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SOME REMARKS ON THE ERGODIC THEOREM FOR U-STATISTICS

HEROLD DEHLING, DAVIDE GIRAUDO AND DALIBOR VOLNÝ

Abstract. In this note, we investigate the convergence of a U -statistic of order two having

stationary ergodic data. We will find sufficient conditions for the almost sure and L1 convergence

and present some counter-examples showing that the U -statistic itself might fail to converge:

centering is needed as well as boundedness of supj>2
E [|h (X1, Xj)|].

1. Introduction

In this note, we investigate the validity of the U -statistics ergodic theorem, i.e. the almost

sure convergence

(1)
1
(

n
2

)

∑

16j<j6n

h(Xi, Xj) −→

∫∫

h(x, y)dF (x)dF (y),

where (Xi)i>1 is a stationary ergodic process with marginal distribution F , and h (x, y) is a

symmetric kernel that is F ×F integrable. Birkhoff’s ergodic theorem establishes the analogous

result for the time averages 1
n

∑n
i=1 f(Xi), while Hoeffding [6] established (1) for i.i.d. processes

(Xi)i>1. These two classical results naturally lead to the conjecture that (1) should hold without

further assumptions, i.e. for all stationary ergodic processes (Xi)i>1 and all L1(F ×F ) functions

h(x, y). Aaronson et al. [1] proved a partial result in this direction, namely showing that (1)

holds for all F×F almost everywhere continuous and bounded kernels h(x, y). At the same time,

they presented counterexamples showing that (1) does not hold in full generality. One of their

counterexamples is a bounded kernel where the set of discontinuities has positive F ×F measure,

while the other counterexample is an F×F almost everywhere continuous, but unbounded kernel.

The U -statistic ergodic theorem has subsequently been addressed by various authors, e.g.

Arcones [2], Borovkova, Burton and Dehling [4]; see also the review paper by Borovkova, Burton

and Dehling [5]. These papers provide both sufficient conditions for (1) to hold, as well as

further counterexamples, both for stationary ergodic processes as well as under stronger mixing

assumptions. Most of the positive results also address other forms of convergence in (1) such

as convergence in probability and L1-convergence. Arcones [2] proved the ergodic theorem for

absolutely regular processes under some moment assumptions. Borovkova, Burton and Dehling
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2 SOME REMARKS ON THE ERGODIC THEOREM FOR U -STATISTICS

[5] investigated convergence in probability in (1), with a special focus on the kernel h(x, y) =

log(|x− y|), which arises in connection with the Takens estimator for the correlation dimension.

A common feature of all these examples is that they satisfy a modified version of the U -statistics

ergodic theorem, namely

(2)
1
(

n
2

)

∑

16i<j6n

(h(Xi, Xj)− E [h (Xi, Xj)]) −→ 0,

assuming that E [|h (Xi, Xj)|] < ∞ for all i, j.

It might thus seem natural to conjecture that (2) holds without further assumptions. In this

note, we present a counterexample that disproves this conjecture. In addition, we will give a

short proof of the U -statistics ergodic theorem for bounded F ×F -almost everywhere continuous

kernels, and give a new condition for L1-convergence.

2. A short proof of the ergodic theorem for U-statistics

In this note, we present a short proof of the U -statistics ergodic theorem that was first estab-

lished in Aaronson et al [1]. For the special case, when the process has values in R
k, this proof

is contained in Borovkova, Burton and Dehling [5]. Here, we give the proof for processes with

values in an arbitrary separable metric space.

Theorem 2.1. Let (Xk)k>0 be a stationary ergodic process with values in the separable metric

space S and marginal distribution F , and let h : S×S → R be a symmetric kernel that is bounded

and F × F -almost everywhere continuous. Then, as n → ∞

1
(

n
2

)

∑

16i<j6n

h(Xi, Xj) −→

∫∫

h(x, y)dF (x)dF (y),

almost surely.

Proof. We define the empirical distribution of the first n random variables

Fn =
1

n

n
∑

i=1

δXi
,

where δx denotes the Dirac delta measure in x. For any L1(F )-function f : S → R, we obtain by

Birkhoff’s ergodic theorem
∫

S

f(x) dFn(x) =
1

n

n
∑

i=1

f(Xi) →

∫

S

f(x)dF (x),

almost surely. This convergence holds in particular for any bounded measurable function f ∈

Cb(S). Since S is separable, there exists a countably family of functions fi ∈ Cb(S), i > 1, that

is convergence determining, i.e. that convergence of the integrals
∫

fi(x)dµn(x) →
∫

fi(x)dµ(x),

for all i > 1, implies weak convergence of the probability measures µn to µ. Now, up to a set of

measure 0, we get
∫

S

fi(x) dFn(x) =
1

n

n
∑

j=1

fi (Xj) →

∫

S

fi(x)dF (x),
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for all i > 1, and thus Fn ⇒ F weakly. This is in fact Varadarajan’s argument [8] for the fact

that the empirical distribution of i.i.d. data X1, . . . , Xn converges weakly almost surely to the

true distribution F .

By Theorem 3.2 (page 21) of Billingsley [3], we obtain convergence of the empirical product

measure

Fn × Fn ⇒ F × F,

except on a set of measure 0. Thus, for any bounded F×F -a.e. continuous function h : S×S → R,

we obtain by the portmanteau theorem

1

n2

∑

16i,j6n

h(Xi, Xj) =

∫∫

h(x, y)dFn(x) dFn(y) →

∫∫

h(x, y)dF (x) dF (y),

almost surely. Since h is bounded, we obtain 1
n2

∑n
i=1 h(Xi, Xi) → 0, and thus

1

n2

∑

16i 6=j6n

h(Xi, Xj) →

∫∫

h(x, y)dF (x) dF (y),

almost surely. �

3. Convergence in L1 in the ergodic theorem for U-statistics

In this section, we present two sufficient conditions for the convergence in L1 of a U -statistic

to
∫∫

h (x, y) dF (x) dF (y), where F denotes the distribution of X0. The first sufficient condition

imposes a restriction on the continuity points of the kernel combined with a uniform integrability

assumption. The second sufficient condition imposes a restriction on the joint distribution of

vectors (X0, Xk) , k > 1, but no other assumption is required for the kernel h.

Theorem 3.1. Let (Xi)i>1 be a stationary ergodic sequence taking values in R
d and let h : Rd ×

R
d → R be a measurable function such that the family {h (X1, Xj) , j > 1} is uniformly integrable.

Let F be the distribution of X1. Assume that one of the following assumptions is satisfied:

(A.1) the function h is F × F almost everywhere continuous.

(A.2)
∫

Rd

∫

Rd |h (x, y)| dF (x) dF (y) is finite, the random variable X0 has a bounded density

with respect to the Lebesgue measure on R
d and for each k > 1, the vector (X0, Xk) has

a density fk with respect to the Lebesgue measure of Rd ×R
d and supk>1 sups,t∈Rd fk (s, t)

is finite.

Then

(3) lim
n→∞

E

[
∣

∣

∣

∣

∣

1
(

n
2

)

∑

16i<j6n

h (Xi, Xj)−

∫

Rd

∫

Rd

h (x, y)dF (x) dF (y)

∣

∣

∣

∣

∣

]

= 0.

Proof. Let us prove Theorem 3.1 under assumption (A.1). By Theorem 1 in [4], we know that
1

(n2)

∑

16i<j6n h (Xi, Xj) →
∫

Rd

∫

Rd h (x, y) dF (x) dF (y) in probability. Then it suffices to notice

that uniform integrability of {h (X1, Xj) , j > 1} implies that of

{

1

(n2)

∑

16i<j6n h (Xi, Xj) , n > 2

}

.

We will prove Theorem 3.1 under assumption (A.2) in three steps: first we will show that (3)

holds when h is a product of indicator functions of Borel subsets of Rd. Then we will show the

result by approximating the map (x, y) ∈ R
d × R

d 7→ h (x, y)1[−R,R]d (x) 1[−R,R]d (y)1|h(x,y)|6R
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in L1
(

P(X0,Xk)

)

uniformly with respect to k by a linear combination of products of indicator

functions. Then we will conclude by uniform integrability.

First step: assume that h (x, y) = 1A (x) 1B (y), where A and B are Borel subsets of Rd.

Observe that

1
(

n
2

)

∑

16i<j6n

h (Xi, Xj) =
1
(

n
2

)

∑

16i<j6n

1A (Xi) 1B (Xj)(4)

=
1
(

n
2

)

n
∑

j=2

1B (Xj)

j−1
∑

i=1

1A (Xi)(5)

=
1
(

n
2

)

n
∑

j=2

(j − 1)1B (Xj) Yj,(6)

where

(7) Yj =
1

j − 1

j−1
∑

i=1

1A (Xi) .

Therefore, the following decomposition takes place:

(8)
1
(

n
2

)

∑

16i<j6n

h (Xi, Xj)

=
1
(

n
2

)

n
∑

j=2

(j − 1)1B (Xj) (Yj − P (X0 ∈ A)) + P (X0 ∈ A)
1
(

n
2

)

n
∑

j=2

(j − 1)1B (Xj)

Observe that by the ergodic theorem and the Lebesgue dominated convergence theorem, the first

term of the right hand side of (8) converges to 0 in L1. Moreover, by the ergodic theorem and a

summation by parts,

(9) E

[
∣

∣

∣

∣

∣

1
(

n
2

)

n
∑

j=2

(j − 1) 1B (Xj)− P (X0 ∈ B)

∣

∣

∣

∣

∣

]

→ 0,

hence we derive that

(10) lim
n→∞

E

[
∣

∣

∣

∣

∣

1
(

n
2

)

∑

16i<j6n

1A (Xi) 1B (Xj)− P (X0 ∈ A)P (X0 ∈ B)

∣

∣

∣

∣

∣

]

= 0

and P (X0 ∈ A)P (X0 ∈ B) =
∫

Rd

∫

Rd h (x, y) dF (x) dF (y).

Second step. Let R > 0 be fixed and define

(11) h(R) (x, y) = h (x, y)1[−R,R]d (x) 1[−R,R]d (y)1|h(x,y)|6R,

which is integrable. By a standard result in measure theory, we know that for each positive ε,

there exists an integer N , constants c1, . . . , cN and sets Aε,ℓ, Bε,ℓ, 1 6 ℓ 6 N , such that

(12)

∫

Rd×Rd

∣

∣h(R) (x, y)− hε (x, y)
∣

∣ dλd (x) dλd (y) 6 ε,
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where

(13) hε (x, y) =
N
∑

ℓ=1

cℓ1Aε,ℓ
(x) 1Bε,ℓ

(y) .

Therefore, using stationarity and the fact that (Xi, Xj) has a density fj−i which is bounded by

a constant M independent of (i, j),

E
[
∣

∣h(R) (Xi, Xj)− hε (Xi, Xj)
∣

∣

]

= E
[
∣

∣h(R) (X0, Xj−i)− hε (X0, Xj−i)
∣

∣

]

=

∫

Rd×Rd

∣

∣h(R) (x, y)− hε (x, y)
∣

∣ fj−i (x, y) dλd (x) dλd (y) 6 Mε

and

(14) E

[
∣

∣

∣

∣

∫

Rd

∫

Rd

h(R) (x, y) dF (x) dF (y)−

∫

Rd

∫

Rd

hε (x, y) dF (x) dF (y)

∣

∣

∣

∣

]

6

∫

Rd

∫

Rd

∣

∣h(R) (x, y)− hε (x, y)
∣

∣ fX0
(x) fX0

(y) 6 sup
t∈Rd

fX0
(t) ε.

Consequently,

(15) E

[
∣

∣

∣

∣

∣

1
(

n
2

)

∑

16i<j6n

h(R) (Xi, Xj)−

∫

Rd

∫

Rd

h(R) (x, y) dF (x) dF (y)

∣

∣

∣

∣

∣

]

6 E

[∣

∣

∣

∣

∣

1
(

n
2

)

∑

16i<j6n

hε (Xi, Xj)−

∫

Rd

∫

Rd

hε (x, y) dF (x) dF (y)

∣

∣

∣

∣

∣

]

+

(

M + sup
t∈Rd

fX0
(t)

)

ε.

By the first step and the triangle inequality, we deduce that for each positive ε,

(16) lim sup
n→∞

E

[
∣

∣

∣

∣

∣

1
(

n
2

)

∑

16i<j6n

h(R) (Xi, Xj)−

∫

Rd×Rd

h(R) (x, y) dF (x) dF (y)

∣

∣

∣

∣

∣

]

6

(

M + sup
t∈Rd

fX0
(t)

)

ε.

hence (3) holds with h replaced by hR. Third step: by uniform integrability, for each posi-

tive ε, there exists δ such that for each A satisfying P (A) < δ, sup16i<j E [|h (Xi, Xj)| 1A] <

ε. Let R be such that P
(

X1 /∈ [−R,R]d
)

< δ, supj>2E
[

|h (X1, Xj)|1{|h(X1,Xj)|>R}

]

< ε and
∫

Rd

∫

Rd

∣

∣h (x, y)− h(R) (x, y)
∣

∣ dF (x)dF (y) < ε. Then for h(R) defined as in (11),

(17) E
[
∣

∣h (Xi, Xj)− h(R) (Xi, Xj)
∣

∣

]

6 E

[

|h (Xi, Xj)|
(

1{Xi /∈[−R,R]d} + 1{Xj /∈[−R,R]d} + 1{|h(X1,Xj)|>R}

)]

6 3ε

and it follows that

(18) E

[
∣

∣

∣

∣

∣

1
(

n
2

)

∑

16i<j6n

h (Xi, Xj)−

∫

Rd

∫

Rd

h (x, y)dF (x) dF (y)

∣

∣

∣

∣

∣

]

6 E

[
∣

∣

∣

∣

∣

1
(

n
2

)

∑

16i<j6n

h(R) (Xi, Xj)−

∫

Rd

∫

Rd

h(R) (x, y) dF (x) dF (y)

∣

∣

∣

∣

∣

]

+ 4ε,
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and we conclude by the second step. This ends the proof of Theorem 3.1. �

4. Examples of failure of the convergence of U-statistics

Example 4.1 given in [1] shows that there exists a stationary ergodic sequence (Xi)i>1 and

a bounded measurable function for which
(

(

n
2

)−1∑

16i<j6n h (Xi, Xj)
)

n>2
converges, but not to

the integral of h (x, y) with respect to the product of the law of X1.

In a similar setting, we are able to formulate two examples, the first showing that the sequence
(

(

n
2

)−1∑

16i<j6n h (Xi, Xj)
)

n>2
mail fail to converge in probability even if |h (Xi, Xj)| is bounded

by 1 and the second one showing that a centered U -statistic
(

(

n
2

)−1∑

16i<j6n (h (Xi, Xj)− E [h (Xi, Xj)])
)

n>2

may also fail to converge in probability.

Suppose that Tx = 2xmod1 is a transformation of the unit interval [0, 1) equipped with

the Borel sigma field B and Lebesgue measure λ. We define X0(x) = x, Xk(x) = T kx and

U : L1 → L1 by UY = Y ◦ T , Y ∈ L1.

4.1. Example 1: non-convergence of the U-statistics.

Proposition 4.1. There exists a strictly stationary ergodic sequence (Xi)i>1 and a measur-

able function h : R2 → R such that for each i < j, E [|h (Xi, Xj)|] 6 1 but the sequence
(

(

n
2

)−1∑

16i<j6n h (Xi, Xj)
)

n>2
does not converge in probability.

Proof. Let (Nℓ)ℓ>1 and (N ′
ℓ)ℓ>0 be sequences of positives integers such that N ′

0 = 1 and for ℓ > 1,

Nℓ < N ′
ℓ < Nℓ+1 and

(19) N ′
ℓ/Nℓ > ℓ, Nℓ+1/N

′
ℓ → ∞,

(20) I =
⋃

ℓ>0

Iℓ, Iℓ := {k ∈ N : N ′
ℓ < k 6 Nℓ+1}

(21) G =
⋃

k∈I

{(

x, T kx
)

: x ∈ [0, 1)
}

and for x, y ∈ [0, 1),

h (x, y) = 1G (x, y) .

For 1 6 i < j we then have

h (Xi, Xj) =

{

1 if j − i ∈ I,

0 if j − i ∈ N \ I.

In particular, E [|h (Xi, Xj)|] 6 1. By (19) we have

(22)
1

Nℓ(Nℓ − 1)

∑

16i<j6Nℓ

h (Xi, Xj) →
1

2
,

1

N ′
ℓ(N

′
ℓ − 1)

∑

16i<j6N ′

ℓ

h (Xi, Xj) → 0.
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Indeed, first observe that for each integer n,

∑

16i<j6n

h (Xi, Xj) =

n
∑

j=2

j−1
∑

i=1

1j−i∈I(23)

=
n

∑

j=2

j−1
∑

k=1

1k∈I(24)

=
n−1
∑

k=1

n
∑

j=k+1

1k∈I(25)

∑

16i<j6n

h (Xi, Xj) =

n−1
∑

k=1

(n− k) 1k∈I(26)

hence denoting Iℓ = {k ∈ N, N ′
ℓ + 1 6 k 6 Nℓ+1}, we get that for ℓ > 3,

(27)

1

Nℓ (Nℓ − 1)

∑

16i<j6Nℓ

h (Xi, Xj) =
1

Nℓ (Nℓ − 1)

ℓ−2
∑

u=1

∑

k∈Iu

(Nℓ − k) +
1

Nℓ (Nℓ − 1)

∑

k∈Iℓ−1

(Nℓ − k)

=: Aℓ +Bℓ.

Note that bounding for 1 6 u 6 ℓ − 2 the term
∑

k∈Iu
(Nℓ − k) by Nℓ Card (Iu), and Card (Iu)

by Nu+1 −Nu, we get

(28) Aℓ 6
1

Nℓ − 1

ℓ−2
∑

u=1

(Nu+1 −Nu) 6
Nℓ−1 −N1

Nℓ − 1

and using (19), we get Aℓ → 0. Moreover,

(29) Bℓ =
1

Nℓ (Nℓ − 1)

Nℓ
∑

k=N ′

ℓ−1
+1

(Nℓ − k) =
1

Nℓ (Nℓ − 1)

Nℓ−N ′

ℓ−1
−1

∑

j=0

j ∼
1

2

(

Nℓ −N ′
ℓ−1 − 1

)2

N2
ℓ

hence Bℓ → 1/2, which proves the first part of (22). The second one follows from the observation

that {1, . . . , N ′
ℓ − 1} ∩ Iu is empty if u > ℓ− 1, which gives in view of (26),

1

N ′
ℓ(N

′
ℓ − 1)

∑

16i<j6N ′

ℓ

h (Xi, Xj) =
1

N ′
ℓ(N

′
ℓ − 1)

N ′

ℓ
−1

∑

k=1

(N ′
ℓ − k) 1k∈I

=
1

N ′
ℓ(N

′
ℓ − 1)

ℓ−2
∑

u=1

∑

k∈Iu

(N ′
ℓ − k)

6
1

N ′
ℓ

ℓ−2
∑

u=1

(Nu+1 −N ′
u)

6
1

N ′
ℓ

ℓ−2
∑

u=1

(Nu+1 −Nu) 6
N ′

ℓ−1

N ′
ℓ

,

where the second inequality follows from Nu < N ′
u, and N ′

ℓ−1/Nℓ goes to 0 by (19). �
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4.2. Example 2: non-convergence of a centered U-statistic.

Proposition 4.2. There exists a strictly stationary ergodic sequence (Xi)i>1 and a measur-

able function h : R2 → R such that for each i < j, E [|h (Xi, Xj)|] is finite but the sequence
(

(

n
2

)−1∑

16i<j6n (h (Xi, Xj)− E [h (Xi, Xj)])
)

n>2
does not converge in probability.

Note that in this example, supj>2E [|h (X1, Xj)|] is infinite. Moreover, the sequence
(

(

n
2

)−1∑

16i<j6n (h (Xi, Xj)− E [h (Xi, Xj)])
)

n>2
converges in distribution to a centered non-

degenerated Gaussian random variable.

Proof. We take the same probability space and transformation as above. For k = 1, 2, . . . define

Ḡk = T−k ([1/2, 1)) , Gk =
{(

x, T kx
)

: x ∈ Ḡk

}

, h =

∞
∑

k=1

ak1Gk
, ,

where

(30) ak = k3/2 − (k − 1)3/2 for k > 2 and a1 = 1.

For 1 6 i < j we thus have

h (Xi, Xj) = aj−iT
−j ([1/2, 1)) = aj−iU

jf, f = 1[1/2,1),

hence E [h (Xi, Xj)] = aj−i/2 and

(31)
∑

16i<j6n

h (Xi, Xj) =
n−1
∑

i=1

n
∑

j=i+1

aj−iU
jf =

n
∑

j=2

j−1
∑

i=1

aj−iU
jf =

n
∑

j=2

(j − 1)3/2 U jf

where f = 1[1/2,1). In order to have a better understanding of U jf , we introduce the intervals

(32) Ij,ℓ =

[

ℓ− 1

2j
,
ℓ

2j

)

, j > 1, 1 6 ℓ 6 2j.

Lemma 4.3. The sequence (U j (f − 1/2))j>1 is a martingale difference sequence with respect to

the filtration (Fj)j>0, where Fj = σ (Ij,ℓ, 1 6 ℓ 6 2j) and F0 = {∅,Ω}.

Proof. We show by induction on j > 1 that

(33) f ◦ T j (x) = 1⋃
2j−1

ℓ=1 Ij,2ℓ
(x) .

For j = 1, notice that if x ∈ [0, 1/2), then f ◦ T (x) = f(2x) = 1[1/2,1](2x) = 1[1/4,1/2) (x) and if

x ∈ [1/2, 1), then f ◦ T (x) = f(2x − 1) = 1[1/2,1](2x − 1) = 1[3/2,2) (2x) = 1[3/4,1) (x) hence for

each x ∈ [0, 1), f ◦ T (x) = 1[1/4,1/2) (x) + 1[3/4,1) (x).

Assume now that (33) holds true for some j > 1 and let us show that

(34) f ◦ T j+1 (x) = 1⋃
2j

ℓ=1 Ij+1,2ℓ
(x) .

By (33) with x replaced by Tx, we derive that

(35) f ◦ T j+1 (x) = 1⋃
2j−1

ℓ=1 Ij,2ℓ
(Tx) .

If x ∈ [0, 1/2), then

1⋃
2j−1

ℓ=1
Ij,2ℓ

(Tx) = 1⋃
2j−1

ℓ=1
Ij,2ℓ

(2x) = 1⋃
2j−1

ℓ=1
Ij+1,2ℓ

(x)
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and (34) holds, and if x ∈ [1/2, 1), then

1⋃
2j−1

j=1
Ij,2ℓ

(Tx) = 1⋃
2j−1

ℓ=1
Ij,2ℓ

(2x− 1) =
2j−1

∑

ℓ=1

1Ij,2ℓ (2x− 1) =
2j−1

∑

ℓ=1

1I
j,2ℓ+2j

(x) = 1⋃
2j

ℓ=2j−1+1
Ij+1,2ℓ

(x)

hence (34) also holds.

By (33), it is clear that U jf is Fj-measurable. Moreover,

(36) E
[

U j+1 (f − 1/2) | Fj

]

=
2j
∑

ℓ=1

E
[

1Ij+1,2ℓ
− 1/2 | Fj

]

= 0.

�

Notice that
(

n
2

)−1∑

16i<j6n (h (Xi, Xj)− E [h (Xi, Xj)]) =
∑n

j=1 dn,j, where

(37) dn,j =

(

n

2

)−1

(j − 1)3/2
(

U jf −
1

2

)

, j > 2, dn,1 = 0.

Then (dn,j)j>1 is a martingale difference sequence with respect to the filtration (Fj)j>0 given as

in Lemma 4.3.

Recall that by [7], if (dn,j)n>1,16j6n is an array of martingale differences, such that

(38) max
16j6n

|dn,j| → 0 in probability,

(39) there exists M > 0 such that sup
n>1

max
16j6n

E
[

d2n,j
]

6 M and

(40)

n
∑

j=1

d2n,j → σ2 in probability,

then
∑n

j=1 dn,j converges in distribution to a centered normal distribution with variance σ2.

Noticing that |U jf (x)− 1/2| = 1/2, we can see that (38) and (39) are satisfied as well as (40)

with σ2 = 1/4.

Letting Yn =
(

n
2

)−1∑

16i<j6n (h (Xi, Xj)− E [h (Xi, Xj)]), we thus get that Yn → N (0, 1/4).

Expressing Y2n − Yn as a sum of a martingale difference array, the same argument as above

gives that Y2n−Yn converges in distribution to a non-degenerated normal random variable hence

(Yn)n>1 cannot converge in probability. �
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