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 can be used in the applications.

INTRODUCTION

In 1997 [START_REF] Liu | On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study[END_REF], the condition for initial yielding was proposed for the orthotropic materials with different yield stresses under tension and compression in the principal axes of anisotropy, such as 0 1 = e σ [START_REF] Liu | On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study[END_REF] with the equivalent stress e σ in the following form 

σ σ σ σ σ σ σ σ σ σ σ σ σ M L N G F H C B A e + + + - + - + - + + + = (2) 
under assumption of coincidence of the coordinate axes with the principal directions of anisotropy and using nine material parameters

0 0 0 0 0 0 0 0 0 and M L , N , G , F , H , C , B , A
. It is seen that that the equivalent stress given by Eq. ( 2) includes as a particular case the expression by Hill [START_REF] Hill | A theory of the yielding and plastic flow of anisotropic metals[END_REF] ( ) ( ) ( ) 
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for the equivalent stress in the condition for initial yielding of the orthotropic materials with the same yield stresses under tension and compression in the principal axes of anisotropy.

The relation between the plastic infinitesimal strain rate tensor p ij ε and Cauchy stress tensor ij σ in plasticity theory by Liu et al. [START_REF] Liu | On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study[END_REF] was obtained using Eq. ( 2) according to the associated flow rule:

ij e p ij σ σ µ ε ∂ ∂ =  ( 4 
)
where µ is a certain scalar multiplier.

CONSTITUTIVE FRAMEWORK BY ZOLOCHEVSKY

In the early 1980s, the connection between the kinematic tensor kl e and stress tensor kl σ in anisotropic materials with different behavior in tension and compression was formulated at small strains as follows

        + = ij kl ijkl ij b a e e 2 0 σ σ (5)
Here 0 e is the scalar function which depends on the equivalent stress e σ , as well as, some structural parameters and specifies for each physical state of the material (creep [START_REF] Zolochevskii | Allowance for differences in strain resistance in the creep of isotropic and anisotropic materials[END_REF][START_REF] Zolochevsky | Creep of thin shells for materials with different behavior in tension and compression[END_REF], plasticity by slip [START_REF] Zolochevskii | Tensor relationship in the theories of elasticity and plasticity of anisotropic composite materials with different tensile and compressive strength[END_REF], nonlinear elasticity [START_REF] Zolochevskii | Determining equations and some problems of the variable-modulus theory of elasticity of anisotropic materials[END_REF][START_REF] Zolochevskii | Theory of cylindrical shells of anisotropic materials of different moduli[END_REF]); 

σ σ σ + = e ; ij ij b σ σ = 1 ; kl ij ijkl a σ σ σ = 2 2 (6)
In the constitutive framework under consideration, the condition for initial yielding for anisotropic materials with different yield stresses under tension and compression in different directions can be written using Eqs. ( 1) and [START_REF] Zolochevskii | Determining equations and some problems of the variable-modulus theory of elasticity of anisotropic materials[END_REF].

For plastic deformation due to slip of anisotropic materials under study for the monotonic loading processes with the strain hardening measure q and with condition of plasticity ( ) q v e = σ [START_REF] Zolochevskii | Theory of cylindrical shells of anisotropic materials of different moduli[END_REF] the kinematic tensor

p kl kl e ε ≡
in Eq. ( 5) is the tensor of the rates of the plastic strain; the scalar multiplier in Eq. ( 5) can be introduced as q e  ≡ 0 , and, therefore

( ) e e v e σ σ χ  ′ = 0 (8)
Here the prime denotes a derivative with respect to e σ ; the dot above the symbol denotes a derivative with respect to the loading parameter; and 0 = χ when ( ) q v e < σ and elastic deformation occurs, and either in the case of unloading or neutral loading when Eq. ( 7) takes place together with condition 0 ≤ e σ . Additionally, 1 = χ in the case of loading when Eq. ( 7) is valid simultaneously with inequality 0 > e σ . Model predictions based on Eqs. ( 5) and ( 6) were compared with the experimental data at multiaxial loadings. In this way, good correlation between the theoretical and experimental data was obtained for different structural materials (orthotropic, transversally isotropic and isotropic materials) with tension-compression asymmetry [START_REF] Zolochevskii | Allowance for differences in strain resistance in the creep of isotropic and anisotropic materials[END_REF][START_REF] Zolochevsky | Creep of thin shells for materials with different behavior in tension and compression[END_REF][START_REF] Zolochevskii | Tensor relationship in the theories of elasticity and plasticity of anisotropic composite materials with different tensile and compressive strength[END_REF][START_REF] Zolochevskii | Determining equations and some problems of the variable-modulus theory of elasticity of anisotropic materials[END_REF][START_REF] Zolochevskii | Theory of cylindrical shells of anisotropic materials of different moduli[END_REF][START_REF] Zolochevskii | Verification of the governing equations for the nonlinear deformation of materials with different strengths in tension and compression[END_REF][START_REF] Zolochevskii | Modification of the theory of plasticity of materials differently resistant to tension and compression for simple loading processes[END_REF][START_REF] Zolochevskii | Effect of the type of loading on the creep of isotropic strain-hardening materials[END_REF][START_REF] Altenbach | Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik[END_REF][START_REF] Zolochevsky | Nonlinear Solid Mechanics[END_REF]. Also, this constitutive framework was incorporated into in-house developed software [START_REF] Zolochevsky | Creep of thin shells for materials with different behavior in tension and compression[END_REF][START_REF] Zolochevskii | Determining equations and some problems of the variable-modulus theory of elasticity of anisotropic materials[END_REF][START_REF] Zolochevskii | Theory of cylindrical shells of anisotropic materials of different moduli[END_REF][START_REF] Zolochevsky | Nonlinear Solid Mechanics[END_REF][START_REF] Zolochevsky | Allowance for differences in tension and compression for materials in the creep problems of shells[END_REF][START_REF] Zolochevskij | Kriechen von Konstruktionselementen aus Materialien mit von der Belastung abhängigen Charakteristiken[END_REF][START_REF] Zolochevskii | Method of calculating the strength of mine pipes formed from materials that behave differently under tension and compression[END_REF][START_REF] Kozmin | Nichtlineare Verformung von dickwandigen Schalen mit rechteckigem Grundriß aus Werkstoffen, deren Eigenschaften von der Belastungsrichtung abhängig sind[END_REF][START_REF] Altenbach | Kriechen dünner Schalen aus anisotropen Werkstoffen mit unterschiedlichem Zug-Druck-Verhalten[END_REF][START_REF] Zolochevskii | Nonlinear asymmetric deformation of composite shells formed from materials having different tensile and compressive strengths[END_REF][START_REF] Zolochevskii | Nonlinear deformation of rectangular thick-walled shells consisting of material that responds differently to tension and compression[END_REF][START_REF] Zolochevsky | Numerical modeling of creep and creep damage in thin plates of arbitrary shape from materials with different behavior in tension and compression under plane stress conditions[END_REF][START_REF] Zolochevsky | A comparison between the 3D and the Kirchhoff-Love solutions for cylinders under creep-damage conditions[END_REF], ANSYS [22][START_REF] Eggen | Diffusion characteristics of a supported lipid bilayer membrane on a dense cylindrical silica optical fibrous support[END_REF][START_REF] Zolochevsky | Coupling effects of oxygen surface exchange kinetics and membrane thickness on chemically induced stresses in perovskite-type membranes[END_REF][START_REF] Zolochevsky | Transient analysis of oxygen non-stoichiometry and chemically induced stresses in perovskite-type ceramic membranes for oxygen separation[END_REF] and ABAQUS [START_REF] Zolochevsky | Structural benchmark creep and creep damage testing for finite element analysis with material tension-compression asymmetry and symmetry[END_REF][START_REF] Zolochevsky | Introduction to ABAQUS[END_REF] in a form of the computer-based structural modeling tools.

DISCUSSION

A number of comments need to be made in reference to the constitutive framework given by Eqs. ( 5) and ( 6).

Comment 1. The constitutive framework by Zolochevsky was rewritten in without any changes and without referencing the original sources [START_REF] Zolochevskii | Allowance for differences in strain resistance in the creep of isotropic and anisotropic materials[END_REF][START_REF] Zolochevsky | Creep of thin shells for materials with different behavior in tension and compression[END_REF][START_REF] Zolochevskii | Tensor relationship in the theories of elasticity and plasticity of anisotropic composite materials with different tensile and compressive strength[END_REF][START_REF] Zolochevskii | Determining equations and some problems of the variable-modulus theory of elasticity of anisotropic materials[END_REF][START_REF] Zolochevskii | Theory of cylindrical shells of anisotropic materials of different moduli[END_REF].

Comment 2. The initially anisotropic materials with different behavior under tension and compression are characterized by compressibility, such that 0 ≠ kk e in Eq. ( 5). Comment 3. For orthotropic materials with coincidence of the coordinate axes with the principal directions of anisotropy, the tensor ijkl a includes nine independent components and the tensor ij b includes three. One now considers a procedure for the determination of these twelve material parameters for the case of deformation theory of plasticity when 

Here + 1 K , + 2 K , + 3 K , - 1 K , - 2 K , - 3 K , + 21 ν , + 31 ν , + 32 ν , 12 K , 13
K , 23 K and n are the material constants. On the other hand, one can use Eqs. ( 5) and ( 6) to write relations describing the plasticity in the basic experiments under consideration. Comparing then these relations with Eqs. ( 9)-( 20), respectively, it is easy to determine the material parameters in the constitutive equation of plasticity as follows ( ) ( ) Here the symbol (1, 2, 3) means that the rest of the relations can be obtained by circular transposition of indexes 1, 2 and 3 in a formula.

3) 2, (1, 4 2 1 1 1111 / K K a r r       + = - + ; ( ) ( ) 3) 2, (1, 2 1 1 11 / K K b r r       - = - + ( )       + - = + + r K b a a
Comment 4. One considers various particular cases resulting from Eqs. ( 5) and ( 6) that is proposed for orthotropic materials with tension-compression asymmetry. This is for the case of deformation theory of plasticity when One now assumes that from the basic experiments one obtains

- - - + + + = = = = = 3 2 1 3 2 1 K K K K K K ; + 21 ν = + 31 ν = + 32 ν =0.5; 12 K = 13 K = 23 K = ( ) + + 1 1 3 K n ( 22 
)
Substituting Eq. ( 22) into Eq. ( 21) one obtains the following relations: 

= = = b b b ( 23 
)
where A is a material parameter, ( ) r K A + = 1 . Therefore the equivalent stress and joint invariants in Eq. ( 6) may be expressed as follows

i e Aσ σ = ; 0 1 = σ ; 2 2 2 2 i A σ σ = (24)
where i σ is the stress intensity, Thus, representation given by Eq. ( 24) corresponds with the accuracy of the parameter A to the Huber-von Mises equivalent stress [START_REF] Huber | Właściwa praca odkształcenia jako miara wytezenia materiału[END_REF][START_REF] Von Mises | Mechanik der festen Körper im plastisch-deformablen Zustand[END_REF] for initially isotropic materials with the same behavior in tension and compression. At the same time, the conditions given by Eq. ( 22) are recommendations for using the traditional theory of isotropic plasticity based on the Huber-von Mises equivalent stress.

Comment 5. One assumes that the following data are obtained from the basic experiments

- + - + - + = = = 3 3 2 2 1 1 ; ; K K K K K K ( 25 
)
Substituting Eq. ( 25) into Eq. ( 21) one arrives at the following relation

0 33 22 11 = = = b b b (26)
Therefore, the equivalent stress and joint invariants in Eq. ( 6) may be written as

2 σ σ = e ; 0 1 = σ ; kl ij ijkl a σ σ σ = 2 2 (27)
Thus, representation given by Eq. ( 27) corresponds to the von Mises equivalent stress [START_REF] Von Mises | Mechanik der plastischen Formänderung von Kristallen[END_REF] with nine independent components of the tensor ijkl a for orthotropic materials with the same properties in tension and compression.

Comment 6. One now assumes that from the basic experiments one obtains
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Using Eq. ( 21) together with Eq. ( 28) one arrives at the following relations ( )

1133 0 2222 3333 1111 2 1 a G a a a - = = - + (30) 
Therefore, the equivalent stress in Eq. ( 6) may be represented on the base of Eqs. ( 29) and ( 30) in the form given by expression (3) introduced by Hill [START_REF] Hill | A theory of the yielding and plastic flow of anisotropic metals[END_REF], and based on the six material parameters 0 G , , 0

H 0 F , 0 N , 0 L and 0 M . Here 1313 0 2323 0 1212 0 2 ; 2 ; 2 a M a L a N = = = (31) 
Thus, the conditions given by Eq. ( 28) are practical recommendations for using the model by Hill. Nonexistence of even one of the equalities in Eq. [START_REF] Pasynok | Development of anisotropic creep analysis methods taking into account damage of flat structural elements of machines[END_REF] shows the impossibility of using the model by Hill and the necessity of using another set of constitutive equations.

For orthotropic materials where the coordinate axes do not coincide with the principal axes of anisotropy, the equivalent stress can be written as [START_REF] Verma R K | Experimental evaluation and constitutive modeling of nonproportional deformation for asymmetric steels[END_REF] with new material tensor ijkl a′ [52, 53] transformed using Eqs. ( 30) and ( 31) for tensor ijkl a in accordance with the transformation rule for fourth order tensor

mnpq ql pk nj mi ijkl a a α α α α = ′ (33) 
Here the components ij α are the direction cosines of the angles between the principal axes of the anisotropy and the new coordinate axes. Experimental data discussed in [START_REF] Barlat | A six-component yield function for anisotropic materials[END_REF][START_REF] Bron | A yield function for anisotropic materials: Application to aluminum alloys[END_REF][START_REF] Banabic | Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation[END_REF][START_REF] Chung | Consistency condition of isotropic-kinematic hardening of anisotropic yield functions with full isotropic hardening under monotonously proportional loading[END_REF][START_REF] Barlat | Anisotropic yield conditions in mathematical theory of plasticity[END_REF][START_REF] Min | A non-quadratic constitutive model under non-associated flow rule of sheet metals with anisotropic hardening: Modeling and experimental validation[END_REF][START_REF] Liao | Constitutive modeling for path-dependent behavior and its influence on twist springback[END_REF][START_REF] Hu | A normalized stress invariant-based yield criterion: modeling and validation[END_REF][START_REF] Lou | A reduced Yld2004 function for modeling of anisotropic plastic deformation of metals under triaxial loading[END_REF][START_REF] Banabic | Advances in anisotropy of plastic behaviour and formability of sheet metals[END_REF][START_REF] Uppaluri | A convex fourth order yield function for orthotropic metal plasticity[END_REF][START_REF] Du | Evolution of yield behavior for AA6016-T4 and DP490-Towards a systematic evaluation strategy for material models[END_REF] show the limitations of using the model by Hill [START_REF] Hill | A theory of the yielding and plastic flow of anisotropic metals[END_REF] for metallic materials with dominant phases based on the FCC, HCP and BCC microstructure. 
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Substituting Eq. ( 34) into Eq. ( 21) one arrives at the conditions given by Eq. [START_REF] Kim | Development of nonlinear constitutive laws for anisotropic and asymmetric fiber reinforced composites[END_REF]. Then taking into account Eqs. ( 30) and ( 31) the equivalent stress in Eq. ( 6) may be expressed as 

( ) ( ) ( ) 2 
σ σ σ σ σ σ σ σ σ σ σ σ σ M L N G F H b b b e + + + - + - + - + + + = (35) 
Thus, representation [START_REF] Schwiedrzik | The influence of yield surface shape and damage in the depth-dependent response of bone tissue to nanoindentation using spherical and Berkovich indenters[END_REF] 

; ; b C b B b A = = = (36) 
In other words, it was shown above that plasticity theory by Liu et al. [START_REF] Liu | On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study[END_REF] is a particular case of the constitutive framework developed in [START_REF] Zolochevskii | Allowance for differences in strain resistance in the creep of isotropic and anisotropic materials[END_REF][START_REF] Zolochevsky | Creep of thin shells for materials with different behavior in tension and compression[END_REF][START_REF] Zolochevskii | Tensor relationship in the theories of elasticity and plasticity of anisotropic composite materials with different tensile and compressive strength[END_REF][START_REF] Zolochevskii | Determining equations and some problems of the variable-modulus theory of elasticity of anisotropic materials[END_REF][START_REF] Zolochevskii | Theory of cylindrical shells of anisotropic materials of different moduli[END_REF]. One also notes that Eq. ( 34) is a condition for the use of plasticity theory by [START_REF] Liu | On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study[END_REF] for practical purposes. The method considered here for the formulation of the practical recommendations for the use of plasticity theory by [START_REF] Liu | On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study[END_REF] can be also extended to other set of basic experiments using the constitutive framework by Zolochevsky. Experimental data discussed in [START_REF] Cazacu | Orthotropic yield criterion for hexagonal closed packed metals[END_REF][START_REF] Plunkett | Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals[END_REF][START_REF] Khan | Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures[END_REF][START_REF] Chen | Generalization of Hill's yield criterion to tension-compression asymmetry materials[END_REF][START_REF] Kurukuri | Rate sensitivity and tension-compression asymmetry in AZ31B magnesium alloy sheet[END_REF][START_REF] Chandola | Combined effects of anisotropy and tension-compression asymmetry on the torsional response of AZ31 Mg[END_REF][START_REF] Chen | Extension of Barlat's yield criterion to tension-compression asymmetry: Modeling and verification[END_REF][START_REF] Shi | Anisotropy of wrought magnesium alloys: A focused overview[END_REF][START_REF] Li | An improved yield criterion characterizing the anisotropic and tension-compression asymmetric behavior of magnesium alloy[END_REF][START_REF] Du | Characterization of the asymmetric evolving yield and flow of 6016-T4 aluminum alloy and DP490 steel[END_REF] show the limitations of using the model by Liu et al. [START_REF] Liu | On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study[END_REF] for metallic materials with tension-compression asymmetry in the case of dominant material phases based on the FCC, HCP and BCC microstructure. A basic physical mechanism of plastic deformation in such materials is crystal twinning.

CONCLUSIONS

The constitutive framework presented by Zolochevsky in the early 1980s includes as a particular case the plasticity theory with the equivalent stress expressions by Huber-von Mises, von Mises, Hill and Liu et al.

It is possible to conclude that up to now this constitutive framework provides new insight into the constitutive modeling taking into account , as well as, it gives the possibility for the formulation of the practical recommendations for the use of a number of well-known models.
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 12 a are the second order and fourth order symmetrical material tensors; are the linear and quadratic joint invariants of the stress tensor and the material tensors; 2 1

  [START_REF] Zolochevskii | Tensor relationship in the theories of elasticity and plasticity of anisotropic composite materials with different tensile and compressive strength[END_REF]. For this purpose, it is necessary to use the results of the basic experiments in which a homogeneous stress state is realized.One assumes that for the case of uniaxial tension in the principal direction 1 one has the following relation for the axial plastic strain as well as, the following two relations for the transverse plastic strains Considering uniaxial compression in the principal direction 1, one obtains Let the following relations hold for the uniaxial tension in the principal direction 2 for the axial plastic strain relations for the case of uniaxial tension and uniaxial compression in the principal direction 3 are given by the following relation holds for pure torsion in plane 1-2 Analogously, the relation for the case of pure torsion in plane 1-3 is given by

  coordinate axes coincide with the principal axes of anisotropy. The data of the basic experiments are used together with Eq. (21).

Comment 7 .
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