
HAL Id: hal-03979823
https://hal.science/hal-03979823

Submitted on 12 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Criteria for preclinical models of cholangiocarcinoma:
scientific and medical relevance

Diego Calvisi, Luke Boulter, Javier Vaquero, Anna Saborowski, Luca Fabris,
Pedro Rodrigues, Cédric Coulouarn, Rui Castro, Oreste Segatto, Chiara

Raggi, et al.

To cite this version:
Diego Calvisi, Luke Boulter, Javier Vaquero, Anna Saborowski, Luca Fabris, et al.. Criteria for preclin-
ical models of cholangiocarcinoma: scientific and medical relevance. Nature reviews. Gastroenterology
& hepatology, 2023, 20 (7), pp.462-480. �10.1038/s41575-022-00739-y�. �hal-03979823�

https://hal.science/hal-03979823
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


 

Criteria for preclinical models of cholangiocarcinoma: scientific and medical 1 

relevance  2 

 3 

Diego F Calvisi,1 Luke Boulter,2 Javier Vaquero,3,4 Anna Saborowski,5 Luca Fabris,6,7 Pedro M 4 

Rodrigues,4,8,9 Cédric Coulouarn,10 Rui E Castro,11 Oreste Segatto,12 Chiara Raggi,13 Luc JW van der 5 

Laan,14 Guido Carpino,15 Benjamin Goeppert,16 Stephanie Roessler,17 Timothy Kendall,18 Matthias 6 

Evert,1 Ester Gonzalez-Sanchez,3,4,19 Juan W Valle,20,21 Arndt Vogel,5 John Bridgewater,22 Mitesh J 7 

Borad,23 Gregory J Gores,24 Lewis R Roberts,24 Jose J.G. Marin,4,25 Jesper B Andersen,26 Domenico 8 

Alvaro,27 Alejandro Forner,4,28 Jesus M Banales,4,8,9,29 Vincenzo Cardinale,30 Rocio IR Macias,4,25 Silve 9 

Vicent,31,32,33 Xin Chen,34 Chiara Braconi,35 Monique MA Verstegen,14 Laura Fouassier36; CCA model 10 

consortium 11 

 12 
1 Institute of Pathology, University of Regensburg, Regensburg, Germany; 13 
2 MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, 14 
Edinburgh, UK; 15 
3 TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 16 
Barcelona, Spain; 17 
4 National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto 18 
de Salud Carlos III, Madrid, Spain; 19 
5 Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, 20 
Germany; 21 
6 Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy; 22 
7 Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA; 23 
8 Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia 24 
University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; 25 
9 Ikerbasque, Basque Foundation for Science, Bilbao, Spain; 26 
10 Inserm, Univ Rennes 1, OSS (Oncogenesis Stress Signaling), UMR_S 1242, Centre de Lutte contre 27 
le Cancer Eugène Marquis, F-35042, Rennes, France; 28 
11 Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 29 
Lisbon, Portugal; 30 
12 Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy; 31 
13 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; 32 
14 Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, 33 
The Netherlands; 34 
15 Department of Movement, Human and Health Sciences, Division of Health Sciences, University of 35 
Rome "Foro Italico", Rome, Italy; 36 
16 Institute of Pathology and Neuropathology, Ludwigsburg, Germany; 37 
17 Institute of Pathology, Heidelberg, Germany; 38 
18 Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK; 39 
19 Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of 40 
Barcelona, Spain 41 
20 Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; 42 
21 Division of Cancer Sciences, University of Manchester, Manchester, UK; 43 
22 Department of Medical Oncology, UCL Cancer Institute, London, UK; 44 
23 Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA; 45 
24 Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 46 
Rochester, MN, USA; 47 

ACCEPTED MANUSCRIPT / CLEAN COPY



 

 2

25 Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, 48 
Salamanca, Spain; 49 
26 Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, 50 
University of Copenhagen, Copenhagen, Denmark; 51 
27 Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy; 52 
28 Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, 53 
University of Barcelona, Barcelona, Spain; 54 
29 Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona. 55 
30 Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 56 
Italy; 57 
31 University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, 58 
Spain; 59 
32 IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; 60 
33 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), 61 
Madrid, Spain; 62 
34 Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 63 
San Francisco, USA; 64 
35 Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; 65 
36 Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France 66 
 67 

Corresponding author 68 

Laura Fouassier, Ph.D. 69 

Sorbonne Université, INSERM Centre de Recherche Saint-Antoine 70 

27 rue Chaligny 71 

75571 Paris cedex 12 72 

France 73 

E-mail:mailto: laura.fouassier@inserm.fr 74 

Phone: +33-698774001 75 

 76 
  77 

ACCEPTED MANUSCRIPT / CLEAN COPY



 

 3

Abstract 78 

Cholangiocarcinoma (CCA) is a rare malignancy developing at any point along the biliary tree. CCA has 79 

a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. 80 

Preclinical research, therefore, is of pivotal importance and necessary to acquire a deeper 81 

understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and 82 

managing complementary experimental models from in vitro assays using primary cells or cell lines 83 

cultured in 2D or 3D to in vivo models with engrafted material, chemically-induced CCA, or genetically-84 

engineered models. All are valuable tools with well-defined advantages and limitations. The choice of 85 

preclinical model is guided by the question(s) to be addressed, and ideally, results should be 86 

recapitulated in independent approaches. Here, a task force of 45 experts in CCA molecular and cellular 87 

biology, clinicians, including pathologists, from 10 countries, provides recommendations on the minimal 88 

criteria for preclinical models to provide a uniform approach. These recommendations are based on two 89 

rounds of questionnaires completed by 37 (first round) and 45 (second round) experts to reach a 90 

consensus with 13 statements. An agreement was defined when at least 90% of the participants voting 91 

anonymously agreed with a statement. The ultimate goal is to transfer (basic) laboratory research to the 92 

clinics through increased disease understanding and develop clinical biomarkers and innovative 93 

therapies for patients with CCA. 94 

 95 

  96 
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During the last decade, we witnessed considerable advances in understanding the molecular 97 

pathogenesis of cholangiocarcinoma (CCA). However, early diagnosis and effective treatments for this 98 

aggressive cancer lag behind other fields. To accelerate the development of novel clinical strategies, 99 

preclinical models of CCA are essential 1. Critical points to consider when using or developing these 100 

tools are the tumour anatomical origin (i.e., intrahepatic, perihilar, or distal CCA), the cell(s) of origin 101 

(e.g., preneoplastic lesions), and the histomorphological tumour features (e.g., large vs. small bile duct 102 

type) 2.  103 

Historically, 2D cell cultures have been widely used as in vitro model of CCA. In addition to 104 

experimentally-immortalized or primary cultures of normal cholangiocytes derived from normal bile 105 

ducts, over 50 CCA-derived cell lines have been established 3. A limitation of these models is the lack 106 

of resemblance to the original tumours upon the continuous culturing, making it difficult to infer which 107 

therapeutics would have been efficient to treat the original neoplasm 4. Moreover, 2D mono-cultures do 108 

not accurately mimic the characteristic features of biliary tumours, namely the three-dimensional 109 

architecture, cell-to-cell, and cell-to-matrix interactions, cellular heterogeneity, and the effect of the 110 

tumour microenvironment in cancer progression. To overcome these limitations, multicellular 3D 111 

models, such as spheroids and organoids, have been developed. Although they constitute valuable 112 

models to study CCA 5, spheroids usually do not precisely recapitulate the native tissue architecture and 113 

function of the tissue of origin 6. In contrast, organoids maintain a higher and more predictable physical 114 

order in the cellular self-assembly and display a marked interaction with the extracellular matrix, thereby 115 

retaining most of the histological and malignant characteristics of the original neoplasm 6-9. In addition 116 

to cell culture-based models, different in vivo CCA models have been developed. CCA induction through 117 

administering hepatocarcinogens or liver fluke infestation has the advantage of mimicking cancer 118 

pathogenesis. However, animal studies are time-consuming, expensive, ethically challenging, and 119 

sometimes, hepatocellular carcinoma (HCC) rather than CCA preferentially develops. To give in vivo 120 

context to 2D cell lines, CCA cells have been used to generate subcutaneous or orthotopic xenografts 121 

in mice. However, these approaches remain limited by poor rates of tumor engraftment. Technological 122 

advancements have made it possible to grow liver organoids, i.e., 3D cultures of bipotent liver 123 

precursors, and therefore develop mouse models based on transplantation of genetically modified liver 124 

organoids that undergo in vivo oncogenic transformation along the cholangiocellular lineage 10. 125 
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Alternatively, genetically-engineered mouse models (GEMMs) recapitulating the most frequent genetic 126 

alterations detected in CCA have been generated 11.  127 

International collaborations to study CCA, spearheaded by the European Network for the Study of 128 

Cholangiocarcinoma (ENS-CCA) and the European H2020 COST Action CA18122, have been crucial 129 

to fostering recent advances in this field. To improve the accuracy in obtaining and exchanging 130 

information among groups, it is now essential to establish consensus criteria regarding the minimal 131 

standardized characteristics required from preclinical CCA models or describing a new model. Here, we 132 

detail these criteria for the available and forthcoming in vitro and in vivo models and document the 133 

international, inter-disciplinary process used for their development. 134 

 135 

Methods 136 

Panel of experts  137 

A core group of 8 core group members, all active researchers with significant contributions to the CCA 138 

field, initiated and led a Delphi study to define recommendations on the minimal criteria for experimental 139 

CCA models to provide a uniform approach for future studies. Furthermore, core group members 140 

identified 27 additional experts to be invited to join the steering committee and to be actively involved in 141 

implementing the Delphi process. These core and steering team members filled the initial Delphi 142 

questionnaire and are listed authors, and they proposed 10 additional experts to fill the second and final 143 

questionnaire. These 10 experts, not actively involved in writing the recommendations but providing 144 

their precious input by filling the second questionnaire, are listed as one collaborative author; CCA Model 145 

consortium. Thus, the final panel consisted of 45 individual experts from 10 countries located in Europe, 146 

Asia, and USA. Supplementary Table S1 summarizes the expert panel's names, institutes, and 147 

demographics. 148 

Building consensus 149 

We used a modified Delphi method for two rounds of questionnaires. A statement consensus was 150 

reached when ≥90% agreement. Statements or questions that were agreed upon using this criterion in 151 

the first round were omitted in the second round. 152 

Questionnaires 153 

The core team generated the questionnaires using an online Google Form (Alphabet Inc., CA) before 154 

sending them out to the experts. The first questionnaire consisted of 47 questions, divided over 4 parts: 155 
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Part 1.Defining minimal and advanced criteria for experimental models, Part 2.In vivo model for CCA, 156 

Part 3.In vitro models for CCA, and Part 4.Preclinical models for CCA. Based on questionnaire 1 157 

(Supplemental data 1), a second questionnaire was designed, including 13 statements, of which 12 158 

could be solely answered with 'yes' or 'no' (Table 1). All experts could comment on every question. Both 159 

questionnaires and summaries of the outcome are shared in Supplementary Data 1. Through the 160 

consensus of experts in the field, we propose overarching criteria to be used when establishing or using 161 

preclinical models of CCA and linking this to the clinic (Figure 1). From the second questionnaire, core 162 

recommendations were edited (new Box 1). 163 

Clinical features to consider when using experimental models  164 

Clinics 165 

Experimental models of CCA must reflect the natural history of the known subtypes of CCA, their 166 

molecular heterogeneity, and the impact of clinical or therapeutic interventions. In ICD11, published in 167 

2022, CCA is classified according to its origin as intrahepatic (iCCA) and extrahepatic (eCCA) 168 

(https://icd.who.int). iCCA arises from intrahepatic bile ducts, i.e., it grows in the liver. Consequently, it 169 

is more often surgically resectable than perihilar CCA (pCCA), the latter arising at the liver hilum where 170 

the likelihood of local vascular invasion is greater 12. The impact of tumour biology on local invasion is 171 

poorly understood and requires further examination.  172 

The biology of CCA subtypes also differs significantly. Approximately 50% of iCCAs have actionable 173 

molecular alterations, and targeted therapies against FGFR2 fusions and IDH1 mutation-driven cancers 174 

are already approved 13-16. The reason why iCCAs are more molecularly heterogeneous than p/dCCAs 175 

is not fully understood and requires detailed examination. In addition, the influence of biology on the 176 

natural history of iCCA and its impact on surgical, local, and systemic treatment options necessitate 177 

further studies 17. dCCA more closely resembles pCCA, but, again, the effect of both anatomy and 178 

biology on outcome has not been fully elucidated. However, many tools only seek to mimic iCCA, and 179 

there is a critical absence of pCCA and dCCA models. 180 

A second essential requirement of an experimental model is to reflect the interventional outcome. 181 

Although chemotherapy remains the standard of care, the increasing use of targeted therapies requires 182 

a deeper examination of molecular mechanisms and critical mechanisms of resistance 18-21. As such, 183 

any model must reflect molecular changes in the patient that can be measured to provide hypotheses 184 
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to overcome this commonly occurring resistance. Furthermore, such resistance mechanisms should be 185 

unraveled to develop and assess novel interventions to overcome resistance before clinical testing.  186 

Pathology  187 

Separate classifications (UICC, AJCC, WHO) exist for iCCA, pCCA, and dCCA. Macroscopic features 188 

divide iCCA into two subtypes: large duct and small duct 22. Large duct iCCAs typically arise near large 189 

central ducts and grow along the ductal wall. Small duct iCCAs are usually peripheral mass-forming 190 

tumours in the hepatic parenchyma. Four patterns of growth are described for CCA: mass-forming, 191 

periductal infiltrating, intraductal, and mixed types 23.  192 

Histopathology. Small duct iCCAs are typically non-mucin-secreting adenocarcinomas with a ductular 193 

or tubular pattern. Large duct iCCAs are generally mucin-secreting tubular adenocarcinomas resembling 194 

perihilar and distal CCAs 24. Most p/dCCAs are adenocarcinomas with pancreaticobiliary morphology, 195 

comprising glandular structures and/or small groups of cells within the desmoplastic stroma 24. 196 

Immunohistochemistry. No specific immunohistochemical pattern for CCA lesions exists. However, 197 

they typically show an upper gastrointestinal/pancreaticobiliary pattern of cytokeratin (CK) expression 198 

(CK7+, CK19+, CK20-negative) when they still exhibit some degree of differentiation. In addition, large 199 

duct iCCAs sometimes express intestinal markers (e.g., CK20 and CDX2) 25. CCA is usually 200 

immunonegative for HepPar-1, arginase-1, and glypican-3, distinguishing it from HCC and combined 201 

HCC/CCA. Transcription factors marking cell-specific lineages such as TTF-1 (lung and thyroid 202 

cancers), PAX8 (renal, thyroid, ovarian, and endometrial cancers), and GATA-3 (breast and urothelial 203 

cancers) are not usually expressed in CCA.  204 

Biliary precursor lesions. CCA could develop from precursor lesions. Most cases of large duct iCCA 205 

and p/dCCA presumably originate from biliary intraepithelial neoplasia 26. Intraductal papillary neoplasm 206 

of the bile duct (IPNB) is an intraductal papillary proliferation that develops in intrahepatic (70%) or 207 

perihilar ducts (30%) 27,28. Invasive malignancy is evident in > 50% of IPNBs at presentation. 208 

Furthermore, the mucinous cystic neoplasm is a cystic epithelial tumour occurring almost exclusively in 209 

females, associated with CCA in 5% of cases 29,30.  210 

Molecular profiling  211 

Efforts to understand the heterogeneity of CCA have provided insights into the molecular pathogenesis 212 

and anatomical complexity of this disease 13,31-38. The genetic landscapes fall midway in the mutational 213 

spectrum of cancers 39, with shared genetic alterations between iCCA, pCCA, and dCCA 36. Although 214 
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the gained comprehensive insight into the underlying pathobiological processes of resectable invasive 215 

tumours, the precise involvement of genetic and epigenetic mechanisms in the onset of CCA is still 216 

insufficient.  217 

Integrated genomics approaches have been used to classify CCA patients based on prognosis 40-43, 218 

emphasizing dysregulated oncogenic signalling pathways, including WNT-CTNNB1, MYC, PI3K-AKT-219 

mTOR, ERBB, RAS-RAF-ERK, TNF, PLK1, TGFβ, NOTCH, IGFR1, VEGF, and the Hippo cascade. 220 

This predominant molecular classification highlights distinct tumour phenotypes of either inflammatory 221 

or proliferative in nature 41. Moreover, iCCA can be classified based on driver-gene mutations elucidating 222 

unique mutational signatures, structural variants, and epigenomic alterations 35. Of note, specific 223 

oncogenic mechanisms in distinct patient subsets with potential unique drug responses like RNA 224 

synthesis inhibition in IDH-mutant, microtubule modulator in KRAS-mutant, topoisomerase inhibition in 225 

TP53-mutant, and mTOR inhibitors in wild-type tumours enriched in FGFR2 fusions 13. 226 

As the three anatomical CCA subtypes differ in their molecular alterations 36 and potentially in the cell-227 

of-origin 44-47, the CCA subtypes should be studied in separate experimental models 2. However, the 228 

step-wise progression of human CCA and thus the accumulation of a wide variety of molecular 229 

alterations may not be reflected in the most rapid mouse models. Furthermore, the available 230 

experimental models represent specific subsets of patients with CCA, and it is essential to consider the 231 

molecular heterogeneity of patients with CCA when using these models. With this in mind, integrative 232 

transcriptomics may represent a relevant strategy to define the best-fit models as previously 233 

demonstrated for HCC 48,49. 234 

In vivo CCA models 235 

Engrafted models 236 

Xenograft. Xenografts consist of transplanting tissues or cells from a different species into an 237 

immunodeficient host 50. Xenograft CCA models are generated by either implanting human neoplastic 238 

CCA cells subcutaneously into the flanks of immunodeficient or athymic mice (ectopic grafts) or directly 239 

in the liver (orthotopic grafts). These experimental animal models help evaluate the therapeutic efficacy 240 

and safety of novel candidate drugs or physical-based therapies for treating CCA in vivo. They are highly 241 

reproducible, cost-efficient, technically easy and feasible, with limited adverse effects related to the 242 

procedure, and they only require short periods for evaluation 50-53. Furthermore, when engrafted 243 

subcutaneously, the generated tumours are easily accessible throughout the duration of the in vivo 244 
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model, which enables the real-time measurement of tumour volume growth with a caliper. Several 245 

studies have investigated the therapeutic efficacy and safety of different compounds 54 55-58. Additionally, 246 

the role of various proteins 59-64 and miRNAs 65-69 were evaluated in ectopic xenograft models by 247 

implanting genetically-manipulated CCA cells. Nevertheless, ectopic xenografts also have intrinsic 248 

limitations. Xenografts usually reflect advanced tumour stages, growing rapidly, and making the study 249 

of early CCA challenging. At the same time, distinct CCA cell lines display different implantation rates, 250 

with some not generating tumours after injection. Furthermore, these tumours are implanted in a non-251 

physiological site, seldom metastasize, and may lose the molecular heterogeneity characteristic of 252 

human CCA. Most importantly, they do not allow the study of the crosstalk between tumour cells, the 253 

multicellular microenvironment milieu, and the immune system 50-53.  254 

Using orthotopic xenograft models may overcome some of these limitations by developing tumours 255 

directly in the organs of origin. Orthotopic grafts are more likely to trigger tumour dissemination, with the 256 

development of distant metastases. Intrahepatic implantation of CCA cells can be achieved either by 257 

injecting cells directly into the liver parenchyma using ultrasound-guided injection 70 or through the portal 258 

or splenic vein 50. Small fragments of CCA tumours previously generated in subcutaneous xenografts 259 

or cancer stem cell-derived spheroids can also be orthotopically implanted 71,72. Although intrasplenic 260 

injection is technically easier than intraportal administration and carries fewer post-operative 261 

complications, the implantation of CCA cells by intrasplenic injection resulted in successful engraftment 262 

not only in the liver, but also in the spleen 73. Of note, intrasplenic injection of EGI-1 CCA cells also 263 

induced the development of lung metastases 74. Still, generating orthotopic models is more time-264 

consuming, and some post-operative complications may arise. Furthermore, the tumour development, 265 

growth, and metastases assessment requires imaging techniques or is only determined at sacrifice 50,53. 266 

In this sense, using luciferase-expressing CCA cells is an excellent choice to monitor tumour growth 267 

over time 73. However, this tool might not be accessible to all.  268 

Engrafting cells or tissues directly obtained from patients may result in the development of patient-269 

derived xenografts (PDXs). Subcutaneous or orthotopic tumours usually maintain the original genetic 270 

and epigenetic features and surrounding stroma observed in the initial mass, thus constituting the ideal 271 

model to predict therapeutic responses and being excellent tools in personalized medicine. Indeed, 272 

several studies have already used PDXs to examine tumours harbouring specific mutational patterns 273 

and test the use of specific targeted therapies 75-79. Nevertheless, the success of PDX engraftment is 274 
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relatively low, depending on the primary tumour itself and the experimental design for tumor engraftment. 275 

Thus, they constitute a time and resource-intense model and may require several months for successful 276 

implantation 50. Based on the available data and unanimous agreement, the expert panel strongly 277 

suggests that the type of CCA should be defined by a pathologist for PDX models, with the histology of 278 

the tumor shown in the publication (Box1). 279 

Allograft (syngeneic). Syngeneic models have the advantage of implanting murine CCA cells into an 280 

immunocompetent host, displaying a fully-functional immune system. The first syngeneic model was 281 

developed when 2 rat CCA cell lines (BDEneu and BDEsp) were directly implanted in the biliary tract of 282 

Fisher 344 rats. While BDEsp engraftment induces the development of non-metastatic iCCA, BDEneu-283 

derived tumours were more aggressive, with the rapid and consistent formation of CCA lesions and 284 

metastases 80,81. This model was used to elucidate the mechanisms underlying tumour progression and 285 

evaluate the efficacy of novel drug candidates 81-85. More recently, a novel syngeneic murine model was 286 

reported by engrafting the malignant mouse cell lines SB1-7, obtained from a bile-duct ligation and 287 

transposon-based CCA model into mice 86,87. The obtained cell lines were successfully implanted, 288 

leading to CCA lesions resembling human CCAs 87. In addition, foetal liver cells obtained from 289 

genetically-modified mouse embryos may also be implanted in the mouse liver, inducing CCA formation 290 

88. Furthermore, the cells mentioned above can be genetically manipulated before engraftment, 291 

revealing insights into the mechanisms governing cholangiocarcinogenesis and allowing the 292 

implantation of the cells in already established knockout mice strains, thus permitting the study of 293 

alterations in specific genes in the tumour stroma 89. In this line, unpublished observations from the SB1 294 

orthotopic model indicate that extending 2 weeks the frequently used endpoint (4 weeks) allows the 295 

formation of extrahepatic metastases in the lung. Therefore, further characterization of this timeline in a 296 

genetically malleable immunocompetent host, coupled with the isolation of tumor cells from the original 297 

site of injection and the metastatic sites, could provide an excellent model to understand, and perhaps 298 

even prevent, a rather understudied process such as CCA metastatic spreading. Overall, these models 299 

may overcome xenograft limitations, such as the absence of the immune system, are ideal for studying 300 

tumour-stroma interactions, and are an excellent alternative to test immunotherapy-based strategies. 301 

Still, they require microsurgical procedures, increasing the probability of procedure-related 302 

complications.  303 

Chemically-induced models 304 
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High levels of inflammation, fibroblast activation, and rich extracellular matrix deposition in the tumour 305 

typify CCA in patients 90. In some cases, these tumours develop in the context of chronic diseases, and 306 

the cells associated with these pre-cancerous conditions contribute to cancer formation. Several 307 

chemical models that generate chronic and iterative injury, leading to tumour formation, have been 308 

developed to recapitulate this complex microenvironment in CCA.  309 

Early work demonstrated that administering thiourea or thioacetamide (TAA) to rats triggers liver cancer 310 

formation over two years 91. TAA is a potent hepatotoxin that induces hepatic fibrosis and cirrhosis in 311 

rodents owing to progressive damage of hepatocytes and biliary epithelium. TAA-induced biliary 312 

damage reproduces the typical dysplasia-carcinoma sequence, ultimately evolving to invasive iCCA 92. 313 

Consequently, the use of TAA to induce tumour-initiating injury in rodents has become a cornerstone of 314 

CCA research. However, as detailed in this early work, CCA formation in TAA-treated rats is very 315 

variable, with only ∼50% of animals developing frank carcinomas. Results are even more variable in 316 

wild-type mice. TAA is not mutagenic per se; instead, the initiation of chronic sclerosing inflammation 317 

and continuous regeneration drives the spontaneous accumulation of mutations in biliary cells, which 318 

then become cancerous, akin to what is observed in patients with chronic cholangiopathies. Therefore, 319 

combined with bile duct ligation (BDL), a classical model of obstructive cholestasis and subsequent bile 320 

duct proliferation, TAA accelerates the formation of biliary tumours 93. Different from TAA, several 321 

mutagenic models have also been developed to induce CCA in rodents. For instance, diethylnitrosamine 322 

(DEN) and dimethylnitrosamine (DMN) generate DNA adducts in the liver and suffice for liver 323 

carcinogenesis 94, and in combination with inflammatory injury (BDL or O. viverrini infection), drive CCA 324 

development in mice and hamsters 95-97. Furan is a potent mutagen capable of initiating CCA in rats 98. 325 

Long-term furan treatment is currently the only chemically-induced model of CCA with nearly 100% of 326 

tumour incidence, which results in multi-organ metastases and closely recapitulates the primary and 327 

secondary pathologies of human CCA. Available models are summarised in Table 2 and Figure 2.  328 

Although many rat and mouse models driven by chemical insults reflect both the pre-cancerous disease 329 

history and molecular and histopathological features of human CCA, their use is becoming less popular, 330 

primarily due to their long latency, cost, and variability (both in terms of tumour penetrance and high 331 

molecular heterogeneity). Recent work has focused on combining the disease-inducing aspects of these 332 

models, such as inflammation and fibrosis, with GEMMs, discussed in more detail in the following 333 

section. A critical point to consider is the control tissue that should be compared with malignant biliary 334 
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cells. Indeed, as the whole liver is inappropriate since hepatocytes are the prevalent cell population, 335 

isolated bile ducts should be considered the best control.  336 

Genetically Engineered Mouse Models (GEMMs) 337 

GEMMs are advanced animal models of human cancer (Table 3). They are rationally designed to mimic 338 

human CCA's genetic and epigenetic alterations, aberrant activation of signalling pathways, and the 339 

sequence of preneoplastic and early and late tumour stages, including metastasis. In addition, GEMMs 340 

can be coupled to in vivo transfection (HTVI and/or electroporation) or injection (adeno-associated-341 

viruses, AAV) approaches to activate/express transgenes in adult hepatocytes to further expand the 342 

mouse model toolbox 99.  343 

General concerns precluding the use of GEMMs are their high cost, tumour latency, and embryonic Cre 344 

expression in non-inducible models that may compromise translation to human disease. However, 345 

adopting CRISPR/Cas9 strategies to generate new GEMM strains and the development of tamoxifen-346 

inducible, organ-specific Cre-recombinase strains circumvented some of these limitations. A summary 347 

of selected GEMMs is provided herein. 348 

Most CCA GEMMs incorporate common oncogenic alterations found in humans, including inactivation 349 

of tumour suppressor genes (PTEN, SMAD4, P53) or induction of oncogenes (KRAS, IDH1/2, AKT1, 350 

NOTCH1) to investigate the consequences of cell-autonomous effects on cholangiocarcinogenesis. In 351 

the first reported CCA GEMM, ablation of Pten and Smad4 in fetal bipotential hepatic progenitors (liver 352 

progenitor cells, LPCs) was achieved during embryogenesis using an Albumin Cre (Alb-Cre) strain 100. 353 

Alb-Cre; Smad4flox/flox; Ptenflox/flox mice displayed the histopathological stages detected in human 354 

disease, from bile duct hyperplasia and dysplasia to carcinoma in situ and invasive CCA.  355 

Another model closely recapitulating human cholangiocarcinogenesis consists of the concomitant Trp53 356 

abrogation and KrasG12D expression in the Alb-Cre mouse background 101. This model features 357 

premalignant biliary lesions (intraductal papillary neoplasms and Von Meyenburg complexes), leading 358 

to invasive carcinoma and distal metastases. To directly probe the cell of origin in this model, KrasLSL-359 

G12D/+; Tp53flox/flox mice were bred to the tamoxifen-inducible Sox9-CreERT2+ strain (targeting 360 

cholangiocytes) or intravenously administered the AAV8 vector expressing Cre under the thyroxine-361 

binding protein (targeting adult hepatocytes) 102. KrasG12D activation and Trp53 loss in adult 362 

hepatocytes required co-administration of DDC-diet to form tumours (iCCA and HCC with a similar 363 

incidence, in addition to combined HCC/CCA), highlighting the role of inflammation on liver cancer 364 

ACCEPTED MANUSCRIPT / CLEAN COPY



 

 13 

formation. By contrast, activation of the transgenes in the adult ductal compartment in the Sox9-CreERT2+ 365 

accelerated the development of hepatic tumours, mainly iCCA, from preneoplastic lesions (not found in 366 

AAV8-injected mice) without the need for inflammatory cues.  367 

Targeting KrasG12D activation and Pten deletion triggered the fastest GEMM in Alb-Cre mice 103. In 368 

KrasLSL-G12D/+; Ptenflox/flox; Alb-Cre mice, early hyperplastic biliary foci were detected by 4 weeks of age, 369 

and mice died by 7 weeks. Tumours were multifocal, stroma-rich localized iCCA. Interestingly, mice with 370 

heterozygous Pten deletion and KrasG12D activation developed tumours after longer latency, showing 371 

hepatocyte and cholangiocyte differentiation features. By using Alb-CreERT2+ or K19CreERT/+ mouse 372 

strains to activate the oncogenic alterations in adult hepatocytes or cholangiocytes, respectively, the 373 

authors reported the development of HCC and HCC-precursor lesions, but not iCCA, in 8-week old Alb-374 

CreERT2+; KrasLSL-G12D; Ptenflox/flox mice, while tamoxifen injection on day 10 elicited iCCA. The formation 375 

of iCCA in Alb-CreERT2+; KrasLSL-G12D; Ptenflox/flox mice might be because Alb-Cre is still active in biliary 376 

cells at 10 days of age and indicates that cholangiocytes are the cell of origin of CCA in these models, 377 

which was later independently confirmed using similar approaches 104. 378 

IDH1/2 oncogene modelling in mice was employed 105,106. Breeding of Idh2LSL-R172K and KrasLSL-G12D mice 379 

in the Alb-Cre background yielded multifocal iCCA-like liver masses with invasive growth and metastatic 380 

capacity. Furthermore, adjacent to the tumours, oval cell expansion and biliary intra-epithelial neoplasia-381 

like lesions, suggestive of preneoplastic stages, occurred. In more recent work, the same group 382 

generated Idh1LSLR132C mice that developed iCCA upon crossing with KrasLSL-G12D mice in the Alb-Cre 383 

background 107. Another oncogene investigated in Alb-Cre mice was Notch1, via a mouse strain 384 

expressing the Notch 1 intracellular domain (NICD) from the Rosa26 locus 108. By 8 months post-birth, 385 

malignant foci were detected, leading to CCA formation in transplanted immunodeficient mice.  386 

Two GEMMs highlighted the importance of a pro-inflammatory environment in cholangiocarcinogenesis. 387 

In the first model, severe liver damage by inflammatory cues originating from mitochondrial dysfunction 388 

characterized Hspd1flox/flox mice bred to the Alb-Cre strain 109. Mice developed hepatocyte and 389 

cholangiocyte regenerative foci, the latter resembling human biliary intra-epithelial neoplasia. The 390 

lesions arose in the context of an injured microenvironment and not through cell-autonomous 391 

mechanisms, as most regenerative liver foci exhibited Hspd1 expression. In the second model, 392 

KrasG12D expression and deletion of both Tgfβr2 and Cdh1 (E-cadherin) were achieved in adult CK19+ 393 

biliary cells, leading to early-onset metastatic tumours in the extrahepatic and hilar bile duct 110. Dying 394 
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cholangiocytes in response to E-cadherin ablation released IL-33 to foster a proliferative phenotype in 395 

biliary epithelial cells that contributed to neoplastic transformation. However, after 4 weeks of tamoxifen 396 

administration, mice succumbed to liver and/or respiratory failure. In these models, transplantation of liver 397 

tissues in immunodeficient mice 109 or derivation of tumour organoids from mice 110 allowed follow-up 398 

experiments otherwise limited by the mice's short life span. 399 

Additional carcinogen-exposed GEMMs modeling the consequences of an inflammatory environment, 400 

a frequent risk factor in human CCA, have also been reported. However, both the low penetrance and 401 

the high latency jeopardized their use 111,112. Nonetheless, co-exposure with carcinogens might be a 402 

strategy in GEMMs to accelerate cholangiocarcinogenesis by providing a pro-inflammatory and pro-403 

fibrogenic environment recapitulating the human context 113. 404 

Orthotopic or subcutaneous allografts models of premalignant liver cells (LPCs or adult liver organoids) 405 

or GEMM-derived CCA cell lines provide an alternative experimental strategy to time-consuming 406 

GEMMs 10,64,88,107. These cellular models are amenable to gene editing, and their orthotopic 407 

transplantation in syngeneic mice enables tumour growth in an immune-competent microenvironment. 408 

Additionally, the plasticity of LPCs and liver organoids to originate CCA- or HCC-like tumours, depending 409 

on the genetic context, is preserved. 410 

GEMMs showed that LPCs, cholangiocytes (intra- and extrahepatic), and mature hepatocytes can be 411 

the cell of origin of CCA in mice 47,114. However, the relevance of these findings for human CCA remains 412 

under evaluation. Indeed, various elements, including the targeted cell population (differentiated vs. 413 

stem cells; additional cell types only present in humans), the tissue location (intra- vs. -extrahepatic), 414 

the increased complexity of oncogenic alterations, the type, degree, and duration of the pro-oncogenic 415 

and pro-inflammatory stimuli, the liver status, etc., might ultimately affect CCA development.  416 

 417 

For all preclinical in vivo models, based on statements on histological assessment and a unanimous 418 

agreement (Table 1 & Box 1), the expert panel strongly suggests that : 419 

- The invasion of the basement membrane and tumorigenic capacity of isolated cells engrafted 420 

subcutaneously in immune-deficient mice are the most critical malignant features of CCA. 421 

-  Morphological examination by H&E and immunohistochemistry should be conducted to 422 

characterize an early-stage tumour in the preclinical CCA model. 423 
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- Immunohistochemistry of at least one biliary cytokeratin (CK7 or CK19) should always be 424 

performed to characterize a lesion as CCA in the absence of hepatobiliary primary lesions in a 425 

preclinical model. 426 

- Three histopathological features of human CCA must be assessed in a preclinical model: (a.) 427 

intra-tumoral heterogeneity (high stroma, inflammatory response, epithelial phenotype), (b) 428 

pattern of growth (mass-forming, periductal infiltration, intraductal growth), and (c) 429 

immunopositivity for CK7 or CK19. 430 

- The expert panel recommends classifying preclinical CCA models as intrahepatic, perihilar, and 431 

distal CCA, and suggests that focal desmoplastic stroma is a morphological feature required to 432 

classify a lesion as CCA in a preclinical model. 433 

- A drug should be tested in more than one model. 434 

 435 

Lastly, to adopt a shared tool for defining the CCA experimental models homogeneously, an 436 

“experimental model sheet” was generated based on an initial expert discussion done in a physical 437 

ad hoc meeting (Malta meeting 20189; WG1 meeting) (Table 4) to provide complete information on 438 

animal experimentations to the scientific community through publications. 439 

 440 

In vitro CCA models 441 

2D-culture with cell lines or primary cells  442 

The urgent need to understand the biological processes of CCA progression and drug resistance has 443 

led to the widespread use of in vitro models represented by human and animal primary cultures and 444 

established cell lines. In 1985, the first CCA cell line - HChol-Y1 - was established from a patient with 445 

iCCA and characterized 115. Later, an assortment of CCA cell lines of intrahepatic and extrahepatic origin 446 

was generated from primary tumours, ascites, metastases, and patient-derived xenografts 447 

(Supplementary Table 2). Besides human CCA cells, several lines derived from mouse, rat, and 448 

hamster models have been described (Supplementary Table 2). As proper control cells, primary 449 

cultures of normal cholangiocytes should be used. 450 

Molecular studies performed in human CCA tissues have uncovered recurring genomic alterations in 451 

specific genes such as mutations in TP53, IDH1, KRAS, and SMAD4 genes, FGFR2 receptor fusions, 452 

or ERBB family gene amplifications 116, which, in part, qualify as targets for molecular approaches. 453 
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Although most described CCA cell lines have been studied in terms of phenotypic and functional 454 

characterization of some parameters, only recently, with the development of high-throughput 455 

sequencing techniques, three studies have used exome sequencing or RNA-seq analyses to perform 456 

deep molecular phenotyping of some of the most widely used CCA cell lines (Supplementary Table 2) 457 

117-119. This has allowed the selection of cell lines with specific genetic alterations representing valuable 458 

drug screening tools, particularly for targeted therapy. 459 

Most cell lines were established before the release of the latest WHO guidelines 120, and potential 460 

misclassification of the origin of some cell lines may impact the clinical translation of some molecular 461 

and functional studies. For instance, Mz-ChA-1 cells have been traditionally used as a CCA cell line 462 

121,122, but they are classified as a gallbladder carcinoma cell line. Thus, results extrapolated from this 463 

cell line should be considered for patients with this specific type of tumour. 464 

In general, the well-established cell lines represent an easy model to explore mechanisms of 465 

tumourigenesis and gain high experimental reproducibility mainly due to their long-term growth ability, 466 

short replication doubling time, and low maintenance costs. However, several significant weaknesses 467 

have been described, such as long-term serum-based culture conditions favouring the accumulation of 468 

new genomic alterations 123-126. Furthermore, in vitro maintenance often supports the selection of cell 469 

clones that are not representative of the genetic heterogeneity of the original tumor. In addition, cell 470 

cultures grown as a monolayer may lack polarization and realistic cell-cell contacts within the tumour 471 

bulk. Finally, the absence of cancer stromal cells and cell-matrix interactions do not recreate the 472 

fundamental interaction with the tumour microenvironment 3,123.  473 

In addition to immortalized 2D cell lines, primary cultures of CCA tissue were established 127-130. The 474 

overall success rate for CCA cell line isolation and establishment is relatively low (around 10%), partly 475 

due to insufficient numbers of tumour cells in resected tissues. Notably, contaminating non-tumour cells 476 

(i.e., fibroblasts) must be removed. Primary cultures are grown under serum-free and growth factor-477 

enhanced conditions, which better resemble the in vivo tumour condition. Also, primary CCA cultures 478 

can be used shortly after derivation, retaining more of the morphological and functional characteristics 479 

of their tissue of origin 131. Primary cultures constrain cell differentiation and partially preserve the stem-480 

like component, thus reflecting tumour heterogeneity. However, the short time window to reach 481 

senescence hampers long-term experiments and their reproducibility.  482 
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A major limitation, independently of whether cell lines or primary CCA cultures are used, is the absence 483 

of components of the tumour microenvironment. To address this problem 132,133, different strategies have 484 

emerged in 2D cell culture, including conditioned media experiments, indirect co-culture through porous 485 

membrane cell culture inserts 134, and direct co-culture 135. In some cases, these experiments are 486 

performed with primary cultures of tumour and stromal cells (i.e., cancer-associated fibroblasts, CAFs; 487 

monocytes/macrophages) 5,136. In other cases, CCA cell lines are made to interact with immortalized 488 

stromal cell lines (Table 3) 132,134,137. Although these systems do not fully recapitulate the complex 489 

tumour microenvironment, they enable the study of the crosstalk between CCA cells and other cell types, 490 

deepening our understanding of the role of different stromal cell types in tumour progression and drug 491 

response mechanisms 132,133,136.  492 

Based on statements on histological assessment (Table 1) and a unanimous agreement, the expert 493 

panel (Box 1) strongly suggests to state in publication the origin of any cell line (previously established 494 

or new) according to the new CCA classification (intrahepatic, perihilar, distal). In addition, information 495 

regarding cell culture conditions should be provided in the publication to standardize the procedures 496 

(choice of plastic support and cell culture medium, level of confluence, isolation procedure for primary 497 

culture, passaging and sub-culturing methods, etc.). 498 

3D-culture recapitulating tumour organization 499 

To facilitate personalized/precision medicine, patient material is used to study treatment responses. 500 

While 2D CCA models are a step closer to the in vivo situation in the patient compared to the established 501 

CCA cell lines, 3D culture models, including spheroids and organoids, resemble physiological conditions 502 

even more thoroughly. Spheroids are 3D aggregates of cells grown without a predefined culture 503 

substrate to adhere to 5,138, while organoids self-organize in a matrix-rich 3D environment with which 504 

they interact 139,140 6,141. While traditional organoids represent an epithelial cell culture, there is a 505 

consensus that 3D models should ideally be upgraded to include epithelial stem cells, cells from the 506 

tumour microenvironment (e.g., fibroblasts and/or immune cells), and extracellular matrix components 507 

to enable the analysis of cell-cell and cell-matrix interactions. 508 

Spheroids  509 

Tumour spheroids, mostly generated as 3D multicellular aggregates from 2D-grown adherent cells, 510 

sometimes including stromal cells such as fibroblasts and endothelial cells, are used to model tumour 511 

biology 5,138. They can be grown in natural and/or synthetic hydrogels 141,142, and the increased 512 
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complexity of the model enhances the understanding of tumour pathobiology, including tumour 513 

homeostasis and organization. In contrast to 2D cultures, tumour spheroids inherently recapitulate the 514 

gradient of oxygen supply and drug diffusion occurring within the tumour. However, their use as high-515 

throughput, robust platforms is still limited. 516 

Organoids  517 

Robust protocols for deriving biliary organoids from both mouse and human primary tissue explants or 518 

biopsies have been established 6,140, and complemented by methods that allow for the derivation and 519 

propagation of organoids from iPS cells 143, or cells collected from bile 144,145. Apart from organoids 520 

derived from healthy donors, the successful establishment of organoid cultures from tumour tissues 521 

6,7,9,146,147 can substantially add to the toolbox of preclinical and translational CCA research. The overall 522 

consensus in the field is that the efficiency of establishing these CCA organoids (CCAOs) from different 523 

patient tumours should be at least 25%. Efficiency should reach over 50% to guarantee the applicability 524 

of organoids to personalized medicine. Working with CCAOs inevitably has limitations, including the 525 

overgrowth by non-malignant cholangiocyte organoids. Using specific tumour enrichment medium 148, 526 

resort to hand picking non-malignant or tumour organoids to clean up the culture, and 527 

xenotransplantations are ways to address this challenge. It is agreed upon that tumourigenicity needs 528 

to be confirmed for all CCAO lines, preferably done by mutation analysis (stand-alone or as part of whole 529 

genomic profiling). Proof of organoid tumourigenicity in immunocompromised mice and 530 

histopathological analysis are additional tests that can be performed. A shortcoming of CCAOs is that 531 

an established line does not fully reflect the polyclonal nature of the original tumour. This might hamper 532 

insights into drug sensitivity or clonal regrowth of treated CCA tumours.  533 

In addition to fully transformed CCAOs, non-malignant cholangiocyte organoids can be a genetically 534 

flexible platform to functionally annotate the influence of specific genetic alterations on CCA 535 

pathobiology. Thus, recurrent iCCA genetic alterations (such as BAP1, NF1, SMAD4, PTEN, KRAS, 536 

AKT, and IDH1/2 mutations, as well as FGFR2 fusions and MYC overexpression) were engineered in 537 

vitro in either human 149,150 or mouse 151. Collectively, these studies provided convincing evidence that 538 

liver organoids, in which few genetic hits were introduced to recapitulate recurrent patterns of putative 539 

iCCA driver mutations, gave rise to CCA upon sub-cutaneous or orthotopic transplantation in mice. This 540 

approach is therefore suitable for modelling genetically-defined cholangiocarcinogenesis in bipotent 541 

liver precursors and generating models for precision oncology research 10.  542 
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 543 

Based on the available data and a unanimous agreement, the expert panel strongly suggests: 544 

- The use of a specific tumour « enrichment » medium (i.e., tumour initiating medium as 545 

described by Broutier et al., 2017, DOI: 10.1038/nm.4438) to minimize contamination in non-546 

tumour organoids. 547 

- To perform mutation and phenotypic analyses to confirm the malignant origin of established 548 

organoid lines and to report them in publication. 549 

- To characterize every organoid culture before clinical applications such as drug screening. 550 

 551 

Complex 3D culture systems  552 

Although a hydrogel-based extracellular matrix (ECM) is used to support the 3D growth of cells for both 553 

spheroids and organoids, this is typically a mouse tumour-derived basement membrane extract 554 

(Matrigel or BME) not fully comprising human or tumour ECM. Moreover, additional stromal cells such 555 

as fibroblasts and immune cells are generally lacking in these cultures. The tumour microenvironment 556 

plays a crucial role in the initiation, progression, and invasion of CCA through a complex interaction 557 

between tumour cells, stromal cells, and the extracellular matrix 152. Targeting this desmoplastic, stroma-558 

rich tumour microenvironment might be essential to overcome chemoresistance 153-155. Thus, including 559 

the CCA extracellular environment in vitro seems vital to mimic tumour composition, cell-cell and cell-560 

matrix interaction 156, morphology, and tumour architecture more closely. 561 

Current efforts is focussed on the generation of future complex models (assembloids) that integrate the  562 

epithelial CCA component with 3D bio-printed scaffolds that recapitulate the anatomy of the biliary 563 

system; immune cells that shape tumour growth and drug sensitivity through direct- or paracrine-564 

interaction; stromal cells that create a physical barrier for drug delivery in addition to a pro-tumorigenic 565 

microenvironment. The challenges reside in the co-culture of autologous cell types derived from the 566 

same patient, as each cell type will have a peculiar growth dynamic and timeline. The use of 567 

cryopreservation protocols and human iPSC-derived generation of cell types from the same background 568 

cell may overcome these issues. 569 

 570 

How can clinical needs be addressed using currently available experimental models  571 
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The experimental models described here will facilitate the translation from experimental and preclinical 572 

work to the clinical setting. While some models provide relevant insights into the basic mechanisms of 573 

cancer progression, unraveling pathway and cell signaling analysis, cell-cell, or tumour-574 

microenvironment interactions, others provide results that can be cautiously translated into the design 575 

of more effective treatments for CCA or the development of new human clinical trials. A few recent 576 

studies indicate that genetically defined cellular and animal models can advance the discovery of 577 

actionable vulnerabilities associated with druggable iCCA oncogenic drivers. Specifically, three 578 

independent studies reported that a) RAS-ERK signalling is necessary and sufficient to support the 579 

oncogenic activity of FGFR2 fusions in PDX 157, GEMMs 158, and organoid-based iCCA models 151; b) 580 

combination therapies capable of providing for more robust and durable suppression of RAS-ERK, 581 

improved the therapeutic efficacy of clinically approved FGFR tyrosine kinase inhibitors 151,157,158. 582 

Likewise, Idh1/Kras-driven models revealed that pharmacological targeting of mutated Idh1 sensitized 583 

iCCA to host-mediated immune responses, which could be enhanced by concomitant administration of 584 

immune checkpoint inhibitors 107. 585 

The increasing availability of novel circulating biomarkers beyond the conventional serum tumour 586 

markers warrants validation for specific uses. Additional prognostic biomarkers may allow for a more 587 

accurate patient risk assessment and stratification in clinical trials. Predictive biomarkers for selecting 588 

the optimal therapy, such as ctDNA-based assays for FGFR2 fusions and IDH-1 mutations 159,160, are 589 

already in clinical use and will push the field forward. Finally, additional pharmacodynamic biomarkers 590 

able to track disease evolution more accurately than the carbohydrate antigen (CA) 19-9 and that can 591 

reveal the emergence of drug resistance are warranted 161, as shown for FGFR2 resistance 162.  592 

CCA organoids have proven helpful for understanding fundamental mechanisms of cancer progression 593 

and biomarker discovery 7. Though successful derivation of CCA organoids has lagged behind some 594 

other tumour types, organoids hold high potential as tools for improving CCA research and therapy 163. 595 

With further improvement of clinical applicability, through continued advances in stem cell biology, 596 

organoid culture, and single-cell sequencing, a possible golden era for CCA organoids in personalized 597 

medicine is within reach. A common limitation of experimental models is their inability to fully mimic all 598 

aspects of the tumour biology and personalized cancer features of individual patients. For example, the 599 

tumour microenvironment is a complex mix of cancerous and non-cancerous cells. The ECM dynamics 600 

constantly remodeled by tumour cells, CAFs, and tumor-associated macrophages create a desmoplastic 601 
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environment. In addition, there is considerable heterogeneity within and between tumours. It is 602 

challenging to capture this in experimental models but essential in assessing drug resistance and 603 

tumour progression. Due to the lack of the tumour microenvironment, drug screenings performed in vitro 604 

do not fully reflect the in vivo efficacy, resulting in newly developed drugs failing in phase I-III clinical 605 

trials 164. Finally, common risk factors and co-existing diseases characterizing human CCA (primary 606 

sclerosing cholangitis, liver flukes, chronic viral hepatitis, liver cirrhosis, etc.) are generally absent in the 607 

existing models. Thus, generating new models that combine established risk factors and concomitant 608 

morbidities for the human tumour with specific genetic alterations such as those reported above might 609 

recapitulate human CCA more accurately.  610 

Consensus strengths and limitations 611 

The Delphi method was applied to reach a consensus on the criteria required to establish valid 612 

preclinical models for the study of CCA. For this purpose, we built a task force of 45 renowned experts. 613 

Although we recognized that a more extensive panel could be preferred, we believe that the number of 614 

experts, their relevance in the CCA field, and the variety of backgrounds represented, including basic 615 

scientists, pathologists, and clinicians, strengthened the validity of the consensus. During the process, 616 

the experts raised numerous comments, suggestions, and questions, which were openly and rigorously 617 

discussed and incorporated into the study. This interactive and dynamic approach and the absence of 618 

dominant voices, which often inhibit the expression of minority viewpoints, resulted in fair and balanced 619 

contributions and the achievement of the final consensus statements and recommendations. 620 

 621 

Experimental models are essential for a better understanding of carcinogenesis and tumour 622 

progression, testing anti-tumour therapies, and deciphering therapeutic resistance mechanisms. The 623 

panoply of CCA experimental models is wide, from simple, practical, and inexpensive to more complex 624 

models resembling human cancer biology, with a more challenging implementation and higher costs. 625 

The choice of the model depends on what is requested of it, its accessibility, and, most importantly, its 626 

ability to answer a well-defined scientific question. 2D cultures and engrafted subcutaneous murine 627 

models are the most used to dissect signalling pathways, identify therapeutic targets, and investigate 628 

drug resistance mechanisms. Depending on the type of research, in vivo orthotopic implantation models 629 

are preferred over ectopic CCA models. Both have advantages and limitations, as reviewed above. 630 

GEMMs appear to mimic pathobiological features of human tumourigenesis more closely, despite being 631 
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complex and expensive. Regarding in vitro models, tremendous progress has been made in better 632 

recapitulating the tumour 3D structure. The difficulty in employing these models includes not only the 633 

relatively high costs to set up the culture but also the availability of starting material (human CCA tissue).  634 

In addition to providing an inventory, including evaluating (dis)advantages, of the most accurate 635 

experimental models currently available to the CCA scientific community, we present recommendations 636 

on minimal criteria for using these models. Using a Delphi-based process, a panel of experts in the field 637 

reached a consensus on these criteria as proposed herein. Obviously, disease models should ultimately 638 

lead to knowledge transfer from (basic) laboratory research to the clinic, to better understand the disease 639 

and offer innovative therapies. As the choice of model is highly dependent on the research question, to 640 

provide a comprehensive tumour mimic, results gathered using different models are highly 641 

recommended. This fosters the consolidation of scientific data with well-defined minimal criteria before 642 

validating them on humans by manipulating ex vivo samples or clinical trials.  643 

 644 

Conclusions [Au: please provide a short concluding paragraph]  645 

Biomedical research relies entirely on in vitro and in vivo experimental models, a prerequisite for 646 

research in basic and applied sciences. In this Consensus Statement, an international group of experts 647 

developed and endorsed a set of consensus statements and recommendations on CCA experimental 648 

models, and provided guidance on the models proposed to the scientific community and the information 649 

that should be specified in publications on these models. As a complement, the experts provided he 650 

scientific community with a brief overview of currently available models to the scientific community, 651 

highlighting the advantages and disadvantages that scientists should be aware of. Importantly, This 652 

Consensus Statement has been prepared based on the expertise of both researchers and clinicians 653 

from different specialties (cell biologists, molecular biologists, oncologists, hepatologists, pathologists), 654 

thus ensuring the relevance of these statements and recommendations for a broad range of scientific 655 

public, from medical healthcare to scientists who are directly investigating this fatal cancer. 656 
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Box 1. Benefits and limitations of cholangiocarcinoma experimental models and 1161 
recommendations.  1162 
 1163 

 Benefits Limitations 
In vivo models   
Engrafted models     

Xenograft - Engraftment of human cells 
or tissue 

- Ectopic engraftment 
inexpensive and easy to 
implement 

- Easy-to-measure ectopic 
tumours 

- Commonly used for drug 
testing  

- Defective immune system 
- Ectopic allograft poorly 

relevant 
- Rate of human CCA tissue 

ectopic engraftment (PDX) 
very low 

- Orthotopic engraftment 
difficult to perform 

 
Allograft - Full immune system 

- Ideal to study tumour-
stroma interplay 

- Fully compatible for testing 
immunotherapy-based 
therapies 

- Ectopic allograft poorly 
relevant 
- Orthotopic engraftment 
difficult to perform 

 

 
Chemically-induced - Recapitulate development of 

CCA (TAA) with pre-
cancerous disease history 

- Long-term furan treatment 
induces 100% of tumour 
incidence 

- Highly variable 
- Control tissue: isolated bile 

duct and not whole liver 

GEMM - Design to mimic genetic 
alterations of human CCA 

- Model of advanced CCA 
- Valuable tool for testing 

targeted therapies 

- Fast tumour development 
- Origin of CCA multiple 
- Appearance of mixed 

HCC/CCA tumour  
- Costly 
 

RECOMMENDATIONS 
Histological assessment (all in vivo models) 
1. Invasion of the basement membrane and tumorigenic capacity of isolated cells engrafted 

subcutaneously in immune-deficient mice are the most important malignant features of CCA 
(97% and 91%, A). 

2. Immunohistochemistry of at least one biliary cytokeratin should always be performed to 
characterize an early-stage tumour in a preclinical CCA model (90%, A). 

3. A classification of preclinical CCA models as intrahepatic, perihilar, and distal CCA is 
recommended. (93%, A). 

4. Focal desmoplastic stroma is a morphological feature required to classify a lesion as CCA in a 
preclinical model (100%, U). 

5. Three histopathological features of human CCA must be assessed in a preclinical model: intra-
tumoral heterogeneity (high stroma, inflammatory response, epithelial phenotype) (90%, A), the 
pattern of growth (mass-forming, periductal infiltration, intraductal growth) (90%, A), and 
immunopositivity for CK7 or CK19 (100%, U). 

Xenograft models, Genetically Engineered Mouse Models (GEMM) 
6. The type of CCA should be specified for patient-derived xenograft models (92%, A). 
7. Drugs should be tested in more than one model (95%, A). 
In vitro models   
   
2D-culture with cell lines or 
primary cells 

- Easy and low maintenance 
costs 
- High experimental 
reproducibility 
- Large panels of cell lines 
commercially available 

- Absence of stromal cells 
- Cultures grown as a 

monolayer 
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- Cells available with genetic 
alteration(s) 
 

3D-culture recapitulating a 
tumour organization 

  

Spheroids - Can be patient-derived 
- Increased complexity through 
3D multicellular aggregates of 
epithelial cells and stromal 
cells  

- Recapitulate the gradient of 
oxygen supply and drug 
diffusion 

- Increased complexity 

- Limited use for high-
throughput analysis 

- Often made from cell lines 
- Do not fully reflect the 

polyclonal nature of a CCA 
tumour 

 
 
 
 

Organoids - Increased complexity by 3D 
tumour cell growth in ECM 

- Well established 
protocol 

- Specific mutations can be 
introduced in non-tumour 
organoids to analyse CCA 
driver mutations 

- Low initiation efficiency from 
human tumours 

- An established line does not 
fully reflect the polyclonal 
nature of the original tumour 

- Overgrowth of non-tumour 
cells in culture initiation 

- Absence of stromal 
cells 

RECOMMENDATIONS 
2D cultures 
8. Cell culture procedures should be standardised in experiments with cell lines or primary 2D 

cultures and be reported in publications. Procedures include the choice of plastic support, cell 
culture medium, and the level of confluence when performing the experiments should be 
mentioned (88%, 85%, 82%, B). 
The isolation protocol for primary cells, including passaging and sub-culturing methods, should 
be reported in publications (i.e., enzymatic vs. mechanical dissociation, etc.) (89% and 85%, B). 
The origin of any cell line (previously established or new) should be stated for publication 
according to the new CCA classification (i.e., intrahepatic, perihilar, distal) (90-99, A) 

9. The origin of any cell line (previously established or new) should be presented in a publication 
according to the new CCA classification (i.e., intrahepatic, perihilar, distal) (97%, A). 

3D cultures 
10. A specific tumour "enrichment" medium (i.e., tumour initiating medium as described by Broutier 

et al., 2017, DOI: 10.1038/nm.4438) is recommended to minimize contamination in non-tumour 
organoids (94%, A). 

11. Mutation analysis (targeted genomic profiling using a diagnostic panel) (90%, A), and phenotypic 
analysis should be done to confirm the malignant origin of established organoid lines and 
reported in publications (93%, A).  

12. Every organoid culture should be characterized before clinical applications such as drug 
screening (92%, A). 

13. The shorter period for patient-organoids initiation, expansion, and analysis has to be less than 3 
months (57%, C). 

 
Grading system: U, denotes unanimous (100%) agreement; A, 90–99% agreement; B, 70–89% 1164 
agreement; C, 50-69% agreement; and D, <50% agreement. 1165 
ECM, extracellular matrix; HCC/CCA, hepatocholangiocarcinoma; TAA, thioacetamide. 1166 
 1167 
 1168 
 1169 
 1170 

 1171 

 1172 

ACCEPTED MANUSCRIPT / CLEAN COPY



 

 40 

 1173 

  1174 

  1175 

ACCEPTED MANUSCRIPT / CLEAN COPY



 

 41 

 [Au: please add details of the grading system used as a footnote as each display item must be 1176 

understood as a standalone item]  1177 

 1178 
Table 1. Consensus statements. 1179 
 1180 

# Statement Response yes / total 
responders 

Grade 

Histological 
assessment 
1 Which of the following ones are malignant features of 

biliary tumours? 
  

1. Invasion of the basement membrane  
  

31/32  A 

2. Increased nucleus/cytoplasm ratio  
  

18/31 C 

3. Distant metastasis    27/32 B 
4. Tumorigenic capacity of isolated cells after 

subcutaneous injection in immune-deficient mice 
29/32 A 

2 What type of histological investigation(s) should 
always be done to characterize an early-stage tumour 
in a preclinical CCA model? 

  

1. Morphological examination of H&E 32/32 U 
2. Immunohistochemistry  27/30 A 
3. Immunohistochemistry for at least one biliary 

cytokeratin (e.g., CK19, CK7, pan CK, etc.)  
16/25 C 

4. Markers for inflammatory cells and CAFs 12/26 D 
5. PAS reaction for highlighting mucin 13/26 C 
6. A broad panel of markers for hepatobiliary 

malignancies and metastasis 
12/24 C 

3 To allow correlation with the anatomical classification 
of human tumours, a preclinical model of CCA should 
specifically classify tumours induced as: 

  

1. Intrahepatic CCA, perihilar CCA, and distal CCA 25/30 B 
2. Intrahepatic CCA and extrahepatic CCA 12/25 D 
3. No need for such classification 1/23 D 

4 Which of the following morphological and/or 
immunophenotypic features must be present to 
classify a lesion as CCA in a preclinical model? 

  

1. Location within the liver or extrahepatic biliary tree 24/28 B 
2. Absence of an extrahepatic bile duct primary 

lesion 
14/28 C 

3. Epithelial cytological features (cohesive groups or 
structures and/or pan-cytokeratin 
immunopositivity) 

25/28 B 

4. At least focal gland formation 9/25 D 
5. Absence of hepatocellular differentiation (bile 

production and canalicular CD10 or BSEP) 
14/24 D 

6. Immunopositivity for CK7 or CK19 31/31 U 
7. Focal desmoplastic stroma 22/30 B 
8. Presence of precursor lesions 4/24 D 
9. Primary origin within the intra- or extra-hepatic 

biliary tree 
19/28 D 

10. Absence of primary hepatobiliary lesions 0/28 U 
5 What histopathological features of human CCA must 

be verified in a preclinical model of CCA? 
  

 1. Intra-tumoral heterogeneity (high stroma, 
inflammatory response, epithelial phenotype) 

27/30 A 
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 2. Inter-tumoral heterogeneity (large versus small 
bile duct tumour in iCCA) 

20/26 B 

 3. Growth pattern (mass-forming, periductal 
infiltration, intraductal growth) 

25/28 A 

 4. Proportion of tumour showing gland formation 17/25 C 
 5. Immunopositivity for CK7 or CK19 32/32 U 
 6. Focal desmoplastic stroma 26/30 B 
 7. Presence of precursor lesions 16/24 C 
6 It has been proposed that iCCA may originate from 

several cells of origin. Which of the following cell 
types may be the cells-of-origin for iCCA? 

  

1. Mature hepatocytes 27/32 B 
2. Mature cholangiocytes 23/32 B 
3. Hepatic progenitor/oval cells 32/33 A 
4. Peribiliary glands 29/30 A 

In vivo and 
in vitro 
models  
Xenograft 
models, 
Genetically 
Engineered 
Mouse 
Models 
(GEMM) 
7 Concerning newly developed patient-derived 

xenograft models 
  

1. Should the model(s) be validated by an expert 
pathologist and the histology of the tumour shown 
in publications? 

37/37 U 

2. Should immune profiling also be reported? 20/31 C 
3. Should the model(s) be validated in more than 

one mouse strain? 
8/34 D 

4. Should the expert pathologist specify what type of 
CCA is found in the model? 

33/36 A 

5. Do orthotopic xenograft models represent the 
most disease-relevant tumour environment in 
which to test a drug, compared to ectopic 
xenograft models? 

27/35 B 

6. Should a drug be tested in more than one model? 35/37 A 
2D culture 
models  
8 Which cell culture procedures should be 

standardised in experiments with cell lines or primary 
2D cultures and be reported in publications? 

  

1. Choice of plastic support (i.e., TPP, Falcon, 
Corning, +/- ECM layer, etc.) 

30/34 B 

2. Choice of cell culture medium 29/34 B 
3. Level of confluence when performing the 

experiments 
27/33 B 

4. Isolation protocol for culture of primary cells 31/35 B 
5. Passaging and sub-culturing methods (i.e., 

enzymatic vs. mechanical dissociation, etc.) 
29/34 B 

9 The origin of any cell line (previously established or 
new) should be stated for publication according to 
the new CCA classification (i.e., intrahepatic, 
perihilar, distal)  

37/38 A 

3D cultures  
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10 Contaminating non-tumour organoids often grow in 
CCA organoid cultures. How should selection for 
tumour organoids be performed? 

  

 1. Specific tumour "enrichment" medium (i.e., 
tumour initiating medium (as described by 
Broutier et al., 2017, DOI: 10.1038/nm.4438) 

29/31 A 

 2. Hand-picking of organoids with a different 
phenotype / removing the 'normal-looking' 
organoids 

21/30 B 

 3. Xenotransplantation in mice to select for 
tumour clones 

22/30 B 

11 Which analyses should be done to confirm the 
malignant origin of established organoid lines and be 
reported in publications? 

  

1. Full genomic profiling 8/28 D 
2. Mutation analysis (targeted genomic profiling 

using a diagnostic panel) 
28/31 A 

3. Phenotypic analysis 28/30 A 
4. Histological analysis (immunohistochemistry of 

EpCAM, CK7) 
28/32  B 

6. Xenotransplantation in mice 26/32  B 
12 Should every organoid culture be characterized (as 

proposed in Q 11) before clinical applications such 
as drug screening? 

33/36 A 

13 Personalized medicine applications such as drug 
screenings to find the best treatment for the patient, 
will cost time. How much time is acceptable to 
initiate, grow and expand the organoids for these 
analyses? In other words, what is the maximum time 
acceptable to be relevant to the clinics? 

  

<1 month 9/35 D 
<3 months 20/35 C 
<6 months 4/35 D 
Other; the less as possible / <1 mo 1st line treatment 
and <3 mo 2nd line treatment 

2/35 D 

 1181 
Grading system: U, denotes unanimous (100%) agreement; A, 90–99% agreement; B, 70–89% 1182 
agreement; C, 50-69% agreement; and D, <50% agreement. 1183 
 1184 
 1185 
  1186 
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Table 2. Carcinogen-based rodent models of cholangiocarcinoma. 1187 

Carcinogenic agent Animal Mechanism of action Biliary lesions Ref. 
TAA Rat and 

mouse 
Membrane protein and 
phospholipid modifications  

Intense fibrosis with dysplasia 91,92 

Furan Rat DNA adduct generation Chronic inflammation, proliferation 
of bile duct cells 

98 

DEN, DMN (even 
combined with BDL) 

Hamster 
and mouse 

DNA adduct generation Desmoplasia, cystic hyperplasia of 
bile ducts 

94-

96,165 
Opisthorchis viverrini Hamster DNA oxidative damage  Alterations of oxidative metabolism 

and proliferation of bile ducts 
97 

BDL, bile duct ligation; DEN, diethylnitrosamine; DMN, dimethylnitrosamine; TAA, thioacetamide. 1188 

 1189 

  1190 

ACCEPTED MANUSCRIPT / CLEAN COPY



 

 45 

 1191 
Table 3. Summary of the most representative in vivo CCA models based on genetically-1192 

engineered mice.  1193 

 1194 

Genetic strategy Key features Advantages and Disadvantages  Ref. 
Alfp-Cre, Trp53f/f Advanced HCC/CCA (from LPCs) A: Trp53 mutation found in human CCA 

D: Long latency (14- to 20-month-old 
mice), tumours of bilinear origin (mixed 
HCC/CCA) 

166 

Alb-Cre, Smad4f/f, 
Ptenf/f 

Multistep progression involving 
hyperplasia, dysplasia, carcinoma in 
situ, and well-established iCCA (from 
LPCs) 

A: 100% tumour penetrance  
D: Cre activation during 
embryogenesis, long tumour latency 
(4-5 months) and lack of metastasis  

100 

Alb-Cre, 
KrasLSLG12D/+, 
Ptenf/f 
 

Invasive iCCA with an abundant 
desmoplasia, primarily showing 
glandular morphology resembling 
well-differentiated human CCA (from 
LPCs) 

A: 100% penetrance, rapid 
development (7 weeks of age), 
abundant desmoplastic stroma, iCCA 
exclusive 
D: Cre activation during 
embryogenesis, no apparent 
metastases or invasion to other organs 

103 
104 

Alb-Cre, Idh2LSL-

R172, KrasLSL-G12D 
Multifocal liver masses of iCCA (from 
LPCs) 

A: 100% penetrance, splenic invasion 
and peritoneal metastases 
D: Cre activation during 
embryogenesis, long tumour latency 
(33-58 weeks) 

105 

Alb-Cre, 
NotchICD 

Development of transplantable CCA, 
likely progenitor cell-derived 
(transplantation of cells from 8 
months-old mice in immunodeficient 
animals gives rise to CCA) (from 
LPCs) 

A: Notch expression is characteristic of 
human disease 
D: Cre activation during 
embryogenesis, no obvious cancer 
development after 8 months in 
transgenic mice, requires additional 
transplantation model 

167 

Alb-Cre, Trp53f/f; 
NotchICD 
 

Development of iCCA abortive 
glandular pattern (moderate to high 
pleomorphic nuclei with some atypic 
mitoses) and dense fibrous tissue with 
inflammatory cells (from LPCs) 

A: 100% penetrance, development of 
fibrous/inflammatory microenvironment 
D: Long tumour latency (>8-9 months), 
no metastases 

168 

Alb-Cre, KrasLSL-

G12D/+, Fbxw7LSL-

R468C/LSL-R468C 

Dysplastic dust-like structures 
surrounded by fibrosis in all mice (only 
bile duct dilation and hyperplasia in 
some heterozygous Fbxw7LSL-R468C 

mice at the age of 8 months) (from 
LPCs) 

A: Low latency (2 months of age) 
D: Cre activation during 
embryogenesis, homozygous Fbxw7 
mutations not occurring in human 
disease  

169 

Alb-Cre, Hspd1f/f Cholangiocellular lesions, 
characterized by irregular glands, loss 
of polarity, multilayering of cells, and 
frequent mitosis resembling human 
BIN  

A: Low latency, possibility of 
transplanting cholangiocellular lesions, 
activation of human CCA pathways 
D: Not related to known oncogenic 
drivers of human disease, no 
metastases, not established iCCA  

109 

Alb-Cre, Jnk1f/f, 
Jnk2-/- 

JNK deletion causes changes in 
cholesterol and bile acid metabolism 
that foster cholestasis, bile duct 
proliferation, and iCCA 

A: iCCA exclusive 
D: ~95% penetrance, long tumour 
latency (14 months) 

170 

Alb-Cre, NEMOf/f, 
Jnk1f/f, Jnk2-/- 

Hyperproliferative ductular lesions 
with atypia compatible with CCA 

A: Elevated ROS associated with 
cholangiocellular proliferation 
D: Not full penetrance, long latency (50 
weeks) 

171 

Alb-Cre, KrasLSL-

G12D/+, Trp53f/f 
 

Multistage progression including 
stroma-rich tumours and 
premalignant biliary lesions (IPBN 
and) (from LPCs) 

A: 100% penetrance, average latency 
16 weeks, metastatic lesions 
D: Cre activation during 
embryogenesis, wide latency range, 
CCA in ~80% of mice  

101 

ACCEPTED MANUSCRIPT / CLEAN COPY



 

 46 

KrasLSLG12D/+, 
Trp53f/f infected 
with AAV8-TBG-
Cre 
 

Development of ICC (40%), HCC 
(40%), mixed HCC/CCA (20%) (from 
hepatocytes) 
 
 
 
 

A: Recombination event in adult mice, 
higher CCA frequency in combination 
with DCC diet (all tumours ICC or 
mixed HCC/CCA) 
D: Cre-recombinase administration via 
adeno-associated virus (AAV), large 
tumour latency range (12-66 weeks 
post-AAV infection)  

102 

AhCreERT, 
KrasG12V/+, Ptenf/f 

Multifocal non-invasive papillary 
neoplasms in the intrahepatic biliary 
tract (from major interlobular bile 
ducts to small bile duct radicles in 
portal tracts)  

A: 100% penetrance, low latency (43 
days), tumour development starts in 
adult mice 
D: Not specific to liver tissue, lack of 
invasive tumour or metastasis  

172 

Sox9-CreERT2; 
KrasLSL-G12D/+, 
Trp53f/f 

iCCA tumours accompanied by 
adjacent extensive ductular reactions 
and desmoplasia, with areas 
resembling BIN (from cholangiocytes) 

A: 100% penetrance, iCCA exclusive, 
recombination in mature 
cholangiocytes 
D: 30 weeks average latency 

102 

Ck19-CreER, 
KrasLSL-

G12D,Tgfbr2flox/flox;
Cdh1flox/flox; 

Markedly thickened EHBD wall with a 
swollen gallbladder involving invasive 
periductal infiltrating-type eCCA and 
lymphatic metastasis (from biliary 
cells) 

A: Low latency (4 weeks), eCCA 
exclusive 
B: Concurrent development of lung 
adenocarcinomas leads to mice 
asphyxiation  

110 

Pdx1-Cre, 
Pik3caLSLH1047R/+ 

Adult mice develop enlarged 
extrahepatic bile duct and BIN with 
complete penetrance leading to eCCA 
(from well-differentiated, stroma-rich 
ductal adenocarcinomas to more 
undifferentiated)  

A: eCCA exclusive, only one genetic hit 
driving CCA 
B: ~40 weeks average latency, 90% 
penetrance, wide tumour latency range 

173 

    
GEM-based 
implantation 
models 

   

LPCs from Alb-
Cre, KrasLSL-G12D , 
Trp53LSL-R172H/lox 
+/- FIG-ROS 
fusion 

Allografted tumours resemble 
advanced CCA  

A: Quick model, orthotopic implantation 
in the liver, iCCA exclusive, stroma 
presence 
D: Requires technical training to isolate 
LPC 

88 

LPCs or 
cholangiocytic 
progenitor cells or 
hepatocytes from 
Trp53-/- mice 

Tumours exhibit a high stromal 
content and a mixed hepatocellular 
and cholangiocellular differentiation 

A: Quick model 
D: Not CCA exclusive 

166 

Adult liver 
organoids from 
KrasLSL-G12D, 
Trp53f/f mice 

Kras driven organoids lead to CCA 
while c-Myc expression in wild-type 
organoids induces HCC formation 

A: Tumours latency of 6-8 weeks for 
Kras mut and Trp53 ko organoids 
D: Requires training in organoid 
isolation, growth and manipulation 

10 

Cholangiocytes 
from KrasLSL-G12D, 
Trp53f/f mice 

Tumours with a high stromal 
component expressing CCA markers 

A: Quick and reproducible model, 
orthotopic implantation in the liver, 
iCCA exclusive, stroma presence 
D: Requires technical training to isolate 
mouse cholangiocytes 

64 

    
GEM-based 
carcinogenic 
models 

   

Alb-CreERT2, 
R26RlacZ/+ or Ck19-
CreERT2, R26RlacZ/+ 

mice treated with 
TAA 

Macronodular liver cirrhosis 
containing cells the typical histology of 
CCA 
 

A: 100% penetrance, iCCA exclusive 
D: Long latency (30 weeks) 

174 

Ck19-CreERT/eYFP; 
Trp53f/f mice 
treated with TAA 

Treatment with TAA generates 
oncogenic stress yielding multifocal 
invasive iCCA 

A: iCCA exclusive 
D: 80% penetrance, long latency (>6 
months) 

111 

Trp53-/- mice 
treated with CCl4  

Bile duct injury/necrosis, proliferation 
and fibrosis development triggered by 
CCl4 

A: Exclusive iCCA 
D: 50% mice develop tumours, 
metastatic lesions rarely observed 

112 
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GSTA3-/- mice 
treated with 
aflatoxin B1 

 Macro- and microscopic liver cysts, 
hepatocellular nodules, 
cholangiomas, iCCA and oval cell 
proliferation 

D: Long latency (12 and 24 weekly 
AFB1 injections followed by a rest 
period of 12 and 6 months) 

175 

Alb-Cre, Jnk1f/f, 
Jnk2-/- treated with 
DEN 

Cystogenesis and cholangioma-like 
structures in liver parenchyma with 
strong infiltration of immune cells 

A: Participation of inflammatory insult 
D: No established CCA, long latency 

171 

 1195 
A: Advantages; BIN: biliary intraepithelial neoplasia; CCl4: carbon tetrachloride; D: disadvantages; DEN: 1196 

diethylnitrosamine; GSTA3: glutathione-S-transferase A3; IPBN: intraductal papillary biliary neoplasms; 1197 

LPCs: bipotent liver progenitor cells; ROS: reactive oxygen species; TTA: tetradecylthioacetic acid; VMC 1198 

Von Meyenburg complexes. 1199 
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Table 4. Experimental model sheet. 1201 
 1202 

Experimental model sheet  

1. Type of model: (in vitro, ex vivo, in vivo)  

2. Species: (mouse, rat, hamster, human, etc.)  

3. Gender: (male, female, both)  

4. Strain:  

5. Condition of the surrounding liver (apparently 
healthy, cirrhosis, fibrosis, etc.) : 

 

6. Method of generation: (spontaneous, carcinogenic, 
chronic injury, infectious, transgenic, knockout, 
transposon-mediated, patient-derived xenograft, 
organoids, isolated from animal tumours, isolated from 
human tumours, etc.): 

 

7. Tumour development: (fast, slow)  

8. Metastasis: (yes, no, locations,...)  

9. Anatomical location of the lesions (when applicable): 
(intrahepatic, extrahepatic, both) 

 

10. Cell of origin (if available): (cholangiocyte, 
stem/progenitor cell, hepatocyte) 

 

11. Types of samples and storage conditions for future 
analyses 

 

12. Presence of preneoplastic lesions: (yes/no)  

13. Type of preneoplastic lesions: (IPNB, IPMN, BilIN, etc.)  

14. Type of cholangiocarcinoma: (iCCA, pCCA, dCCA, 
combined HCC/CCA) 

 

15. Histology of tumours: (large duct type, small duct type, 
CCA, lymphoepithelioma-like CCA, etc.) 

 

16. Microenvironment features: (presence of 
stroma/desmoplastic reaction, absence of stroma, 
immune infiltration yes/no) 

 

17. Phenotype of the lesions: (CK7, CK19, MUC1, MUC2, 
MUC5AC, MUC6, HNF4A, AFP, markers of stemness, 
markers of EMT, etc.) 

 

18. Control samples used if applicable (bile duct freshly 
isolated from liver or cell line) 

 

 1203 
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 1205 

 1206 
 1207 
Figure 1. Panel of experimental in vitro (A) and in vivo (B) models provided for cholangiocarcinoma 1208 
preclinical studies. 1209 
  1210 
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 1211 
 1212 

 1213 

 1214 
Figure 2. Schematic summary of available chemical models to initiate cholangiocarcinoma in rodents 1215 
and induce metastatic dissemination.  1216 
 1217 
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