as the control signal, and the parametric uncertainties (α and τ act ) are also only on the speed equation (the relationship between position (or angle) and velocity being kinematically exact), then we restrict ourselves to this (speed) dynamics for the design of the robust term. 3 Let η be the vector of errors

                                    η v σ ξ = ˜, where ξ v v v v v ~= -, ~= -ref and σ σ σ ˜= -ˆ.
The combination of Equations ( 11) (without the actuators' dynamics), ( 15) and ( 19) leads to the following global error dynamics equation:

                                                                                                         η η l α δ k δ α δk δv σ ˙= - - -(1 -) 0 0 0 --(1 -) + -1 0 1 ˙+ 0 1 0 ṫ l α t 0 ref 1  (22) 
such that

δ α α = 1 -ˆ≤ 1. ( 23 
)
The stability of the system depends on the eigenvalues of the  matrix which depend on the control and observation parameters but also on δ, thus on α α ˆ(and, good news, not directly on α). This is what was analysed in Section 3.2. We have retained that the most critical case which can lead to instability is when α is overestimated, that is, when δ > 0. Added to the effect of δ on stability, it also makes the perturbation v ˙ref enter the system (see Equation 22, second addi- tion). However, this effect can be attenuated since the designer builds this signal and it also vanishes in the steady state (in most of the working cases).

It has to be noted that all of this analysis is done in the case of a disturbance that does not depend on the state, if this is not the case and if, for example, a drag effect is added (so the system is no longer a chain of integrators as assumed for ADRC design), then the stability analysis becomes much more challenging, even if the system remains linear (with a simple linear drag component) the matrix  will no longer be the same and its stability cannot be ensured as shown in [START_REF] Ahi | Linear active disturbance rejection control from the practical aspects[END_REF]. This can be made worse when the parametric uncertainties are significant (especially when leading to δ values close to 1).

It is then critical to make sure that δ is as close to zero as pos- sible. However, even when modelling efforts are made to characterise the system, this cannot be always guaranteed, as the payload can change during the flight, and the efficiency of the actuators can change with the environmental conditions and the battery level. 4 Therefore, we introduce the following robust augmentation to the classical ADRC to handle these different issues.

We apply the same idea introduced in Jasim and Veres (2020). It consists in adding a "robust" term u r to the control law that ensures the system will remain stable if the uncertainties do not exceed a preknown upper bound. We extend the method to systems having estimation error dynamics in addition to the trajectory tracking one, which is the case for ADRC. So Equation ( 15) becomes

u α v k v v σ u = 1 ˆ(˙+ ( -)) -ˆ+ . t ref ref r (24) 
To design this additional term the Lyapunov method is used, and to do so let us rewrite the error dynamics only in terms of measurable errors (so without σ ˜that is considered as a perturbation to the system).

Let

                        ψ v ξ = ˜, the dynamics is        ⏟                                             ψ ψ l δk δ k δv ασ αu ˙= - - 0 -(1 -) + -1 1 ( ˙-~- ). t t A E 0 ref r 1 (25)
Now A contains also uncertainties and cannot be used for the design so we decompose it

                                                δ l k δ k k A A A = + = - 0 0 - + 0 - 0 . t t t 0 0
This is injected into Equation ( 25), which leads to

ψ ψ δ v kξ ασ αu A E ˙= + ( (˙+ ~) -~- ). t 0 1 r e f r (26) 
The computation of the robust term for this scalar case is given below. Let us consider the Lyapunov function candidate

⊤ ψ ψ V P = 0
where P 0 is a symmetric positive-definite matrix that solves the Lyapunov equation

⊤ P A A P Q + =-, 0 0 0 0 ( 27 
)
where Q is a symmetric definite-positive design matrix.

We want to make the time derivative of V negative to ensure stability, let us compute it

⊤ ⊤ ψ Qψ ψ V αu P E . ˙= - + 2 ( - ) 0 1 r  ( 28 
)
3 This is less relevant for position control since a smooth position profile can be computed and position measurements are usually used directly (cf. Section 3.5).
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The battery effect can also be taken into account within the observer (ESO) if a voltage-dependent actuators' model is available, which is the case in this study.

Such that

δ v kξ ασ = (˙+ ~) -ref  . So now the goal is to design u r in such a way that ⊤ ψ αu P E 2 ( - ) ≤ 0 0 1 r  . To do so, let us note ⊤ ψ ν P E = . 0 1 (29)
Note that this error is a combination of the estimation v ˜and the tracking ξ ˜errors, which is one the particularities of our robust approach. The robust term is chosen such that νu ≥ 0 r in the following way:

∥ ∥ u ζ ν ν = , r (30) 
where ζ is a positive term to be determined. To avoid chattering, u r is not implemented as Equation ( 30), but in a modified fashion to ensure continuity. 5 The linear regularisation used in Jasim and Veres ( 2020) is as follows:

∥ ∥ ∥ ∥ ∥ ∥            u ζ ν μ ζ ν μ = if ≥ , if < . ν ν ν μ r (31)
We noticed that this regularisation leads to the amplification of the control signal even when the error is too small which is not the desired effect, the robust term should be only active when the combined error ν is bigger than its usual values. For this reason, and to ensure the continuity and smoothness of the control law, we propose the following new regularisation of the sign-based control law:

( ) ( ) u ζ e e = 1 - 1 + . r -3 -3 ν μ ν μ 3 3 (32)
This function can be visualised in Figure 7. We consider the case of μ = 0.2 and compare it with the sign function and the linear reg- ularisation, all as a function of the error ν.

The robust control term verifies νu 0 ≤ r , hence

⊤ ψ αu ν ναu ν α νu P E ( - ) = - ≤ - . 0 1 r r min r    (33) Now when ∥ ∥ ν μ ≥ , we have ∥ ∥ νu ζ ν = r , so ∥ ∥ ∥ ∥ ∥ ∥ ⊤ ψ αu ν α ζ ν ν α ζ P E ( - ) ≤ - ≤ ( - ). 0 1 r min min    (34)
The choice of ζ is then straightforward, if an upper bound of  is available, which is the case:

       ∥ ∥ ∥ ∥ δ v kξ α σ < ˙+ ~+ 2 , t ξ max ref max max ϵ ( ~) 0  ( 35 
)
where

δ = 1 - > 0 α α max min
. However, the disturbance magnitude ∥ ∥ σ cannot be guaranteed to stay below σ max . So one might end up choosing a fairly high value that will not be reached in most of the operating time, making the robust control law too much aggressive even when it is not needed. This can be improved in the case of ADRC by taking advantage of the disturbance estimation error. In fact, by writing the disturbance estimation error (i.e., the difference between σ ˙and the second subequation of Equation 19) in Laplace domain we end up with the following transfer function for the disturbance estimation error:

          s s l s l s l s l s l s l U s s Σ ~( ) = + + + Γ( ) - + + ( ( ) + Σ ˆ( )), α α G s α α α α G s 0 2 0 ˆ1 ( ) ~1 2 0 ˆ1 ( ) act 1 0 2 0 ( 36 
)
where the upper case symbols (Γ, Σ, Σ ˜, Σ ˆand U act ) refer to the Laplace transforms (of σ σσ σ ˙, ˜, ˆand u act ). If the disturbance is slowly varying then one can safely assume that σ ˙= 0. 6 Let us then focus on the second transfer function G 2 0 which affects more considerably the dynamics of the disturbance estimation error. This second-order transfer function has the following properties:

• Static gain: K = α α 2 0 ˜. So   ( ) K K max ≤ = 1- , 1 - α α α α 2 0 max ˆmax min .
• Natural frequency (rad/s):

w = αl α 2 0 ˆ1 . So w w ≥ = α l α 2 0 ˆmin min 1 . • Damping coefficient: z = l α αl 2 0 2 0 1 . So z z ≥ = l α α l 2 0 2 ˆmin 0 max 1 .
We start by introducing the following theorem.

F I G U R E 7 Comparison between the sign function, the μ linear regularisation and the proposed exponential one, for μ = 0.2 5 This control law is very similar to a sliding mode control one since it uses the sign of the error, however, as will be shown in the sequel, ζ is not a constant gain in our case. Besides, its determination is based on preknown uncertainty intervals, so it is not a tuning variable as it is the case of sliding mode control gain.
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This assumption is not critical from a stability point of view and works in practice (according to the simulation and experimental tests).

Theorem 

∫ y t f t τ u τ dτ ( ) = ( -) ( ) , t 0 0
where y t ( ) is the inverse Laplace transform of Y s ( ). So by the triangle inequality

     ∫ y t f t τ u τ dτ ( ) ≤ ( -) ( ) . t 0 0
And since by definition of

∀   F s t f t f t ( ), , 0 ≤ ( ) ≤ ( ) 0 , then          ∫ y t f t τ u τ dτ ( ) ≤ ( -) ( ) . t y t 0 ( )

∞

The signal y t ( )

∞
is then an upper bound on y t ( ) and it can be computed by passing   u t ( ) through the filter F s ( ). □

To apply (Theorem 1) on G s ( ) 2 0

, we build the first-order transfer function:

G s K Ts ( ) = 1 + , 2 (37) 
where K and T are chosen so that the impulse response of G s A time-variable upper bound on σ ˜can then be obtained by application of Theorem 1:

  ∫ σ t g t τ u τ σ τ dτ ~( ) = ( -) ( )+ ˆ( ) , t max 0 2 a c t (38)
where g 2 is the impulse response of G 2 (Equation 37). This new upper bound is less conservative than using σ max (as in Jasim & Veres, 2020) and allows one to have a robust term that adapts itself depending on the estimated disturbance and the system input signal. Note that this term contains a filtered contribution of the input u act , which is available using the available dynamic model (first order in our case, cf.

u ˆact in Equation 19). ) and can be encompassed within the uncertainty interval on the motors efficiency ω. The new dynamic upper bound on  can then be written as

∥ ∥ ξ σ u t δ v t k ξ t α σ t ϵ( ~, ˆ, ˆ, ) = ˙( ) + ~( ) + ~( ), t act max ref max max (39) 
where σ ~max is given by Equation ( 38). The choice of ζ is now straightforward:

ζ ξ σ u α = ϵ( ~, ˆ, ˆ) . act min (40) Then ∀∥ ∥ ∥ ∥ ν μ α ζ ≥ , - < 0 min  , and ∥ ∥ ∥ ∥ ν α ζ ( - ) ≤ 0 min  . Hence ∀∥ ∥ ν μ V ≥ , ˙≤ 0.
The bounded stability within the interval μ μ [-, ] can then be concluded. It is important to notice that the goal of the robust augmentation we are proposing is to enhance the basic ADRC and not to replace it. More precisely when the error is in the interval μ μ [-, ], it is the job of the normal ADRC to ensure the asymptotic stability and not the robust whose job is only to make the error within this interval and keep it there. This will get clearer through the simulation results.

| Robust control parameters tuning

The parameters μ can be related to the actual tracking and estimation errors ψ to make their tuning more intuitive. Let ξ ~max and v ~max be the maximal errors that can be tolerated and that do not need a big contribution of the robust term. Then,

⊤                             μ v ξ E P = ~, 1 0 max max (41) F I G U R E 8 Example of the impulse response of G s ( ) 2 compared with G s ( ) 2 0
where P 0 is the solution of the Lyapunov equation based on the matrix Q (Equation 27) that determines the contribution of each error to the robust term, the weight of the tracking error should be set bigger than the estimation error one. Q can be kept normalised since it scales the maximum errors and thus the parameter μ will be adapted to the magnitude of Q.

The determination of ξ ~max and v ~max is mainly conditioned by the measurement noise level and the actuators bandwidth, they should be set experimentally. In practice the same value can be chosen for both.

It is important to notice that the actuators saturation was not taken into account in the control design and stability study. For this reason, additional security limitations need to be added so that the robust augmentation would not lead to the actuators saturation. To do so it is recommended to limit the function ζ within some control interval so that control the robust contribution stays below a reasonable threshold. When ζ is saturated, the control signal is similar to a sliding mode control (with a static gain multiplying the sign of the error), but this only happens for large errors when a strong control action is really needed. This also means that the uncertainty margins for one system are limited by the available actuators effort. So if these uncertainties lead to the saturation of ζ , then one needs to perform more system identification effort to reduce   δ max .

| Generalisation for the second-order case

The robust ADRC design presented on the speed dynamics can be also performed on position dynamics. In fact, the same analysis holds for the second-order case, only the matrix A 0 has to be updated. We give an overview of this generalisation here.

The new ADRC control law becomes now

u x k v v v x k x x = (¨+ ( -)), = ˙+ ( - ), α 1 ˆref 2 sp sp ref 1 ref (42) 
where x ref is computed using a TD starting from a target x sp , this will be seen with more details in Section 4.2. Note that k 1 and k 2 can be easily set from a desired closed-loop frequency f tracking and a damping coefficient ρ as follows:

k ρπf k πf k = 4 , = (2 ) . 2 t r a c k i n g 1 tracking 2 2 (43)
The force disturbance observer is built using the position x measurement:

                         x v l x x v α u σ l x x σ x x u u u ˆ= ˆ+ ( -ˆ), ˆ= ˆ(ˆ+ ˆ) + ( -ˆ), ˆ˙= ( -ˆ), ˆ= ( -ˆ). l α τ 0 act 1 âct 1 ˆact 2 act ( 44 
)
Now to design the robust term, let

                                                                                        ϕ x v ξ ξ x x v v x x v v = ~= - - - - x v ref ref
be the new measurable error vector. By doing the same computations, the control law stays the same and the new matrices A 0 and E 1 are

                                                                                    l l k k k A E = -1 0 0 -0 0 0 0 0 0 1 0 0 - - , = 0 -1 0 1 . 0 0 1 1 2 2 1 (45)
The robust control signal is then built as in Equations ( 31) and ( 40 

G s l s l s l s l

( ) = + + + . α α α α 2 0 ~2 3 0 2 1 ˆ2 (46) 
The transfer function G s ( )

2

(given in the 1D case by Equation 37) can then be built in the same way by making sure that its impulse response stays above the worst case that G s ( ) 2 0

might have (slowest and least damped). Then Theorem 1 can be applied to find the dynamic upper bound on the disturbance estimation error.

The weights matrix Q (allowing to compute the matrix P 0 and to define the contribution of each estimation and tracking error) has in this case four diagonal elements. This matrix can also be normalised and we recommend the following weights repartition (based on extensive simulation trial and error tests):

                                        Q = 0.02 0 0 0 0 0.08 0 0 0 0 0.45 0 0 0 0 0.45 . ( 47 
)
To find the parameter μ we follow the same procedure given by Equation ( 41), based on choosing error thresholds on position and velocity estimation and tracking errors:

⊤                                                       μ x v ξ ξ E P = ~. x v 1 0 max max max max (48)
As mentioned in the 1D case, the determination of their error thresholds is mainly conditioned by the measurement noise level and should be set experimentally. In practice the same values can be chosen for both tracking and estimation terms.

| Discrete-time implementation

To make the robust term less sensitive to the sampling rate of the control system, the same design procedure of Section 3.3 was applied to the discretized dynamics of the error ψ. In fact, if T e is the sampling time interval of the control board, then the dynamics in Equation ( 26) can be written as , using the same design weights matrix Q.

ψ ψ T T αu A E = ( ) + ( )( - ),

| Simulation tests in the 1D case

We consider the system in Equation ( 11) representing the rotation around one of the UAV body axes (for small angles), with the following initial knowledge about the system parameters:

• Actuator's efficiency ω = 1 and maximum torque range u = 4Nm max .

• Actuator's dynamics, linear first order with time constant τ = 0.05s act . We assume that this value is known, the uncertainty on the actuators bandwidth will not be analysed in this paragraph.

• Inertia J = 0.015kg m 2 , so α = 66.67. The maximum torque that the actuator can achieve is 4N m.

The controller (given by Equations 15 and 16) is tuned using frequency considerations:

• Reference generation: as explained above in Section 3.6, the rate reference is generated from the output of a P controller on the angle. So, if tr = 0.5s 95% and ρ = 0.9 then k = 4.44s -1 and f = 2.3Hz. • The weights matrix

                      Q = 0.1 0 0 0.9 . ( 50 
)
Note that the weight on the tracking error is set to be bigger than the one on the estimation error, this is recommended. μ can then be found by using Equation ( 41) by choosing the error threshold.

For this example we take ξ v ~= ~= 0. ), as for the I part, the gain boosted in a way to have a similar disturbance rejection capabilities to ADRC in nominal conditions. However, by augmenting the integrator gain, the tracking performance is also impacted (which is why a PI controller cannot achieve independently good tracking and good disturbance rejection as opposed to ADRC), so the integrator frequency f integ cannot be made equal to the ESO one because it could lead to instability.

A good trade-off frequency for integrator is found to be f

= 0.45Hz integ , leading to k πf k = 2 = 25.2 i p integ .
The simulation results are given below, for different uncertainties on the system input gain: the system inertia and actuator efficiency are varied within the fixed intervals, without changing the initial control tuning which is based on the initially available knowledge of parameters (given above). The blue curves correspond to the PI controller, the red ones to the normal ADRC and the yellow ones to the robust one. The performance improvement is clear. The shown simulation scenario corresponds to tracking of an angular target during which a step disturbance (with a slope rate limited to 10N m/s) is injected at t = 3s.

| Nominal case δ = 0

We start by the ideal case, where the system parameters are exactly equal to those used to tune and implement the ADRC controller. To check the equivalence of the controllers, the disturbance-free case is shown first. In Figure 9a, it can be seen that the proportional-integral-derivative (PID) controller leads to similar dynamics on the rate and angle. Additionally, the robust term does not add much correction as the error does not get outside the interval set by μ as can be seen in Figure 9b (since no external or internal disturbance is present in this case).

The step disturbance is then added. As shown in Figure 10, even when system parameters are perfectly known, the robust term leads to better performances.

| Case of an overestimation of system gain

When the system gain is overestimated, the control action is laggy because the system is expected to be faster than reality, the resulting closed-loop is much slower than the design objective. In Figures 11 and12 one can see that adding the robust term allows one to make the system faster and even able to avoid instability. In fact in the extreme case shown in Figure 13, the PI and even the normal ADRC controller fail to stabilise the system (blue and red curves) due to the big uncertainty on α and adding the robust term allows one to recover from it (yellow curve).

| Case of an underestimation of system gain

When the system gain is underestimated, the control action is more aggressive than needed because the system is expected to be slower than reality, the resulting closed-loop is much faster than the design objective and the errors are already within the desired μ interval (cf.

Figures 14b and15b) so the robust action is not really required, which makes the choice of the regularisation near-zero flat function (cf. Figure 7) even more relevant. In the cases of δ = -1 (Figure 14) and δ = -3 (Figure 15), it is clear that adding the robust augmentation allows one to reduce the tracking errors even in these conditions, however it tends to send very aggressive commands to the actuator, which justifies the saturation of the function ζ to a preknown achievable domain. It is also noted that PI controller performs surprisingly well in such conditions, in fact, this controller is tuned for much slower dynamics, so the integrator is far from the instability region and it does not excite the already fast system unnecessarily.

| ROBUST ADRC FOR A MULTIROTOR UAV

| Internal uncertainties for multirotor UAVs

Uncertainties on multirotor UAVs have different origins and can cause performance degradation when the ADRC is used, because it is These uncertainties can come from:

• mass and inertia estimation,

• actuators efficiency and nonhover flight effects,

• unmodelled drag forces and torques. These uncertainties cannot be avoided in most cases and unless accurate models are available, robust flight controllers have to be designed. In our work, we assume though that it is possible to have upper and lower bounds on the parameters as described in Section 3. We show in this section how to concatenate the robust ADRC controllers presented above to design the position and attitude control for an underactuated multirotor UAV.

| Position controller

The position targets are provided by a ground station as a sequence of p tgt points to be visited and therefore the trajectory to be followed must be generated by the position controller. To do this, a trapezoidal velocity trajectory (defined by a maximum velocity and a maximum acceleration) is calculated from the position target. 

( ) σ α u p k p k p p v u = 1 ˆ¨+ (˙+ ( -) -) - -ˆ+ T F v p ref ref ref r t t sp  (52)
such that:

• α = ω m ,
where ω is the efficiency of the thrust and m is the UAV mass. α ˆis the estimate of α.

• p ref is generated using a third-order TD starting from p sp , with a cutoff frequency f TDp :

                     ∫ ∫ ∫ μ μ μ p a p p v a p v a p v ¨= = ( ( - ) -3 -3 ), ˙= = , = . ref ref 3 sp ref 2 ref ref ref ref ref ref ref (53) Such that μ πf = 2 TDp
• k vt and k pt are the vectors of position and velocity tracking gains.

• σ ˆF is the estimation of disturbance forces computed using an ESO of the second order (using position measurements) and with a cutoff frequency noted f ESO F (3D version of Equation 44) where T ˆact is the estimation of the total thrust produced by the propellers, computed using the commands sent to the motors (PWM or RPM signals) and the available thrust model.

                                                                                       σ σ πf α T πf p p p v p p v R p p ˆ= ( -ˆ), ˆ= ˆ+ 3(2 )( -ˆ), ˆ= + ˆ0 0 - ˆ+ ˆ+ 3(2 ) ( -ˆ),
• u r is the 3D robust term computed as explained in Section 3.5 for three decoupled x, y and z dynamics.

The last step is to extract an attitude setpoint from this thrust vector u T . Indeed, if the norm of this vector corresponds to the total thrust to be sent to the propellers, its direction gives directly the desired attitude of the UAV (roll and pitch angle), and thus the addition of a yaw command yaw sp (also provided by the ground station) allows one to build a desired rotation matrix R sp . More precisely, this is written as follows:

R b b b = [

].

x y z sp F I G U R E 13 One-dimensional simulation with applied disturbance: δ = 0.833-Zoom on the stable robust response (yellow curves)-The robust ADRC augmentation prevents the system from diverging. (a) Right, disturbance estimation; left, rate angle tracking; and (b) ν error with μ interval in green (left) and control input (right). ADRC, Active Disturbance Rejection Control; PI, proportional-integral (2013) or in Castillo et al. (2019). A proportional law is to this error to it into a desired angular

(55) Such that ∥ ∥ ∥ ∥                                                                  sin yaw cos yaw b b b b b b b = - , = , = -( ) ( ) 0 × 
⊤         e R b Ω = × = , z z R R R sp sp (57)
where b z is the orientation of the thrust vector (z-axis of the UAV body) and b zsp is the desired orientation sent by the position controller. For the yaw angle error, the reference yaw value is used and compared with the measured value. The gains k R can be calcu- lated using a linear approximation of the dynamics.

To track this setpoint Ω sp , ADRC is applied allowing to compute the desired torque Q sp :

α σ Q Ω k Ω Ω Q = ˆ( ˙+ ( -)) -ˆ+ , Q Ω sp -1 ref ref r t ( 58 
)
where

• Ω ref is computed using a second-order TD with a cutoff frequency

f TD Ω :                    ∫ ∫ γ π f πf γ Ω Ω Ω Ω Ω Ω = 4 ( - ) -4 ˙, ˙= , = ˙. 2 TD 2 sp ref TD ref ref ref ref Ω Ω (59) 
• k Ωt is the vector of rates tracking gains.

• σ ˆQ is the estimation of the torque disturbance computed using a first-order Extend State Observer, using Gyro measurements (3D version of Equation 19) having f ESO Q as a cutoff frequency:

           σ α α σ πf πf Ω Ω Ω Q Ω Ω ˆ= ˆ(2 ) ( -ˆ), ˆ= ˆ( ˆ+ ˆ) + 4 ( -ˆ). Q Q -1 ESO 2 act ESO Q Q (60)
• The robust term Q r is computed on the basis of three scalar systems as shown in Section 4.2, one for each axis of rotation

                                    Q Q Q Q = r 1 r 2 r 3 r
. The expression of Q i r is the same as that of Equations ( 30) and ( 31) by adapting the error terms and the values of the corresponding parameters.

| Note

In practice, the Gyro rate measurements are so noisy (propellers rotation, structure vibrations, IMU measurements quality, etc.) and are not used as such in the control algorithm but are filtered by a low-pass filter with a cutoff frequency of μ filt (rad∕s). An improvement of the basic ESO was then developed to take into account this filtering and limit the oscillations due to the delay it introduces. This algorithm is similar to a Generalised (GESO) where the dynamics of the low-pass filter is added and the observation gains have been adopted to keep the same bandwidth

f ESO Q : (a) (b) 
G U R E One-dimensional with disturbance: δ = -1. (a) Right, disturbance estimation; left, rate and angle tracking; and (b) ν error with μ interval in green (left) and control input (right). ADRC, Active Disturbance Rejection Control; PI, proportional-integral

                       σ α α σ μ π f μ Ω Ω Ω Ω Ω Ω Ω Ω Q Ω Ω ˆ= ˆ( -ˆ), ˆ= ( ˆ-) + (6 - )( -ˆ), ˆ= ˆ( ˆ+ ˆ) + ( -ˆ). Q πf μ f f f f Q πf μ f -1 (2 ) filt ESO filt act 3(2 ) Q Q Q ESO 3 filt ESO 2 filt (61)

| Simulation

We verify the combined position and attitude ADRC controller on a simulated UAV. A quadrotor is considered, with the following initial knowledge of its parameters:

• Thrust and torque actuators efficiency, respectively, ω = 0.96

f and ω = 1 q .
• Mass 3kg.

• Principal inertia moments I I = 0.08kg m , = 0.08kg m x y 2 2 and

I = 0.16kgm z 2 .
• The distance between the geometric centre and the motors is 0.29m.

• The propellers can produce up to 20N of thrust each.

Blade flapping drag, profile drag and parasitic drag were also added to simulate the aerodynamic effects. Besides, numeric noise was added on position and angular rates measurements, along with time delays.

We consider the rejection of combined force and torque disturbances on the simulated multirotor. These disturbances are modelled as linear and angular velocities that affect the UAV dynamics through the drag model. To evaluate the robustness of the proposed ADRC augmentation, we consider several scenarios where I G U R E 15 One-dimensional simulation with applied disturbance: δ = -3. (a) Right, disturbance estimation; left, rate and angle tracking; and (b) ν error with μ interval green (left) and control input (right). Disturbance Rejection Control; the thrust efficiency or the mass and inertia are poorly estimated. These uncertainties will impact both the linear and angular velocity control loops at the same time.

| Parametric uncertainties

We assume the following upper and lower bounds on the mass, inertia and propellers efficiency: The test scenario consists of making the UAV follow a desired position trajectory (Figure 16).

The used control parameters (based on the initial knowledge of the system parameters) are summarised in Table 1. In the sequel, the following colour code is used: blue is for the normal ADRC, red is for the robust one and green is for the setpoints (desired values).

In the ideal case where all the parameters are known and with no external disturbances, we obtain the results shown in Figures 17b, 18 

Q

This case is easier to recover because the system is already overexcited by the control action due to the fact that the system gain is thought to be smaller than the reality. That is why the effect of the robust augmentation is less important. The disturbance rejection and trajectory tracking results can be seen in Figures 28a,b and29.

We notice that the robust augmentation still allows one to reduce the position error by about 40% (Figures 30 and31).

| Experimental results

In In both of these cases, the controllers are not aware of the additional mass and are tuned as if it were not there, which is considered as an internal parametric uncertainty. This leads to a case of an overestimation of the system gain (from the point of view of the controllers the drone is considered lighter and with Attitude control (roll, pitch, yaw)

TD frequency (HzHz) 3.5 3.5 3.5 6.9 6.9 The μ values used in the experiment (cf. Table 2) are computed using Equations ( 41) and ( 48) based on the following error thresholds:

• Position error: 2 cm on x y , and z.

• Velocity error: 0.3 m/s on x y , and 0.2 m/s on z.

• Angular rates error: 0.5 rad/s on Roll/Pitch and 0.35 rad/s on Yaw, and on the same weights used in the simulation for the matrices Q:

• Weights of the robust position control:

                                        Q = 0.02 0 0 0 0 0.08 0 0 0 0 0.45 0 0 0 0 0.45 .
• Weights of the robust angular rates control: 

                      Q = 0.1 0 0 0.9 . F I G U R E

Dropped mass of 305 g

We increase the mass of the dropped payload and we repeat the same experiment. The same error reduction tendency can be seen in Figures 35 and36. The video of this test can be seen in https:// youtu.be/9jKolRjkcQg.

| Wind disturbance rejection

The wind is generated by three 1-m-diameter fans disposed as shown in Figure 37, allowing to create a turbulent airflow reaching a maximum wind speed of 5m/s at 1m distance from the fans. If the attitude dynamics can be estimated, it is possible to take them into account when computing the robust terms (Figure 47). To do, the derivative states of the error signals have to be added to the dynamics, so they need to be numerically differentiated. This could be an interesting perspective for this study. In the design method of the robust augmentation, the actuator dynamics and maximum thrust and torque range were not taken into account, however in practice we noticed that these effects had a noticeable effect on how much the additive terms can be boosted. A solution we proposed is to limit the robust term to stay within a permissible interval. A better way to deal with it would be to adapt this limit in real time according to the saturation status of the motors.

This new robust ADRC controller can be a viable alternative to oversimplified or overcomplicated controllers when the disturbances affecting the UAV are both exogenous and endogenous. Apart from the proven stability and performance enhancements that bring this ADRC modification, it can be used for monitoring purposes. In fact, it provides new tools to assess the overall performance of tracking and estimation (nominal behaviour interval μ μ [-, ]), which can be used in higher-level decision algorithms to ensure the flight security.

F

  I G U R E 2 Simplified diagram of the classical structure of an underactuated multirotor UAV autopilot-line width is proportional to the signal dimension. UAV, unmanned aerial vehicle F I G U R E 3 Simplified diagram of the structure of an underactuated multirotor UAV autopilot with disturbance rejection. UAV, unmanned aerial vehicle

F

  I G U R E 5 Root locus of the closed-loop Active Disturbance Rejection Control (ADRC) when the ratio α α ˆvaries from 0.1 to 10 F I G U R E 6 Root locus of the closed-loop Active Disturbance Rejection Control (ADRC) when the ratio α α ˆvaries from 0.01 to 2-instability occurrence

  Figure8where a case of a not well damped G s ( ) 2 0 is considered.

  to compute σ ~max Equation38).

  using the Zero-Order-Hold method from A 0 and E 1 and T e . The approach to design u r k is then the same by considering the discrete Lyapunov function

TD

  and we set σ ˙max to 0 N m/s.

  As a baseline, we use a PI controller on the rates whose P part (the gain k p ) is chosen equivalent to the reference dynamics of the second-order TD as explained in Section 3

  One-dimensional simulation without applied disturbance: system parameters are perfectly known δ = 0-PI, ADRC and robust ADRC have similar performance. (a) Right, disturbance estimation; left, rate and angle tracking; and (b) ν error with μ interval in green (left) and control input (right). ADRC, Active Disturbance Rejection Control; PI, proportional-integral based on disturbance cancellation and reference trajectory tracking.

  can then be applied to allow the tracking of this position setpoint p sp , it allows one to compute the desired thrust force along the inertial frame axes u Tsp . U R E 10 One-dimensional simulation with applied disturbance: system parameters are perfectly known δ = 0-ADRC has significantly better disturbance rejection capabilities than PI. (a) Right, disturbance estimation; left, rate and angle tracking; and (b) ν error with μ interval in green (left) and control input (right). ADRC, Active Disturbance Rejection Control; PI, proportional-integral

  U R E 11 One-dimensional simulation with applied disturbance: δ = 0.2-The robust ADRC augmentation allows one to recover ideal performances. (a) Right, disturbance estimation; left, rate and angle tracking; and (b) ν error with μ interval in green (left) and control input (right). ADRC, Active Disturbance Rejection Control; PI, proportional-integral

  Attitude controllerThe rotation matrix R sp computed by the position controller is used to generate a rotation speed setpoint Ω sp . One way of doing this is to use quaternions to have singularity-free angular errors as in Brescianini et al.

  R E 12 One-dimensional simulation with applied disturbance: δ = 0.7-The robust ADRC augmentation prevents the system from (a) Right, disturbance estimation; left, rate and angle tracking; and (b) ν error with μ interval in green (left) and control (right). ADRC, Control; PI, proportional-integral

•

  Actuators U R E 16 Position trajectory to be followed (simulation scenario)T A B L E 1 Simulation control settings

F

  I G U R 17 Position of the simulated UAV in the case without parametric uncertainty δ = 0 and with no external disturbance. (a) Three-dimensional view with maximum-error-radius spheres and (b) time curve. 3D, three-dimensional; ADRC, Active Disturbance Rejection Control; UAV, unmanned aerial

and 19 .

 19 It is clear that the ADRC tuning allows one to achieve excellent trajectory tracking and that adding the robust terms does not have much effect, in fact the errors are already almost inside the small error intervals set by μ values (Figure19)

  .

  The goal is now to see how do both controllers operate when disturbances are present. To do so we simulate the torque and force generated by wind and apply them at the centre of mass of the UAV.The considered wind speeds are shown in Figure20. According to these speeds, the virtual wind has a linear component along one axis of the UAV but with a rotational component along the other two perpendicular axes. This allows one to evaluate the coupling effects between the different axes. This wind generates the disturbing forces and torques (which depend on the vehicle speed and therefore on the control performance as well) represented in Figure21.

F

  I G U R E 18 Attitude of the simulated UAV in the case without parametric uncertainty δ = 0 and with no external disturbance. ADRC, Active Disturbance Rejection Control; UAV, unmanned aerial vehicle F I G U R E 19 Position (left) and Angular rates ν errors with μ intervals in green (right) in the case without parametric uncertainty δ = 0 and with no external disturbance F I G U R E 20 Linear and angular speed of the simulated wind F I G U R E 21 Disturbance force and torque exerted on the UAV (due to aerodynamic drag and centre of gravity offset). UAV, unmanned aerial vehicle The performance evaluation is performed by looking at the position error, as well as the angular response of the UAV. 4.4.2 | Ideal case: No uncertainty δ = 0 f and ⊤ δ = [0 0 0] Q It can be seen from Figures 22a,b and 23 that even in the ideal case of perfect parametric knowledge, the robust augmentation (in position and attitude) allows for a better trajectory tracking and disturbances rejection (Figure 24).

Q

  It can be seen from Figure25a,b that the robust augmentation allows one to recover the performance degradation (compared with the ideal case Figure22b). The position error is reduced by more than 40% (Figures25 and 27). The attitude tracking is also improved, especially on the Yaw angle (Figure26). It is also interesting to see (a) (b) F I G U R E 22 Position of the simulated UAV in the case without parametric uncertainty δ = 0. (a) Three-dimensional view with maximum-error-radius spheres during the disturbance application and (b) time curve. 3D, three-dimensional; ADRC, Active Disturbance Rejection Control; UAV, unmanned aerial vehicle F I G U R E 23 Attitude of the simulated UAV in the case without parametric uncertainty δ = 0. ADRC, Active Disturbance Rejection Control; UAV, unmanned aerial vehicle F I G U R E 24 Position (left) and angular rates ν errors (right) with μ intervals in green in the case without parametric uncertainty δ = 0that the robust augmentation allows one to converge faster to the desired equilibrium on takeoff (Figure25b).

  Figure 32.

  quadrotor weighing 1.5kg and having as moments of inertia I I = 0.015kg m , = 0.0149kg m x y 2

F

  I G U R E 33 Comparison between ADRC and robust ADRC during the first mass-drop experiment (190g). (a) Absolute position error and (b) velocity curves. ADRC, Active Disturbance Rejection Control

  Figure 31. When the UAV is hovering, the mass is dropped, creating a step-like disturbance on the altitude control loop and shifting the equilibrium of the UAV to a lower thrust. This combination of external disturbance and internal uncertainty is very common in UAV applications and allows one to demonstrate the robustness of the flight controllers. In this paragraph we show the comparison between the resulting position holding performances when both normal and robust ADRCs are used. From Figure 33, we can see that the robust ADRC allows one to reduce the position displacement due to the

F

  Figure 42. The same experimental comparison can be also watched on video: https://youtu.be/Ghnjsz2KKSU. The position tracking results can be seen in Figures 43 and 44. The corresponding ν errors used by the robust position controller are in Figure 45 where it is clear that the robust controller allows one to bring the combined error to the interval μ μ [-, ]. One can see that the maximum displacement is reduced by 50% when the robust ADRC is used. The corresponding attitude tracking errors are shown in

  the classic ADRC design for a multirotor UAV application is proposed. It allows one to make the closed-loop less sensitive to the uncertainties on the system parameters. The proposed controller has an additive term that is computed based on Lyapunov theory and the knowledge of upper and lower bounds on the parameter uncertainties. The resulting control algorithm has some similarities with Sliding Mode Control because it consists of a gain (related to the maximum uncertainty intervals) multiplying the sign of some error function. However, the proposed controller is less aggressive thanks to a time-variable upper bound that takes advantage of the disturbance estimation dynamics. Besides, the robust augmentation allows only to help the classic ADRC recover its performances when error terms get bigger than nominal conditions which happen in the presence of system parameters mismatch.The theoretical stability analysis is provided on a simplifieddynamics system and the validity of the approach is confirmed through simulation and extensive experimental tests on the position and attitude control of a multirotor UAV. To test the robustness of the approach to parametric uncertainties, mass-drop experiments were performed, in addition to flying in windy conditions with an attached payload (whose mass is unknown from the controllers' point of view) as in Figure32. A frequency-based guideline to tune ADRC for the considered dynamics is also provided to simplify the selection of the tracking and estimation gains. This tuning method is the resultF I G U R E45 ν Position errors during trajectory tracking (μ ADRC, Rejection Control F I G U R E 46 Attitude tracking errors during the trajectory tracking experiment. ADRC, Active Disturbance Rejection Control; MSE, Mean Squared Error U R E 47 Normalised force and torque disturbances estimations during the trajectory tracking experiment. (a) Force disturbance estimation and (b) torque disturbance estimation of back-and-forth tests between simulation and experiment, and was successfully applied (Section 4.5). Videos of some of the carried experiments are also provided. 8

  

  

  

  

  1 Simplified diagram of the underactuated UAV dynamics (red, numerical signals; black, physical signals). UAV, unmanned aerial vehicle

  First of all, by application of the convolution theorem, we have

	1. Let F s ( ) 0	be a stable transfer function and u t ( ) a bounded
	continuous signal of exponential order. Let U s ( ) and Ū s ( ) be the Laplace
	transforms of u t ( ) and   u t ( ), and Y s ( ) = ( ) • ( ) F s U s 0	. Let F s ( ) be a stable
	transfer function with a positive time-domain impulse response larger in
	magnitude than the impulse response of F s ( ) 0	.
	Then,		
	y t ( ), the inverse Laplace transform of Y s ( ), can be bounded by the
	time domain function y t ( ) ∞	defined as the inverse Laplace transform of
	the product F s Ū s ( ) • ( ).	
	Proof. Let f t ( ) 0	and f t ( ) be the impulse time responses of F s ( ) 0	and
	F s ( ).		

  The uncertainties on this actuator model only affect the transient behaviour through the transfer function

	τ + ( act	τ s τ s τ τ -1 + ˆ) + âct act act act 2 (such that τ ~=	τ act	τ -âct act

According to our acquired experience after numerous simulation and experimental tests, some of which are given in Section 4.

Even with no mass attached, δ is not exactly equal to 0 because the inertia and actuators efficiency cannot be precisely known.
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https://youtu.be/9jKolRjkcQg. Windy trajectory tracking in the presence of an attached swinging mass: https://youtu.be/Ghnjsz2KKSU