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Abstract—This paper1 presents a load-aware network selection
model intended to help users to determine whether or not to
connect to a macro cell (MC) or a WiFi access point (AP) in non-
cooperative user-centric networks. The problem is formulated as
a game theoretic model in which users selfishly maximize their
throughput. Unlike in most existing work, we do not assume that
users have complete information about the other users’ dynamics,
which makes it more realistic in a communication network with
distributed users. Then, because the network selection decision
depends crucially on truthful reporting of channel states by
the users, we explore the idea of non-cooperative users sending
signals that are likely to induce the scheduler to behave in a
manner beneficial to them. We provide five procedures which
consist of introducing hierarchy among the users reflecting their
channel quality and dividing them into groups interfering with
each other, but not within themselves. Having done this, we allow
them to sequentially choose their preferred network. We also
propose a solution to compel users to reveal the truthful signals to
the macro eNodeB (MeNb) by designing an additional immunity
parameter mainly meant to keep lying users from harming
truthful users. Particularly noteworthy is the fact that the
additional immunity parameter does not only decrease the gain
of liars, but it further improves the overall system performance.
We provide extensive system level simulation results comparing
our procedures between themselves and with traditional schemes.
It is shown that the proposed solutions outperform classical
approaches in almost every respect.

Index Terms—Ultra dense network, macro cell, WiFi, inte-
grated cellular WiFi network, network selection, traffic steering,
load balancing, channel state information, game theory, network-
centric, user-centric, truthful reporting, fairness.

I. INTRODUCTION

Nowadays, with the recent proliferation of wireless devices
and the ubiquity of wireless networks, users can connect to
WiFi wireless networks through hot-spots or access points
in most public areas. As the cellular networks usually have
a broader range of coverage, the WiFi networks are smaller
in their reachable range but more densely deployed. From a
standardization point of view, 3GPP has been working on a
number of initiatives to improve WiFi/cellular interworking,
including ways to improve the selection of WiFi networks by
cellular devices and options for integrating WiFi networks into
the cellular core [2]. 3GPP has also defined several wireless
local area network (WLAN) offloading mechanisms which rely
on the connection between the LTE core network and WLAN.

1The material in this paper has been presented in part at [1]. The work of
P. Wiecek was supported by Wrocław University of Science and Technology
under the project 8211104160 MPK: 9130740000.

Following the same trend, the cellular industry has converged
on a single mobile broadband standard which has facilitated
WiFi/cellular integration work. Simultaneously, the emergence
of Hotspot 2.0 and Next Generation Hotspot (NGH) provides a
number of standardized features for improving user experience
on WiFi networks and should further simplify integration with
mobile networks [3]. As a result, many mobile operators who
are thinking strategically about investing in 5G are also con-
sidering how WiFi can complement and enhance their existing
infrastructure deployments. Among the interesting challenges,
resulting from the coexistence of WLAN and LTE, network
selection has greatly attracted attention in the academia and
industry community. The network selection can be network-
centric, such as in [4]–[6], where a central controller chooses
networks for the users to achieve the global optimum, or user-
centric, such as in [7], [8], where users choose the network
by themselves. The former approaches can achieve better
performance, but require global information, while the latter
can provide better individual service with less overhead.

WiFi access selection of today strongly depends on the
device implementation. This means that in typical implemen-
tations, the device selects WiFi whenever it is available. Ex-
amples of when it would be beneficial for the user experience
to remain in a 3GPP mobile system include situations when
the WiFi radio quality is worse than the LTE quality and
when the WiFi backhaul is congested. Different devices may
also have different implementations, leading to different user
experiences. From the operator’s point of view, it would be
good to have more control on the access selection to be able
to provide a more uniform experience. In fact, with the integra-
tion of WiFi on the radio access network (RAN) levels, there
is a focus on providing operators with more control over WiFi
access selection. This control may be gained through network-
centric mobility mechanisms (e.g., direct handover command
or redirection to WiFi), or by device-centric mechanisms (e.g.,
more careful specification of the access-selection algorithm in
the terminal). The association schemes actually implemented
by network operators are fully centralized: the operator tries
to maximize his utility (revenue) by assigning the users to
different systems [9]. However, distributed joint radio resource
management (JRRM) mechanisms are gaining in importance
– users may be allowed to make autonomous decisions in a
distributed way. This has lead to game theoretic approaches
to the network selection problems in heterogeneous wireless
networks, as can be found in [10]–[13].
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In [14], the authors proposed a UE association and selection
framework where the eNB selects the users to aggregate the
service with AP, so that the user experiencing least service
gets aggregated first. They used the Received Signal Strength
Indicator (RSSI) value of the users as the main parameter for
aggregating a particular user for a contract period with LTE
and WiFi. In [15], the authors considered a heterogeneous
network model which is composed of diverse network LTE
BSs and WiFi APs. They tried to maximize the total quality
of experience (QoE) of users constrained by the bandwidth
capacity. They showed that the proposed algorithm reduces the
number of handovers and improves the QoE experienced by
users. Authors of [16] considered the LTE-A offloading to Wi-
Fi. The authors proposed a network selection and offloading
scheme based on the queueing model of M/G/1 in order to
satisfy the delay budget of UEs and the global load balancing.
The authors of [17] investigated the impact of integrating LTE-
U and WiFi from an economic perspective and showed that the
welfare impacts are subtle, depending in part on the amount of
unlicensed spectrum and the number of entrants. Authors of
[18] presented a flexible analytical model for the performance
evaluation and the efficient design of user assignment and RAT
selection schemes using a Markovian agent formalism.

MOTIVATION AND CONTRIBUTIONS

The device is in the unique position to make the best final
determination of when traffic can be transported over WiFi
(e.g., based on real-time radio conditions, type of pending
traffic, device conditions such as mobility and battery status,
etc.). Indeed, the device can make network selection decisions
based on policies from the operator and knowledge of the
local operating environment (LOE). The LOE is a set of
information that the device can use along with other infor-
mation (e.g., knowledge about network load, operator policies
and user preferences) as inputs to operator intelligent network
selection (INS) to select the most suitable access for routing
the traffic. It has been left unspecified since it is based on
specific implementations and the information available inside
the device, which has led to user-centric network selection
schemes. However, new network selection approaches must
be tailored to the specific challenges dictated by the new
network topology, and there are significant technical issues
that still need to be addressed for successful rollout and
operation of these approaches. Network conditions are a key
factor in making INS decisions. In the existing solutions, there
is no standardized means of capturing these conditions and
distributing them to users to influence selection decisions.
There is a variety of network-based information that can
be leveraged to help making network selection and traffic
steering decisions, and a number of conceivable ways to
distribute that information to devices. The information can
include network-distributed selection and steering policies,
real time network conditions in the cellular and WiFi networks,
subscriber profiles and analytics based on historical data, etc.
As an example, downlink scheduling decisions are basically
made depending on the QoS class identifier (QCI) and the
channel quality indicator (CQI).

Because there are many channel responses that are pro-
portional to the number of users, we have proposed a new
communication scenario wherein a partial channel state infor-
mation (CSI) of each user, rather than his full channel side
information, is fed back to the MeNB. By conveying a partial
CSI, the feedback burden can be greatly reduced. In this paper,
we provide a network-assisted user-centric network selection
model for maximizing per-user throughput in an integrated
cellular WiFi system. Specifically, a simple procedure allowing
users to connect to a network which will form an approximate
Nash equilibrium in our model is proposed. Our approach
is based on introducing a full hierarchy among the users
reflecting in an accurate way the quality of channels they
have at their disposal and then allowing them to sequentially
choose their preferred network. As it will turn out, this kind
of procedure results for each user in the payoff not far from
his optimum, while balancing the load over cells.

Another noteworthy aspect when dealing with user-centric
network selection problem is how the operator can compel
users to reveal the truthful signals about their CQI. It has been
shown in [19] that this requires implementing more complex
policies (making use of more information) which would be
robust against cheating. In this paper, we show that, in the
presence of lying users, liars lose and gain more than non-
liars and thus, the impact of lying is bigger with liars than
non-liars, which suggests that the proposed algorithms are
rather fair. We then present a simple procedure that tends
to prevent users from lying, as they cannot gain much from
being non-cooperative. The approach proposed in this paper,
while profiting from these new capabilities, presents a key to
understand the actual benefits brought by WiFi integration.
In fact, although WiFi integration has spurred great interest
and excitement in the community, many of the fundamental
theoretical questions on the limits of such approach remain
unanswered.

The contribution of this paper is threefold:

• Firstly, we provide five load-aware network selection
algorithms. Simulation results show that all the proposed
algorithms outperform classical approaches in almost
every respect.

• Secondly, we explore the idea of non-cooperative users
sending signals that are likely to induce the scheduler to
behave in a manner beneficial to them.

• Thirdly, we propose a simple solution integrated into our
algorithms, which intends to make them robust against
lying.

The structure of the paper is as follows. The system model
related aspects are described in Sec. II. Next, in Sec. III, we
present the game theoretic framework adopted for the consid-
ered association problem. Three algorithms are presented: one
for sparse networks (which we call MERE) and three for dense
networks (which we call PIXEL and ADROIT and BEST
CQI). Sec. IV presents the offloading algorithm (which we call
OFF). In Sec. V, we explore non-truthful reporting of users’
channel state information, and in Sec. VI, we design a simple
procedure which aims at making the proposed algorithms more
immune to lying. For all the proposed solutions, we present
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Fig. 1. A vertically integrated cellular WiFi system with M = 3 macro cells
and W = 9 overlapping WiFi access points.

key properties and performance characteristics. In Sec. VII, we
provide numerical results to illustrate the theoretical solutions
derived in the previous sections and get a deep insight on the
performances of the proposed solutions with respect to related
works. Sec. VIII concludes the paper.

II. SYSTEM MODEL

Consider a vertically integrated cellular WiFi system, where
the WiFi networks are tightly integrated with the cellular net-
work in terms of the radio frequency coordination and network
management (see Fig. 1). A user can choose a network from
his reachable networks, which takes its index from the two
network set spaces M = {1, . . . ,M} and W = {1, . . . ,W}
for MeNBs and WiFi APs respectively. The various parameters
used throughout the paper are listed in Table I.

A. WiFi Throughput

The measurement of average throughput of a node in a
wireless LAN is done by the time it takes to transfer the files
between the WiFi AP and the wireless clients. Typically, one
would transfer a file from a wired server to a wireless client
by means of an AP bridging wired and wireless networks.
The throughput depends on the bit rate at which the wireless
mobile communicates to its AP. On the other hand, as already
mentioned, if there is at least one host with a lower rate, a
WLAN network presents a performance anomaly in the sense
that the throughput of all the hosts transmitting at higher rate
is degraded below the level of the lower rate [20], [21]. We can
accordingly consider that the throughput of a WiFi connection
is equal to a constant, say vk, which only depends on the load
of AP k regardless of differences in users’ channel data rate,
namely

vk =
Dk∑nk

i=1(1− aik)bi
; for k ∈ W (1)

where Dk is the peak data rate of AP k which takes into
account the transmission protocol, nk is the number of users

with access to AP k, bi is the demand of user i (with bi = 1
when there exists a demand, and 0 otherwise) , aik is user i’s
action defined by the user decision to connect to RAN k (with
aik = 1 when the user chooses MC k, and 0 when the user
chooses WiFi AP k).

B. Macro Cell Throughput

As opposed to WiFi, the macro cell throughput can vary
greatly depending on the link conditions due to interference
and noise impairments. We then model the utility experienced
by a user that is connected to macro cell by the capacity
of Shannon [22]. Assuming that there is no interference
between the macro cell and the WiFi network (as they operate
on different frequency bands), the throughput of a user i
connected to the macro cell k is given by2:

rik = log2

(
1 +

p hik aik bi
σ2 + p

∑
k′ ̸=k hik′ aik′ bi

)
; for k ∈ M

(2)

where hik is the downlink channel from MeNB k to user i, p
is the transmit power and σ2 is the noise variance.

III. THE APPROXIMATELY OPTIMAL NETWORK
SELECTION

The problem we tackled here is that of maximizing the sum
of throughputs over all the MeNBs in M and all the WiFi
APs in W . This problem is a high-dimension optimization
problem with the objective function which is not convex, so
traditional gradient-based optimization tools will work poorly
here. Moreover, computing the centralized globally optimal
solution results in excessive computational complexity and
large signaling overhead. Therefore, a distributed and practical
solution is highly desirable in this case. As a consequence, we
are interested in finding an approximately optimal solution,
which will be relatively easy to compute. We provide ways to
compute such a solution and try to evaluate it both from global
and individual point of view. The individual point of view
(which in formal considerations leads to a Nash equilibrium
solution) is important because a user who is not satisfied with
his own performance may not want to connect where the
algorithm tells him to or may want to cheat the algorithm in
order to obtain a better connection as we will see in Section
V. In both cases, this may degrade the overall performance of
the system.

In our considerations, we suppose that each user i measures
all the CQI values hik and sends some information about them
to an MC. Then, based on them and other known primitives
of the model, each MC computes an approximate equilibrium
and connects the users to one of the WiFis or one of MCs.
We show that an approximate equilibrium in this model can be
computed using a simple algorithm, which can be implemented
in a partially distributed way.

2Although this is not a restriction of the proposed model, we suppose here
that the available bandwidth is the same for the MC and the WiFi AP, and
that they both operate on the same spectrum, e.g., 2.4 or 5 GHz [23].
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Parameter Description
M the number of MeNBs,
W the number of WiFi APs,
N the number of users,
σ2 the noise variance,
bi the demand of user i. bi = 1 when there exists a demand, and 0 otherwise,
aik user i’s action defined by the user decision to connect to RAN k. aik = 1 when the user chooses MC k, and

0 when the user chooses WiFi AP k,
hik the downlink channel from MeNB k to user i,
si the channel state of user i. si = 1 if the channel is good, and si = 0 otherwise,
βi the probability that bi = 1,
P the policy profile matrix.

TABLE I
DESCRIPTION OF THE VARIOUS PARAMETERS.

A. The Game Theoretic Formulation

The basic solution concept for multi-agent multi-objective
systems like the one considered here is given by non-
cooperative game theory under the name of Nash equilibrium
(NE) [24]. It is a vector of strategies (referred to here-
after and interchangeably as actions) pNE = pNE

1 , . . . , pNE
N ,

one for each player, such that no player has incentive
to unilaterally change his strategy, i.e., un(p

NE
n ,pNE

−n ) ≥
un(pn,pNE

−n ) for every action pn ̸= pNE
n , where the −n

subscript on vector p stands for “except user n", i.e., p−n =
{p1, . . . , pn−1, pn+1, . . . , pN}. If there exists an ϵ > 0 such
that (1+ ϵ)un(p

ϵNE
n ,pϵNE

−n ) ≥ un(pn,pϵNE
−n ) for every action

pn ̸= pϵNE
n , we say that the vector pϵNE = pϵNE

1 , . . . , pϵNE
N

is an ϵ-Nash equilibrium3. ϵ-Nash equilibrium can be regarded
as a solution which bounds the possible profit from a unilateral
deviation from it by some small constant, which makes it
unlikely e.g., in the case when computing a profitable change
of strategy is difficult algorithmically.

In our model, the strategy for user i is the number of
network he chooses or, to make the notation easier to read,
a pair Pi = (N , k), where N ∈ {M,W} denotes the type of
network he chooses to connect to, while k ∈ Mi if N = M is
the number of MeNB he chooses, and k ∈ Wi is the number of
WiFi AP he chooses, with Mi ⊂ M and Wi ⊂ W denoting
the sets of MeNBs and WiFi APs available to user i. Then,
the utility of user i is defined as

ui(P ) =

{
rik ; if Pi = (M, k)
vk ; if Pi = (W, k).

B. The Network Selection Algorithm

Our goal will be to provide a simple procedure allowing
users to connect to a network which will form an approximate
Nash equilibrium in our model. Our approach will base on a)
limiting the interference between the users by dividing them
into the smallest possible number of layers, within which users
cannot interfere, b) introducing a full hierarchy among the
users reflecting in an accurate way the quality of channels they
have at their disposal and then allowing them to sequentially

3There are two different ways to define an ϵ-Nash equilibrium used in the
literature. A more commonly used definition (see [25]) states that a vector
p is an ϵ-NE if it satisfies un(pϵNE

n , pϵNE
−n ) + ϵ ≥ un(pn, pϵNE

−n ). In
algorithmic game theory both definitions (additive and multiplicative) are
used, depending on properties of the class of games under consideration, e.g.
in case of congestion games [26] the multiplicative definition is commonly
applied. It is not hard to see that in general if the payoffs of each user are in
an interval [0, Umax], then any multiplicative ϵ-NE is an additive Umaxϵ-NE.

choose their preferred network. As it will turn out, this kind of
procedure will result for each user in the payoff not far from
his optimum.

Below, we present two of our main algorithms. We start
with a relatively simple algorithm designed for the case of a
sparse network (M >> N ). A small value δ ∈ (0, 1) and an
optional parameter H > 0 (if we do not want to use it, we
may set it to 1) are the parameters of the algorithm.

Algorithm 1. MERE: Max-min usEr oRdEring algorithm
Each user i computes Ψi =

max
{
maxk≤M log2

(
1 + phik

σ2

)
,maxl∈Wi

Dl

}
and

ρik =
log2

(
1+

phik
σ2

)
Ψj

if k ≤ M and ρik = Dk−M

Ψi
if

k > M and k −M ∈ Wi with ρik = 0 otherwise.
A designated MeNB starts with α = 0, α = 1, α∗ = 0, ν = 0
and π∗ = [1 . . . N ].
The following steps are repeated until the loop is interrupted
in point 1):

1) The MeNB computes α − α. If α − α < δ or α > H ,
then it stops, putting α∗ = α and, if ν = 0 also π∗ = π.
Otherwise it takes α∗ = α+α

2 and π = 01×M+W and
announces α∗ to the users.

2) Each user computes Ki = |{k : ρik > α∗}| and sends it
back to the MeNB4.

3) The MeNB sorts pairs (Ki, i) using its first co-
ordinate in an increasing order obtaining vectors
(K(1),K(2), . . . ,K(N)) and π. If K(l) < l for some
l ≤ M +W it puts α = α∗ and returns to point 1).

4) The MeNB puts π∗ = π, α = α∗, ν = 1 and returns to
point 1).

For i = 1, . . . , N user π∗(i) chooses the network with the
highest utility that is not already chosen by some other player.

To understand the sense of MERE algorithm, first note that
the fraction ρik appearing there can be interpreted as a measure
of disutility5 of player i from choosing MeNB k or WiFi k−M
instead of his best network. Since the algorithm is designed
for the sparse network case, it is natural to assume that no
two different players can be connected to the same network,
so the utilities are always of the form log2

(
1 + phik

σ2

)
or Dl.

4If the user has no access to the designated MeNB, he sends the data to
some other MeNB, which then transfers it to the MeNB doing computations
through X2 interface.

5By disutility here and in the sequel we mean the decrease in the utility of
a user measured as the ratio of his current utility to the biggest one he could
receive under the same channel conditions if there was no interference at all.
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Maximizing the value of ρik is thus equivalent to choosing
the network with highest utility. Given the interpretation of
ρik given above, the α∗ appearing in the algorithm can be
interpreted as the maximal disutility for any player from not
choosing his network first, that is the worst-case6 ratio of
utility of any of the players who do not choose their networks
first to their utility if they were the first ones to choose. The
sense of MERE is thus finding the ordering of the players
which minimizes this disutility. It is done by putting on i-th
coordinate of ordering π∗ a player (his index), who has at least
i good networks to choose from (by which we mean i networks
with utility better than α∗ times his best possible utility if
he were a leader). α∗ found by MERE is the minimal value
(computed with a δ toleration) for which such an ordering is
possible.

MERE can be generalized to the case of a dense network
in the way presented below. Here the computations made are
distributed among all MeNBs and all users. A small value
δ ∈ (0, 1) and optional parameters γM , γW , H > 0 (if we do
not want to use them, we can always set H , γM and γW to
1)7 are the parameters of the algorithm.

Algorithm 2. PIXEL: oPtimal layer divisIon with maX-
min user ordEring aLgorithm
Phase A:

Each user i, i = 1, . . . , N , sends Ki := |Mi + Wi| and
Hi = maxk∈Mi hik to (exactly) one of MeNBs from Mi.
Each MeNB k simultaneously does the following steps:

A.1) It sorts triplets (Ki, Hi, i) of all users who sent their
information to this MeNB using first coordinate in an in-
creasing order obtaining vectors (Kk(1), . . . ,Kk(Nk)),
(Hk(1), . . . ,Hk(Nk)) and πk.

A.2) It sets lk0 = 0, ν = 1 and does lkν = Kk(lkν−1 + 1) +
lkν−1, ν = ν + 1 while Nk > Kk(lkν−1 + 1) + lkν−1.
Then, it sets mk = ν and lkmk

= Nk, and creates lists
Lk
1 = (πk(lk0 +1), . . . , πk(lk1)),. . . , Lk

mk
= (πk(lkmk−1+

1), . . . , πk(lkmk
)).

Phase B: (done simultaneously by each MeNB)

B.1) Each MeNB k sets αk
1 = 0, . . . , αk

mk
= 0, αk

1 =
1, . . . , αk

mk
= 1, α∗k

1 = 0, . . . , α∗k
mk

= 0 and π∗
k = πk.

B.2) It computes H
k

1 = µ
∑

s̸=1 max{Hk(lks−1 +

1), . . . ,Hk(lks )}, . . . ,H
k

mk
=

µ
∑

s ̸=mk
max{Hk(lks−1 + 1), . . . ,Hk(lks )} and

mk = γWMmk, and sends (H
k

s ,mk) to each user on
list Lk

s for s = 1, . . . ,mk, where

µ =

{
MmkγM−1

mk−1 if mk ̸= 1

MγM − 1 otherwise.

B.3) Each user j ∈ Lk
s computes Ψj =

max

{
maxl∈Mj

log2

(
1 +

phjl

σ2+pH
k
s

)
,maxl∈Wj

Dl

mk

}
and ρjl, l = 1, . . . ,M + W , as follows:

6Worst-case here means that such a big disutility will only be possible if
different users’ private ordering (from best to worst) of the networks is similar.

7The meaning and optimal selection of these parameters will be further
discussed after Proposition 1.

ρjl =
log2

(
1+

phjl

σ2+pHk
s

)
Ψj

if l ≤ M and ρjl = Dl−M

mkΨj
if

l > M and l −M ∈ Wj with ρjl = 0 otherwise.
B.4) Then, for each s ∈ {1, . . . ,mk} MeNB k sets ν = 0

and the following steps are repeated until the loop is
interrupted in point B.4.1):
B.4.1) MeNB k computes αk

s − αk
s . If αk

s − αk
s < δ or

αk
s > H , then it stops the loop, putting α∗k

s = αk
s

and, if ν = 0, also π∗
k(l

k
s−1 + 1, . . . , lks ) = π.

Otherwise it takes α∗k
s =

αk
s+αk

s

2 and announces
α∗k
s to the users on list Lk

s .
B.4.2) Each user j ∈ Lk

s computes Kj = |{l : ρjl ≥
α∗k
s }| and sends it back to MeNB k.

B.4.3) MeNB k sorts pairs (Kj , j) where j ∈ Lk
s

using its first coordinate in an increasing order
obtaining vectors K and π. If K(l) < l for some
l ≤ lks − lks−1 it puts α = α∗k

s and returns to point
B.4.1).

B.4.4) MeNB k puts π∗
k(l

k
s−1+1, . . . , lks ) = π, α = α∗k

s ,
ν = 1 and returns to point B.4.1).

Phase C: (done simultaneously by users from the lists of each
MeNB)
For i = 1, . . . , Nk repeat:
C.1) User π∗

k(i) connects to the network l (MeNB l or WiFi
AP l−M ) with the highest ρπ∗

k(i)l
which is not already

chosen by one of the users π∗
k(l

k
s + 1), . . . , π∗

k(i − 1),
where s is such that lks < i ≤ lks+1.

Before we try to explain the sense of PIXEL, we should note
that in principle all the computations made in MERE are now
repeated in Phases B and C of the algorithm. The introduction
of Phase A is the consequence of the fact that here the
number of available networks can (and usually will be) much
smaller than the number of users. In that case, avoiding any
interference is no longer possible and so, instead of trying to
create a situation where there will be no interference between
users, we should try to minimize it. Doing it consists of two
steps done in Phases A and B of the algorithm. First, in Phase
A, we divide the set of users into the smallest number of layers,
each of which contains only users with a number of networks
available which is not smaller than the number of users in that
layer. This means that for such a layer we can use the same
idea as that used in MERE to find the ordering of the players
in which they will choose their networks, which minimizes
the disutility from not being the first in the layer to choose.
This is done in Phase B of the algorithm. In this case however
the values of ρik used to find this ordering cannot be exactly
computed, as exact information about the possible other users
interfering with any given player cannot be recovered (as
the connections of different players are done simultaneously).
Thus we use some available estimates which can well describe
the interference we’ll be dealing with. One more important
feature of PIXEL we need to note is that this interference
will be limited to at most one user per layer. Thus, as in
Phase A the number of layers was minimized, the interference
will also be significantly bounded. More exact bounds on the
disutility perceived by the users when MERE and PIXEL are
used to allocate them to networks, as well as some other useful
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or

MeNBs UsersAPs

users choose the 

best networks 

(MeNB or WiFi)

Repeated until

Fig. 2. Schematic diagram showing the set of parameters/values commu-
nicated among MeNBs, APs and UEs, and the set of steps implemented at
MeNBs, APs and UEs for PIXEL.

properties of these algorithms, are enumerated in the following
proposition and its immediate corollary.

Proposition 1. Let Ψi be the highest utility that user i could
obtain if all the users were trying to maximize his utility and
define the following constants:

α∗ = min
k≤M,s≤mk

α∗k
s , H =

M∑
k=1

mk∑
s=1

max
i∈Lk

s

Hi,

λ = min
l≤M,s≤ml

ml

(
σ2 + pH

)∑M
k=1 mk

(
σ2 + pH

l

s

) ,
λ = min

l≤M,s≤ml

∑M
k=1 mk

(
σ2 + pH

l

s

)
ml

(
σ2 + pH

) ,

λ = min{λ, λ}, θ = min

{
1

1 + p
σ2H

,
1∑M

k=1 mk

}
.

Suppose8 that H
k

s ≤ H for every k ≤ M and s ≤ mk. Then,
the choice of network selections done by PIXEL satisfies the
following:

1) It gives each player i the utility not smaller than α∗λθΨi.
2) It is a 1−α∗λθ

α∗λθ -equilibrium in the game.
3) The sum of utilities of all the players in our game when

they use network selections defined by it is not smaller
than α∗λθ times the sum of utilities of all the players at
the social optimum9.

The proof of this proposition is given in the appendix.
In Proposition 1 we try to break down the dependence on the

utility of users in PIXEL into three separate factors described
by coefficients α∗, θ and λ. They are all dependent on the
numbers of users and channels available, as well as the quality
of these channels, and parts of the algorithm are designed

8For γM significantly smaller than 1, which will be our natural choice of
this parameter, it should be naturally satisfied.

9The social optimum is a vector of strategies which maximizes the sum of
utilities of all the players.

to optimize these values. λ∗ describes the dependence of
users’ disutility on the assignment of users to channels under
assumption that the number of interfering users on any given
channel is bounded above by

∑M
k=1 mk (mk being the bound

for the interfering channels assigned by MeNB k). Our first
algorithm, MERE, is designed to optimize this parameter, and
it is repeated as Phase B in PIXEL. The magnitude of param-
eter α∗ is mainly dependent on the number of opportunities
available to each user. It should thus improve as the number of
MeNBs and WiFi APs available to an average user increases
and should not depend in any meaningful way on the number
of users in the system. The coefficient θ on the other hand
estimates the disutility caused by the interference from the
other users. It mainly depends on the total number

∑M
k=1 mk

of layers interfering with each other which is minimized in
Phase A of PIXEL. The minimization done there is done for
a given number of MeNBs and WiFi APs available. As a
consequence, θ will crucially depend on the number of users
in the system, decreasing as its number increases. Finally, λ is
meant to estimate the ratio between the average interference
perceived by a single user and the biggest one. It is a kind
of disutility which cannot be handled by the algorithm, as it
could only be taken into account, if the optimization was done
by an entity with full knowledge of the channel conditions of
all the users and the coverage areas of each MeNB and WiFi
AP. This is not the case in our algorithm. More specifically,
the magnitude of λ mainly depends on the choices of the
parameters γM , γW and on the range in which the values
of H

k

s differ in different layers. If the first two are equal
to 1, mk = Mmk is a natural estimate of the value of∑M

l=1 ml based on the limited information available to MeNB
k. Similarly, H

k

s can be viewed as an estimate of H based on
the information available to users in layer Lk

s . If both these
estimates are of good quality, λ should be close to 1 in that
case. In practice, however, both γM and γW will be taken
significantly smaller than 1 and the quality of estimates H

k

s

will be limited, whence λ can be smaller. The reason why we
will take γM and γW into account is the intuitive meaning
of these parameters. Note that when γM and γW appear in
PIXEL, mk is meant to estimate the number of users connected
to an average WiFi AP rather than the number of all the layers.
The factor γW by which we multiply the total number of
layers will thus describe the probability that in an average
layer there will be a player who can connect to this WiFi AP.
As a consequence, it makes sense to take γW proportional to
the size of the area covered by an average WiFi divided by
the area covered by all the macro cells. Similarly, γM should
be seen as the probability that in an average layer there is a
player who can connect to one particular MeNB. Hence, taken
proportional to the average size of the area covered by a single
MeNB divided by the size of the entire area covered by all
macro cells. Paradoxically, this will result in worse bounds
on the quality of the assignment obtained with the help of
PIXEL, but at the same time it should make the assignments
made in Phase C of the algorithm more accurate, so in practice
it should improve the performance of the algorithm. As it
suggests, the bounds obtained in Proposition 1 will in many
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cases be pretty rough, so further analysis of the quality of the
solutions obtained and their dependance on the parameters of
the algorithm will be done numerically.

Next, we present two results describing the properties of
MERE. The first one follows directly from Proposition 1.

Corollary 1. Suppose N , Mi and Wi, i = 1, . . . , N are such
that there exists an assignment of networks to players which
assigns each player to a different network. Then, the choice
of network selections done by MERE satisfies the following:

1) It gives each player i the utility not smaller than α∗Ψi.
2) It is a 1−α∗

α∗ -equilibrium in the game.
3) The sum of utilities of all the players in our game when

they use network selections defined by it is not smaller
than α∗ times the sum of utilities of all the players at the
social optimum.

The second result describes another useful property of the
selections made by MERE.

Proposition 2. Suppose the assumptions of Corollary 1 are
satisfied. If in addition α∗ ≥ 1

2 and

α∗ ≥ 1

Ψi
log2

(
1 +

σ2(eΨi − 1)

σ2 + phjk

)
for each i, j, i ̸= j and k ≤ M

(3)
then, the network selections done by MERE form an equilib-

rium in the game.

The proof is given in the appendix. The meaning of this
proposition is that for some value of α∗ increasing its value
in the first part of MERE, even if it is still possible, may have
no sense as it will not result in any further improvement of
the network assignment (which is already a NE assignment).
This is why we have introduced the optional parameter H into
the algorithm. Similar statement should be true with regard to
the Phase B of PIXEL, although writing any inequalities that
could serve as counterparts of Equation (3) is problematic.

As we can see comparing the statements of Proposition 1
and Corollary 1, the quality of MERE depends only on the
value α∗, while that of PIXEL on the product α∗λθ. This is
an important difference, as typically the value of θ (related
to Phase A of the algorithm) is much smaller than that of α∗

(related to Phase B), so the impact of Phase B on the quality of
the users’ throughputs will be relatively small when compared
to that of Phase A. In practice, it can be even smaller, as the
ordering made in Phase C takes into account an estimate of
the average interference perceived by the users rather than
the real interference, which is often far from the average. This
suggests that we may obtain a performance not far from that of
PIXEL if we keep Phase A and Phase C, but replace Phase B
with a random ordering of users. This is done in the algorithm
below.

Algorithm 3. ADROIT: optimAl layer Division with Ran-
dom user Ordering algorIThm
Phase A:

Each user i, i = 1, . . . , N , sends Ki := |Mi + Wi| and
Hi = maxk∈Mi

hik to (exactly) one of MeNBs from Mi.
Each MeNB k simultaneously does the following steps:

A.1) It sorts triplets (Ki, Hi, i) of all users who sent their
information to this MeNB using first coordinate in an in-
creasing order obtaining vectors (Kk(1), . . . ,Kk(Nk)),
(Hk(1), . . . ,Hk(Nk)) and πk.

A.2) It sets lk0 = 0, ν = 1 and does lkν = Kk(lkν−1 + 1) +
lkν−1, ν = ν + 1 while Nk > Kk(lkν−1 + 1) + lkν−1.
Then, it sets mk = ν and lkmk

= Nk, and creates lists
Lk
1 = (πk(lk0 +1), . . . , πk(lk1)),. . . , Lk

mk
= (πk(lkmk−1+

1), . . . , πk(lkmk
)).

Phase B: (done simultaneously by each MeNB)

B.1) Each MeNB k computes H
k

1 =

µ
∑

s̸=1 max{Hk(lks−1 + 1), . . . ,Hk(lks )}, . . . ,H
k

mk
=

µ
∑

s̸=mk
max{Hk(lks−1 + 1), . . . ,Hk(lks )} and

mk = γWMmk, and sends (H
k

s ,mk) to each user on
list Lk

s for s = 1, . . . ,mk, where

µ =

{
MmkγM−1

mk−1 if mk ̸= 1

MγM − 1 otherwise.

B.2) Each user j ∈ Lk
s computes Ψj =

max

{
maxl∈Mj

log2

(
1 +

phjl

σ2+pH
k
s

)
,maxl∈Wj

Dl

mk

}
and ρjl, l = 1, . . . ,M + W , as follows:

ρjl =
log2

(
1+

phjl

σ2+pHk
s

)
Ψj

if l ≤ M and ρjl = Dl−M

mkΨj
if

l > M and l −M ∈ Wj with ρjl = 0 otherwise.
B.3) Then, for each s ∈ {1, . . . ,mk} MeNB k computes a

random permutation π of the vector πk(lks−1+1, . . . , lks )
and puts π∗

k(l
k
s−1 + 1, . . . , lks ) = π.

Phase C: (done simultaneously by users from the lists of each
MeNB)
For i = 1, . . . , Nk repeat:
C.1) User π∗

k(i) connects to the network l (MeNB l or WiFi
AP l−M ) with the highest ρπ∗

k(i)l
which is not already

chosen by one of the users π∗
k(l

k
s + 1), . . . , π∗

k(i − 1),
where s is such that lks < i ≤ lks+1.

Theoretically, the performance measures of ADROIT
can be characterized by Proposition 1 with α∗ taken as
mini,k:ρik>0 ρik, which is usually much smaller than α∗

defined in Proposition 1. In practice, the performance of the
two algorithms (as we will see in our numerical experiments)
will be similar. ADROIT will also have two additional
advantages. Firstly, it will require both less computation and
less communication between MENBs and users. Secondly, it
will be immune to strategic lies of the users. This last issue
will be addressed in more detail in the Section VI.

Next, we look at an even simpler algorithm which we will
call hereafter as Best CQI. The idea behind this algorithm is
to simply choose the network with the biggest CQI among all
networks available. Comparing WiFi and MeNB networks is
done by proper scaling of the data available for them used in
PIXEL. This does not change the main characteristics of the
algorithm: it is very easy to implement and immune to any
kind of manipulation. At the same time, its performance shall
be relatively poor, as it does not take interference (which is
done in Phase C) into account.
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Algorithm 4. Best CQI (Best CQI)
Do the same than in PIXEL Algorithm till Phase B.3. Then,

remove Phase B.4 and, in Phase C, each user j ∈ Lk
s connects

to the network l (MeNB l or WiFi AP l−M ) with the highest
ρjl for l = 1, . . . ,M + W , regardless of the fact that this
network has been already chosen or not.

IV. OFFLOADING

In this section, we will ask how macro cells can manipulate
the outcome of the algorithm in order to push users to connect
to WiFI APs whenever they are within their range. As nearly
all the computations are done on the macro cell side, it is
rather natural that their ability to steer the algorithms towards
some chosen outcome is much bigger. We believe that one
specific case when MCs will not be interested in the optimal
assignment of networks will be when the load is so high that
they will want to offload the users to WiFi. Our solution is
inspired by the notion of Cell Selection Bias (CSB) proposed
by LTE standards. It turns out that it can be done quite easily
using the following algorithm:

Algorithm 5. Offloading (OFF):
In Phase B.1 of PIXEL Algorithm, compute for s = 1, . . . ,mk

mk = γWMmk and H
k

s =
max

i∈Lk
s
Hi

2η−1 , where η = minl∈W Dl

mk

and send (mk, H
k

s) to each user on list Lk
s .

It turns out that using this small modification of PIXEL will
result in steering large number of users to WiFi, as every user
“seeing" a WiFi AP in his range will choose to connect to it.

Proposition 3. If all the MeNBs use Algorithm 5, all the users
with any WiFis available in Phase C of PIXEL (or ADROIT)
will choose to connect to some WiFi.

The proof of this proposition is given in the appendix. OFF
algorithm is meant to make any nonzero ρjl for WiFi (in Phase
B.3 of PIXEL) bigger than those for macro. This makes users
connect to WiFi provided that they are within the range of a
WiFi AP which has not been chosen by another user higher in
the hierarchy in the layer. As we will see later in simulation
results, this situation becomes even more interesting when a
user is not concerned with offloading and thus gains a lot by
staying alone on the macro cell.

V. LYING VS. TRUTHFUL REPORTING

So far, we have assumed that all the users give true
information about their channel qualities. Now, let us suppose
that each of them tries to improve his utility by giving fake
information designed to misguide PIXEL or OFF. In fact,
the MeNB depends crucially on truthful reporting of their
channel states by the mobiles. For example, in the frequency-
division duplex system, the MeNB has no direct information
on the channel gains, but transmits downlink pilots, and relies
on the mobiles’ reported values of gains on these pilots for
scheduling. A cooperative mobile will truthfully report this
information to the MeNB. A non-cooperative mobile will
however send a signal that is likely to induce the scheduler
to behave in a manner beneficial to the mobile. A non-
cooperative mobile may misrepresent its signal to the MeNB

so as to maximize his throughput. It was shown in [19] that the
MeNB becomes successful in eliciting the truthful signals from
the mobiles only when it uses additional information (signal
statistics). Non-truthful reporting results in unfair allocations.

Let us focus on the case where N << M . In that case,
PIXEL can be reduced to a simpler Algorithm MERE, which
is easier to analyze. It can be easily shown in our case that
indeed, whenever all the users except user i tell the truth about
their channel conditions, user i can maximize his utility by
using the following algorithm:

Algorithm 6. Lying:
Step 1: Declare that you have only one network with ρik > α∗

whenever asked in Part 2) of MERE, PIXEL or OFF.
Step 2: Connect to the network giving you the highest utility.

By doing Step 1, he will decrease α∗ significantly (beyond
what is necessary), but at the same time he will be given the
possibility of choosing his network first in the second part
of the algorithm, which will result in utility Ψi for him10.
This is a big problem also because in case two or more
users apply similar strategy, the algorithm will not finish until
α∗ = 0, which will result in a random assignment of networks.
This is however not a problem related exclusively to MERE,
but to any good network assignment algorithm relying on
measurements made by users. This is stated formally in the
following proposition.

Proposition 4. Suppose assumptions of Corollary 1 are sat-
isfied and that some network-assigning algorithm basing its
decisions on channel quality information provided by the users
always assigns them to networks giving player i, i = 1, . . . , N ,
the utility of more than α∗Ψi, where α∗ is the limit of α∗

obtained in MERE as δ → 0. Then, there exists a situation
when some player can improve his utility by declaring false
channel quality information.

The proof of this proposition is given in the appendix.

VI. IMMUNITY

While in practice Proposition 4 implies that any sensible
network selection algorithm using channel quality signals pro-
vided by the users (including our algorithms MERE, PIXEL
and OFF as well as algorithms that use more information than
our ones) suffers from the same problem regarding truthful
reporting of the channel quality information by the users when
the network is sparse, we may try to mitigate the effect of this
kind of behavior in our algorithms. Our suggestion here will
be to introduce an additional parameter L > 0 (which we will
call hereafter immunity parameter) into MERE (or Phase B
of PIXEL) and start it with α = L which will prevent α∗ to
drop below this value. In that way, in some cases, we will
not obtain utility of at least α∗Ψi for every player i, but at
this expense we will bound the profit of a player trying to
outsmart the algorithm by reporting that he has only one good
network available (because in case there are several players

10The same way of lying can be applied in Phase B.4 of PIXEL. However,
in that case, the gain of the lying user is uncertain, as on his best channel he
may suffer from greater interference – anyway we should expect that on the
average this will be a profitable strategy in this case as well.



9

in such a situation, he will drop in hierarchy) and avoid the
danger of a random assignment of networks in case there are
several users attempting to lie about their channel conditions
(the assignment will be random only among the lying users).
As it is difficult to indicate an optimal choice of L from
theoretical point of view, a good choice of this parameter
will be further addressed in numerical results section. The
efficiency of Algorithm 6 in case of a dense network, when
only PIXEL can be used, will also be analyzed there.

Another possibility allowing to get rid of the problems with
untruthful reporting of the CQIs is to use ADROIT instead of
PIXEL. In that procedure, the phase B of PIXEL, where it
is strategical to lie about the channel qualities, is replaced
by a random ordering of users, which cannot be affected
by themselves. As it will be seen in our simulations, this
advantage of ADROIT will not be nullified by a significant loss
in throughput – it will turn out that the main factor influencing
the throughput will be interference, which is not affected by
Phase B of PIXEL and ADROIT in any way.

VII. PERFORMANCE EVALUATION

The proposed algorithm is implemented in an LTE com-
pliant system level simulator [27] in order to analyze its
performance. Table I summarizes the system characteristics
and simulation scenario’s parameters. Here, we consider a
deployment of 7 omni-directional macro cells as shown in
Fig. 3.

As for MC deployment, general hexagonal structure with
three sector MC is assumed, where the MeNB is located at
the center of hexagonal structure and WiFi APs are overlaid
on the MCs randomly and operated in the same frequency
band as MeNBs. Users are scattered into MCs in the same
way as WiFi APs. Table II depicts the system characteristics
and global simulation parameters. For comparison purposes,
we will further study the following two traditional association
approaches11:

• Least load approach (LEAST): The network broadcasts
the exact numbers of connected users on different net-
works. Any new user will then connect to the system
with the least load. Note that this scheme is not realistic
as the network operator will not divulge the exact number
of connected users in each system and each position of
the cell.

• Peak rate maximization approach (PEAK): This is a
simple association scheme where users do not have any
information about the loads of the systems. They connect
to the system offering them the best peak rate. Note that
this peak rate can be known by measuring the quality of
the receiving signal.

These three approaches will serve to demonstrate how much
gain may be exploited through considering such solutions with
respect to the proposed schemes.

11From now on, for the sake of conciseness, we will use the term “PIXEL"
to designate both Algorithm 1 and Algorithm 2.
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Fig. 3. The network layout with 7 MeNBs and UE positions.

A. Basic approach

Average utility: As we can see from Fig. 4, for all algorithms
average utility decreases fast for small number of users,
and then slows down at some level. We can also observe
that PIXEL and ADROIT algorithm outperform all the other
algorithms for a low number of users (till N = 50), whereas
OFF is the best for a high number of users. PEAK and
LEAST perform badly for both low and high N . This is
natural, as the main idea of design of our algorithms is to
minimize the interference between users, which is not done for
traditional algorithms. Moreover, in the case of our algorithms,
load balancing between networks implies that all the networks
become more or less equally occupied at the same threshold
(around 40 users). Note that, as the number of users goes large,
the gap between the traditional algorithms and ours decreases,
as for such a large number of users, all the cells become
overloaded, resulting in all schemes tending towards almost
the same average utility.

Load balancing: In order to get good intuition on the load
balancing characteristics, we plot two pictures: In Fig. 5, we
plot the load ratio defined as the ratio between the most loaded
cell and the average cell load, and in Fig. 6, we plot the
overall load balancing defined as the ratio between the load of
WiFi APs and that of MeNBs. Obviously, we aim to have the
lowest load ratio and an overall load balancing close to 1. We
can see from Fig. 5 that BEST CQI performs badly, whereas
LEAST’s load ratio is in general smaller than that for the
other algorithms till N = 24 users. Then, PEAK becomes the
best, but, in return, fails to balance the load between WiFi and
macro cells, as it is illustrated in Fig. 6. Indeed, with PEAK,
most likely all users connect to macro cells (which can be
seen from the zero overall load balancing), as it offers the best
peak rate. On the other hand, the proposed algorithms perform
pretty well in terms of load ratio when the number of users
grows large (see Fig. 5), while OFF shows the best overall
load balancing performances (see Fig. 6). To understand it,
note that, in OFF algorithm, we force users to use WiFi APs
rather than MeNBs, whenever a WiFi AP is in the range. More
specifically, what we observe from Fig. 6 is that, with OFF,
there is a general tendency to use WiFi more often. Then,
for an increasing number of users, this tendency decreases,
as WiFi becomes more and more occupied. When WiFi APs
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TABLE II
SIMULATION ENVIRONMENT.

Network parameters
Number of MeNBs (M ) 7 omnidirectional antenna
Average cell radius 500 m
Number of WiFi APs (W ) 50

LTE parameters
Frequency band 2.4 GHz
Bandwidth 5 MHz
Number of PRBs 25

eNodeB and UE characteristics

Scheduler Proportional fair
Transmission mode SISO
eNodeB TX Power 2x125mW over all the 5MHz bandwidth
UE distribution Uniform
Total number of UEs 100
Traffic profile Full buffer

Radio channel
Pathloss model TS36.92
Shadowing Log normal, 5 dB standard deviation
Fast fading ITU Pedestrian A

become congested as well, the overall load balancing decreases
to 1 (from 40 users), which roughly means that macro cells
and WiFi APs become equally loaded.

B. Lying vs. Truthful reporting

We know from Prop. 4 that it is individually beneficial not
to tell the truth about own CQIs when asked by an MeNB if
everyone else tells the truth. However, as there is an incentive
to lie for all the users and the users do not coordinate their
actions, in our next experiment we suppose that some fraction
of users lies about their CQIs claiming that they only have
one good channel.

Fig. 7 depicts, for the three proposed algorithms (PIXEL,
ADROIT and OFF), the ratio between the number of users
(liars/non-liars) who gain and the number of those who lose
when there are liars as function of the number of users for a
percentage of liars of P = 20%. Fig. 8 depicts the same ratio
as function of the percentage of liars for a total number of users
of N = 20. First notice that ADROIT is the most immune to
lying since there is no way to improve your utility by lying,
because the lying happens in the phase of the algorithm which
is missing from ADROIT (this is illustrated in Fig. 7 and Fig.
8 by the ratio equal to 1 regardless of P and N ).

PIXEL and OFF increase significantly the number of liars
who gain. Yet, this happens only for a low number of users
(see Fig. 7) and/or a low percentage of liars (see Fig. 8). This
can be easily explained, as for a small number of users, the
network resources may be assigned in such a way that no
interference (or very little interference) is perceived by the
players, even if some of the opponents lie about their CQIs. On
the other hand, those who lie, may often cause their assignment
to a more saturated MeNB, which, as we can see from our
previous experiments, may lead to a decrease in their utility,
even if they use the MeNB with the highest CQI. This is not
very likely to happen for low N , so the number of liars who
lose then is relatively small. For high N however, lying is not
efficient anymore, as for a bigger number of layers, players
have too little information about the interference to take it into
account in their lying strategy, resulting in that they gain and
lose almost equally often. Similarly, for a high value of P , it
is much harder to gain by lying, as lying is designed to gain

over truth-tellers. If everyone (or a significant percentage) lies,
the choices become random.

One of the key issues in wireless networks is guaranteeing
fairness among users. The proposed algorithms are designed
to maximize overall throughput. This is done by minimizing
the interference, which in turn is done by a balanced use of all
the cells (MC and WiFi). In order to increase fairness among
users, in addition, in Phase B, we further balance the usage
of all these networks, so that the throughput of the user with
the lowest one is as big as possible. However, when it comes
to lying, there may be a problem with sustaining fairness,
especially for non-liars, which can be seen, at first glance, as
“victims" of liars. Let us then focus on the performance of
non-liars to study how they are impacted by liars in each of
the proposed algorithms. We see from Fig. 7 that the number
of non-liars losing is slightly less in OFF than in PIXEL. As
the number of users increases, the ratio between the number
of non-liars who gain and the number of non-liars who lose
increases, which means that non-liars lose less, till reaching a
ratio of 1 (almost at N = 40), which means that we have the
same number of non-lying users who gain and lose. Notice
also that the number of liars gaining is much more significant
than the number of non-liars losing (a ratio of up to 7 times
for PIXEL and 4 times for OFF for N = 7 users, decreasing
to a ratio of 1.5 times for both PIXEL and OFF as N goes
large), which suggests that for a moderate percentage of liars
in the system, the performance of non-liars is relatively little
affected by lying. Fig. 8 shows that for a bigger percentage of
liars, non-liars become more affected, but even for P = 90%
the ratio of non-liars who gain to those who lose is around
0.4 for PIXEL and 0.5 for OFF, which seems still acceptable.

In Figure 9, we plot the CDF of the ratio between the utility
of liars and their utility when there are no liars. First, notice
that the jump in 1 for OFF is smaller than for PIXEL. This
means that the number of those who gain/lose significantly is
bigger for PIXEL. In fact, both for OFF and PIXEL, around
80% of users gain/lose a little (this is what we can read from
the jump of the CDF around 1), but the gap for OFF is around
5% smaller. Also notice that in OFF liars and non-liars lose
less than in PIXEL. At the same time in OFF non-liars and
liars gain less than in PIXEL (this can be read from the
relative position of CDFs on the left and on the right from
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Fig. 6. The average load balancing.

1). In general, for both PIXEL and OFF, it is shown that liars
lose more than non-liars (for values on the x-axis lower than
1), and gain more than non-liars (for x-axis above 1). This
means that liars affect their own utility (both for good and
bad) a lot more than that of non-liars, and this phenomenon is
even more pronounced when it comes to OFF. This confirms
our previous assertions that the effect of lying on non-liars is
insignificant, hence the proposed algorithms are fair. Another
important phenomenon that we see on the CDFs is that the
structure of gains and loses, both for liars and non-liars, is
different. On the one hand, the number of those who lose (in
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Fig. 7. The ratio between the number of users (liars/non-liars) who gain and
the number of users who lose when there are liars for P = 20% of liars.
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both groups) more than 10% is smaller than the number of
those who gain more than 10% (we can read that from the
values of the CDFs for the x-values equal to 0.9 and 1.1,
respectively). On the other hand, both liars and non-liars who
gain or lose will likely gain much more significantly than they
lose. This is what we can read from the fact that a visible
fraction of users gain at least additional 200% of their initial
utility when lying occurs (the CDFs for x-value equal to 3 are
still increasing), while the losses are limited by initial utility
of the users (so they cannot exceed 100%).
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Fig. 11. The average utility of all algorithms for N = 20 users.

Fig. 10 shows, for both PIXEL and OFF, the average utility
of liars and non-liars as function of the percentage of liars for
a total number of users N = 20. It is clearly shown that
PIXEL improves upon utility of lying users, mostly when
the percentage of lying users is low, while OFF improves
upon utility of non-lying users, mostly when the percentage
of lying users is high. In general, Fig. 10 also shows that
liars outperform non-liars in average utility. This is possibly
expected, given that, as we have seen from Fig. 7 and Fig.
8, a higher number of liars gain. However, in view of Fig. 9
and our observations made there, the most significant factor
here may be that the gains of those who take advantage of
lying are often rather significant, which strongly affects the
average utility. The complementary performance between liars
and non-liars makes the overall average utility almost constant
as function of the percentage of liars, as it is illustrated in
Fig. 11. Moreover, it is shown there that PIXEL and ADROIT
have the best average utility, slightly above OFF and BEST
CQI. As N goes large, we will see later in Fig. 16 that OFF
gives the best average utility.

To sum it up, what we have observed from these figures
are two tendencies: first, lying with PIXEL and OFF improves
significantly the average utility of users who lie with respect to
their utility when they do not lie (see Fig. 10). Interestingly,
overall average utilities for both algorithms are not affected
by lying. The second tendency is that the increase in the
percentage of users lying decreases its efficiency. As already
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Fig. 12. The ratio between the number of users who gain and the number
of users who lose when there are liars and non-liars in PIXEL and OFF for
N = 20 and L = 0.5.
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Fig. 13. The ratio between the number of users who gain and the number of
users who lose when there are liars in PIXEL, OFF and ADROIT for N = 20
and L = 0.5.

mentioned, this can be explained easily when we understand
what happens if a big number of players claims that they
only have one good network. In that case, the assignment
of networks (specifically among those who do not tell the
truth) becomes increasingly arbitrary, decreasing not only the
utilities of truth-tellers (as it may be the case if the percentage
of non-truth-tellers is small), but also of those who do not tell
the truth. However, a general observation is that it is always
worth lying.

C. Immunity

So far, we have seen that both PIXEL and OFF are not
immune to lies (although OFF is more immune to lies than
PIXEL). In this part, we will try to make lies slightly less
profitable for liars. Remember that the additional immunity
parameter L is meant to decrease the gain of liars without
heavily harming the throughput of those who tell the truth.
We hope that this will further improve the overall system
performance when there are liars. In the sequel, we revisit the
previous analysis, in order to figure out how liars and non-liars
will be impacted by L.

Fig. 12 shows, for both liars and non-liars in PIXEL and
OFF, the ratio between the number of users who gain and the
number of users who lose when there are liars as function of
the percentage of liars for a number of users N = 20 and L =
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Fig. 15. The average utility of all algorithms for N = 20 and L = 0.5.

0.5. We see that, using L decreases the number of liars who
gain mostly for a low percentage of liars, while, for non-liars,
L slightly increases the number of users who gain, mostly for
a high percentage of liars. Moreover, the difference between
liars and non-liars becomes smaller with L. Also notice that,
in general, the immunity parameter L has more impact on
PIXEL than on OFF.

Fig. 13 illustrates, for the three proposed algorithms, the
same ratio with and without L. Particularly noteworthy is the
slope of these curves: an immune algorithm would have a zero
slope of the ratio curve (as it is the case for ADROIT which is
perfectly immune to lies by design). As we can see in Fig. 13,
introducing the immunity parameter L improves a lot PIXEL
and OFF immunity to lies, and this is even more noticeable
with OFF.

Fig. 14 depicts the average utility of liars and non-liars as
function of the percentage of liars for both PIXEL and OFF
with and without L, for N = 20 and L = 0.5. It is shown
that, using L and for a low percentage of liars, liars gain
less than without L. When the percentage of liars increases,
it is normal that we have the same performance with and
without L, as the network selection becomes random in this
case (similar to the case without ordering). The performance
of non-liars is complementary to that of liars: they gain
significantly by introducing L for high percentage of liars,
while for low percentage of liars they perform almost the
same with and without L. Again, this “immunity” effect is
even more significant for PIXEL than for OFF.
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Fig. 16. The average utility of all algorithms for N = 50 and L = 0.5.

In Fig. 15 (resp. Fig. 16), we plot the average utility of
all algorithms for L = 0.5 and N = 20 (resp. N = 50) and
compare it to situation when parameter L is not used. Our first
observation is that average utilities for all algorithms are not
affected by introducing L and constant as functions of P . This
is due to the complementary effect between liars and non-liars
(as already shown in Fig. 11). Next, we notice that for a low
number of users, PIXEL and ADROIT are the best algorithms.
As the number of users increases, OFF becomes the best one.
In order to have the complete picture, we plot in Fig. 17 the
average utility of all algorithms as function of N for P =
20%. When we look closely, for a bigger number of users,
the average utilities of PIXEL, OFF and ADROIT become
indeed hardly distinguishable, but with a slight advantage for
OFF. This is because when lying players claim they have only
one good channel, in practice it leads to bigger offloading, and
OFF is beneficial for higher number of users.

To resume, PIXEL is the best in terms of utility (with
ADROIT) for low N , but it is the least fair. Indeed, the
fact that users gain and lose much more often than for OFF
and ADROIT can be interpreted as a negative point, although
there are much more users who gain with PIXEL. But again,
we have to pay attention here because the number of users
who gain/lose does not mean that they are far away from
their utility in ADROIT or OFF. It is likely that users have
a slight increase/decrease in utility (we can see it from Fig.
17, where ADROIT and OFF are very close to PIXEL). This
suggests that, in general, ADROIT is the best because it gives
(slightly) lower utility than OFF (mainly for high number of
users), but it is fair (there is neither gain nor loss due to lies),
immune to lies (in the sense that by design it is oblivious
to lies) and simpler (there is no Phase B, as for PIXEL and
OFF). That said, if one has to choose the best algorithm in an
expected interference limited context, it would be OFF with
the immunity parameter L, because it gives the best utility and
load balancing performances, while all the other performance
indicators are second best to ADROIT.

VIII. CONCLUSIONS AND DISCUSSION

While operators continue to rely on their macro cellular
networks to improve capacity and user quality, it becomes
crucial to find complementary alternatives in local-area sce-
narios by making further enhancements to LTE deployments,
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as well as creating better possibilities for the integration of
LTE and WiFi deployments. In this paper we have proposed a
load-aware network selection method in an integrated cellular
WiFi system. Both analytical and system level simulation
results have shown that the proposed scheme based on the
network selection game achieves a good tradeoff between load
balancing and system throughput with respect to traditional
network selection schemes. Then, since we deal with user-
centric network selection decision, we have shown how a
user misrepresenting his signal to the MeNB can maximize
his throughput. We have also proposed a simple procedure
in which users have incentive to stick to truthful signaling.
Furthermore, we have found here several key remarks that
need particular attention: It has appeared that lying increases
liars average utility, but the increase is only significant for a
small percentage of liars. When the percentage of liars goes
large, liars’ average utility decreases as network assignment
among liars becomes arbitrary rather than profitable. On the
other hand, the decrease of utility of truth-tellers is not very
significant for any percentage of liars, which confirms our
claim that PIXEL and OFF are rather fair in the presence
of liars. Noteworthy is the fact that adding the immunity
parameter L decreases liars’ profitability, while in return,
it improves the throughput of those who tell the truth. In
particular, we have shown that using L decreases the number
of liars who gain mostly for a low percentage of liars, while,
for non-liars, L slightly increases the number of users who
gain, mostly for a high percentage of liars. Moreover, the
difference between liars and non-liars becomes smaller with L.
This will further incite lying users to stick to truthful reporting.
Finally, ADROIT algorithm which is by design immune to
lying, has also shown good performance in terms of load
balancing, fairness and utility, while OFF algorithm (using the
additional immunity parameter L) has proved to perform the
best in an interference limited context.
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APPENDIX

A. Proof of Proposition 1

Proof:
First, see that Algorithm 1 is always terminated at some

step, as loops in parts A.2) and C.1) are repeated at most N
times, while after each passage through points B.4.1)–B.4.3)
of the loop in part B.4), αk

s −αk
s decreases twice, thus at most

after log2(δ
−1) passages, αk

s −αk
s < δ, which stops the loop.

For the remainder of the proof of part 1) of the proposition
fix k ∈ {1, . . . ,M}. Further, note that even if the loop in part
B.4) of the Algorithm 1 constantly decreases α∗k

s , the final
value α∗k

s = 0 and the final ordering π∗
k satisfy

ρπ∗
k(j)kπ∗

k
(j)

≥ α∗k
s ≥ α∗ for j = lks−1, . . . , l

k
s , s = 1, . . . ,mk,

(4)
where ki denotes the network choice made by player j in part
C.1) of Algorithm 2. The same inequalities are clearly satisfied
if the algorithm is finished for some bigger value of α∗, as
this is the condition which is checked any time the value of
α∗k
s is increased.
Next note that when each of the players uses different

network, player i choosing MeNB ki may at most obtain utility
log2

(
1 +

phiki

σ2

)
, while the biggest utility he can obtain from

using WiFi li is Dli , which are both acheived when he is
the only user connected to MeNB ki or WiFi li. Thus the
highest utility obtainable in the game for player i (if all others
cooperate to maximize his utility) is Ψi.

In the rest of the proof of part 1) of the proposition let us
pick some player i = π∗

k(j), where j ∈ {lks−1, . . . , l
k
s} and the

layer number s chosen arbitrarly from {1, . . . ,mk}. To finalize
the proof we will need to consider four cases depending on
the type of network user i chooses and the type of network
where utility Ψi is obtained. First suppose that the utility Ψi

is obtained for a MeNB we will call Bi and his choice is a
MeNB ki. In this case his utility is at least

log2

(
1 +

phiki

σ2 + pH

)
,

as he may obtain interference from at most one user from each
layer. From the concavity of the logarithm function and the
assumption that H

k

s ≤ H this is not smaller than

σ2 + pH
k
s

σ2 + pH
log2(1+

phiki

σ2 + pH
k
s

) ≥ σ2 + pH
k
s

σ2 + pH
α∗ log2(1+

phiBi

σ2 + pH
k
s

)

>
α∗σ2

σ2 + pH
log2(1 +

phiBi

σ2
) =

α∗Ψi

1 + p
σ2H

≥ α∗λθΨi,

where the first inequality follows from (4), the second from
the concavity of the logarithm, and the last one from the
definition of θ and the fact that λ ≤ 1.

Now suppose that the value Ψi is obtained for WiFi AP
lmax
i . Then, as before, his utility in not smaller than

σ2 + pH
k
s

σ2 + pH
log2

(
1 +

phiki

σ2 + pH
k
s

)
≥ σ2 + pH

k
s

σ2 + pH
α∗Dlmax

i

mk

=

∑M
l=1 ml(σ

2 + pH
k
s )

mk(σ2 + pH)

α∗Ψi∑M
l=1 ml

≥ λα∗∑M
l=1 ml

Ψi ≥ α∗λθΨi,

where the first inequality follows from (4), while the second and the
last one from the definitions of λ, λ and θ.

Next assume that user i chooses a WiFi AP li. Then, his utility is
not smaller than

Dli∑M
l=1

ml
. In case Ψi is obtained for MeNB Bi this

last value can be written as

mk∑M
l=1 ml

Dli

mk
≥ mk∑M

l=1 ml

α∗ log2

(
1 +

phiBi

σ2 + pH
k
s

)

>
mk∑M

l=1 ml

(
1 + p

σ2H
k
s

)α∗ log2

(
1 +

phiBi

σ2

)

=
mk

(
1 + p

σ2H
)

∑M
l=1 ml

(
1 + p

σ2H
k
s

) α∗

1 + p
σ2H

Ψi ≥ λα∗θΨi ≥ α∗λθΨi

with the first inequality following from (4), the second from the
concavity of the logarithm, while the last two from the definitions of
λ, λ and θ.

Finally, if user i chooses a WiFi AP li instead of another WiFi
AP lΨi , by (4) his utility can be bounded below by

α∗Dlmax
i∑M

l=1 ml

=
α∗Ψi∑M
l=1 ml

≥ α∗θλΨi,

where the last inequality is a consequence of the definition of θ and
the fact that λ ≤ 1. Thus, we have proved part 1) of the proposition.
Parts 2) and 3) are immediate consequences of part 1) and the
definitions of ϵ-Nash equilibrium and social optimum respectively.

B. Proof of Proposition 2

Proof:
Assume that α∗ satisfies α∗ > 1

2 and (3). We will show that
network selections chosen by Algorithm 1 form an equilibrium
in the game. Suppose they do not, that is – there exists a player
i who can gain by deviating form it. First note that he will not
deviate to any of the networks that are not used by anyone,
as the algorithm assures that player i always chooses his best
available network at the time decision is made. Obviously the
set of unoccupied networks may only shrink afterwards, so any
network that is not used upon the termination of the algorithm
can only decrease the utility for player i. Thus suppose that
player i changes his network from MeNB ki which he would
choose in Algorithm 1 to some other MeNB k∗, used by some
other player j. Then, his utility will change to

log2

(
1 +

phik∗

σ2 + phjk∗

)
≤ log2

(
1 + σ2(eΨi−1)

σ2+phjk∗

)
≤ α∗Ψi ≤ log2

(
1 +

phiki

σ2

)
,

where the first inequality follows from the fact that by
definition log2

(
1 + phik∗

σ2

)
≤ Ψi which is equivalent to

phik∗ ≤ σ2(eΨi − 1), (5)

the second one from (3) and the third one from part 1) of
Corollary 1. This means he will not gain by changing his
network. Similarly, when user i changes his network to a WiFi
AP l∗ used by some other player, his utility changes to

Dl∗

2
< α∗Dl∗ ≤ α∗Ψi ≤ log2

(
1 +

phiki

σ2

)
,

where the first inequality follows from α∗ ≥ 1
2 , the second

from the definition of Ψi, while the last one from part 1)
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of Corollary 1. Thus such deviation is not profitable either.
Next suppose that the network chosen by user i according to
Algorithm 1 is WiFi AP li and that he tries to improve his
utility by choosing MeNB k∗ used by player j. His utility will
then change to

log2

(
1 +

phik∗

σ2 + phjk∗

)
≤ log2

(
1 + σ2(eΨi−1)

σ2+phjk∗

)
≤ α∗Ψi ≤ Dli ,

where again the first inequality follows from (5), the second
from (3) and the last from part 1) of Corollary 1. Finally,
changing WiFi AP li to some other WiFi AP l∗ used by some
other player does not increase the utility of user i because

Dl∗

2
≤ Ψi

2
≤ α∗Ψi ≤ Dli .

C. Proof of Proposition 3

Proof: Note that in Phase C of Algorithms 2 and 3 users
choose networks based on the values of their ρjl. To prove
the proposition it is thus enough to show that ρjl computed
by user j ∈ Lk

s if he obtains the modified value of H
k

s given
by Algorithm 5 for any l ≤ M will be smaller than those
computed for l > M .

In general it is clear that for l ≤ M

ρjl ≤
1

Ψj

log2

(
1 +

pHj

σ2 + pH
k

s

)
<

1

Ψj

log2

(
1 +

pHj

pH
k

s

)
.

Inputing the value of H
k

s given by Algorithm 5 we obtain

1

Ψj

log2

(
1 +

Hj

maxi∈Lk
s
Hi

(
2

minl∈W Dl
mk − 1

))

≤ 1

Ψj

log2

(
2

minl∈W Dl
mk

)
=

1

Ψj

minl∈W Dl

mk

which is the smallest value of ρjl for l > M .

D. Proof of Proposition 4

We precede the actual proof of Proposition 4 with one
technical lemma.

Lemma 1. Let β = N

√
4
3 . Then,

log2

(
1 + 2(β

i−1)βN−1

− 2−βN
)
< βi−1

for i = 1, . . . , N .

Proof: First note that

1− 2−βN

< 2− 2β
N−1(β−1) (6)

as 2β
N−1(β−1) − 2−βN

= 2
4
3−βN−1 − 2−

4
3 < 2

1
3 − 2−

4
3 ≈

0.863 < 1 = 2− 1. However, (6) is equivalent to

1 + 2β
N−1(β1−1) − 2−βN

< 2β
1−1

and further to

log2

(
1 + 2β

N−1(β1−1) − 2−βN
)
< β1−1

which is the thesis of the lemma for i = 1.
Further, consider the function f(x) = 2

x
β −2β

N−1(x−1). We
will show that it is increasing on interval

(
1, 4

3

)
.

f ′(x) = ln 2
[
1
β 2

x
β − βN−12β

N−1(x−1)
]

= ln 2
β

(
2

x
β − 4

32
βN−1(x−1)

)
.

This is positive iff 2
x
β > 4

32
βN−1(x−1) which is equivalent

to x
β > log2

(
4
3

)
+βN−1(x−1) and further to x > β log2

(
4
3

)
+

4
3 (x−1) and x < 4−3β log2

(
4
3

)
. The RHS of this inequality

is not smaller than 4− 4 log2
(
4
3

)
≈ 2.3399 > x if x is taken

from
(
1, 4

3

)
.

The fact that f is increasing on
(
1, 4

3

)
implies that, for

i = 2, . . . , N , we have by (6)

1−2−βN

< 2−2β
N−1(β−1) = f(β) < f(βi) = 2β

i−1

−2β
N−1(βi−1).

This can be rewritten as

1 + 2β
N−1(βi−1) − 2−βN

< 2β
i−1

which is equivalent to the thesis of the lemma for i =
2, . . . , N .

Now we move to the main part of the proof of the propo-
sition.

Proof: Suppose first that the CQIs for the players are as
follows:

hik =

{
σ2

p if k = 1, . . . ,M − i
σ2

p

(
2β

k+i+N−M−1 − 1
)

if k = M − i+ 1, . . . ,M

while Dl < 1 for l = 1, . . . ,W . Then, Ψi = βN+i−1, always
obtained on MeNB M . Moreover, for i = 1, . . . , N , user i has
exactly i MeNBs M − i+ 1, . . . ,M giving him the utility of
at least βN if there is no interference, while all other MeNBs
and WiFi APs give him the utility of no more than 1. Thus,
it is easy to see that α∗ = β−(N−1) and the only network
assignment such that each player is assigned to a different
network which gives each player i the utility of at least α∗Ψi

connects user i to MeNB M − i + 1. On the other hand, if
two users, i and j, were connected to the same MeNB k ≥
M −N +1 (connecting to any other MeNB or WiFi AP does
not make sense, since it gives a utility lower than α∗Ψi even
if there is no interference) user i receives at most

log2

(
1 +

pσ2

p (2β
N+i−1 − 1)

σ2 + pσ2

p (2βN − 1)

)
= log2(1 + 2β

N+i−1−βN − 2−βN

)

< log2(1 + 2β
N−1(βi−1) − 2−βN

)

which is by Lemma 1 smaller than βi−1 < βi = Ψiα
∗. A

similar inequality is true for user j.
Next, suppose that the true channel quality data is

h̃Nk =

{
σ2

p if k = 1, . . . ,M − 1
σ2

p

(
2β

2N−1 − 1
)

if k = M

with h̃ik = hik for i < N and DL < l for l = 1, . . . ,W ,
as before. In this case, user N has one MeNB with channel
conditions much better than on the others – Ψi = β2N−1 is
obtained on MeNB N with every other MeNB or WiFi AP
giving him the utility of at most 1. As a result α∗ = β−N
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and the only network assignment which gives each player i
the utility of at least α∗Ψi connects player N to MeNB M ,
players i = 2, . . . , N−1 to MeNBs M− i+1, while user 1 is
assigned to any remaining MeNB. A reasoning similar to the
one in the first case can be used to show that connecting two
users i and j to the same MeNB will result in both of them
receiving less than α∗Ψi or α∗mj , respectively.

Now, suppose that user N ’s CQIs are in reality equal to
hNk, k = 1, . . . ,M . If he claims his real values of CQIs,
any algorithm satisfying the assumptions of the proposition
should connect him to MeNB M − N + 1, which will give
him the utility of log2

(
1 + pβN

σ2

)
. If he lies about his CQIs

telling that they are equal to h̃Nk, k = 1, . . . ,M , the algorithm
must assign him to MeNB M , which gives him the utility of
log2

(
1 + pβ2N+1

σ2

)
, so he benefits from lying.
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