
HAL Id: hal-03979723
https://hal.science/hal-03979723v1

Submitted on 22 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Distributed Publish/Subscribe Protocol with Minimum
Number of Encryption

Jean-Philippe Abegg, Quentin Bramas, Timothée Brugière, Thomas Noël

To cite this version:
Jean-Philippe Abegg, Quentin Bramas, Timothée Brugière, Thomas Noël. Distributed Pub-
lish/Subscribe Protocol with Minimum Number of Encryption. 23rd International Conference on Dis-
tributed Computing and Networking, 4-7th January, 2022. New Delhi (Held Virtually), Association
for Computing Machinery, Jan 2022, New Delhi, India. �10.1145/3491003.3491022�. �hal-03979723�

https://hal.science/hal-03979723v1
https://hal.archives-ouvertes.fr

Distributed Publish/Subscribe Protocol with Minimum

Number of Encryption

Jean-Philippe ABEGG1,2, Quentin BRAMAS1, Timothée BRUGIÈRE2, and
Thomas NOEL1

1University of Strasbourg, CNRS, ICUBE, France
2Transchain, Strasbourg, France

©ACM 2023. This is the authors’ version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in the proceedings of the

23rd International Conference on Distributed Computing and Networking,
http://dx.doi.org/10.1145/3491003.3491022.

Abstract

Publish/subscribe is a scalable communication method for one-to-many communications.
Centralized Pub/Sub protocols rely on a centralized broker that is a trusted third party
managing the subscriptions. To prevent data alteration by the broker, or by an entity outside
of the system, the literature proposes E2E security solutions. The issue with this solution is
that they all introduce a third party who is hardly trustable in practice.

Recently, Pub/Sub protocols have been proposed using the blockchain to manage the
subscriptions and provable data deliveries. In this paper, we focus our work on one pub-
lish/subscribe protocol, called SUPRA, that uses the blockchain only when necessary.

We explain why the current version of the protocol does not respect the publish/subscribe
paradigm because a subscriber has to encrypt and sign each data as many times as there are
subscribers. Then, present how to update the protocol in order for each data to be encrypted
and signed only once, regardless of the number of subscribers, while keeping the security
properties of the protocol. The result is a publish/subscribe protocol with strong delivery
guarantees and traceability that can be used to share sensitive data.

Keywords: blockchain, publish/subscribe protocol, key sharing, session synchronization

1 Introduction

The publish/subscribe paradigm is a communication model used to exchange information. In
this model, the broker is a central entity in a star topology. There are different kinds of pub-
lish/subscribe protocols and we will focus on topic based ones [4]. In this type of protocol, the
publisher sends data linked to an ID, called the topic, to the broker, and the broker forwards
data to all subscribers interested in the ID. The broker introduces a loose coupling between the
publisher and the subscribers. This property makes the publish/subscribe model more scalable
than the request/reply model, but it can also create trust issues in the system. Indeed, in a threat
model where the broker can be malicious, the publisher is never sure that the data is received by
the subscribers, and the subscribers are never sure that data are coming from the publisher or if
there are missing messages. This issue can discourage the usage of such a paradigm for sensitive
data.

The blockchain has been used to resolve this trust issue. The first propositions force the
published data to go through the blockchain. Data are signed by the publisher to avoid tampering

1

and to prove the identity of the author. The blockchain is used as a distributed storage system for
sharing data between brokers. The issue with these solutions is it cost, due to the fees associated
with blockchain transactions. The higher the number of messages in the blockchain, the more
expensive it becomes for the publisher.

Recently, a publish/subscribe protocol called SUPRA [1] has been proposed. It uses the
blockchain only when necessary, hence making it much cheaper to deploy while having strong
guarantees. The protocol uses the blockchain to set up a hybrid channel called the unidirec-
tional channel with on-off proof of delivery. The purpose of this channel is to exchange, most of
the time, messages directly between the two ends of the communication (off-chain) and only use
the blockchain when we cannot guarantee the delivery of a message otherwise. Messages going
through this channel are chained together with signatures, which allows the receiver to detect miss-
ing messages. Because of the message format, if N subscribers are connected to the same topic,
the publisher has to encrypt N times the message and do N signatures, one for each published
data. This solution does not scale well with the number of users, because with a high number of
subscribers, the workload from the signature and encryption process becomes important.

Contributions

The contributions of this paper are threefold. First, we show that the current version of SUPRA
does not scale well with a high number of subscribers. This problem is also present in other
solutions that rely on a blockchain. Second, we present a modification of SUPRA that reduces
the complexity in the number of signatures and encryptions for the publisher. With our solution,
we reduce the complexity, for each data in a given topic, from N signatures and encryptions to 1,
where N is the number of subscribers to this topic. Finally, we prove that, with this modification,
the protocol has strong delivery guarantees. In more detail, a publisher (resp. subscriber) that
follows the protocol correctly can always defend itself against any accusation and if a publisher
does not follow the protocol, the subscriber can successfully accuse it with non-delivery proof.

2 Related work

End-to-end security

End-to-end (E2E) security is a method used in [2, 3, 5, 6] to resolve security issues in pub-
lish/subscribe environments. These propositions present how the publisher and the subscriber
can protect the payload from unwanted accesses and alterations. To achieve this purpose, these
propositions rely on encryption mechanisms. By encrypting data, security is achieved between the
publisher and the subscribers because the subscribers are the only things in the system capable
of decrypting data. In [6], the payload is also signed to prove message integrity.

The critical part with this security method is the key sharing process, and all these propositions
introduce a new third party to handle the keys. In [2], a policy authority has to create for the
broker a re-encryption key derived from the publisher’s private key and the subscriber’s public
key. [5] also uses a trusted third party to derived keys in the system. In [3,6], the symmetric keys
used for each topic are stored in a specific node in the system. All these third parties have critical
information for the system. Proving the integrity of the trusted third parties is difficult as long
as you do not have total read access on what it is doing. For this reason, to resolve this issue, we
think that the blockchain can be used as a trustable third party to exchange public keys.

Blockchain

Blockchain is a distributed ledger technology that was first presented by Satoshi Nakamoto in
2008 [10]. The purpose of this technology is to make a network of nodes maintaining an immutable
distributed ledger of transactions. These transactions are grouped into blocks. Each block is linked
to the previous block using hash pointers and then added to the ledger. It creates a chain of blocks,
hence the name blockchain.

2

The author of a transaction is identified with a pair of public/private cryptographic keys.
Each transaction is signed by its author using the private key and blockchain nodes verify the
signature using the author’s public key. The transaction is sent to a node of the blockchain and
then broadcasted over the network. Each node saves incoming transactions in a pool used to build
the next blocks. Once a new block is validated, transactions integrated into this block are removed
from the pool. The way blocks are appended is a result of a consensus algorithm that depends on
the blockchain technology (e.g., in Bitcoin a single node is elected to append the next block).

Once a block is added to the chain, the transactions in it cannot be modified (or at least the
probability that a modification can be made decreases exponentially fast over time). That is why
data on the blockchain is considered immutable. This property remains true as long as a certain
amount of nodes follow the protocol honestly. The minimum amount of honest nodes depends on
the consensus algorithm and the blockchain implementation.

Everyone connected to the blockchain has read access to the transactions inside the blocks. If
the implementation allows arbitrary data inside transactions, the blockchain can be used to resolve
trust issues in publish/subscribe paradigm. Indeed, publishers can share data with subscribers
through the blockchain. This idea was already presented in [8,9], where a network of brokers share
publish data by adding it in a block. In this solution, every piece of data is signed and added to
the blockchain. It adds trust, because data are signed, and the blockchain orders messages, but it
is expensive because transactions have fees. With these fees, the network pays the node and stays
alive. Since all published data go through the blockchain, the publisher has to pay fees for each
new data. In this proposition, there is no usage of encryption mechanisms.

In [1], a protocol named SUPRA is presented. It is a publish/subscribe protocol using the
blockchain, but it reduces the number of messages. In the best-case scenario, aside from key
declarations, the blockchain is never used. We will explain in further detail how the protocol
works.

3 SUPRA

In this section, we will present SUPRA and the scalability issues in the protocol. To do so, we
will first present the general concepts on which the protocol runs.

3.1 General concepts

Manager/worker model

The manager/worker model is an abstraction model used to represent systems using the pub-
lish/subscribe paradigm. In this model, the worker is an entity that computes or generates data.
It is connected to a manager who handles a set of workers. Workers from this set may need data
from workers handled by another manager, this dependency in data can be translated into topics
used in publish/subscribe protocols. The manager acts as a broker for its workers, it forwards
data from other managers to the interested workers in the set. Managers are publishers and are
subscribers on the behalf of their workers.

With the manager/worker model, the central broker, present in the publish/subscribe model,
is removed and replaced by the managers. It creates a distributed architecture, which removes
the single point of failure introduced by the central broker. If a manager goes offline, only the
subscriptions in which it is involved will be stopped.

The model assumes that the workers have total trust in the manager because it is own by
the same entity. It means that the manager obtains no profit from dropping messages from or
to its workers. It’s the manager’s job to make sure that the links between it and its workers are
secured from unwanted alterations. On the other hand, since the managers do not trust each
other, the links between managers are the only links in the system that need to be secured with
a new protocol, and it is the purpose of the unidirectional channel with on-off proof of delivery.

3

A B

Off-chain
data channel

Ack

A B

Off-chain
data channel

On-chain
data channel Receives

EventsBlockchain

Figure 1: The two modes of communication of the unidirectional on/off chain channel protocol

Ti Prei Sidata

Ti+1
Prei+1

= Si
Si+1data

Ti+2
Prei+2
= Si+1

Si+2data

Mi

Mi+1

Mi+2

Figure 2: Three messages chained together by repeating signatures.

Unidirectional channel with on-off proof of delivery

The unidirectional channel with on-off proof of delivery is a hybrid channel used to secure the link
between managers. The channel offers to the managers delivery guarantees for each message.

As presented in Figure 1, the channel is split into two sub-channels. The first sub-channel is
called the off-chain channel, it is a direct link between the sender and the receiver. When messages
go through this channel, the receiver has to acknowledge them. The other sub-channel is called
the on-chain channel because messages go through the blockchain to arrive at the receiver. To
work, the hybrid channel assumes that the sender and the receiver are reliably connected to the
blockchain. This is possible by being a full node in the blockchain network, or by being connected
to a trusted full node.

Before using the channel, the sender and the receiver agree on a timeout Tacknowledged . The
purpose of the channel, for the sender, is to be sure that the message Mi was received before
Tacknowledged . Each message Mi has a timestamp Ti. To avoid paying fees, the sender uses first
the off-chain channel to send Mi directly to the receiver. This sub-channel is unreliable, so Mi or
ACKi, the acknowledgement for Mi, can be lost. Let ∆on−chain be the maximum amount of time
to add a transaction in a block. After a delay Toff−ack = Tacknowledged −∆on−chain from the first
sending, if the sender did not receive ACKi, the sender will use the on-chain channel to deliver
Mi in time. The receiver will always have a proof of delivery for Mi, because it either has ACKi

from the receiver or the message is publicly available in the ledger. Acknowledgments are signed
by the receiver but are never send through the on-chain channel.

The channel also gives guarantees for the receiver. Indeed, the message Mi is signed by the
sender. The signature Si of the message Mi proves the identity of the author but also the integrity
of the message. The channel assumes that the public keys of the sender and the receiver are known.
Also just like blocks in a distributed ledger, each message Mi+1 has a reference to the previous
message Mi. This is represented in Figure 2. Mi+1 contains the signature of the previous message
Prei+1 = Si. Chaining the messages allows the receiver to detect any missing message. At
the reception of Mi, if the receiver detects a missing message, it does not send ACKi until the
missing messages are found, because each message has a reference to the previous message, so

4

2-0
timestamp

Ti
UUID publisher

Pub
encrypted data

EncSub(D)
 previous signature

Prei
signature

Si
alias
ASub

UUID subscriber
Sub

Figure 3: Data publication for the subscriber i

acknowledgments are cumulative.
Compared to counters, signatures evolve randomly. By comparing two messages using counters,

a third party can guess how many messages were exchanged by comparing the counters. This action
is impossible using signatures, since from one signature, it is impossible to guess the next one.

3.2 Overview of SUPRA

SUPRA is the first protocol using the manager/worker model and the unidirectional channel
with on-off proof of delivery. The purpose of the protocol is to set up and use the channel in a
publish/subscribe environment.

Before using the protocol, each manager has to declare a public key in the blockchain (doing
so the blockchain also acts as a Public Key Infrastructure). This public key can be updated later,
for instance, if the integrity of the private key is at risk. These keys are used to sign the chained
messages going through the channel, but also to encrypt the data payload, and avoid unwanted
accesses and alterations. The sender signs messages with its public key and encrypts data with
the public key of the receiver. Each manager has a unique identifier. This identifier is in the
transaction that contains the public key and is also repeated in the messages exchanged with
other managers. When a message is received, the receiver uses the identifier of the source to check
in the ledger the last public key declared by the sender and check the signature.

To set up a unidirectional channel, the publisher and the subscriber do a triple handshake, in
which the subscriber indicated the topic name TN . After that, the publisher can publish data
using the unidirectional channel with on-off proof of delivery. If the publisher does not deliver
the messages in time, the subscriber can use a smart contract to prove that the publisher did
something wrong.

Let Mj be the last received message, with signature Sj , from the subscriber. When it receives
a new message Mi, if Prei is not equal to Sj , then the subscriber knows that at least one message
is missing. Because of network delays, messages can be disordered but if the publisher waits for
Tacknowledged and is still unable to find the missing message, it knows that the publisher did not
respect the properties of the channel. Indeed, the missing messages should at least be available
in the distributed ledger. The subscriber can present Mj and Mi to SUPRA’s smart contract to
accuse the publisher. The publisher is unable to present proof of delivery for the missing message,
since the subscriber never received them, and is penalized.

The publisher is always capable of defending itself if the subscriber does a fake accusation. If
the subscriber is lying, the supposedly missing messages can not have been exchanged on-chain,
otherwise, the smart contract easily found them in the ledger. This means that the publisher
received an acknowledgment for the missing messages. Since each message has a dependency on
the previous message, acknowledgments are cumulative. Let be ACKk the last acknowledgment
from the subscriber. If the publisher presents Mk and ACKk to the judge it will prove that the
subscriber is lying because Tj < Tk. This proves that the subscriber is lying because the timestamp
inside the message is superior to the timestamp inside the message presented by the subscriber.
This means that the subscriber was aware of a further state in the chain of signatures, and is
lying. To defend themselves against fake accusations and because the protocol assumes that two
different messages can not have the same timestamp, the managers have to store, for each active
subscription, the last explicitly acknowledged message and the triple handshake.

Compared to other publish/subscribe protocols using the blockchain, SUPRA reduces the
number of messages sent in the ledger. Indeed, in the best-case scenario, the managers just send
one message on-chain, the public key declaration, then all the messages are exchanged off-chain.

5

In the worst-case scenario, all the messages are sent on-chain, which is what is done in the other
propositions [8,9]. The protocol uses the blockchain as a trusted third party. Anybody can check
if the ledger is correctly handled by the network of nodes. On top of the unidirectional channel,
the blockchain is used to resolve conflicts between managers, and SUPRA uses a smart contract
to detect managers who do not respect the protocol.

3.3 Scalability issue

The functionalities of SUPRA are split into 5 modules. The most important module is the pub-
lishing module. Once the subscription is set up, the publisher uses this module to send data to
the subscribers. The most used message in the protocol is the one named “data publication” and,
in this section, we will see why this message creates a scalability issue.

For the rest of the paper, we assume that there are N subscribers for the topic TN . Each
subscriber is identified by a unique number Sub, with 0 ≤ Sub < N . In Figure 3, we can observe
the message Mi that the publisher has to create to publish data D to the N subscribers in SUPRA.
The message is the concatenation of:

• Ti: timestamps of Mi.

• Sub: the identifier of the subscriber.

• Pub: the identifier of the publisher. It is used by the receiver to retrieve the public key used
to sign the message.

• ASub: the alias for the topic name TN . This value is used to identify multiple subscriptions
between the same publisher and the same subscriber without using the topic name TN , just
like port numbers.

• EncSub(D): data D encrypted with the subscriber public key.

• Prei: the signature of the previous message.

• Si: the sender’s signature of the message.

This message has three fields that generate a scalability issue with the number of subscribers
N .

Indeed, Mi contains Sub, the identifier of the subscriber. This identifier is unique for each
subscriber. With this information, the smart contract can understand which managers are involved
in the communication. Since each identifier is unique, the publisher has to create N version of Mi

to share the same data D.
To avoid unauthorized entity to have access to D, the publisher encrypts data. In the current

version of SUPRA, the publisher uses the public key of Sub to encrypt D. Each subscriber links a
public key to its identifier in the distributed ledger. The public key of each subscriber is unique. It
forces the publisher to do N encryption operations for D and it creates N versions of EncSub(D),
one for each subscriber.

ASub is used to identify active subscriptions between a publisher and its subscribers. This
value is set during the triple handshake between the subscriber and the publisher and is chosen by
the subscriber. ASub is coded on 2 bytes, which means that it is very unlikely that subscribers to a
given topic have the same alias. At the same time, it can happen that two subscribers to different
topics chose the same alias, which is something we want to avoid (with a numerical analysis1,
if more than 302 subscribers choose a value independently and uniformly at random, there is a
probability more than 1

2 that at least two will choose the same).
Because of these three fields, the value of Si cannot be equal in each subscription to the same

topic TN , and by extension the value Prei. Since there is N versions of the message Mi, the

1It is known that the probability that at least a collision occurs is 1− 216!
(216−N)!·216N (known as the Birthday

problem), which is greater than 1
2
when N ≥ 302.

6

2-4 timestamp UUID src alias new key
(asymetricaly encrypted)

previous
signature signature

Symetric key update

UUID dest

Figure 4: Symmetric key sharing message in SUPRA

Subscription 1

Subscription N

N subscriber with N chains of
signatures

N subscribers with 1 chain of signatures

Figure 5: Schematic representation of signature synchronisation.

publisher has to do N signature operations. This idea is against the publish/subscribe model. In
this model, the publisher and the subscriber are loosely coupled, they do not know each other, and
the publisher should not do actions specific for each subscriber. In the current version of SUPRA,
the publisher has to generate N messages for the same data, encrypted N times, and sign each
version. For these reasons, we consider that the protocol does not scale well with the number of
subscribers and does not respect the publish/subscribe model.

To make SUPRA scalable with the number of subscribers, we will present how to synchronize
the signatures between subscriptions for the same topic.

4 Signature synchronisation

In this section, we present how SUPRA can be modified to reduce the number of signatures and
encryption operations to 1 for each data, no matter the number of subscribers. We showed in the
previous section that

Mi = Ti||Sub||Pub||ASub||EncSub(D)||Prei||Si

is different for each subscriber Sub (despite the fact that the data D is the same).
A schematic idea of our solution is presented in Figure 5. If we want to make SUPRA scalable,

we have to find a solution to make Si equal for all subscribers. This means that from N chains of
signature, the publisher can synchronize the subscriptions to the same chain of signature. To do
so, we need to prove two things:

• R1: The first message M1 after the synchronization is the same for every subscriber.

• R2: if the message Mi is the same for every subscriber, then the message Mi+1 will also be
the same for every subscriber.

4.1 Solution Details

Removing the Sub field from the message Sub is the unique identifier of the subscriber. To
resolve our scalability issue, we are forced to remove this field from the data publication. Indeed, if
we let this field in the message, two signatures for two subscribers must be different. In section 4.2,
we prove that removing this field from the message does not affect the traceability of the protocol
and that the judge smart contract can still work without this information.

7

Using a symmetric key to encrypt the data As long as data are asymmetrically encrypted,
it is impossible to synchronize the subscriptions, because each public key creates a different value
for EncSub(D). In Figure 4, we present a new control message. This message allows the publisher
to securely share a symmetric key K with the subscriber. The symmetric key is encrypted with
the public key Sub. By sharing the same symmetric key K with all subscribers, the publisher only
has to encrypt the data D one time by using the key K.

Let the publisher chose the topic Alias In the previous triple handshake (that occurs when
opening a subscription), the subscriber chooses the value ASub. Now, to make sure that this value
is equal for all subscriptions to the same topic, we have to update the handshake and let the
publisher choose it. We will refer as APub the alias chosen by the publisher for the topic TN .

The new message format for a data publication is

Mi = Ti||Pub||APub||EncK(D)||Prei||Si.

Since the message does not contain information about the subscriber, if the publisher can create
one version Mi that is the same for all subscribers, then the message Mi+1 will also be the same
for all the subscribers (rule R2). Currently, if we denote M1 the first message that the publisher
uses to share data D, Pre0 is the signature of the last message of the handshake used to set up the
subscription. This signature is made by the subscriber and each subscriber has a unique public
key, so there will be N version of Pre0.

Allow Pre signature overwrite In order for all the subscribers to start with the same message
M1, we present a new control message, named Signature overwrite SigOver, to set the same value
for Pre0 between the N subscribers. The message has this format

SigOver =

TSigOver||Sub||Pub||APub||SOver||PreSigOver−1||SSigOver

Sub, Pub, and APub identify the subscription. TSigOver is the timestamp of the message, PreSigOver−1
is the signature of the previous message in the chain, and SSigOver is the signature of the all the
previous fields concatenated.

The message contains the value SOver that is used in the next data publication as the value for
Prei. This message allows the manager to set the rule R1 at any time, as illustrated in Figure 6.
In the figure, we can observe that M1 uses the value indicated in the signature overwrite as Pre0
and not SN+1. Before the message, the publisher has a chain of signatures with each subscriber.
Then, after the publisher overwrite the Pre signature with the same value S0 for all subscribers,
the publisher ends up with one chain of signatures for all subscribers. This idea is represented in
Figure 7. In this figure, we can observe that the publisher shares the same value S3 between all
subscribers. By doing so, it synchronizes the N chains of signatures into one unique chain.

The proposition can be optimized by adding the values of K and S0, directly in the triple
handshake, but it is still important to be able to do these actions outside of the triple handshake.
For instance, when the publisher wants to update the symmetric key (if there is a risk of leakage),
without stopping and reopening every subscription.

4.2 Security

In this section, we explain why the signature synchronization process does not change the security
properties of SUPRA.

4.2.1 Reuse acknowledgements

In SUPRA, messages are acknowledged explicitly by the subscriber or implicitly when they are
added in a block. If the subscriber explicitly acknowledges the message, it signs the signature

8

Pub SN-1 SN

MN

TN APub EncK(D)

Pub SNTN+1 APubSub S0 SN+1

Pub S0 S1

M1

T1 APub EncK(D)

Signature overwrite

Figure 6: Example of signature overwriting

Subscription 1

N subscriber with N chains of
signatures

N subscribers with 1 chain of signaturesN signature overwritting

Pub S0 S1T1 Pub S1T2 APubSub1 S3 S2

Pub S3 S4T3

Pub S1'T2 APubSubN S3 S2'

APub EncK(D1)

Subscription N

Pub S0' S1'T1 APub EncK(D1)

APub EncK(D2)

Figure 7: Synchronisation between several subscriptions.

of the message. Since we add a new message to overwrite signatures, one could ask whether the
publisher can reuse an acknowledgment from the subscriber for another message on the same topic.

Recall that an acknowledgment implicitly acknowledges the previous messages on the same
topic received by a subscriber. However, an acknowledgment for a message Mi should not be used
directly for another message, or the same message for another subscriber.

Lemma 1. Let Mi and Mi′ be two messages, and let ACKi,k be the acknowledgement of mes-
sage Mi by subscriber Subk. Then, ACKi,k is not an acknowledgement of message Mi′ , for any
subscriber Subk′ , with (i, k) 6= (i′, k′).

Proof. Assume for the sake of contradiction that ACKi,k is an acknowledgement for message Mi′ ,
for a subscriber Subk′ , with (i, k) 6= (i′, k′).

First, if the messages have different topics, hence different topic alias, then their signatures are
also different. This implies that Mi and Mi′ have the same topic alias.

Since Mi and Mi′ have the same topic alias, if i 6= i′, then their associated timestamp are
different, say Ti < Ti′ . With these different timestamps, the signatures of the two messages are
different, and so are their acknowledgment.

If i = i′, then k 6= k′. In this case, by definition, ACKi,k is the signature by Subk of the
signature Si of the message Mi. Hence ACKi,k cannot be the signature of Si by another subscriber
Sk′

4.2.2 Data access on-chain

When the acknowledgment from the subscriber takes too much time, to deliver the message before
Tacknowledged , the publisher sends the message on-chain. With our modifications, there is no
information directly related to the subscribers inside the data publication, and the payload is
symmetrically encrypted with the key K. One cannot decrypt the data without knowing this key.
With our modification, we also reduce the number of messages on-chain. In the first version of the

9

protocol, each message Mi is different for each subscriber, so if n subscribers do not send ACKi

in time, the publisher has to send n messages on-chain. Now, since there is only one version of
Mi, the publisher just has to send Mi in the distributed ledger and the n subscribers will retrieve
the message.

Subscriptions can be open, but they can also be closed. A former subscriber still has the key
K, which means that it can decrypt the payload of messages present in the distributed ledger,
without subscribing to the topic. To avoid such a scenario, good practice from a publisher’s point
of view is to update the symmetrical key at each unsubscriptions. However, this can lead to a
lot of updates, when subscribers come and go quickly. Another technique is to set a threshold
value for the unsubscriptions, when this value is reached, the publisher updates the key. This
technique introduces a trade-off between the update rate of the symmetric key and the risk for
former subscribers to decrypt messages in the ledger.

4.2.3 Conflict resolution with the smart-contract

SUPRA uses a smart contract to detect publishers who do not deliver messages in time. By
comparing the signatures in the last received message and a new message, the subscriber can detect
if a message is missing. If the subscriber is unable to find the missing message after Tacknowledged ,
it knows that the publisher did not respect the protocol, because the message should at least be
in the distributed ledger.

To prove that the publisher did not respect the protocol, the subscriber has to present the
two messages used to detect the missing message. In our proposition, we remove the identifier of
the subscriber from the message, but it is still possible for the subscriber Sub to prove that any
message Mi is from an active subscription with the publisher Pub.

The publisher and the subscriber do a handshake to set up the subscription. During this phase,
the publisher indicates the alias APub used for the subscription. This value is then added to all
the messages from the subscription. The handshakes of active subscriptions have to be stored by
the managers. When the subscriber presents the two messages used to detect an error, it also
presents the handshake to prove that there is an active subscription. The repetition of APub and
Pub in all messages proves that the messages are from the same subscription.

Lemma 2. If a subscriber Sub has an active subscription with publisher Pub and receives two
messages Mi and Mj with i + 1 < j, and does not receive messages Mi′ , i < i′ < j before time
Tj + Tacknowledged , then Sub can accuse Pub of not respecting the protocol.

Proof. Sub does not know how many messages are missing between Mi and Mj but by showing
Mi and Mj to the judge smart-contract, everyone can see the mismatch between the previous
signature Prej in Mj and the signature Si of message Mi. Showing the acknowledgment of the
subscription message proves that the subscription is open. If the subscription is still open, the
publisher cannot show a closing subscription to defend itself. If the messages Mi′ , i < i′ < j, are
not all on the distributed ledger and the publisher does not have the acknowledgments Acki′,Sub

for those messages from Sub (which is the case since Sub did not receive those messages), then
the publisher has no way to defend itself. The publisher indeed did not follow the protocol and
the accusation is successful.

4.2.4 Preventing false accusation

Lemma 3. If a publisher Pub follows the protocol, it can always defend itself against any accu-
sation.

Proof. Assume that a subscriber Sub accuses Pub of not delivering a message before Tacknowledged .
In the worst-case Sub has access to all the messages sent by Pub to Sub and other subscribers with
other topics. To start the accusation Sub has to send a message Mj to the judge smart contract,
accusing Pub of not sending the previous message Mj−1 before Tj−1 + Tacknowledged . Sub also
sends the subscription acceptation message from Pub to show that the subscription is open. To

10

be valid, the Message Mj must have the same topic alias as the subscription acceptation message.
Since the publisher followed the protocol correctly, this topic alias is unique and is not used for
another topic so the message Mj is indeed addressed to Sub.

First, if the subscription is closed (correctly), the publisher either has an acknowledgment,
from Sub, of the closing subscription message, or this message is in the distributed ledger. In this
case, the publisher can defend itself.

Otherwise, if the subscription is still open, for every message Mi older than Tacknowledged , the
publisher, which follows the protocol, either has received an acknowledgment or the message has
been included in the distributed ledger. In both cases, it can defend itself against the accusation.

5 Conclusion and future works

The loose coupling property of the publish/subscribe paradigm makes this communication model
interesting for one to many communications. On the other hand, the broker introduced by the
model creates threats that need to be handled before exchanging sensitive data through it. The
propositions relying on E2E security present how data can be protected from unwanted access and
alteration, even from the broker. Unfortunately, it is difficult to present trust guarantees in the
third party used to add security between the publisher and the subscriber.

The blockchain, which is by design decentralized, can be used as a trusted third party in a
publish/subscribe system. This is the case in SUPRA, a publish/subscribe protocol using the
blockchain. However, the protocol is not scalable with the number of subscribers, based on the
publish/subscribe model. In this paper, we explain how SUPRA can be updated to be scalable
with the number of subscribers while keeping the security in the system.

Compared to other publish/subscribe protocols with blockchain usage, SUPRA reduces the
number of fees for the users. In future work, we want to find a method to make the solution
profitable for the publisher. Currently, the publisher has to pay fees for each message send on-
chain. By using ideas from [7], we want to propose a method for the publisher to sell data to the
subscribers, and reduce the impact of the transaction fees.

References

[1] Jean-Philippe Abegg, Quentin Bramas, Timothée Brugière, and Thomas Noël. Supra, a
distributed publish/subscribe protocol with blockchain as a conflict resolver, 2021.

[2] Cristian Borcea, Yuriy Polyakov, Kurt Rohloff, Gerard Ryan, et al. Picador: End-to-end
encrypted publish–subscribe information distribution with proxy re-encryption. Future Gen-
eration Computer Systems, 71:177–191, 2017.

[3] Markus Dahlmanns, Jan Pennekamp, Ina Berenice Fink, Bernd Schoolmann, Klaus Wehrle,
and Martin Henze. Transparent End-to-End Security for Publish/Subscribe Communication
in Cyber-Physical Systems, volume 1. Association for Computing Machinery, 2021.

[4] Patrick Th Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne Marie Kermarrec. The
Many Faces of Publish/Subscribe. ACM Computing Surveys, 35(2):114–131, 2003.

[5] Sam Kumar, Yuncong Hu, Michael P. Andersen, Raluca Ada Popa, and David E. Culler.
Jedi: Many-to-many end-to-end encryption and key delegation for IoT. Proceedings of the
28th USENIX Security Symposium, pages 1519–1536, 2019.

[6] Shrideep Pallickara, Marlon Pierce, Harshawardhan Gadgil, Geoffrey Fox, Yan Yan, and
Yi Huang. A framework for secure end-to-end delivery of messages in publish/subscribe
systems. In 2006 7th IEEE/ACM International Conference on Grid Computing, pages 215–
222, 2006.

11

[7] R. Radhakrishnan and B. Krishnamachari. Streaming data payment protocol (sdpp) for the
internet of things. pages 1679–1684, 2018.

[8] Gowri Sankar Ramachandran, Kwame-Lante Wright, and Bhaskar Krishnamachari. Trinity:
A Distributed Publish/Subscribe Broker with Blockchain-based Immutability. pages 1–8,
2018.

[9] Gowri Sankar Ramachandran, Kwame Lante Wright, Licheng Zheng, Pavas Navaney, Muham-
mad Naveed, Bhaskar Krishnamachari, and Jagjit Dhaliwal. Trinity: A byzantine fault-
tolerant distributed publish-subscribe system with immutable blockchain-based persistence.
ICBC 2019 - IEEE International Conference on Blockchain and Cryptocurrency, pages 227–
235, 2019.

[10] Satoshi. Bitcoin: A peer-to-peer electronic cash system. pages 1–9, 2008.

12

