

Ten questions in linear dynamics Sophie Grivaux

To cite this version:

Sophie Grivaux. Ten questions in linear dynamics. J. Zemánek; Y. Tomilov. Etudes opératorielles, 112, Banach Center Publications, pp.143 - 151, 2017. hal-03979707

HAL Id: hal-03979707 <https://hal.science/hal-03979707v1>

Submitted on 8 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TEN QUESTIONS IN LINEAR DYNAMICS

by

Sophie Grivaux

Abstract. — Linear dynamical systems are systems of the form (X, T) , where X is an infinite-dimensional separable Banach space and $T \in \mathcal{B}(X)$ is a bounded linear operator on X. We present and motivate ten questions concerning these systems, which bear on both topological and ergodic-theoretic aspects of the theory.

1. Introduction

The study of linear dynamics is the study of dynamical systems of the form (X, T) , where X is a separable real or complex infinite-dimensional Banach space and $T \in \mathcal{B}(X)$ is a bounded linear operator on X. One investigates the behaviour of the iterates of T^n , $n \geq 0$, of T, and the properties of the orbits $Orb(x,T) = \{T^n x; n \geq 0\}$ of vectors x of X are of special interest. Roughly speaking, one may look at these dynamical systems from two different points of view:

— from the topological point of view: if U is a non-empty open subset of X, what can be said about the iterates $T^n(U)$ of this open set? A basic notion in the setting is that of topological transitivity: T is *topologically transitive* if, whenever U and V are two non-empty open subsets of X, there exists an integer $n \geq 0$ such that $T^{n}(U) \cap V$ is non-empty. Topological transitivity of T is equivalent to the fact that T is hypercyclic, i.e. that it admits a vector $x \in X$ whose orbit under the action of T is dense in X. Such vectors with dense orbits are called *hypercyclic vectors* for T , and the set of these vectors is usually denoted by $HC(T)$.

— from the measure theoretic point of view: if β denotes the σ -algebra of Borel subsets of X and m is a Borel probability measure on X, one may consider T as a measurable transformation from (X, \mathcal{B}, m) into itself. The game is then the following: given an operator $T \in \mathcal{B}(X)$, when is it possible to construct such a measure m which is invariant by T (i.e. such that $m(T^{-1}A) = m(A)$ for every $A \in \mathcal{B}$), and with respect to which T defines an ergodic transformation? Recall that T is said to be *ergodic* if whenever $A, B \in \mathcal{B}$ are

²⁰⁰⁰ Mathematics Subject Classification. — 47A16, 37A25, 37B20.

Key words and phrases. — Linear dynamical systems, hypercyclic and frequently hypercyclic operators, Hypercyclicity Criterion, ergodic and weakly mixing transformations, non-recurrence sets.

two sets such that $m(A) > 0$ and $m(B) > 0$, there exists an integer $n \geq 0$ such that $m(T^{-n}A \cap B) > 0.$

Of course, topological and measurable dynamics are not two independent branches of dynamics, and there is a strong interplay between them. Here is a typical instance of such a phenomenon: suppose that $T \in \mathcal{B}(X)$ is such that it admits an invariant measure with respect to which it is ergodic, and that this measure m has full support in the sense that $m(U) > 0$ for every non-empty open subset U of X. Birkoff's ergodic theorem then implies that for every non-empty open subset U ,

$$
\frac{1}{N} \# \{ 1 \le n \le N \ ; \ T^n x \in U \} \to m(U) \quad \text{as } N \to +\infty \text{ for } m\text{-almost every } x \in X.
$$

It follows immediately from this that T is hypercyclic, but also that it enjoys a stronger property: for m-almost every $x \in X$,

$$
\underline{\text{dens}}\{n \ge 0 \; ; \; T^n x \in U\} = \underline{\lim}_{N \to +\infty} \frac{1}{N} \# \{1 \le n \le N \; ; \; T^n x \in U\} > 0
$$

for every non-empty open subset U of X . Vectors x enjoying this property are called frequently hypercyclic vectors, and when such vectors exist, T itself is called a frequently hypercyclic operator.

This is only a very brief introduction to some key concepts in linear dynamics, and for more information the reader is referred to one of the following references: the survey [19] presents a detailed picture of hypercyclicity and universality issues until the 90's, and the lectures [29] by J. Shapiro give a very accessible introduction to linear topological dynamics. The two recent books [7] and [20] are references in the subject and contain a lot of material. The book [20] focuses on topological issues and contains a chapter on frequent hypercyclicity, where some results bearing on this subject are proved without having recourse to the ergodic-theoretic approach. The book [7] is more advanced, and the reader will find here in particular a presentation of linear dynamical systems from the measure-theoretic point of view.

My goal here is to present and motivate ten questions in linear dynamics. Some of them are definitely hard, while some others ought to be more accessible. This paper does not aim at making a list of all open questions in linear dynamics, and the questions I selected simply reflect my own interests. They are organized around three main topics: the Hypercyclicity Criterion, frequent hypercyclicity, and non-recurrence for weakly mixing systems.

2. Questions around the Hypercyclicity Criterion

One of the major open questions in hypercyclicity theory, which was answered in 2006 by De la Rosa and Read $[13]$, was to know whether every hypercyclic operator T satisfied the so-called Hypercyclicity Criterion. The Hypercyclicity Criterion is a powerful tool for showing that an operator is hypercyclic, and its first version was given in Kitai's thesis in 1970. Many improvements and equivalent formulations were obtained afterwards, and we state here the most general version of the Hypercyclicity Criterion, which is due to Bès and Peris [11]:

Suppose that there exist two dense subsets D_1 and D_2 of X, a strictly increasing sequence $(n_k)_{k\geq 0}$ of integers and a sequence $(S_{n_k})_{k\geq 0}$ of maps from D_2 into X such that

- (i) $T^{n_k}x \to 0$ as $k \to +\infty$ for every $x \in D_1$;
- (ii) $S_{n_k} y \to 0$ as $k \to +\infty$ for every $y \in D_2$;
- (iii) $T^{n_k} S_{n_k} y \to y$ as $k \to +\infty$ for every $y \in D_2$.

Then T is hypercyclic, and moreover the direct sum $T \oplus T$ is hypercyclic on the space $X \oplus X$ (that is, $X \times X$ endowed with the norm $||(x, y)|| = max(||x||, ||y||)$ for instance, or with any equivalent norm).

It was shown by Bès and Peris in $[11]$ that T satisfies the Hypercyclicity Criterion if and only if $T \oplus T$ is hypercyclic. Until 2006, every known hypercyclic operator satisfied the Hypercyclicity Criterion, and the question was to know whether the fact that T was hypercyclic implied automatically that $T \oplus T$ was hypercyclic or not. De la Rosa and Read constructed in 2006 a counterexample [13], and shortly afterwards, Bayart and Matheron improved this counterexample and showed in [7] that many classical spaces, such as $\ell_p(N)$ or $c_0(N)$ (in particular the Hilbert space) supported a hypercyclic operator which did not satisfy the Hypercyclicity Criterion. Then Shkarin obtained in 2010 in [30] an example of an operator T on a Banach space of the form $T = I + Q$, with Q a quasinilpotent operator, such that $T \oplus T$ was not hypercyclic. This enabled him to give an example of a hypercyclic C_0 -semigroup $(T_t)_{t\geq0}$ of operators on a Banach space such that the direct sum $(T_t \oplus T_t)_{t>0}$ was not hypercyclic. Shkarin's construction is carried out on an ad-hoc Banach space, and the following question from [30] is quite natural:

Question 2.1. $-$ [30] Does there exist an operator T on a Hilbert space H such that T is hypercyclic, the spectrum $\sigma(T)$ of T is reduced to the singleton $\{1\}$, and $T \oplus T$ is not hypercyclic?

The operators of [30] are quasinilpotent perturbations of the identity, and one might wonder whether it is possible to construct such counterexamples as compact, or even nuclear, perturbations of the identity. That such operators can be constructed does not seem clear at the moment, as being compact is a much stronger requirement than being quasinilpotent. An analogy (which has perhaps nothing to do with the matter at hand) is that, while there exist quasinilpotent operators on certain Banach spaces which have no non-trivial invariant closed subspace [26], it is known by a result of Lomonosov [24] that a compact operator always has a non-trivial closed invariant subspace. Let us summarize this as Question 2.2:

Question 2.2. — Let T be a hypercyclic operator on a Banach space X, where T can be written as $T = I + K$ with K a compact operator. Does T necessarily satisfies the Hypercyclicity Criterion?

If the answer to Question 2.2 were affirmative, the pathological spaces constructed recently by Argyros and Haydon [1] would give examples of spaces on which every hypercyclic operator automatically satisfies the Hypercyclicity Criterion (as every operator on one of these spaces has the form $\lambda I + K$, where λ is a scalar and K is a compact operator).

3. Questions around frequent hypercyclicity

Let us begin this section with a well-known heuristic statement: dynamics of linear operators, especially in the aspects connected to ergodic theory, are very much influenced by the properties of the eigenvectors of the operator. This was first discovered by Godefroy and Shapiro, who produced in [18] their well-known criterion that if the eigenvectors of an operator T associated to eigenvalues of modulus greater than 1 and smaller than 1 respectively, span a dense subspace of the space, then T is hypercyclic. This was developed by Bourdon and Shapiro in [12], and then in the works [4], [5], [6]. The notion of frequent hypercyclicity was introduced and studied there, and the study of operators from the ergodic-theoretic point of view was also developed there, bulding on early work of Flytzanis [16]. The story went on afterwards, and I will only state one result which is a concoction of results of $[5]$, $[6]$, $[7]$, $[21]$, and $[8]$:

Let X be any complex separable infinite-dimensional Banach space, and $T \in \mathcal{B}(X)$ an operator whose unimodular eigenvectors (i.e. eigenvectors associated to eigenvalues of modulus 1) satisfy the following assumption:

if D is any countable subset of the unit circle \mathbb{T} , the linear span of the

 (\star) eigenvectors of T associated to eigenvalues λ which belong to $\mathbb{T} \setminus D$ is dense in X.

Then there exists a (Gaussian) measure m on X with full support such that T defines an ergodic (actually, weakly mixing) transformation of (X, \mathcal{B}, m) . In particular, T is frequently hypercyclic. When X is a Hilbert space, the reverse of this implication holds true, and $T \in \mathcal{B}(H)$ is weakly mixing ??with respect to a Gaussian measure with full support if and only if it satisfies assumption (\star) .

Our first question, which comes from Flytzanis's paper [16] is a rather intriguing one: a much weaker form of the statement above, which is easily obtained by combining results from [4] and [21], is that if assumption (\star) is satisfied for an operator $T \in \mathcal{B}(X)$, then T is hypercyclic. Of course, any operator satisfying (\star) has uncountably many eigenvalues of modulus 1, and these eigenvectors span a dense subspace of X. The surprising fact is that the answer to the following question is unknown:

Question 3.1. $-$ [16] Does there exist a hypercyclic operator T on a complex Banach space X whose unimodular eigenvectors span a dense subspace of X , but which has only countably many eigenvectors?

One does not know either of any example of an operator which would be hypercyclic, have spanning unimodular eigenvectors, but which would not satisfy assumption (\star) above.

A related question of [21] involving frequent hypercyclicity is:

Question 3.2. $-$ [21] Suppose that T is a hypercyclic operator whose unimodular eigenvectors span a dense subspace of X . Is T necessarily frequently hypercyclic?

Question 3.2 is interesting in particular for chaotic operators (and was stated first in this context in [5]), which are hypercyclic operators with a dense set of periodic points. It is not too difficult to see that an operator $T \in \mathcal{B}(X)$ is chaotic if and only if it is hypercyclic and its eigenvectors associated to eigenvalues which are N-th roots of 1 span a dense subspace of X.

That the links between properties of the unimodular eigenvectors and frequent hypercyclicity are still not so well understood is attested anew by another question: it is known that frequently hypercyclic operators need not have any unimodular eigenvalue. Two examples of such operators are given in [6] and they live on the spaces $c_0(N)$ and $C_0[0,1]$ (continuous functions on $[0, 1]$ which vanish at the point 0) respectively. These two examples thus live on non-reflexive spaces, and for the time being one cannot rule out the possibility that on a Hilbert space (perhaps on a reflexive space), frequently operators are exactly those which satisfy assumption (\star) .

Question 3.3. — Let X be a reflexive complex separable Banach space, and let $T \in \mathcal{B}(X)$ be a frequently hypercyclic operator on X. Does T have unimodular eigenvectors? Is assumption (\star) necessarily satisfied?

Question 3.3 shows the necessity of a better understanding of the properties of individual orbits of frequently hypercyclic vectors. More precisely, suppose that $x \in X$ is a frequently hypercyclic vector for an operator T on a complex Banach space X . In all the cases where x is obtained from an ergodic-theoretic argument relying on the Birkoff's Theorem, x enjoys a stronger property than the one defining frequent hypercyclicity: if $(U_p)_{p>1}$ denotes a basis of the topology consisting of non-empty open sets, x is constructed in such a way that the density of the set $\{n \geq 0 : T^n x \in U_p\}$ exists and is positive. The orbit of x is thus "regular" in some sense, and a first step towards the obtention of pathological frequently hypercyclic operators would be the construction of "irregular orbits". For instance:

Question 3.4. \qquad Let X be a (reflexive) separable Banach space. Can we construct an operator $T \in \mathcal{B}(X)$ for which there exists a frequently hypercyclic vector $x \in X$ such that

$$
\underline{\text{dens}}\left\{n \ge 0; \ T^n x \in U\right\} < \overline{\text{dens}}\left\{n \ge 0; \ T^n x \in U\right\}
$$

for some (every) non-empty open subset U of X ? Or such that

 $\overline{\text{dens}}\left\{n \geq 0; \ T^n x \in U\right\} = 1$

for some (every) non-empty open subset U of X ?

One can also try to understand the notion of an irregular orbit in a different way:

Question 3.5. — Let X be a (reflexive) separable Banach space. Is it possible to construct an operator T on X which admits a frequently hypercyclic vector $x \in X$ such that $T^n x \to 0$ along a subset D of N of positive lower density? Or such that $||T^n x|| \to 1$, $n \in D$, or $||T^n x|| \to +\infty$, $n \in D$, where D is again a subset of N of positive lower density?

It is probably possible to construct such operators on $c_0(\mathbb{N})$, for instance. Good candiates would be weighted shifts of the kind which is used in [6] to obtain a frequently hypercyclic operator which has no eigenvectors. But the answers to Questions 3.4 and 3.5 when X is a space $\ell_p(\mathbb{N})$ for instance $(1 \leq p < +\infty)$ are less easy to conjecture, especially in view of a recent result of Bayart and Rusza [9] that a weighted unilateral shift on $\ell_p(\mathbb{N})$

is frequently hypercyclic if and only if it satisfies assumption (\star) . This is an additional reason for conjecturing a positive answer to Question 3.3.

We finish this section with an open question about the spectrum of frequently hypercyclic operators:

Question 3.6. — Which compact subsets K of $\mathbb C$ can be realized as the spectrum of a frequently hypercyclic operator?

A compact subset K of $\mathbb C$ can be realized as the spectrum of a hypercyclic operator on a complex Hilbert space if and only if every connected component of K intersects the unit circle [31]. On the contrary, it is shown by Shkarin in the same paper [31] that no operator T on a Banach space X whose spectrum contains an isolated point can be frequently hypercyclic. This is the case for instance of any operator T such that $\sigma(T) = \{1\}$. But it is not known if the spectrum of a frequently hypercyclic operator can coincide with the set [0, 2], for instance. Again, the answer to this question is obviously no if the answer to Question 3.3 turns out to be affirmative, at least for operators on the Hilbert space. Conversely, an operator T on a Hilbert space with $\sigma(T) = [0, 2]$ cannot satisfy assumption $(\star).$

4. Questions around non-recurrence for weakly mixing systems

Before stating our questions on this topic, a few reminders about weakly mixing sytems are in order. Recall that Birkoff's ergodic theorem implies that T is ergodic if and only if

$$
\lim_{N \to +\infty} \frac{1}{N} \sum_{n=1}^{N} m(T^{-n}A \cap B) = m(A) m(B) \text{ for every sets } A, B \in \mathcal{B}.
$$

A (much) stronger notion than ergodicity is that of strong mixing: here one requires that $m(T^{-n}A\cap B)\to m(A) m(B)$ as $n\to +\infty$. Intuitively, the two events $T^{-n}A$ and B become asymptotically independent as n tends to infinity: $m(T^{-n}A\cap B)$ becomes closer and closer to $m(T^{-n}A) m(B) = m(A) m(B)$. In between these two notions of ergodicity and strong mixing stands the notions of weak-mixing: T is *weakly mixing* if

$$
\lim_{N \to +\infty} \frac{1}{N} \sum_{n=1}^{N} |m(T^{-n}A \cap B) - m(A) m(B)| = 0 \text{ for every } A, B \in \mathcal{B},
$$

or equivalently if for each sets $A, B \in \mathcal{B}$, $m(T^{-n}A \cap B) \to m(A) m(B)$ as n tends to infinity along a certain subset D of N of density 1. Also, T is weakly mixing if and only if $T \times T$ is ergodic on $(X \times X, \mathcal{B} \otimes \mathcal{B}, m \otimes m)$. For more information about such notions and examples of weakly mixing systems, the reader can consult one of the books [32], [17], or [23]. In the setting of linear dynamical systems, an operator T on a complex Hilbert space is weakly mixing with respect to a Gaussian measure with full support if and only if its unimodular eigenvectors satisfy assumption (\star) [5].

The Poincaré recurrence theorem states that whenever T is a measure-preserving transformation of (X, \mathcal{B}, m) and $A \in \mathcal{B}$ is such that $m(A) > 0$, there exists an integer $n \ge 1$ such that $m(T^{-n}A\cap A) > 0$; in other words, the set N is a recurrence set for any measurepreserving transformation. If D is an infinite subset of \mathbb{N}, D is called a *recurrence set* if for any measure-preserving system $(X, \mathcal{B}, m; T)$ and any $A \in \mathcal{B}$ with $m(A) > 0$, there exists an integer $n \in D$ such that $m(T^{-n}A \cap A) > 0$. If now $(n_k)_{k \geq 1}$ is a strictly increasing sequence of integers, we say that $\{n_k : k \geq 1\}$ is a non-recurrence set for the system $(X, \mathcal{B}, m; T)$ if there exists a set $A \in \mathcal{B}$ with $m(A) > 0$ such that $m(T^{-n_k}A \cap A) = 0$ for every $k \geq 1$.

It is not difficult to see that a non-recurrence set for a weakly mixing system must have density 0. Non-recurrence sets for weakly mixing systems have been investigated in the two papers [10] and [22], and it was shown for instance in [22], using linear dynamical systems, that sets $\{n_k\}$ such that n_k divides n_{k+1} for each $k \geq 1$ are non-recurrence sets for weakly mixing systems. A question of [10] is the following: if $\{n_k\}$ is a lacunary set, is it necessarily a non-recurrence set for some weakly mixing dynamical system? Recall that ${n_k}$ is called *lacunary* if there exists an $a > 1$ such that $n_{k+1}/n_k \ge a$ for each $k \ge 1$. Under this assumption, there exist uncountably many elements λ of the unit circle $\mathbb T$ such that $\inf_{k\geq 1} |\lambda^{n_k} - 1| > 0$ ([14], [25]), and so $\{n_k\}$ is clearly a non-recurrence set for some ergodic rotation of the unit circle. It would be very exciting to be able to generalize the methods of [22] to obtain an answer to the following question:

Question 4.1. — Let $\{n_k : k \geq 1\}$ be a lacunary set. Does there exist a linear dynamical system which is weakly mixing and non-recurrent with respect to the set ${n_k}$?

This does not seem to be easy. A way to approach this question would be to understand better operators which are partially power-bounded in the measure-theoretic sense. More precisely, recall that an operator T on a Banach space X is said to be partially powerbounded with respect to a sequence $(n_k)_{k\geq 1}$ if $\sup_{k\geq 1} ||T^{n_k}||$ is finite. Sequences $(n_k)_{k\geq 1}$ for which there exists a partially power-bounded operator T on a separable Banach space X with uncountable unimodular point spectrum are studied in [27], [28], [2], [3], and [15]. The following statement is proved in [15]:

There exists a weakly mixing transformation T of a complex separable Hilbert space H with $\sup_{k\geq 1} ||T^{n_k}|| < +\infty$ if and only if the sequence $(n_k)_{k\geq 1}$ has the following property: for every $\epsilon > 0$, there exists a $\lambda \in \mathbb{T}$ such that $\sup_{k \geq 1} |\lambda^{n_k} - 1| < \epsilon$. Such sequences are called non-Jamison sequences.

The philosophy of the non-recurrence results proved in [21] is the following: using the assumption on $(n_k)_{k\geq 1}$, one constructs a weakly mixing T such that the iterates T^{n_k} , $k\geq 1$ are controlled, and preferably tending in some sense to the identity operator (for instance if $(n_k)_{k\geq 1}$ is a non-Jamison sequence, one can construct a T with sup $||T^{n_k}|| < +\infty$, and with a little more work, one can manage to ensure, for a fixed $\varepsilon > 0$, that $\sup_{k \geq 1} ||T^{n_k}|| < 1 + \varepsilon$. Then, since $(n_k)_{k>1}$ is a lacunary sequence, one can find $\delta > 0$ and $\lambda_0 \in \mathbb{T}$ such that $|\lambda_0^{n_k} - 1| > \delta$ for all $k \ge 1$. The operator $S = \lambda_0 T$ is now weakly mixing, and if we have been careful enough, it will be non-recurrent with respect to the set ${n_k : k \geq 1}$. In order to be able to extend this method to larger classes of sequences, one ought to be able to find classes of sequences $(n_k)_{k>1}$ for which the answer to the following question is positive:

Question 4.2. — For which sequences $(n_k)_{k\geq 1}$ is it true that there exists a bounded operator T on a complex Banach (or Hilbert) space X which is weakly mixing with respect to some Gaussian measure m with full support, and such that $\sup_{k\geq 1}||T^{n_k}x||$ is finite for m-almost every $x \in X$?

References

- [1] S. ARGYROS, R. HAYDON, A hereditarily indecomposable \mathcal{L}_{∞} -space that solves the scalar-plus-compact problem, Acta Math. 206,(2011), pp $1 - 54$.
- [2] C. Badea, S. Grivaux, Unimodular eigenvalues, uniformly distributed sequences and linear dynamics, Adv. Math. 211 (2007), pp 766 – 793.
- [3] C. Badea, S. Grivaux, Size of the peripheral point spectrum under power or resolvent growth conditions, *J. Funct. Anal.* **246** (2007), pp $302 - 329$.
- [4] F. Bayart, S. Grivaux, Hypercyclicity and unimodular point spectrum, J. Funct. Anal. **226** (2005), pp $281 - 300$.
- [5] F. Bayart, S. Grivaux, Frequently hypercyclic operators, Trans. Amer. Math. Soc. **358** (2006), pp $5083 - 5117$.
- [6] F. Bayart, S. Grivaux, Invariant Gaussian measures for operators on Banach spaces and linear dynamics, *Proc. Lond. Math. Soc.* **94** (2007), pp $181 - 210$.
- [7] F. BAYART, É. MATHERON, Dynamics of linear operators, *Cambridge University Press* 179 (2009).
- [8] F. BAYART, É. MATHERON, Mixing operators and small subsets of the circle, preprint 2011, arXiv:1112.1289.
- [9] F. Bayart, I. Rusza, Difference sets and frequently hypercyclic weighted shifts, preprint 2011, arXiv:1305.2325.
- [10] V. BERGELSON, A. DEL JUNCO, M. LEMAŃCZYK, J. ROSENBLATT, Rigidity and nonrecurrence along sequences, preprint 2011, arXiv:1103.0905.
- [11] J. Bès, A. PERIS, Hereditarily hypercyclic operators, *J. Funct. Anal.* **167** (1999), pp 94 – 112.
- [12] P. BOURDON, J. SHAPIRO, Hypercyclic operators that commute with the Bergman backward shift, *Trans. Amer. Math. Soc.* **352** (2000), pp 5293 – 5316.
- [13] M. DE LA ROSA, C. READ, A hypercyclic operator whose direct sum $T \oplus T$ is not hypercyclic, *J. Oper. Theory* **61** (2009), pp $369 - 380$.
- [14] B. DE MATHAN, Sur un problème de densité modulo 1, C. R. Acad. Sci. Paris, 287 (1978) , pp $277 - 279$.
- [15] T. Eisner, S. Grivaux, Hilbertian Jamison sequences and rigid dynamical systems, J. Funct. Anal. 261 (2011), pp 302 – 329.
- [16] E. Flytzanis, Unimodular eigenvalues and linear chaos in Hilbert spaces, Geom. Funct. Anal. 5 (1995), pp $1 - 13$.
- [17] E. Glasner, Ergodic theory via joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI (2003).
- [18] G. GODEFROY, J. SHAPIRO, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), pp 229 – 269.
- [19] K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. *Math. Soc.* (*N.S.*) **36** (1999), pp 345 – 381.
- [20] K.-G. Grosse-Erdmann, A. Peris, Linear Chaos, Universitext, Berlin, Springer (2011).
- [21] S. Grivaux, A new class of frequently hypercyclic operators, to appear in Indiana Univ. Math. J..
- [22] S. Grivaux, Non-recurrence sets for weakly mixing linear dynamical systems, to appear in Erg. Th. Dyn. Syst., available at $http://dx.doi.org/10.1017/etds.2012.116$.
- [23] S. KALIKOW, R. MCCUTCHEON, An outline of ergodic theory, *Cambridge Studies in* Advanced Mathematics 122, Cambridge University Press (2010).
- [24] V. Lomonosov, Invariant subspaces for the family of operators which commute with a completely continuous operator, Funct. Anal. Appl. 7 (1974), pp $213 - 214$, translation from Funkts. Anal. Prilozh. 7 (1973), pp $55 - 56$.
- [25] A. D. POLLINGTON, On the density of sequences $(n_k\xi)$, *Illinois J. Math*, **23** (1979), pp $511 - 515.$
- [26] C. READ, Quasinilpotent operators and the invariant subspace problem, *J. Lond. Math.* Soc. II. Ser., 56 (1997), pp $595 - 606$.
- [27] T. RANSFORD, Eigenvalues and power growth, Israel J. Math., 146 (2005) pp 93 110.
- [28] T. Ransford, M. Roginskaya, Point spectra of partially power-bounded operators, J. *Funct. Anal.*, **230** (2006), pp $432 - 445$.
- [29] J. SHAPIRO, Notes on Dynamics of Linear Operators, available at the address http://www.math.msu.edu/˜shapiro/Pubvit/Downloads/LinDynamics/LynDynamics.html
- [30] S. SHKARIN, On the spectrum of frequently hypercyclic operators, *Proc. Amer. Math.* Soc. 137 (2009), pp $123 - 134$.
- [31] S. SHKARIN, Chaotic Banach algebras, preprint 2010.
- [32] P. WALTERS, An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79, Springer-Verlag, New-York, Berlin, 1982.

February 8, 2023

SOPHIE GRIVAUX, CNRS, Laboratoire Paul Painlevé, UMR 8524, Université Lille 1, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France • E-mail : grivaux@math.univ-lille1.fr