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SOME REMARKS ON THE ERGODIC THEOREM FOR U-STATISTICS
HEROLD DEHLING, DAVIDE GIRAUDO AND DALIBOR VOLNY

ABSTRACT. In this note, we investigate the convergence of a U-statistic of order two having
stationary ergodic data. We will find sufficient conditions for the almost sure and L' convergence
and present some counter-examples showing that the U-statistic itself might fail to converge:
centering is needed as well as boundedness of sup;~, E[|h (X1, X;)]].

1. INTRODUCTION

In this note, we investigate the validity of the U-statistics ergodic theorem, i.e. the almost
sure convergence

) o Y hX) — [ [ b nir@ir)
(2) Iy<ysn

where (X;),., is a stationary ergodic process with marginal distribution F', and h(z,y) is a
symmetric kernel that is /' x F' integrable. Birkhoff’s ergodic theorem establishes the analogous
result for the time averages = >°" | f(X;), while Hoeffding [6] established (1) for i.i.d. processes
(Xi)i>1- These two classical results naturally lead to the conjecture that (1) should hold without
further assumptions, i.e. for all stationary ergodic processes (X;),., and all L;(F x F') functions
h(x,y). Aaronson et al. [1] proved a partial result in this direction, namely showing that (1)
holds for all F' x F' almost everywhere continuous and bounded kernels A(z,y). At the same time,
they presented counterexamples showing that (1) does not hold in full generality. One of their
counterexamples is a bounded kernel where the set of discontinuities has positive F' x I’ measure,
while the other counterexample is an F'x F' almost everywhere continuous, but unbounded kernel.

The U-statistic ergodic theorem has subsequently been addressed by various authors, e.g.
Arcones [2], Borovkova, Burton and Dehling [4]; see also the review paper by Borovkova, Burton
and Dehling [5]. These papers provide both sufficient conditions for (1) to hold, as well as
further counterexamples, both for stationary ergodic processes as well as under stronger mixing
assumptions. Most of the positive results also address other forms of convergence in (1) such
as convergence in probability and L!-convergence. Arcones [2] proved the ergodic theorem for
absolutely regular processes under some moment assumptions. Borovkova, Burton and Dehling
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2 SOME REMARKS ON THE ERGODIC THEOREM FOR U-STATISTICS

[5] investigated convergence in probability in (1), with a special focus on the kernel h(z,y) =
log(|x — y|), which arises in connection with the Takens estimator for the correlation dimension.

A common feature of all these examples is that they satisfy a modified version of the U-statistics
ergodic theorem, namely

) @D 06 X) ~ER (G X)) — 0
2/ 1<i<j<n
assuming that E [|h (X, X;)|] < oo for all ¢, j.

It might thus seem natural to conjecture that (2) holds without further assumptions. In this
note, we present a counterexample that disproves this conjecture. In addition, we will give a
short proof of the U-statistics ergodic theorem for bounded F' x F-almost everywhere continuous
kernels, and give a new condition for L!-convergence.

2. A SHORT PROOF OF THE ERGODIC THEOREM FOR U-STATISTICS

In this note, we present a short proof of the U-statistics ergodic theorem that was first estab-
lished in Aaronson et al [1]. For the special case, when the process has values in R¥, this proof
is contained in Borovkova, Burton and Dehling [5]. Here, we give the proof for processes with
values in an arbitrary separable metric space.

Theorem 2.1. Let (X}),-, be a stationary ergodic process with values in the separable metric
space S and marginal distribution F', and let h : S xS — R be a symmetric kernel that is bounded
and F' X F-almost everywhere continuous. Then, as n — 0o

> h(Xi, X)) —>// (z,y)dF (z)dF(y),

(2) 1<i<j<n

almost surely.

Proof. We define the empirical distribution of the first n random variables

1 n

where §, denotes the Dirac delta measure in z. For any L;(F)-function f: S — R, we obtain by
Birkhoff’s ergodic theorem

/f ) dF,( Zf —>/f YdF (x

almost surely. This convergence holds in particular for any bounded measurable function f €
Cy(S). Since S is separable, there exists a countably family of functions f; € Cy(S), ¢ > 1, that
is convergence determining, i.e. that convergence of the integrals [ fi(x)du,(x) — [ fi(z)dp(z)
for all + > 1, implies weak convergence of the probability measures pu, to p. Now, up to a set of

/fz ) dF,( Zf, —>/f, )dF (x

measure 0, we get
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for all « > 1, and thus F,, = F weakly. This is in fact Varadarajan’s argument [8] for the fact
that the empirical distribution of i.i.d. data Xi,..., X, converges weakly almost surely to the
true distribution F'.

By Theorem 3.2 (page 21) of Billingsley [3], we obtain convergence of the empirical product
measure

F, x F,=F xF,

except on a set of measure 0. Thus, for any bounded F'x F-a.e. continuous function h: Sx5 — R,
we obtain by the portmanteau theorem

% <Z< h(X;, X;) :// h(z,y)dF,(z) dF,(y) %//h(:c,y)dF(fv) dF(y),

almost surely. Since & is bounded, we obtain & > | h(X;, X;) — 0, and thus

% > h(XZ-,Xj)%//h(x,y)dF(fc)dF(y),

I<i#j<n

almost surely. U

3. CONVERGENCE IN L! IN THE ERGODIC THEOREM FOR U-STATISTICS

In this section, we present two sufficient conditions for the convergence in L' of a U-statistic
to [[ h(x,y)dF (z)dF (y), where F' denotes the distribution of X,. The first sufficient condition
imposes a restriction on the continuity points of the kernel combined with a uniform integrability
assumption. The second sufficient condition imposes a restriction on the joint distribution of
vectors (Xo, Xi),k = 1, but no other assumption is required for the kernel h.

Theorem 3.1. Let (XZ-)Z.>1 be a stationary ergodic sequence taking values in R and let h: RY x
R? — R be a measurable function such that the family {h (X1, X;),j = 1} is uniformly integrable.
Let I be the distribution of Xy. Assume that one of the following assumptions is satisfied:
(A.1) the function h is F' x F almost everywhere continuous.
(A.2) [pa [ga P (z,y)| dF (z) dF (y) is finite, the random variable Xy has a bounded density
with respect to the Lebesgue measure on RY and for each k > 1, the vector (Xo, X},) has
a density fir with respect to the Lebesque measure of R? x RY and SUDy>1 SUD; erd fr (5, 1)

is finite.
Then
. 1
3 i B || 3 ) - [ [ heydr e )| <o
n—oo (2) I1<i<j<n Rd JRdA

Proof. Let us prove Theorem 3.1 under assumption (A.1). By Theorem 1 in [4], we know that

@ Yicicien P (Xi, Xj) = Jga Jga b (2,y) dF (x) dF (y) in probability. Then it suffices to notice

that uniform integrability of {h (X1, X;),j > 1} implies that of {(—}L) Yicicjen V(X Xj) n > 2}
2

We will prove Theorem 3.1 under assumption (A.2) in three steps: first we will show that (3)
holds when A is a product of indicator functions of Borel subsets of R?. Then we will show the
result by approximating the map (z,y) € R? x R — h(z,y) 1 g () 1o g rie (Y) L) <r
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in L (IP’(XO, Xk)) uniformly with respect to k£ by a linear combination of products of indicator
functions. Then we will conclude by uniform integrability.

First step: assume that h (z,y) = 14 (z)1p (y), where A and B are Borel subsets of R
Observe that

(4) (—1) 3 h(Xz-,Xn:(—i) S LX) 15(X))

1<i<jsn 1<i<jsn

o) =y o ()L x

) = @ G-V )Y,
where
(7) P > x)

Therefore, the following decomposition takes place:

Z h (X, X;)

2 1<i<j<n

n n

1 , 1 .
= > (=D 1a(X) (V; —P(Xo € A) +P(Xg € A) 7= > (i — 1) 15(X;)
(2) j=2 (2 j=2
Observe that by the ergodic theorem and the Lebesgue dominated convergence theorem, the first
term of the right hand side of (8) converges to 0 in L'. Moreover, by the ergodic theorem and a
summation by parts,

n

%Zo—wmxj)—moem

2/ j=2

(9) E -0,

hence we derive that

(10) lim E =0

n—o0

> 14(Xi)1p(X;) —P (X € A)P (X, € B)

(2) 1<i<j<n

and P (Xo € A)P (X € B) = [pa Jpa b (x,y) dF (z) dF (y).
Second step. Let R > 0 be fixed and define

(11) hH) (13 y) =h (1'> y) 1[—R,R}d (95) 1[—R,R]d (y) 1\h(m,y)\<Ra

which is integrable. By a standard result in measure theory, we know that for each positive ¢,
there exists an integer N, constants ci,...,cy and sets Ay, By, 1 < ¢ < N, such that

(12) / KD (2, ) — he (2, 9)] dAa (2) dAa (9) < &,
R xR4
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where

(13) he (z,y) = ZcelAE,e ()1, (y).

Therefore, using stationarity and the fact that (X;, X;) has a density f;_; which is bounded by
a constant M independent of (3, j),

E [|A™ (X, X;) = he (X3, X;)|] = E [[29 (X0, X;-2) — he (Xo, X;-4)]]

_ /R o I Gy) = e ()| i () dha () dha (9) < Me

an
(R)
[/Rd/Rdh (z,y)dF (z) dF (y /Rd/w (z,y) dF ( )dF()H

< B z,y) — . . u 0 .
</]Rd/]Rd‘ ( y) l’y‘fx fX () tSeRng (t)g

Consequently,

1 }
E||— X“X (x,y)d d
1) E||m Z - [ [ @ @ F)|

> he (X1 X)) /R/R (z,y)dF (z) dF (y) —l—(M—i—supro(t))a

(2) 1<i<j<n teRd

By the first step and the triangle inequality, we deduce that for each positive ¢,

(16) limsupE

n—o0

@2 KX [ W aF @) )

2/ 1<i<j<n

< (M s f, <t>) -

teR?
hence (3) holds with h replaced by hg. Third step: by uniform integrability, for each posi-
tive €, there exists 0 such that for each A satisfying P (A) < 0, sup,,.; E[|h (X;, X;)[14] <
e. Let R be such that P (X; ¢ [-R, R]%) < 0, sup,;», E [|h (X1, X;)| Linex,x,)=ry] < € and
Jaa Jga |2 (z.y) = KB (2, y)| dF (z)dF(y) < . Then for A®) defined as in (11),

(17) E[|h (X5, X;) — A (X;, X;))]
E (10 (X5 X5)| (Lxglnmey + Lixginmey - Linenxsm ) | <3¢

and it follows that

Z h (X, X;) /R/R (z,y)dF (z) dF (y)

1<z<]<n
Z h® (X, X;) // ) (z,y) dF () dF (y)
R4 JR4

1<2<g<n

(18

+ 4e,
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and we conclude by the second step. This ends the proof of Theorem 3.1. O

4. EXAMPLES OF FAILURE OF THE CONVERGENCE OF U-STATISTICS

Example 4.1 given in [1] shows that there exists a stationary ergodic sequence (X;),., and
a bounded measurable function for which (( ) Drcicjen P (X, Xj)> converges, but not to
>2

>

the integral of h (z,y) with respect to the product of the law of Xj.
In a similar setting, we are able to formulate two examples, the first showing that the sequence
((g) - Y icicjen (X, Xj)) mail fail to converge in probability even if |h (X;, X;)| is bounded

n=2

by 1 and the second one showing that a centered U-statistic (( ) Drcicjen (0 (X, X5) —E[h (X, XJ)]))

n=2
may also fail to converge in probability.

Suppose that Tx = 2zrmod1 is a transformation of the unit interval [0,1) equipped with
the Borel sigma field B and Lebesgue measure . We define Xo(z) = z, Xj(x) = T*z and
U:L' - L'byUY =YoT,Y € L'

4.1. Example 1: non-convergence of the U-statistics.

Proposition 4.1. There exists a strictly stationary ergodic sequence (XZ-)Z>1 and a measur-
able function h: R* — R such that for each i < j, E[|h(X;,X;)|] < 1 but the sequence

((Z)_l Y icicjen (X, Xj)) does not converge in probability.

n=2
Proof. Let (Ny),-, and (N}),-, be sequences of positives integers such that Nj = 1 and for £ > 1
N, < Né < Nf—l—l and

(19) Ny/Nez L, Ny /Ny — oo,

(20) I=JI, IL={keN:N,<k<Ny}

£>0

(21) G = U {(z,T"2) : 2 €0,1)}

kel
and for x,y € [0,1),
h(l’,y) =1¢ (xuy) :
For 1 <4 < 7 we then have
1 if j—iel,
h,(XZ,X]) == ' j !
0 if j—ieN\I
In particular, E[|h (X;, X;)|] < 1. By (19) we have
1 1
—_ h(X;, X; =, h(X;, X;) .
N D), 2 MY X) o N’N’ ;2 -0

1<i<j< Ny 1<z<]<NZ

(22)
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Indeed, first observe that for each integer n,

n j—1

(23) > h(XnX) =) 1
1<i<j<n 7j=2 i=1
n j—1
(24) = Z 1keI
i=2 k=1
n—1 n
(25) =3 > L
k=1 j=k+1
n—1
(26) D h(X X)) =) (n—k) Ly

=
Juy

1<i<j<n

hence denoting I, = {k € N, N; +1 < k < Nyy1}, we get that for £ > 3

(27)
£—2

1
Z h(X;, X,) ALY Nz_l Z(Ng—k)erZ(Ng—k)

1<z<]<NZ u=1 kel, k€le—1

Note that bounding for 1 < u < £ —2 the term ) ., (N, — k) by N, Card (1,), and Card (/)
by Nu-l—l - Nu7 we get

Ny — Ny
28 wrl — Ny) € ———
(28) 1Z T N, — 1

and using (19), we get A, — 0. Moreover,

Ny Ne—=N;_;—1 , 2
1 1 1 (Ne—=N;_, - 1)
29) Bi= o Y Nk = Y e~

(29) AT Ay (Ne = k) Ne(N, — 1) 7™~y N?

k=N,_,+1 =0

hence B, — 1/2, which proves the first part of (22). The second one follows from the observation
that {1,..., N, — 1} NI, is empty if u > ¢ — 1, which gives in view of (26),

Nj—1
NN N, 1<2§<N h(Xi, X;) N,(Nl,_ P Z (N; — k) Lpes
—2
T NN, —1) N’—l leh(Né_
e ,
< ; (Nugr — N))
-2 ,
< Nilf uz::l (Nus1 — Ny) < N]f]j,

where the second inequality follows from N, < N, and N;_,/N, goes to 0 by (19). O
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4.2. Example 2: non-convergence of a centered U-statistic.

Proposition 4.2. There erists a strictly stationary ergodic sequence (X;),., and a measur-
able function h: R* — R such that for each i < j, E[|h(X;, X;)|] is finite but the sequence

<(g)—1 Yicicien (B (X0, X5) —E[h (XZ-,X]-)])> does not converge in probability.
ST >2

Note that in this example, sup,., E [|h (X1, X})|] is infinite. Moreover, the sequence
((g)_l Drcicjen (M (X, X5) —E[h (X, XJ)])) converges in distribution to a centered non-
SRS >2

>

degenerated Gaussian random variable.
Proof. We take the same probability space and transformation as above. For k = 1,2,... define

Ge=T"([1/2,1)), Gp={(x,T%) 2 € G}, h=) arlg,,,

k=1
where

(30) ap = k¥ — (k= 1)** for k> 2 and a; = 1.
For 1 < i < 7 we thus have
h(Xi, X;) = aj—iT_j ([1/2,1)) = aj—infv f =121,
hence E [h (X}, X;)] = a;—;/2 and

n 1
(31) > h(X;,X;) Z Z a;_ U f = Z]Za] U f = Z )P uif
1<i<j<n i=1 j=i+1 7j=2 i=1

where f = 1f/51). In order to have a better understanding of U’ f, we introduce the intervals

(-1 ¢ .

L) = J— ) J

(32) I],Z |: 2J a2])>]>1a1<€<2
Lemma 4.3. The sequence (U7 (f — 1/2)) j>1 18 a martingale difference sequence with respect to

the filtration (F;),-q, where Fj =0 (Ije 1 < €< 27) and Fo = {0,Q}.

Proof. We show by induction on 5 > 1 that

(33) FoTi (@) =1, (@).

For j = 1, notice that if z € [0,1/2), then f o T(x ) (2:6) = 1p/21)(22) = 1 a/2) () and if
x € [1/2,1), then foT(x) = f(2z — 1) = L2122 — 1) = 13/29) (22) = 1341y () hence for

cach z € [0,1), foT(x) = 1pja1/2) (z) + Lz/a0) (7).
Assume now that (33) holds true for some j > 1 and let us show that
j+1 — .
(34) foTm™ (x) = 1U3J:1 Tjy1,2e ().
By (33) with x replaced by Tz, we derive that
(35) foTi (5) = 1

If z €[0,1/2), then

(Tz).

27—1
Uiz ILj2e

1U?:11 L2 (T:L’) - 1U§:11 I 20 (QI) - 1U?:11 Tit1,2¢ (:L’)
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and (34) holds, and if z € [1/2,1), then
21 21

1 L (T2) =1, (22— 1) 21, L Re=1)=3"1;  (r) =1 (z)

=1 ],zz Uz gi—14q Lit1,20

hence (34) also holds.
By (33), it is clear that U’ f is fj—measurable. Moreover,

(36) E U7+ (f —1/2) | F] ZE iy — 1/2] Fi] =

Notice that (5) " Y2 cicjen (B (X5, X)) — E[h(Xi, X;)]) = 320, dyj, where

-1
(37) dn,j=(”2‘) (G- 1¥ (U]f ;),mz,dw:o

Then (dn;);-, is a martingale difference sequence with respect to the filtration (F;),., given as
in Lemma 4.3.

Recall that by [7], if (d, ;) is an array of martingale differences, such that

n>1,1<j<n
(38) max |d, ;| — 0 in probability,
1<j<n
(39) there exists M > 0 such that sup max E[d’,] < M and
n>1 1IN
(40) > d>; — o® in probability,

then Zyzl dn j converges in distribution to a centered normal distribution with variance o?.

Noticing that |U? f (z) — 1/2| = 1/2, we can see that (38) and (39) are satisfied as well as (40)
with 0?2 = 1/4.

Letting Y,, = (;‘)_1 Yrcicjen (0 (X0, X5) — E[h (X5, X;)]), we thus get that Y, — N (0,1/4).
Expressing Y5, — Y, as a sum of a martingale difference array, the same argument as above
gives that Y5, —Y,, converges in distribution to a non-degenerated normal random variable hence
(Ya),>; cannot converge in probability. O
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