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bstract:
e analyze the integration of intermittent renewables-based technologies into an electricity mix comprising of conventional energy

ntermittency is modeled by a contingent electricity market and we introduce demand-side flexibility through the retailing structure. Retailers
ropose diversified electricity contracts at different prices, but in an insufficient number to cover intermittent production. These delivery contracts
re modeled similarly to numeraire assets. We study the competitive equilibrium of the state-contingent wholesale electricity markets and
he delivery contract markets. We also provide an analysis linking the delivery contracts to social welfare. Finally, we discuss the conditions
nder which changing the delivery contracts improve penetration of renewables and increases welfare. These provide useful insights for managing
ntermittency and achieving renewable capacity objectives.
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1. Introduction

The integration of renewables into the electricity mix is widely
ccepted as having a significant role to play in decarbonizing the
lectricity industry. Most particularly, the International Energy
gency reports on the deployment of energy sources as wind
nd solar helping in increasing renewables-based electricity. Still,
heir share in the global electricity mix remains quite modest,
round 10% in 2021 (IEA 2021). A persisting obstacle to the
doption of these renewables lies in their variable and uncertain
ature, collectively referred as intermittent (see Perez-Arriaga and
atlle 2012, Verzijlbergh et al. 2017).

✩ The authors thank E. Franquet and S. Rouillon for their helpful comments
and discussions on an early version of the manuscript. We would also like to
thank an associate editor and an anonymous referee for their useful suggestions.
The project leading to this publication has received funding from the French
government under the ‘‘France 2030’’ investment plan managed by the French
National Research Agency (reference: ANR-17-EURE-0020), from GREEN-Econ
(reference: ANR-16-CE03-0005), and from Excellence Initiative of Aix-Marseille
University - A*MIDEX.

∗ Correspondence to: AMSE, Maison de l’Économie et de la Gestion d’Aix, 424
hemin du Viaduc, 13080 Aix-en-Provence, France.

E-mail addresses: jean-henry.ferrasse@univ-amu.fr (J.-H. Ferrasse),
andeeta.neerunjun-demaiziere@univ-amu.fr (N. Neerunjun),
ubert.stahn@univ-amu.fr (H. Stahn).
1 P-mail address: M2P2, Europôle de l’Arbois - Pavillon Laennec BP80, 13545

Aix en Provence, France.
2 P-mail address: AMSE, Maison de l’Économie et de la Gestion d’Aix, 424

Chemin du Viaduc, 13080 Aix-en-Provence, France..
 o

1

Electricity from renewables varies significantly with natu-
ral and uncontrollable conditions.3 These render the production
process from renewable technologies not only intermittent but
also inflexible, technically termed as non-dispatchable.4 The in-
egration of renewable electricity adds a new source of inter-
ittency on the grid; demand intermittency is a long-existing
henomenon that is mainly managed with investment in dis-
atchable power plants4 (IEA 2011). Hence, intermittency from
enewables challenges the imperative of the electricity industry
o constantly balance electricity supply and demand. Disruptions
n this balance have both technical and economic impacts.5 Con-
rary to demand intermittency, this new source of intermittency
till needs to be tackled.

3 As examples, electricity production from wind turbines fluctuates with wind
peed and direction and that from solar photovoltaics with radiation intensity
Crawley 2013).
4 Renewable technologies such as wind turbines and solar photovoltaics are
on-dispatchable as their output cannot be turned on, off, or adjusted according
o variations in electricity demand. In contrast, conventional generators such as
oal, nuclear, hydro, and gas power plants are controllable and dispatchable. See
or instance IEA-ETSAP and IRENA (2015) on dispatchable and non-dispatchable
technologies.
5 For example, mismatches between supply and demand can lead to

frequency fluctuations that in turn cause brown-outs or blacks (see, for in-
stance, Passey et al. 2011). These result in heavy economic losses such as
manufacturing and sales losses, interruption of services, etc. See, for exam-
ple, Küfeoğlu and Lehtonen (2015) on the economic consequences of power
utages on service sector customers.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mathsocsci.2022.09.001&domain=pdf
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In the above context, introducing flexibility in the electric-
ty market is recognized as a solution to managing renewables 
ntermittency (Cochran et al. 2014, Eurelectric 2014, IEA 2011, 
EA-ISGAN 2019). Flexibility can be implemented upstream of the 
arket so that supply follows demand. For example, it can be 

hrough existing or new flexible power plants, storage capacities 
Benitez et al. 2008, Green and Vasilakos 2012, Pommeret and
chubert 2022, Sioshansi 2011) and interconnection (Abrell and 
ausch 2016, Yang 2022). It can also be developed downstream 
hrough demand-side flexibility that requires demand to follow 
upply. In this paper, we focus on the latter.
The main objective of our work is to provide an approach

o manage intermittent supply by means of demand flexibility 
hrough the retail market. The importance of demand flexibility 
as first highlighted with the question of optimal investment in 
roduction capacities to meet intermittent demand. Borenstein 
nd Holland (2005) and Joskow and Tirole (2007) study one 
eakness of the electricity market to derive optimal investment 
rograms. They point out the disconnection between wholesale 
rices that vary with electricity provision and retail tariffs such as
he flat tariff that do not reflect these changes.6 Hence, consumers 
re unaware of varying wholesale market conditions including 
hose where expensive power plants are run to meet peak de-
ands. In a framework where demand is intermittent, Borenstein 
nd Holland (2005) and Joskow and Tirole (2007) suggest imple-
enting time-varying tariffs7 to improve efficiency of the market 

n terms of capacity investment. In practice, time-varying tariffs 
hat have been developed include Time-of-Use (ToU), Critical 
eak Pricing (CPP), Variable CPP, and Real-Time-Pricing (RTP). 
hese tariffs are able to shape demand thereby reducing peaks8 

nd investments in expensive peaking power plants used only 
or a few hours during a year (IRENA 2019). Since these re-
ail contracts can stabilize demand intermittency, we propose to 
ap into them and/or use more sophisticated ones to now ad-
ust demand according to intermittent supply. Nevertheless, the 
ontracts should not be too sophisticated, especially for house-
olds that do not necessarily react to non-linear electricity prices 
see Ito 2014 and Shaffer 2020 for empirical evidence).

Can retail contracts be designed to unlock demand flexibility
nd ease the integration of intermittent renewable technolo-
ies? As part of their work, Ambec and Crampes (2012, 2021) 
nd Rouillon (2015) address this question by studying the optimal 
nvestment in renewable capacity in a framework with inter-
ittent supply. While Ambec and Crampes (2012) consider that
onsumers can use either a flat retail tariff or one that varies
ith the availability of the intermittent source of energy, Ambec
nd Crampes (2021) and Rouillon (2015) consider that there is a 
ix of both consumers. In this paper, we study a more general
ituation where retailers propose a large set of flexible delivery 
ontracts.
To investigate the above question, we have in mind a

heoretical framework of capacity investment and electricity pro-
uction with two types of energy source: an intermittent, non-
ispatchable source such as wind or solar and a non-intermittent,

6 Retailers buy electricity at wholesale prices that vary with electricity
rovision (prices are low when power plants with low marginal costs of
roduction are run and vice-versa.), with the commitment to supply electricity
eliably to consumers for any level of demand and at fixed tariffs. The widely
pread retail tariff is the flat tariff whereby consumers are charged the same
rice per unit of electricity all day.
7 An extensive literature on time-varying tariffs can be found in the work
f Borenstein et al. (2002).
8 In France, for example, the majority of households have retail contracts with

peak/off-peak”hours tariffs where they pay a higher price during peak demand
ours and a lower price during off-peak demand hours. This retail contract has
een able to incentivize consumers to use electric water heaters to heat water
uring off-peak hours rather than during peak hours, thereby alleviating the
eak demand for electricity due to water heating.
 (

2

dispatchable source such as nuclear or fossil fuel. We propose
that electricity production due to the integration of the inter-
mittent renewable technology depends on conditions such as
weather (e.g. “with”or “without”the intermittent source) or times
of day (night, dawn, daytime, and dusk). We refer to these
conditions as states of nature. Electricity production is there-
fore state-contingent. We consider that the wholesale market
is a contingent one where contingent electricity is offered at
contingent prices. We further propose that retailers introduce de-
mand flexibility in the retail market through diversified electricity
delivery contracts that are supplied at different prices. These
allow consumers to choose their optimal electricity consumption
based on their flexibility. The diversity of the delivery contracts
is depicted through what we call base state-contingent electricity
delivery contracts. Their structure is similar to the asset structure
in the incomplete market theory (see, for instance, Magill and
Quinzii 2002). These base delivery contracts can well generate
contracts with flat and time-varying tariffs, but one can also think
of more complex contracts depending on weather conditions or
on the pressure on the wholesale markets. In this paper, we pro-
vide a general model for the structure of the base state-contingent
electricity delivery contracts.

In a competitive setting, we study the equilibrium of the
state-contingent wholesale and different retail markets where the
optimal investment in intermittent renewable capacity is endoge-
nous. We assume that the structure of the base state-contingent
delivery contracts is not rich enough to generate retail delivery
contracts that allow perfect adjustment of demand to variations
in supply. This lack of richness can be explained, for instance, by
variations in conditions and thereby electricity supply at a level
of granularity that is too fine to incite a response from consumers.
Nevertheless, we show that the electricity market equilibrium
and social welfare are constraint efficient. The constraint is in-
duced by the limited number of base delivery contracts that
constrains electricity allocations. We are also able to determine
the conditions under which changing the base delivery contracts
improves (i) welfare, (ii) the degree of integration of the re-
newable capacity, and (iii) both. Ultimately, we find that it is
impossible to find a change in the base delivery contracts struc-
ture that both increases investment in renewable capacity and
reduces the production of conventional electricity in each state of
nature. Nevertheless, it may occur that the average conventional
production decreases.

The rest of the article is organized as follows. Section 2
resents the theoretical framework and the main assumptions. In
ection 3, we describe the electricity contract markets and derive
ome useful properties of electricity demand. Section 4 studies
the state-contingent electricity supply and describes the market
equilibrium. Section 5 provides a welfare analysis. In Section 6,
we study the impact of changing the base delivery contracts
on social welfare, investment in intermittent renewable capac-
ity, and conventional production. Section 7 concludes. Technical
proves are relegated to the appendix.

2. The main assumptions

Our paper principally aims at addressing two crucial features
of renewables: intermittency and the decision on optimal invest-
ment in capacity. For this purpose, we use a static framework.
However, intermittency is not only a matter of physical condi-
tions on which renewables depend, but also how these conditions
change over time.9 As such, there is a dynamic effect in renewable

9 For example, electricity production from wind turbines depends on wind
peed which varies on all time scales, from sub-seconds to decades Widén et al.
2015).
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electricity production that we capture by a set of states of nature 
 ∈ {1, . . . , S}. Since electricity production is state-contingent 
and the wholesale market is organized in each state, we denote 
by p(s) the contingent electricity price in state s and by p = 
p1, . . . , pS ) ∈ RS , the vector of all state-contingent prices. This 
choice allows us not to explicitly introduce probabilities nor to 
introduce a Von Neumann Morgenstern setting.

Another important feature of this framework is with respect
to decision-making. Renewables-based producers behave ex-ante,
i.e. before the realization of the state of nature. They choose 
how much to invest in intermittent renewable capacities by an-
ticipating their future returns. Likewise, conventional electricity 
producers choose their dispatchable production strategy before-
hand. Retailers and consumers ex-ante exchange retail contracts 
based respectively on their expected profits and utility for ex-post
lectricity deliveries, i.e. deliveries on the realization of the state 

of nature.
Keeping these two features in mind, we can now move to

describe the agents of the electricity markets.
The intermediary retailing structure between electricity pro-

duction and consumption is one of the novelties of the model. 
In fact, we assume that consumers do not have direct access
to the wholesale electricity markets. They buy electricity delivery 
contracts from competitive retailers.

These contracts can take several forms. For instance, the most
common contract is the flat-rate contract. In this case, the con-
sumer pays the same price for each unit of electricity, irrespective
f the state of nature realized. In our model, it implies that the 
onsumer chooses a quantity θ of contracts at a price q for a
andom electricity delivery of e ∈ RS where e is the unit vector. 
n practice, there are also state-contingent contracts such as the 
peak/off-peak”contract. In this case, the consumer pays qp for 1 
nit of electricity in a subset, Sp, of the states of nature. For the 
omplementary even, he pays qp for 1 unit of electricity in states 
p. We interpret this contract as a 2-column matrix:

1 2
Sp
Sp̄

[
eSp 0
0 eSp̄

]
where eSp and eSp̄ stand for the unit vectors in R#Sp and R#Sp̄

We identify this “peak/off-peak”contract as the composition of
two base state-contingent delivery contracts. The first base contract
corresponds to the first column. The consumer buys quantity
θp of this contract at price qp. The second column is the sec-
ond base contract with likewise interpretation. We assume that
every existing retail contract can be decomposed into base con-
tracts, perhaps different from the unit vectors. By repeating this
operation for all existing contracts, we can extract a linearly
independent subset of the base contracts. This subset represents
the contract structure of our model.

More formally, we say that the holder of a unit base delivery
contract k has the right to a random electricity consumption of
ak = (a1k, . . . , aSk) where ask ≥ 0 denotes electricity delivered
in state s. We introduce a set K = {1, . . . , K } of unit contracts
k that are offered on K competitive retail markets at price q =

q1, . . . , qK ) where qk stands for the price of one unit of contract
. We summarize the electricity delivery in the (S, K ) matrix
= [ak]Kk=1 ∈ RSK

+
. If θ = (θ1, . . . , θK ) ∈ RK denotes a portfolio

of contracts, then Aθ ∈ RS describes the random electricity flow
induced by the portfolio θ. We also introduce some assumptions
on A. Firstly, we say that A is of full rank, here rank(A) = K . This
imply means there is no redundant contract, i.e. a contract that
an be obtained by a portfolio of the other contracts. Secondly,
y suitable permutations of the states of nature, we say that
can be decomposed into

[
AS−K

]
where A is a matrix of
AK S−K

3

dimension (S − K , K ) and AK is an invertible matrix of dimension
K . Thirdly, we assume that K < S since the retailers cannot
propose a contract structure A that is rich enough to provide a
perfect adjustment of demand to intermittent supply. In other
words, span(A) < S. Finally, we assume ∀s, ∃k, ask > 0, i.e. there
always exists a contract that delivers electricity in a given state.

In this setting, the retailers work as intermediaries. They ex-
ante sell a portfolio of delivery contracts θr at price q. They
ex-post provide the contract owner with the required amount of
electricity that they themselves buy on the wholesale markets.
Hence, if a retailer sells a portfolio θr , his return is of q′θr while
his expected cost due to electricity delivery is of p′Aθr . His sup-
ply follows a competitive profit maximization strategy. Finally,
let us observe that the transformation process from contract to
electricity delivery is linear. We can therefore replace the set of
all retailers with a representative one.

The renewable energy technology, in addition to being inter-
mittent, is non-dispatchable. To describe non-dispatchability, we
introduce an ex-ante capacity choice κ ∈ R+ and model in-
termittent electricity productivity as the random variable g =

g1, . . . , gS) ∈ RS
++

. It describes the state-contingent produc-
tion per unit of the renewable capacity. The cost of investing
in capacity κ is given by K(κ) and we assume that K(0) =

, ∂K(κ) > 0 and ∂2K(κ) > 0 as usually described in literature
e.g. Rouillon 2015).10 The state-contingent renewable electric-
ty production is equal to κg and without loss of generality,
we normalize short-run marginal cost of production to zero.11
We finally assume that the optimal investment in capacity and
thereby, the state-contingent production of electricity follows
from a competitive profit maximizing behavior.

The conventional energy technology is an existing and fully-
established one. Its purpose is to act as a back-up capacity of dis-
patchable electricity generation that compensates for fluctuations
from the intermittent renewable energy technology. It ensures
reliable electricity provision in the absence of demand flexibil-
ity.12 We also assume that there is no capacity constraint.13
As the intermittent renewable technology, electricity production
from the conventional technology is state-contingent too. We
denote it by y = (y1, . . . , yS) ∈ RS

+
. The implementation of

such a random production strategy is assumed to have an ex-
ante production cost C (y). However, to capture the idea that the
electricity generation is dispatchable, we assume that this cost
is additively separable state by state, i.e. C (y) =

∑S
s=1cs (ys).

Moreover, we say that inactivity is allowed in each state and the
production cost is increasing at an increasing rate, i.e. cs(0) = 0,
∂cs(ys) > 0 and ∂2cs(ys) > 0.14 We also assume, as for the
renewable energy sector, that the optimal production plan is
derived from a competitive profit maximizing behavior.

The consumption decision is derived from utility maximiza-
ion of a competitive representative agent. Within our partial
quilibrium setting, we assume that this consumer derives his

10 The strictly convex capacity investment cost function can be viewed as
investment starting at the most productive site, e.g. in terms of weather
conditions.
11 The resource is “free”and variable costs such as operation and maintenance
costs for solar and wind technologies tend to be typically lower than those of
conventional technologies (IRENA 2018, Lazard 2018).
12 In other words, costly conventional technologies with respect to the merit
order remain operational. This is to avoid threats to the system reliability, in
particular, when demand does not adjust to intermittent supply.
13 Existing total capacities of conventional technologies are able to provide for
electricity demand reliably. See, for instance, Rouillon (2015) and Twoney and
Neuhoff (2010).
14 The strictly convex production cost function can be explained by a variety
of conventional power plants with exogenous production capacities and that are
ordered by “merit”, i.e. by increasing order of their marginal costs of production.
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vector θ∗

c ,m
∗, θ∗

r , y∗, κ∗, p∗, q∗

ex-ante utility from his random electricity consumption x = 
x1, . . . , xS ) ∈ RS

+ and from money m ∈ R that he does not 
pend for the consumption of this good. We assume, as usually 
in a partial equilibrium setting, that his utility is linear in money,
i.e. U (x, m) = U(x) + m and that he owns a global amount of
money m0 > 0. The utility associated to the random electricity
consumption is given by the continuously differentiable function 
U(x). It is increasing and strictly concave, i.e. ∂U(x) ≫ 0 and 
∂2U(x) is negative definite. We also assume that electricity is 
a desired good in each state of nature. It means that for any 
sequence xn of random electricity consumption, with the prop-
erty there exists a state s for which the consumption becomes
zero, the global marginal utility, measured as norm of the gradi-
ent, becomes large and reciprocally. More formally, we say that 
∀xn → x0, with some x0,s = 0, limn ∥∂U(xn)∥ → ∞. Finally, 
let us remember that the consumer has no direct access to the 
wholesale electricity markets but only to the set of contracts 
proposed by the retailer. Hence, his objective is to choose, at price 
q ∈ RK

+
, a portfolio θc ∈ RK of contracts that induces an electricity 

consumption of x = Aθc and that maximizes his utility under a 
standard budget constraint.

To summarize this discussion, we now propose a definition of 
an equilibrium.

Definition 1. An equilibrium of the contingent electricity mar-
kets and( the different delivery) contract markets is given by a

∈ RK+1
×RK

×RS
+
×R+×RS

+
×RK

+

uch that:
(i) the representative consumer maximizes his utility, i.e.

θ∗

c ,m
∗
)

∈ argmax
(θc ,m)∈RK+1

U (Aθc)+m s.t.
{

Aθc ≥ 0
(q∗)′ θc + m = m0

(1)

(ii) the retailer maximizes profit, i.e.

∗

r ∈ argmax
θr∈RK

((
q∗

)′
−

(
p∗

)′ A
)

θr (2)

(iii) the conventional production plan maximizes profit, i.e.

∗
∈ argmax

y∈RS
+

(
p∗

)′ y −

S∑
s=1

cs (ys) (3)

(iv) the investment in the renewable technology is profit max-
mizing, i.e.
∗

∈ argmax
κ∈R+

κ
(
p∗

)′ g − K(κ) (4)

(v) the retail contract and contingent wholesale electricity
arkets clear, i.e.

∗

r = θ∗

c and y∗
+ κ∗g = Aθ∗

r (5)

. Contract markets and the demand for electricity

Let us first remember that electricity delivery is indirectly
btained through our base contracts that work like financial
ssets. Hence, the existence of an equilibrium requires a no-
rbitrage condition. Loosely speaking, it implies that there exists
o portfolio of contracts that costs nothing and furnishes elec-
ricity in at least one state. Otherwise, everybody will purchase
his portfolio which is in contradiction with market clearing. To
onstruct this no-arbitrage condition, we define the (S + 1, K )
atrix W given by

[
−q′

A

]
. If there exists a portfolio θ ∈ RK with

he property that Wθ ≥ 0 with at least one strict inequality, we
an conclude that there exists an arbitrage portfolio. This portfolio
ays back either money or electricity in at least one state s ∈ S
0 s

4

ithout generating a cost in terms of money or electricity in the
ther states. Thus, the existence of an equilibrium requires some
dditional restrictions. This is where Farkas’ Lemma enters the
tory and claims that:

θ∈RK , Wθ ≥ 0 (at least one strict) ⇔ ∃β∈RS+1

β ≫ 0 and β′W = 0 (6)

Moreover, if such a β exists, the same must be true for the
ector

( 1
β1

)
where β1∈RS

++
is composed of the S last components

f β divided by its first one. Owing to the block decomposition of
, the no-arbitrage condition becomes:

β1∈R
S , β1 ≫ 0 and q = A′β1 (7)

If we now study the consumer’s demand for contracts, we
eed to restrict the set of contract prices to the open set Q given
y:

∈ Q =
{
q ∈ RK

: q = A′β1 with β1∈R
S
++

}
(8)

Moreover, from Eq. (1) of Definition 1, the demand for con-
racts, θc(q), can be rewritten as:

c(q) = argmax
θ∈RK

U (Aθ) − q′θ s.t. Aθ ≥ 0 (9)

The existence of a solution of this unbounded problem is not
eally an issue if the no-arbitrage condition is satisfied (see proof
f Proposition 1). We can even claim that the constraint Aθ ≥ 0
s never binding since we have assumed that the marginal utility
ecomes “large”as the consumption in one state goes to zero.
inally, since U is strictly concave, we can say that the demand
or contracts solves the following first-order condition:
′∂U (Aθ) − q = 0 (10)

Moreover, by applying the Implicit Function Theorem to the
bove equation, one can compute the Jacobian of θc(q) and show
hat this matrix is symmetric and negative definite. This means (i)
he effect of the change of the price of contract k on the demand
f contract k′ is the same as the change of the price of contract
′ on the demand of contract k and (ii) the demand for a contract
s decreasing with its own price. We can even characterize the
oundary behaviors of demand for contracts. The first boundary
ehavior follows from the no-arbitrage condition. If we take a
equence qn of contract prices free of arbitrage and that converges
o an arbitrage price, we can expect that the sequence of the
ptimal portfolio choice θc(qn) solving Eq. (1) of Definition 1 is
nbounded, i.e. ∥θ(qn)∥ → ∞. The explanation is simple: at
he limit, the consumer is willing to buy an infinite amount of
he arbitrage portfolio. The second boundary behavior follows
rom the boundary condition on the marginal utility and that is
ssociated with the first-order condition (see Eq. (10)). It says that

if some contract prices qk become very high, i.e. ∥qn∥ → ∞, the
same must be true, by Eq. (10), for the marginal utility which
nduces that the electricity consumption in some states become
ero. The next proposition summarizes these results.

roposition 1. The demand of contract is a differentiable function
c : Q → RK with the property that:
(i) ∂θc(q) =

(
A′∂2U (Aθc(q))A

)−1 is a symmetric and negative
efinite matrix.
(ii) If ∀n, qn ∈ Q and qn → q0 with q0 ∈ bd (Q ), then

θc(qn)∥ → ∞.
(iii) If ∀n, qn ∈ Q and ∥qn∥ → ∞, then ∃s0 ∈ S, (Aθc(qn))s0 →

.

Let us now move to the supply of contracts. From Definition 1,
e know that the portfolio supplied by the representative retailer
olves max

(
q′

− p′A
)
θ. Since this program is linear in θ, we
θr∈RK
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can immediately assert that a finite solution exists if and only 
f q = A′p. Moreover, his profit is zero at that portfolio price
nd he is indifferent between any kind of supply θr . Therefore,
nder market clearing, he supplies exactly what is asked by 
he consumer. In other words, the equilibrium quantity of the 
ontract markets is θr (p) = θc (A′p) and is now a function of the
tate-contingent electricity prices. However, trading an amount of 
 (p) contracts also engages the retailer to provide the consumer
ith the required amount of electricity in each state of nature.
his state-contingent demand of electricity D : RS

++ → RS is 
given by:

D (p) = Aθc(A′p) (11)

The demand for electricity is directly deduced from the con-
umer’s demand for contracts and hires several properties in-
uced by Proposition 1. First of all, we notice that this demand
or electricity is only defined for strictly positive prices, p ∈ RS

++
,

therwise the no arbitrage condition given by Eq. (7) is violated.
Likewise, if at least one of the contingent prices becomes zero,
i.e. p → p0 with some p0,s = 0, the contract price vector q
is no more free of arbitrage. The consumer will take advantage
of this opportunity to increase his electricity consumption by
an adequate portfolio choice. One can therefore expect that the
retail electricity demand that fulfills these contracts becomes
large, i.e. ∥D (p)∥ → ∞. A contrario, if some contingent prices
become large, i.e., ∥p∥ → ∞, we know from A ≥ 0 and ∀s, ∃k,
ask > 0, that the contract prices must become large, ∥q∥ → ∞. It
immediately follows from (iii) of Proposition 1 that the electricity
consumption and therefore the electricity demand of the retailer
must go to zero in at least one state, i.e. ∃s0 ∈ S, (D (pn))s0 → 0.
We can finally deduce the Jacobian of D (p) from that of θc(q).
This one is:

∂D (p) = A∂θc(A′p)A′ (12)

This matrix is again symmetric and induces the same inter-
pretation as earlier but it is only negative semi-definite. The
explanation for this is quite obvious. If one considers a state-
contingent price change that does not affect the contract prices,
i.e. a price change in the ker

(
A′

)
of dimension S−K , the demand

for contracts does not change and therefore, so does the electric-
ity demand of the retailer. The next proposition summarizes this
discussion.

Proposition 2. The state-contingent demand of electricity is a
differentiable function D : RS

++
→ RS . Under the no-arbitrage

condition, it is defined for strictly positive state-contingent electricity
prices p with the property that:

(i) ∂D (p) = A∂θc(A′p)A′ is a symmetric and negative semi-
definite matrix.

(ii) If ∀n, pn ∈ RS
++

and pn → p0 with some p0,s = 0, then
∥D (pn)∥ → ∞.

(iii) If ∀n, pn ∈ RS
++

and ∥pn∥ → ∞, then ∃s0 ∈ S, (D (pn))s0 →

0.

4. The state-contingent electricity supply and market equilib-
rium

The production level of the conventional sector is obtained by
solving the profit maximization program given by Eq. (3) of Def-
nition 1. This sector has the ability to adjust its production plan
n each state since the contingent cost is additively separable. It
ollows that the optimal production level in each state simply
quates the state-contingent price to the marginal cost in state
:

s ∈ S, p = ∂c y ⇔ y = ∂c −1 p (13)
s s ( s) s ( s) ( s)

5

The contingent supply of the conventional sector is therefore
given by Y : RS

++
→ RS

+
with Y(p) =

(
(∂cs)−1 (ps)

)
s∈S . Under our

assumption on the different cost function cs(y), we can claim, as
usual, that the supply in each state, ys(ps), is increasing with the
state-contingent price because
dys(ps)
dps

=
1

∂2c((∂cs)−1(ps))
> 0 (14)

The supply also satisfies usual boundary conditions: for a low
price, the supply goes to zero and for a high price, it becomes infi-
nite, i.e. limps→+∞ ys(ps) = +∞. Moreover, since the production
decision is taken independently state by state, we can see that
the Jacobian of this contingent supply, ∂Y(p), is a diagonal matrix
denoted by D and with the sth diagonal term being dys(ps)

dps
> 0.

ince this quantity is positive, we can even say that ∂Y(p) is
positive definite.

Contrary to the conventional sector, the intermittent renew-
able energy sector is not able to adjust its production state by
state. It chooses, ex-ante, a production capacity that provides a
random production level g per unit of the installed capacity. This
capacity choice is obtained by solving the profit maximization
program given by Eq. (4) of Definition 1. Since p are state-
contingent prices, the optimal capacity choice is simply obtained
by equating the expected additional return, p′g of a new unit of
capacity, to its marginal cost, i.e.

∂K(κ) = p′g ⇔ κ = (∂K)−1 (
p′g

)
(15)

Consequently, the state-contingent supply of the intermittent
renewable energy sector, I : RS

++
→ RS

+
, is:

I(p) =
(
(∂K)−1 (

p′g
))

g (16)

This contingent production is therefore not very reactive to
price changes since the capacity choice is only responsive to the
change of the expected returns. This fact can be easily observed
by computing the Jacobian of I(p) given by:

∂I(p) =
1

∂2K((∂K)−1(g′p))
g′g (17)

This is a matrix of rank 1 since every price change that is
rthogonal to the random production plan g does not modify the
nvestment and this set of prices is typically a subset of dimension
− 1. Nevertheless, we can observe that this matrix remains

emi-positive definite since ∂2K > 0. More precisely:

v ̸= 0, v′∂I(p)v =
1

∂2K((∂K)−1(g′p))

(
g′v

)2
≥ 0 (18)

This state-contingent intermittent production has another inter-
esting property. As long as one assumes that the production of
an installed unit is always strictly positive and even very small,
i.e. g ≫ 0, the production level, under our standard assumptions
on K, becomes infinite in each state when the prices p ∈ RS

++

become large, i.e. ∥p∥ → ∞.
At this point, we can construct the contingent electricity sup-

ply S(p) = Y(p) + I(p) and summarize our results in the next
proposition.

Proposition 3. The contingent electricity supply S : RS
++

→ RS
+
,

given by S(p) = Y(p) + I(p), is a differentiable function with the
property that:

(i) ∂S(p) = D +
1

∂2K((∂K)−1(g′p))
g′g with D a diagonal matrix of

the generic term 1
∂2c((∂cs)−1(ps))

(ii) ∂S(p) is positive definite.
(iii) If ∀n, pn ∈ RS

++
and ∥pn∥ → ∞, then ∀s ∈ S, (S(p))s →

+∞.
(iv) If ∀n, pn ∈ RS

++
and pn → p0 with some p0,s = 0,

S(p ) → S(p ) ≥ 0 and is finite.
n 0
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We now can move to market clearing as given by Eq. (5)
f Definition 1 and we first consider the state-contingent elec-
ricity markets. From Proposition 2, we conclude that the state-
ontingent demand for electricity as depicted by the function 
(p) is monotonically decreasing while supply, given by the func-
ion S(p) from Proposition 3, is monotonically increasing. Subject 
o the boundary behaviors of D(p) and S(p), we conclude that 
here exists a unique set of prices p∗ 

∈ RS
++ that brings demand 

nd supply on the different state-contingent electricity markets 
nto equilibrium. Finally, by recalling the relationship between 
he free-arbitrage retail contract prices q and state-contingent 
holesale prices p, we deduce that the different retail contract
arkets are cleared at price q∗ 

= A′p∗ 
∈ RK

++
. The next

roposition is subsequently self-contained:

roposition 4. There exists a unique contingent price vector p∗ 
∈

S
++ that clears the different state-contingent electricity markets and 
n associated electricity delivery contract price vector q∗ 

= A′p∗ 
∈

K
++ that is free of arbitrage and clears the different retail contract 
arkets.

5. Welfare analysis

Up to now, we have shown that one can consider an equilib-
ium structure in which sophisticated state-contingent delivery
ontracts may exist. The basic questions that remain open con-
ern the richness of the available base contracts and the effect
f their change on the equilibrium of the electricity markets. Our
im, here and in the next section, is to point out that the contract
tructure matters as long as this one is unable to provide an
ffective adjustment of demand to intermittent supply. In our
odel, this directly follows from the number of base contracts, K ,
eing smaller than S, the number of states of nature. This restricts

the potential contingent electricity consumptions to the linear
subspace generated by the columns of A, i.e. x ∈ span(A). In some
ense, the markets are incomplete (with rank(A) < S).
To gain a better understanding of this problem, let us come

back to the consumer’s program ((i) of Definition 1). His portfolio
choice is essentially motivated by the electricity consumption
that he obtains. If he faces two retail contract structures A and

′ with the property that span(A) = span(A′), he simply adjusts
is demand for the contracts in order to maintain the same state-
ontingent electricity consumption. In other words, we can say
hat A is equivalent to A′ in terms of electricity demand, i.e. A ∼e
′. Since ∼e is an equivalence relation, we can even restrict our
ttention to contracts induced by a representative element of
ach indifference class of ∼e. To identify this element, remember
hat A =

[
AS−K
AK

]
, where AK is an invertible matrix of dimension

. Under this assumption, by simply changing the portfolio to
B = AKθA, any electricity allocation, x = Aθ, can be obtained
ith the equivalent contract structure:[
B
IK

]
with B = AS−K (AK )−1 (19)

This observation clearly suggests that we can take a matrix
B
IK

]
as a representative element of a family of contract structure

iven by:

=

[
BC
C

]
with C any invertible matrix of dimension K (20)

This observation has another consequence. If we restrict our
ttention to delivery contracts given by

[ B
IK

]
, we can say that the

contingent electricity consumption x satisfies:

x =

[
B

]
θ ⇔

{
θ = (xs)Ks=S−K+1[ ] (21)
IK IS−K −B x = 0

6

This clearly says, for K < S, the potential electricity consumption
that the consumer can obtain from the delivery contract structure
is limited to the set of all x that satisfies[

IS−K −B
]
x = 0 (22)

It means the existence of a limited amount of delivery contracts
reduces the trade capacity of the consumer and restricts the
adjustment capacity of electricity demand to fluctuating supply.
To summarize, we can say:

Proposition 5. Under our assumptions on the base contract
structure A:

(i) The equivalent contract structure as given in Eq. (19) provides
the same electricity allocation at the same contingent prices. Only
contract prices and the portfolio adjust. They are given by (qB, θB) =((

A−1
K

)′ qA,AKθA

)
.

(ii) Reciprocally, the electricity allocation and prices induced by
the contract structure as given in Eq. (19) remain the same for every
element of the family given by Eq. (20). The associated contract price
and portfolio are (qA, θA) =

(
C′qB, C−1θB

)
.

(iii) A contract structure A equivalent to the structure as given
in Eq. (19) induces a restriction on electricity trades given by[

IS−K −B
]
x = 0.

From this proposition, we will mainly restrict our attention to
the contract structure given by

[ B
IK

]
in the rest of this paper. Also,

point (iii) of Proposition 5 shows another aspect of introducing
intermittent renewables into the electricity mix. As long as the
set of contracts proposed to the consumer is not large enough,
i.e. K < S, his potential state-contingent consumptions are
constrained by Eq. (22). Hence, it is impossible to reach a first-
est allocation (unless this one satisfies the set of restrictions). In
ther words, even in our competitive setting, Pareto-optimality
s out of reach and it is always interesting to see how changes in
he contract structure affect welfare. To address this question, we
irst introduce a notion of constrained efficiency:

efinition 2. An electricity production plan and allocation
ỹ, κ̃, x̃

)
∈ RS+1

+ × RS
+

is constrained efficient iff it solves:

W (B) = max
(y,κ,x)∈R2S+1

+

U(x)−C (y)−K(κ) s.t.
{
x − y − κg = 0[
IS−K −B

]
x = 0

(23)

If we denote by λ = (λs)
S
s=1 and µ = (µi)

S−K
i=1 Lagrangian

ultipliers associated respectively with the first and second set
f constraints, we obtain the following first-order conditions:

∂U(x) − λ −

[
IS−K
−B′

]
· µ = 0

−∂C (y) + λ = 0
−

dK(κ)
dκ + g′

· λ = 0

(24)

If we identify, as usually, the Lagrangian multiplier λ to the
ontingent price vector p, we observe that the second and the
hird conditions of Eq. (24) are exactly the same as the profit
aximization conditions for, respectively, the conventional sector

see Eq. (13)) and the intermittent sector (see Eq. (15)). A same
bservation can be made for the first condition of Eq. (24) but it

requires a little transformation. In fact,

∂U(x) − λ −

[
IS−K
−B′

]
· µ = 0 ⇔

⎧⎨⎩
[

B
IK

]′

(∂U(x) − λ) = 0

µ =
(
∂xsU(x) − λs

)S−K
s=1

(25)
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B
IK

The first condition of Eq. (25) now becomes very close to the 
onsumer’s first-order condition given by Eq. (10). One simply
as to remember that (i) we work with an equivalent contract
tructure and (ii) by the no-arbitrag[ ]′

condition and the identifi-
λ. The second condition

efines µ whose interpretation is non-trivial in our framework.
emember that µ is tied to the set of constraints on electricity
llocation as defined by condition 2 of Eq. (23). Thus, one can

expect that µ ̸= 0, otherwise all constraints on trades become
ineffective. The latter implies that the first-best consumption
allocation satisfies the restrictions on trades that are induced by
the contract structure; a situation that surely does not resist to a
slight perturbation of the utility function. In the next section in
which we consider the effect of changing contracts, we will even
sometimes assume that all components of µ are different from
0. Loosely speaking, it means that the direction to the first-best
is a non-zero linear combination of all the restrictions on trades
(i.e. the different lines of [ IS−K −B ]).

In any case, the above largely suggests that:

Proposition 6. Any competitive electricity production plan and al-
location issued from Definition 1 is a constrained efficient allocation
given by Definition 2 and reciprocally.

6. Changing contracts

As long as welfare is concerned and at least one constraint
on trade is effective (i.e. µ ̸= 0), it is obvious that adding a
base contract to an existing contract structure A will be welfare
improving as long as this one is linearly independent of the
existing ones. The intuition is clear. If we move from a matrix
A0 of dimension (S, K ) to A1 of dimension (S, K + 1) by adding
a new column, the different electricity consumption profiles x =

A0θ that were initially available, remain reachable by simply not
purchasing the new contract. Hence, span(A0) ⊂ span(A1). This
clearly means if one remembers the definition of a constraint
efficient allocation (see Definition 2), that moving from a contract
structure A0 to A1 must be welfare improving.

Instead of adding a new base contract, we now identify which
changes of the existing contracts can be Pareto improving. Let us
start with a given contract structure A or its equivalent matrix
B. By applying a standard Envelope Theorem to the optimiza-
tion problem of Definition 2, we can show that (see proof of
Proposition 7): ∀s = 1, . . . , S − K , k = 1, . . . , K ,

∂bskSW (B) = µsxS−K+k =
(
∂xsU(x) − λs

)
xS−K+k (26)

By considering that the first-best electricity consumption does
not satisfy the trade constraints, i.e. µ ̸= 0 (see our discussion
in the previous section), we identify state s and contract k for
which |µs| xS−K+k is maximal. The precedent equation says that
the largest effect on welfare can be obtained by increasing or
decreasing bsk, whenever µs > 0 or < 0.

We summarize this discussion by:

Proposition 7. Concerning the welfare effect of a change of the
contract structure A, we can say that as long as µ ̸= 0,

(i) any addition of a new contract linearly independent of the
existing ones improves welfare.

(ii) the best welfare improving option is to change the coefficient
(s, k)0 of the equivalent matrix B for which (s, k)0 = argmax(s,k)
{|µs| xS−K+k}.

We now move to the effect of changing B on the equilib-
rium investment in renewable capacity, κ∗

= (∂K)−1 (g′p∗) (see
Eq. (15)). First, it is important to understand how changes in B
affect the contingent equilibrium prices p∗ since

dκ∗
=

1 g′∂Bp∗dB (27)

∂2K((∂K)−1(g′p∗))

7

For this exercise, we reformulate the definition of an equilibrium
price. We start by replacing A′ with the equivalent contract struc-
ture

[
B′ IK

]
in the consumer’s first-order condition given by

Eq. (10). By market clearing, (i) the consumption will be equal
to the supply S(p) and (ii) the contract price must be given
by q =

[
B′ IK

]
p. If we add to the story the idea that the

supply S(p) must satisfy the restrictions on trades imposed by
the structure of the contract matrix, we can construct a function
f : RS

+
× R(S−K )K → RS given by:

f (p,B) =

{ [
B′ IK

]
(∂U (S(p)) − p)[

IS−K −B
]
S(p)

(28)

The zero of Eq. (28) is our state-contingent equilibrium price
vector p∗. The effect of a change of B on p∗ can therefore be
obtained by applying the Implicit Function Theorem to f (p,B) =

0.

Lemma 1. We observe that:
(i) ∂pf (p,B) is invertible and by the Implicit Function Theorem:

∂Bp∗(B) =
[
∂pf (p,B)

]−1

[
IK ⊗

((
∂xsU (S(p)) − ps

)S−K
s=1

)′(
− (SS−K+k(p))Kk=1

)′
⊗ IS−K

]
(29)

(⊗ denotes the tensor product)
(ii) if only one component of

(
∂xsU (S(p)) − ps

)S−K
s=1 is different

from 0, then ∂Bp∗(B) is of rank S − 1.
(iii) if at least two components of

(
∂xsU (S(p)) − ps

)S−K
s=1 are

different from 0, then ∂Bp∗(B) is of full rank S. This implicitly requires
that 1 < K < S − 1.15

We can now move to understanding the effect of a change
in B on investment in renewable capacity. From Eq. (27), we
observe that the induced price change dP = ∂Bp∗dB. The set of
all reachable dP being a linear space, we can conclude, still from
Eq. (27), that if there exists a dP ⊂ g⊥ with g⊥ the S − 1 dimen-
sional hyperplane orthogonal to g, then investment in renewable
capacity can be improved by a contract change dB. This occurs in
case (iii) of Lemma 1 since ∂Bp∗(B) is of full rank. As a surjective
mapping, we can even define the most efficient direction of the
induced price change that solves maxdP g′ dP

∥dP∥
and is given by any

dP collinear to g. If we now have in mind that dP : RK (S−K )
−→

RS , then there even exists, by the Rank Theorem, a subset of
contract change associated to this most efficient direction of price
change. This subset of dB is of dimension K (S − K ) − S. We can
herefore say:

roposition 8. If at least two components of
(
∂xsU (S(p)) − ps

)S−K
s=1

re different from 0 and 1 < K < S − 1, all the directions of
rice changes that improve investment in renewables can be reached,
specially the one that is collinear to g and that “maximizes”the pen-
tration of renewables. Moreover, each of these improving directions
an be obtained by a subset of dimension (K (S − K ) − S) of changes
n B.

Now, what does at least two components of
(
∂xsU(S(p))−ps

)S−K
s=1

re different from 0 mean? To answer this question, let us recall
roposition 6 and Eq. (25). Proposition 6 says that a compet-

itive equilibrium is a constrained efficient allocation obtained
by solving the optimization program given by Definition 2. As
for Eq. (25), it says that at least two constraints on trade are
effective in this optimization program. This rather generic case

15 If K = S − 1, the vector
(
∂xsU (S(p)) − ps

)S−K
s=1 contains only one component

while for K = 1, ∂ p∗(B) only contains S − 1 columns.
B
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is in fact depicted by the restriction of Proposition 8. Of course,
f this restriction is not fulfilled, then the result on investment in 
renewable capacity holds only if there exists a dP that does not
belong to g⊥.

Proposition 8 also suggests that there are many ways to 
change the contract structure in order to improve investment 
n renewable capacity. This brings two additional questions. The 
irst one is: can we improve both welfare and investment in 
enewables? The answer to this question is quite obvious. Let us 
ome back to the vectors ∂Bκ∗ (Eq. (27)) and ∂BSW (Eq. (26)) of 
dimension (1, K (S − K )). These two gradients point towards the
est-improving direction of investment in renewables and social 
elfare respectively. Hence, as long as these two vectors do not 
oint in exactly two opposite directions, we can conclude (at least 
ntuitively) that there exist changes in the contract structure that 
mprove both investment and welfare.

The second question is: can we ensure that an increase in
nvestment in renewables reduces production of the conven-
ional sector in each state of nature? The answer is unfortunately
o. Since the conventional sector adjusts its production level to 
he observed (ex-post) contingent price that he equates to the 
arginal cost, production in state s only decreases if ps decreases. 
hus, a lower conventional production level in each state requires 
ower prices in each state as well. Consequently, this reduces
he expected returns g′p of unit investment in renewables and 
hereby total investment. Nevertheless, it may occur that the 
verage conventional production decreases. We simply claim that 
t least one component of this average measure should increase 
o ensure an increase in renewables. This observation drives the 
ollowing result.

More formally, by using the Gordan’s form of Farkas’ Lemma, 
e can say:

Proposition 9.
(i) As long as ∂Bκ∗ and ∂BSW are not collinear with a negative

coefficient, there exist changes in B that strictly improve welfare and
investment in renewables.

(ii) It is nevertheless impossible to find a change in B that
both increases investment in renewables and reduces production of 
conventional electricity in each state.

7. Conclusion

The deployment of intermittent renewables introduces pres-
ure on the grid that calls for more flexibility in electricity mar-
ets. Focusing on demand-side flexibility, we have addressed the
uestion if diversified retail contracts at different prices can ease
he penetration of intermittent renewables. We have modeled
ntermittency by contingent electricity markets and diversified
etail contracts by a set of base state-contingent electricity de-
ivery contracts. First, we have studied the normative properties
f the competitive equilibrium of the state-contingent wholesale
lectricity markets and the delivery contract markets. Secondly,
ssuming a limited number of base delivery contracts that con-
train electricity allocation, we have been able to find that the
lectricity market equilibrium and social welfare are constraint
fficient. Finally, we have described the conditions under which
hanging the structure of the base contracts can improve welfare,
he degree of integration of renewable capacity, and both. We
ave also found that it is impossible to find a change in the
ontracts that both increases investment in renewable capacity
nd reduces production of conventional electricity in each state of
ature. Nevertheless, it may occur that the average conventional
roduction decreases.
The results of the paper firstly provide insights on how the role

f retailers can be redefined, for example, in proposing diverse
8

retail contracts. The base delivery contracts modeled here can be
a tool for retailers to propose different contracts that can trigger
demand-side flexibility. Secondly, the results also highlight the
importance of accounting for intermittency in order to achieve
renewable capacity objectives.

Several extensions of this model can be expected. The first one
has to do with the accounting of carbon emissions. The model
can be used to design an economic model for transitioning to a
decarbonized electricity mix by considering both intermittency
of renewables and carbon emissions from fossil fuels. Ambec and
rampes (2019) examine how the presence of policy instruments
e.g. carbon tax, feed-in tariffs and renewable portfolio stan-
ards) affect the socially efficient energy mix with intermittent
enewables. This literature can be complemented by investigating
ow, in the context of a contingent market with renewables, the
ecision strategy between an ex-ante Pigouvian tax and ex-post
rade of carbon emissions permits matters (see Neerunjun 2022).

A second extension can be to include supply flexibility in the
odel through the storage of electricity. However, this question
annot be directly addressed with the static model considered
ere since storage is intrinsically a dynamic one. By extending
he model to a dynamic framework, it may be interesting to
etermine, in the context of incomplete markets, the optimal
ecision strategy to store and deliver stored electricity given
he intermittent nature of renewables. This is in line with a
ecent literature such as Pommeret and Schubert (2022). The
authors focus on a social planner’s problem and propose one of
the first dynamic models of optimal transition from fossil-fueled
technologies to renewables-based that includes intermittency of
renewables together with storage.

Thirdly, throughout this paper, we have made the assumption
that the wholesale and retail markets are perfectly competitive.
It may therefore be worthwhile to investigate how the model be-
haves with market power. Joskow and Tirole (2007) and Rouillon
(2015), by considering demand and supply intermittency respec-
ively, show that when conventional producers own transmission
nd distribution networks, investment in renewables become less
ttractive. With the idea that sophisticated retail contracts can
e a solution to manage supply intermittency, we can think of
apping into a contract instrument to address the question of
arket power distortions in electricity markets.

ppendix A. Proof of Proposition 1

o) Existence and uniqueness of the contract choice θc(q)
Let us study the consumer program given by Eq. (1) of Defini-

ion 1 for all q ∈ Q . First observe that the global utility U (Aθc)+m
is increasing in m. We can therefore say that the optimal solution
necessarily belongs to:

B =
{
(θ,m) ∈ RK+1

: Aθ ≥ 0 and q′θ + m = m0
}

(A.1)

This set is obviously non-empty and closed. So if we show that
B is also bounded, hence compact, we know that this program
has a solution. To verify this property, let us first observe that
∀(θ,m) ∈ B, m is bounded from above. In fact since Aθ ≥ 0, we
can say by the no-arbitrage condition (see Eq. (7)) that β′

1Aθ =

q′θ ≥ 0 (remember that β1 ≫ 0). It follows that m = m0 − q′θ
is bounded from above by m0. Let us now show that ∀(θ,m) ∈ B,
θ is bounded. Assume the contrary, i.e., there exists a sequence
(θn,mn) ∈ B with the property that ∥θn∥ → ∞ and define
ϑn =

θn
∥θn∥

. Since ϑn belongs to the unit circle of RK which is a
compact set, ϑn admits a converging subsequence whose limit
is ϑ0. Because (θn,mn) ∈ B, we can also say that ∀n, Aϑn ≥ 0
and q′

nϑ +
mn

∥θn∥
≤

m0
∥θn∥

and since mn is bounded from above and
m0 finite, we deduce that Aϑ0 ≥ 0 and q′ϑ0 ≤ 0. By the no-
arbitrage condition, neither one component of Aϑ nor of q′ϑ
0 0
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can be strictly positive otherwise ϑ0 is an arbitrage portfolio. It 
ollows in particular that Aϑ0 = 0 and since A is of full rank, this
implies that ϑ0 = 0. But this is the desired contradiction since 
y construction ∥ϑ0∥ = 1. Finally, since m = m0 − q′θ with θ 
ounded, we can say that m is not only bounded from above but 
lso from below.
Let us now move to the uniqueness issue. We have seen 

rom Eq. (9) that the optimal portfolio choice can be obtained by 
olving the equivalent program given by:

max
θ∈RK

⎧⎪⎨⎪⎩U (Aθ) − q′θ  
=f (θ,q)

s.t. Aθ ≥ 0

⎫⎪⎬⎪⎭ (A.2)

ince the set of feasible solutions (Aθ ≥ 0) is convex, if f (θ) is
trictly concave, we know that the solution is unique and is given
y the continuous function θc : Q → RK . So let us verify that
he Hessian of f (θ, q) with respect to θ is negative definite. By
computation ∀v ∈ RK and v ̸= 0

v′∂2
θ,θ f (θ, q)v = v′

(
A′∂2U (Aθ)A

)
v (A.3)

= (Av)′ ∂2U (Aθ) (Av)

et us now remember that A is a (S, K ) matrix of full rank with
< S. It follows that for v ̸= 0, h = Av ̸= 0 and since U is

strictly concave, we can conclude that v′∂2f (θ)v < 0.

(i) θc : Q → RK is differentiable and its Jacobian ∂θc(q) =

A′∂U (Aθ(q)) A
)−1 is negative definite

Let us first show that the constraints Aθc(q) ≥ 0 are non
inding at an optimal solution of Eq. (A.2). Assume the contrary.
his means ∃q0 ∈ Q and θc(q0) with the property that for at least
ne s, the sth component (Aθc(q0))s = 0. Moreover, since the
ptimization problem given by Eq. (A.2) is differentiable, it should
lso satisfy the Karush–Kuhn–Tucker conditions. So if λ0 ≥ 0
enotes the Lagrangian multipliers, we should have:
′∂U (Aθc(q0)) − q0 + A′λ0 = 0 (A.4)

ut let us now define a sequence θn → θc(q0) such that ∀n,
θn ≫ 0 and construct the sequence

n = A′

⎛⎜⎝ ∂U(Aθn)

∥∂U(Aθn)∥
+

λ0
∥∂U(Aθn)∥  

=yn

⎞⎟⎠ −
q0

∥∂U(Aθn)∥
(A.5)

ince Aθn → Aθ0 which contains a zero component, we know,
y assumption on the boundary behavior of the utility function,
hat ∥∂U (Aθn)∥ → ∞. Now observe that ∂U(Aθc (qn))

∥∂U(Aθc (qn))∥
→ z ≥ 0

at least for a subsequence and z belongs to the unit circle of RS ,
i.e., with at least one strictly positive component, say, s′ ∈ S.
Because λ0 ≥ 0, we deduce that ∃N , ∀n > N , (yn)s′ ≥ zs′ > 0.
Let us now remember that A ≥ 0 and ∀s, ∃k, ask > 0. This
means ∀n > N at least one component of A′yn, say component
k, verifies

(
A′yn

)
k ≥ askzs′ > 0. Moreover q0,k

∥∂U(Aθc (qn))∥
→ 0 which

eans that ∀ε ∈ (0, askzs′ ), there exists N ′ > N with the property
n > N ′

(
A′yn

)
k −

q0,k
∥∂U(Aθc (qn))∥

≥ ε > 0. In other words, the kth
ondition of Eq. (A.4) cannot be satisfied at the limit, otherwise
his contradicts optimality.

From the previous observation, we deduce that the necessary
nd sufficient condition for optimality of Eq. (A.2), is given by:

(θc, q) = A′∂U (Aθc) − q = 0 (A.6)

ow observe that ∂θcφ(θc, q) = ∂2
θ,θ f (θ, q) (see Eq. (A.3)) is

egative definite and therefore of full-rank. It follows by the
mplicit Function Theorem that θc : Q → RK is differentiable
nd its Jacobian is:

θ (q) =
(
A′∂2U Aθ(q) A

)−1
(A.7)
c ( )
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Moreover ∂θc(q) is the inverse of a symmetric and negative
definite matrix and therefore shares this last property.

(ii) If ∀n, qn ∈ Q and qn → q0 with q0 ∈ bd (Q ) then ∥θ(qn)∥ →

Assume the contrary, i.e., ∃K > 0, ∀n, ∥θ(qn)∥ < K , this
means for at least one subsequence, θ(qn) → θ0. By continuity of
the optimization problem given by Eq. (A.2), θ0 should therefore
be a solution at price q0. But remember that qn → q0 with
q0 ∈ bd (Q ). This means by Eq. (6) that there exists, for q0,
an arbitrage portfolio θ1 with the property that Aθ1 ≥ 0 and
(q0)

′ θ1 ≤ 0 with at least one strict inequality. It follows that
the portfolio θ2 = θ0 + θ1 satisfies the constraint of problem
(A.2) since Aθ2 = Aθ0 + Aθ1 ≥ 0 and, under the assumption
that ∂U (x) ≫ 0,

U (Aθ2) − (q0)
′ θ2 = U (Aθ0 + Aθ1) − (q0)

′ θ0

− (q0)
′ θ1 > U (Aθ0) − (q0)

′ θ0 (A.8)

which contradicts the fact that θ0 is a solution at price q0.

(iii) If ∀n, qn ∈ Q and ∥qn∥ → ∞ then ∃s0 ∈ S, (Aθ(qn))s0 → 0
From the optimality condition given by Eq. (A.6), we know

∀n, qn = A′∂U (Aθ(qn)). So if ∥qn∥ → ∞, we can then say
that ∥∂U (Aθ(qn))∥ → ∞. From our assumption on the boundary
behavior of the utility function, we conclude that ∃s0 ∈ S,
(Aθ(qn))s0 → 0.

Appendix B. Proof of Proposition 2

(i) ∂D (p) = A∂θc(A′p)A′ is symmetric and negative semi-definite
matrix

Computing ∂D (p) is a simple exercise. This matrix is symmet-
ric since ∂θc(q) is symmetric. But it is only negative semi-definite
even if ∂θc(q) is negative definite since dim

(
ker

(
A′

))
= S − K >

0. This induces that ∀h ∈ ker
(
A′

)
, h′∂D (p)h = 0

(ii)If ∀n, pn ∈ RS
++

and pn → p0 with some p0,s = 0 then
∥D (pn)∥ → ∞

If ∀n, pn ∈ RS
++

and pn → p0 with some p0,s = 0, we know
that qn = A′pn ∈ Q but at the limit q0 ∈ bd (Q ). It follows,
from (ii) of Proposition 1, that ∥θ(qn)∥ → ∞. Now observe
that ∥D (pn)∥ = ∥θ(qn)∥

A θ(qn)
∥θ(qn)∥

. Since θ(qn)
∥θ(qn)∥

∈ Sk, the unit

sphere and A is of full rank, A θ(qn)
∥θ(qn)∥

→ z ̸= 0. It follows that
D (pn)∥ → ∞.

iii)If ∀n, pn ∈ RS
++

and ∥pn∥ → ∞ then ∃s0 ∈ S, (D (pn))s0 → 0
Notice that when ∥pn∥ → ∞, then ∥qn∥ =

A′pn
 → ∞ since

pn ≥ 0, A ≥ 0 and ∀s, ∃k, ask > 0. This result follows directly from
iii) of Proposition 1.

ppendix C. Proof of Proposition 3

(i) ∂S(p) = D +
1

∂2K((∂K)−1(g′p))
g′g with D a diagonal matrix of

generic term 1
∂2c((∂cs)−1(ps))

This follows directly from Eqs. (14) ad (17).

(ii) ∂S(p) is positive definite
∂Y(p) is a diagonal matrix D with positive terms and is there-

fore positive definite. ∂I(p) is positive semi-definite (see Eq. (18)).
Their sum is therefore positive definite.

(iii) If ∀n, pn ∈ RS
++

and ∥pn∥ → ∞ then ∀s ∈ S, (S(p))s → +∞

If ∀n, pn ∈ RS
++

and ∥pn∥ → ∞, we know from the property
of the intermittent production that ∀s ∈ S, I p → +∞.
( ( ))s
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This is sufficient to show that ∀s ∈ S, (S(p))s → +∞ since 
(p) = Y(p) + I(p) and Y(p) ≥ 0.

iv) If ∀n, pn ∈ RS
++ and pn → p0 with some p0,s = 0, S(pn) → 

(p0) ≥ 0 and is finite
If ∀n, pn ∈ RS

++ and pn → p0 with some p0,s = 0, we know 
hat for the conventional sector limps→0 ys(ps) = 0. This results in 
(pn) → Y(p0) ≥ 0 and is finite. As for the intermittent sector,
ith some p0,s = 0, we have I(pn) → I(p0) ≥ 0 and is finite.
onsequently, S(pn) → S(p0) ≥ 0 and is finite.

ppendix D. Proof of Proposition 4

(i) Existence
The proof is essentially based on a homotopy argument. An in-

uitive presentation can be found in Eaves and Schmedders (1999)
for a more detailed argument see Villanacci et al. (2002) ch.7
or Hirsch (1976) ch.5). Following this presentation, a complex
quation system f(p) = 0, here the function f : RS

++
→ RS

ith f(p) = S(p)−D(p), has a solution if there exists (i) a simple
quation system g(p) = 0, here the function g : RS

++
→ RS with

(p) = p−p̂, p̂ ≫ 0 given, and (ii) a homotopy H : [0, 1]×RS
++

→
S given by H(p, λ) = λf(p)+(1 − λ) g(p) with the property that:

• g(p) admits a unique and regular solution. This is the case
here since (i) g(p) = 0 ⇔ p = p̂ and (ii) ∂g|p=p̂ = IS , the
identity matrix of dimension S, a matrix obviously of full
rank.

• 0 is a regular value of H, meaning that for all (p, λ) ∈ H−1(0),
∂H|(p,λ) is a surjection. This is for instance the case if ∂H is
of full rank. Here, the sub-matrix ∂pH of ∂H is given by:

∂pH = λIS + (1 − λ) (∂S(p) − ∂D(p)) (D.1)

Since ∂S(p) is positive definite (see point (ii) of Proposi-
tion 3) and ∂D(p) negative semi-definite (see point (i) of
Proposition 2), ∂pH is also positive definite and therefore
of rank S. It follows for all (p, λ) ∈ H−1(0), ∂H|(p,λ) is a
surjection.

• H−1(0) is a compact subset of [0, 1] × RS
++

It simply remains to check this last point. Assume the contrary
there exists a sequence (pn, λn) ∈ H−1 (0) with the property
that either ∥pn∥ → ∞ or pn → p0 with some p0,s = 0. If
λn → λ0 = 0, the only point in H−1 (0) is (p0, λ). So let us assume
in the rest of the argument that λ0 > 0. In the first case, we
know by (iii) of Proposition 2 that ∃s0 ∈ S, (D (pn))s0 → 0 and
y (iii) of Proposition 3 that ∀s ∈ S, (S (pn))s → +∞. It implies
hat ∃s0 ∈ S, (H(pn, λn))s0 → +∞. It therefore exists, for each

> 0, a rank N such that ∀n > N , (H (pn, λn))s0 > K > 0
hich is the desired contradiction. In the second case, we know
y (ii) of Proposition 2 that ∥D (pn)∥ → ∞. But remember that
n → p0 finite, this means that S (p0) as well as g(p) are finite.
ence ∃s0 ∈ S, (H(pn, λn))s0 → −∞, which is again the desired
ontradiction.

i) Uniqueness
This argument is mainly based on the degree theory (see

irsch (1976) ch.5, or Villanacci et al. (2002) ch.7). In fact, from
he previous point, we also deduce that the two maps f and g have
he same degree, i.e. deg(f) = deg(g). Moreover, if one defines for
given regular map h the quantity indh(p) =

det(∂h|p)
|det(∂h|p)|

, we know
hat deg(h) =

∑
p∈h−1(0) indh(p). It follows, by computation, that

he degree of our simple map g is 1, hence
∑

p∈f−1(0) indf(p) = 1.
Let us now remember that ∂f(p) = ∂S(p) − ∂D(p) is a positive
efinite matrix. Its determinant is therefore always positive. It
mplies in particular that ∀p ∈ f−1(0), indf(p) = 1 and since these
uantities sum to 1, the solution is unique.
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Appendix E. Proof of Proposition 5

(i) Let
(
θ∗

c ,m
∗, θ∗

r , y∗, κ∗, p∗, q∗
)
A be an equilibrium with the

contract structure A =

[
AS−K
AK

]
and AK invertible satisfying

Definition 1. Now define(
ϑ∗,m∗, ϑ∗, y∗, κ∗, p∗, q∗

)
B

=

(
AKθ∗

c,A,m
∗

A,AKθ∗

r,A, y
∗

A, κ
∗

A, p∗

A,
(
A−1
K

)′ q∗

A

)
(E.1)

and let us verify that this vector also satisfies Definition 1 with

contract structure of
[

AS−K (AK )−1

IK

]
. With regard to point (i)

of Definition 1, we observe that we obtain the new budget con-
straint by simply making a change of variable: replacing θ by
θ = (AK )−1 ϑ, i.e.,

{
Aθ ≥ 0(
q∗

A
)′

θ + m = m0
⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
AS−K (AK )−1

IK

]
ϑ ≥ 0⎛⎜⎜⎝(

A−1
K

)′ q∗

A  
=q∗

B

⎞⎟⎟⎠
′

ϑ + m = m0

(E.2)

The solution of this new program
(
ϑ∗,m∗

)
B =

(
AKθ∗

c,A,m
∗

A
)
is

therefore the same up to, of course, this change of variable. If we
now move to (ii) of Definition 1, the reader knows from our early
discussion (see Section 2), that the retailer maximizes his profit
and that the contract markets clear if the following relation is
satisfied q∗

= A′p∗. Since p∗

B = p∗

A, it is a matter of fact to verify
that:

q∗

A = A′p∗

A ⇔
(
A−1
K

)′ q∗

A =
(
A−1
K

)′ A′p∗

A ⇔ q∗

B

=

[ (
AS−K (AK )−1)′ Ik

]
p∗

B (E.3)

Moreover (iii) and (iv) of Definition 1 are not affected by the
contract change, the electricity supply remains therefore un-
changed. So if the retailer’s demand remains unchanged, the proof
is finished. From Eq. (11), this new demand at price p∗

B = p∗

A is
given by:

DB(p∗

B) =

[
AS−K (AK )−1

IK

]
ϑ∗

= Aθ∗
= DA

(
p∗

A
)

(E.4)

(ii) Conversely, let
(
ϑ∗

c ,m
∗, ϑ∗

r , y∗, κ∗, p∗, q∗
)
B be an equilib-

rium with the contract structure
[

B
IK

]
satisfying Definition 1

and let C be a K dimensional invertible matrix. Define:(
θ∗,m∗, θ∗, y∗, κ∗, p∗, q∗

)
A =

(
C−1ϑ∗

B,m
∗

B, C
−1ϑ∗

B, y
∗

B, κ
∗

B , p∗

B, C
′q∗

B
)

(E.5)

and let us verify that this vector satisfies Definition 1 with A =[
BC
C

]
. First notice that by replacing ϑ by ϑ = Cθ, the budget

constraints become⎧⎨⎩
[

B
IK

]
ϑ ≥ 0(

q∗

B
)′

ϑ + m = m0

⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Aθ ≥ 0⎛⎜⎜⎝C′q∗

B
q∗

A

⎞⎟⎟⎠
′

θ + m = m0
(E.6)

It follows that, at price q∗

A, the new solution of (i) of Definition 1
is given by

(
θ∗

A,m
∗

A
)

=
(
C−1ϑ∗

B,m
∗

B
)
. It is also immediate to verify

that the relation between the contract and the state-contingent
prices are maintained since:

q∗
=

[
B′ I

]
p∗

⇔ C′q∗
= A′p∗

⇔ q∗
= A′p∗ (E.7)
B K B B B A A
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Finally we also notice that the electricity demand at price p∗

A = p∗

B 
emains the same since:

DA
(
p∗

A
)

=

[
BC
C

]
C−1ϑ∗

B =

[
B
IK

]
ϑ∗

B = DB(p∗

B) (E.8)

e can therefore conclude that
(
θ∗,m∗, θ∗, y∗, κ∗, p∗, q∗

)
A is an

quilibrium solution with A =

[
BC
C

]
for all choice of C, a K

imensional invertible matrix.
Point (iii) directly follows from the computation given by

q. (21).

Appendix F. Proof of Proposition 6

This result follows directly from our identification of the first-
order conditions.

Appendix G. Proof of Proposition 7

From our discussion in Section 5, we only need to verify
hat Eq. (26) holds. So let us consider SW (B) introduced in
efinition 2 and denote by (λ (B) , µ (B)), the Lagrangian mul-
ipliers associated to the constraints. In order to compute the
erivative of SW (B), we adopt the following convention: we
ifferentiate per contracts (per column of B) and do this for
ach contract. ∂BSW (B, g) is therefore a vector of dimension
1, (S − K ) K ) which satisfies the FOC (see Eq. (24)):

SW (B) = (∂U(x (B)))′ ∂x (B) − (∂C(x (B)))′ ∂y (B)

−
dK(κ(B))

dκ ∂κ (B)

= (λ (B))′ (∂x (B) − ∂y (B) − g∂κ (B))

+ (µ (B))′
[

IS−K −B
]
∂x (B) (G.1)

sing the first set of constraints of Eq. (23) as an identity, we
now that:

x (B) − ∂y (B) − g · ∂κ (B) = 0 (G.2)

t follows that:

SW (B) = (µ (B))′
[

IS−K −B
]
∂x (B) (G.3)

ow, by using the second set of constraints of Eq. (23) as an
dentity and by computation, we get that:

IS−K −B
]
∂x (B) −

(
(xS−K+k (B))Kk=1

)′
⊗ IS−K = 0 (G.4)

here ⊗ denotes the tensor product. We can therefore say that:

SW (B) = (µ (B))′
((

(xS−K+k (B))Kk=1

)′
⊗ IS−K

)
=

(
xS−K+k (B) (µ (B))′

)K
k=1 (G.5)

ppendix H. Proof of Lemma 1

i) Computation of ∂Bp∗(B)
Let us apply the Implicit Function Theorem to f (p,B) = 0

iven by Eq. (28). To apply this theorem, we first need to verify
that ∂pf (p,B) is a square matrix of full rank, here S. This is done
by showing that ker

(
∂pf (p,B)

)
= {0}. By computation:

∂pf (p,B)h = 0 ⇔

{[
B′ IK

] (
∂2U (S(p)) ∂pS(p) − IS

)
h = 0[

IS−K −B
]
∂pS(p)h = 0

(H.1)
11
Since ∂pS(p) is invertible, in fact even positive definite (see (ii) of
Proposition 3), we obtain by setting h1 = ∂pS(p, g)h:{ [

B′ IK
] (

∂2U (S(p, g)) −
(
∂pS(p, g)

)−1
)
h1 = 0[

IS−K −B
]
h1=0

(H.2)

Now, let us observe that ker
([

B′ IK
])

⊥ ker
([

IS−K −B
])
.

More precisely:{
v1 ∈ ker

([
B′ IK

])
v2 ∈ ker

([
IS−K −B

])
⇔

⎧⎪⎪⎨⎪⎪⎩
v1 =

[
IS−K
−B′

]
x1 with x1 ∈ RS−K

v2 =

[
B
IK

]
x2 withx2 ∈ RK

⇒ v′

1v2 = 0 (H.3)

From Eq. (H.2), we deduce that:

h′

1

(
∂2U (S(p, g)) −

(
∂pS(p, g)

)−1
)
h1 = 0 (H.4)

Now remember that ∂2U is negative definite by assumption; the
same being true for −

(
∂pS(p, g)

)−1 since ∂pS(p, g) is positive
definite (see (ii) of Proposition 3). It follows that h1 = 0 and
therefore, ker

(
∂pf (p, g,B)

)
= {0}.

We can now move to the construction of ∂Bf (p,B). To com-
pute this derivative with respect to the coefficient of B, we keep
the same convention as in the proof of Proposition 7. Let us
start with the first part of this function f given by

[
B′ IK

]
·

(∂U (S(p)) − p) whose generic term is:⎛⎝S−K∑
j=1

bj,i
(
∂xjU (S(p)) − pj

)
+

(
∂xS−K+iU (S(p)) − pS−K+i

)⎞⎠K

i=1

(H.5)

If we denote by ek a vector of RK containing 1 at rank k and
0 elsewhere, the derivative of Eq. (H.5) with respect to bs,k is(
∂xsU (S(p)) − ps

)
ek. It follows that the derivative with respect

to
(
bs,k

)S−K
s=1 will be ek ⊗

((
∂xsU (S(p)) − ps

)S−K
s=1

)′

and finally the
(K , (S − K ) K ) matrix of the derivatives with respect to B is:

IK ⊗

((
∂xsU (S(p)) − ps

)S−K
s=1

)′

(H.6)

Let us now move to the second part of f given by
[

IS−K −B
]
·

S(p) whose generic term is:⎛⎝Si(p) −

K∑
j=1

bi,jSS−K+j(p)

⎞⎠S−K

i=1

(H.7)

If ϵs now denotes a vector of RS−K containing 1 at rank s and
0 elsewhere, the derivative of Eq. (H.7) with respect to bs,k is
(−SS−K+k(p, g)) ϵs and, with a same argument, the (K , (S − K) K )
matrix of the derivatives with respect to B becomes:(
− (SS−K+k(p))Kk=1

)′
⊗ IS−K (H.8)

Since Eqs. (H.6) and (H.8) are the two parts of ∂Bf (p,B) we can
say that:

∂Bf (p,B) =

[
IK ⊗

((
∂xsU (S(p)) − ps

)S−K
s=1

)′(
− (SS−K+k(p))K

)′
⊗ IS−K

]
(H.9)
k=1
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From Eqs. (H.1) and (H.9), we finally conclude that:

∂Bp∗(B) =

[ [
B′ IK

] (
∂2U (S(p)) ∂pS(p) − IS

)[
IS−K −B

]
∂pS(p)

]−1

×

[
IK ⊗

((
∂xsU (S(p)) − ps

)S−K
s=1

)′(
− (SS−K+k(p))Kk=1

)′
⊗ IS−K

]
(H.10)

ii) Rank of ∂Bp∗(B)
Let us first consider the two particular cases given by K = S−1

nd K = 1. If K = S − 1, ∂Bf (p,B) writes:

Bf (p,B) =

[ (
∂x1U (S(p)) − p1

)
IS−1(

− (Ss(p))Ss=2

)′

]
(H.11)

f
(
∂x1U (S(p)) − p1

)
= 0, rank (∂Bf (p,B)) = 1 and therefore

ank (∂Bp∗(B)) = 1. Otherwise rank (∂Bf (p,B)) = S − 1 and
ank (∂Bp∗(B)) = S − 1. If K = 1, ∂Bf (p,B) becomes

Bf (p,B) =

[ ((
∂xsU (S(p)) − ps

)S−1
s=1

)′

−SS(p)IS−1

]
(H.12)

hich is obviously a matrix of rank S − 1.
Let us now move to the case 1 < K < S−1 and let us observe

hat the derivative of f (p,B) with respect to (bs,k)S−K
s=1 , i.e., the kth

vertical block of (S − K ) columns of ∂Bf (p,B), is given by:

∂(bs,k)
S−K
s=1

f (p,B) =

[
ek ⊗

((
∂xsU (S(p)) − ps

)S−K
s=1

)′

− (SS−K+k(p)) IS−K

]
(H.13)

e can now make a first observation. Since the supply S(p) is
trictly positive at equilibrium, the lower part of the previous
atrix is the identity of (S − K ) up to multiplication by non-
ero constant. So if we select the first block of (S − K ) columns
f ∂Bf (p,B), we have (S − K ) linearly independent vectors. Now
ssume that

(
∂xsU (S(p)) − ps

)S−K
s=1 ̸= 0. Thus, at least one term

s non-zero, say the s0 − th. Now observe that the upper part
f ∂(bs,k)

S−K
s=1

f (p,B) is mostly composed of zeros except in line k
nd this line changes with the order number of the block. So
f we select from block 2 to K the s0 − th column, we obtain
gain (K − 1) linear independent vectors. This shows point (ii)
f the Lemma. Moreover, if at least one other component of
∂xsU (S(p)) − ps

)S−K
s=1 is non-zero, say the s1 − th, we can add to

he previously selected columns, the s1− th column of the second
lock and therefore conclude that rank (∂Bp∗(B)) = S.

ppendix I. Proof of Proposition 8

The proof directly follows from our discussion.

ppendix J. Proof of Proposition 9

Remember that the Gordan’s form of Farkas’ Lemma states
hat either (i) ∃x Ax ≫ 0 or (ii) ∃y ≥ 0, and y ̸= 0, y′A = 0.
t follows:

(i) if we set A =

[
∂Bκ

∗ (p∗(B))
∂BSW (B)

]
and assume that ̸ ∃y ≥ 0,

nd y ̸= 0, y1∂Bκ∗ (p∗(B)) + y2∂BSW (B) = 0 or, in other words,
hat the two vectors are collinear with a positive coefficient, we
an say that ∃dB with the property that:

∂Bκ
∗ (p∗(B)) dB >0

∂BSW (B)dB >0 (J.1)

n other words, there exists changes in B which improve both
nvestment in renewables and social welfare.

(ii) since g ≫ 0 and ∂pY(p) = D, a diagonal matrix of generic
erm 1 > 0 (see (i) of Proposition 3), we can say that
∂2c((∂cs)−1(ps))

12
g′
= α′ ∂pY(p) with αs = gS∂2c

(
(∂cs)−1 (ps)

)
for s = 1, . . . , S, or,

n other words, ∃y =

(
1
α

)
≥ 0 and y ̸= 0, y′

[
g′

−∂pY(p)

]
=

. It implies ̸ ∃x,
[

g′

−∂pY(p)

]
x ≫ 0. So, if we replace x by

∂Bp∗(B)dB, we get:

̸ ∃dB which satisfies
{

g′∂Bp∗(B)dB >0
∂pY(p)dB <0 (J.2)

In other words, it is impossible by a contract change to im-
prove investment in renewables and to decrease conventional
electricity production in each state of nature.
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