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ABSTRACT

Few-shot sound event detection is the task of detecting sound
events, despite having only a few labelled examples of the class
of interest. This framework is particularly useful in bioacoustics,
where often there is a need to annotate very long recordings but the
expert annotator time is limited. This paper presents an overview of
the second edition of the few-shot bioacoustic sound event detection
task included in the DCASE 2022 challenge. A detailed description
of the task objectives, dataset, and baselines is presented, together
with the main results obtained and characteristics of the submitted
systems. This task received submissions from 15 different teams
from which 13 scored higher than the baselines. The highest F -
score was of 60.2% on the evaluation set, which leads to a huge
improvement over last year’s edition. Highly-performing methods
made use of prototypical networks, transductive learning, and ad-
dressed the variable length of events from all target classes. Further-
more, by analysing results on each of the subsets we can identify the
main difficulties that the systems face, and conclude that few-show
bioacoustic sound event detection remains an open challenge.

Index Terms— Few-shot learning, bioacoustics, sound event
detection, DCASE challenge

1. INTRODUCTION
The task of bioacoustic sound event detection refers to the retrieval
of animal vocalisations from audio recordings in terms of onset
and offset times. It shares a common methodology with other
sound event detection (SED) contexts, yet, the application domain
of bioacoustics is particularly challenging for SED. Deep learning
contributed to overcome some of these difficulties in bioacoustic
SED, however it also established strong requirements regarding the
amount of annotated data needed [1]. Collecting and annotating a

large dataset of animal vocalisations is often not feasible given that
species are unequally abundant [2] and may be rarely observed; and
audio annotation is costly and time-consuming [3]. In contrast to
traditional deep learning approaches that use a large amount of data
to train models, few-shot learning tries to build accurate models
with very few training data [4]. Few-shot learning is usually studied
using N -way-k-shot classification, where N denotes the number of
classes and k the number of known examples for each class.

This problem was first evaluated as a task on the DCASE 2021
challenge [5]. This year, the setup and goal remain the same: Given
the first 5 events of a target class, can systems detect the subsequent
events of the same class in the remaining of the audio recording?
Diverse approaches have been used to address the few-shot learn-
ing problem for classification. Some use prior knowledge about
similarity between sounds by computing embeddings (learnt rep-
resentation spaces) designed to help discriminate between unseen
classes [4], while others exploit prior knowledge about the structure
of the data by using augmentation to synthesise new data [6]. Fi-
nally, some approaches can learn models with parameters that can
be fine-tuned to smaller datasets [7]. More recent works use meta-
learning and/or prototypical networks for acoustic few-shot learn-
ing [8], [9]. All of the above approaches deal with classification
tasks rather than detection. Indeed, SED in a few shot setup is com-
monly approximated as an audio tagging task and few works have
addressed the actual detection of onsets and offsets of events [10].
At last year’s task edition, the best ranked system improved over the
baseline prototypical approach by applying a transductive inference
method and a mutual learning framework designed to make the fea-
ture extraction network more task dependent [11]. The overall best
results were just below 40% F -score which indicates the difficulty
of this task. This year, we added more and diverse datasets, and
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increased the task difficulty (dataset diversity); yet the task dou-
bled the amount of participants and the best overall F -score in the
evaluation set reached the 60% level. This paper is structured as
follows. Section 2 presents the bioacoustic datasets used for devel-
oping and evaluating submitted systems. Section 3 presents the two
baseline methods proposed for the task, followed by the evaluation
procedure. Finally, section 4 presents the results of the submitted
systems and a discussion about the overall task and future steps in
the field of few-shot bioacoustic event detection.

2. DATASETS

A development dataset consists of predefined training and valida-
tion sets to be used for system development1. The training set con-
tains multi-class temporal annotations, provided for each recording
as: positive (POS), negative (NEG) and unknown (UNK). For the
validation set only single-class temporal annotations (POS/UNK)
were provided for each recording. A separate evaluation set was
kept for evaluating the performance of the systems2. During the
challenge, only the first five POS events of the class of interest were
provided for each of the recordings. Table 1 presents an overview
of all the datasets in the development and evaluation sets.

BirdVox-DCASE-10h (BV): This dataset contains audio files
recorded in 2015, during the fall migration season by four different
autonomous recording units located in Tompkins County, NY, USA.
An expert ornithologist, Andrew Farnsworth, has annotated flight
calls from four families of passerines, namely: American sparrows,
cardinals, thrushes, and New World warblers. These flight calls
have a duration in the range 50–150 ms and a fundamental fre-
quency in the range 2–10 kHz.

Hyenas (HT): Hyenas use a variety of types of vocaliza-
tions to coordinate with one another over both short and long dis-
tances. Spotted hyenas were recorded on custom-developed au-
dio tags designed by Mark Johnson and integrated into combined
GPS/acoustic collars (Followit Sweden AB) by Frants Jensen and
Mark Johnson. Collars were deployed on female hyenas of the
Talek West hyena clan at the MSU-Mara Hyena Project (directed by
Kay Holekamp) in the Masai Mara, Kenya as part of a multi-species
study on communication and collective behaviour. The recordings
contain 5 different vocalisations which were identified and classi-
fied into types based on the established hyena vocal repertoire [12].
Field work was carried out by Kay Holekamp, Andrew Gersick,
Frants Jensen, Ariana Strandburg-Peshkin, and Benson Pion; la-
belling was done by Kenna Lehmann and colleagues.

Meerkats (MT, ME): Meerkats are a highly social mongoose
species that live in stable social groups and use a variety of dis-
tinct vocalisations to communicate and coordinate with one another.
Recordings of meerkats were acquired at the Kalahari Meerkat
Project (Kuruman River Reserve, South Africa; directed by Marta
Manser and Tim Clutton-Brock), as part of a multi-species study on
communication and collective behaviour. Recordings of the training
set (MT) were recorded on small audio devices (TS Market, Edic
Mini Tiny+ A77, 8 kHz) integrated into combined GPS/audio col-
lars which were deployed on multiple members of meerkat groups.
Recordings of the validation set (ME) were recorded by an observer
following a focal meerkat with a Sennheiser ME66 directional mi-
crophone (44.1 kHz) from a distance of less than 1m. Recordings
were carried out during daytime hours while meerkats were primar-
ily foraging and include several different call types. Field work was

1Dev set: https://doi.org/10.5281/zenodo.6012309
2Eval set: https://doi.org/10.5281/zenodo.6517413

carried out by Ariana Strandburg-Peshkin, Baptiste Averly, Vlad
Demartsev, Gabriella Gall, Rebecca Schaefer and Marta Manser.
Audio recordings were labelled by Baptiste Averly, Vlad Demart-
sev, Ariana Strandburg-Peshkin, and colleagues.

Jackdaws (JD): Jackdaws are corvid songbirds that usually
breed, forage and sleep in large groups.In a multi-year field study
(Max-Planck-Institute for Ornithology, Seewiesen, Germany), wild
jackdaws were equipped with small backpacks containing minia-
ture voice recorders (Edic Mini Tiny A31, TS-Market Ltd., Russia)
to investigate the vocal behaviour of individuals interacting with
their group and behaving freely in their natural environment. Field
work was conducted by Lisa Gill, Magdalena Pelayo van Buuren
and Magdalena Maier. Sound files were annotated by Lisa Gill.

Western Mediterranean Wetlands Bird Dataset (WMW):
Contains bird sounds from 20 endemic species that are typically in-
habitants of the “Aiguamolls de l’Empordà” natural park in Girona,
Spain. The audio files that compose this dataset were originally
retrieved from the Xeno-Canto portaland were manually cleaned
and labelled by Juan Gómez-Gómez, Ester Vidaña-Vila and Xavier
Sevillano using the Audacity software [13].

HumBug (HB): Mosquitoes produce sound both as a by-
product of their flight and as a means for communication and mat-
ing. Fundamental frequencies vary in the range of 150 to 750 Hz
[14]. As part of the HumBug project, acoustic data was recorded
with a high specification field microphone (Telinga EM-23) cou-
pled with an Olympus LS-14. The recordings used in this challenge
are a subset of the datasets marked as ‘OxZoology’ and ‘Thailand’
from HumBugDB [15]3. The recordings contain the sound of lab-
cultured Culex quinquefasciatus mosquitoes from Oxford, UK, and
various species captured in the wild in Thailand, placed into plastic
cups.[16].

Polish Baltic Sea bird flight calls (PB): The PB dataset con-
sists of bird flight calls recordings from Hanna Pamuła’s project fo-
cused on the acoustic monitoring of birds migrating at night along
the Polish Baltic Sea coast. Three autonomous recording units
(Song Meters SM2, Wildlife Acoustics, Inc) were deployed close
to each other (<100m) near a lake, on the dune, and on a forest
clearing. The passerines night flight calls were annotated by Hanna
Pamuła. Target classes belong to: song thrush, Turdus philomelos
and blackbird, Turdus merula. Event lengths vary between 8 to 400
milliseconds and the usual fundamental frequency range for calls is
5 to 9 kHz.

Transfer-Exposure-Effects dataset (CHE): This dataset
comes from the Transfer Exposure-Effects (TREE) research
project4, Data were collected using unattended acoustic recorders
(Songmeter 3) in the Chornobyl Exclusion Zone (CEZ) to cap-
ture the Chornobyl soundscape and investigate the longterm ef-
fects of the nuclear plower plant accident on the local ecology.
The fieldwork was designed and undertaken by Mike Wood (Uni-
versity of Salford), Nick Beresford (UK Centre for Ecology &
Hydrology) and Sergey Gashchak (Chornobyl Center). Common
Chiffchaff (Phylloscopus collybita) and Common Cuckoo (Cuculus
canorus) vocalisations were manually annotated and labelled from
these recordings by Helen Whitehead.

BIOTOPIA Dawn Chorus (DC): The Dawn Chorus project
is a worldwide citizen science and arts project bringing together
amateurs and experts to experience and record the dawn chorus at
their doorstep.The DC dataset stems from dawn chorus recordings,

3https://github.com/HumBug-Mosquito/HumBugDB/
4https://tree.ceh.ac.uk/
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Dataset mic type # audio files total duration # labels (excl. UNK) # events

Development Set: Training

BV fixed 5 10 hours 11 9026
HT various 5 5 hours 5 611
MT animal mounted 2 70 mins 4 1294
JD mobile 1 10 mins 1 357

WMW various 161 5 hours 26 2941

Development Set: Validation HB handheld 10 2.38 hours 1 712
PB fixed 6 3 hours 2 292
ME animal mounted 2 20 mins 2 73

Evaluation Set
CHE fixed 18 3 hours 3 2550
DC fixed 10 95 mins 3 967
CT handheld 3 48 mins 3 365
MS fixed 4 40 mins 1 1087
QU animal mounted 8 74 mins 1 3441

MGE fixed 3 32 mins 2 1195

Table 1: Information on each dataset.

made using Zoom H2 recorders at 44100 Hz, at three different loca-
tions in Southern Germany (Haspelmoor, Munich’s Nymphenburg
Schlosspark, and Nantesbuch), by Moritz Hertel and Rudi Schle-
ich. The vocalisations of three target species were annotated by Lisa
Gill (Common cuckoo, Cuculus canorus; European robin, Eritha-
cus rubecula; Eurasian wren, Troglodytes troglodytes). A challeng-
ing aspect of this data is related to recordings being very busy with
various other birds vocalising at the same time.

Coati (CT): Coatis are omnivorous diurnal mammals that live
in stable social groups ranging from 5 to 30 individuals. The target
calls used in this dataset are growls, chitters and chirp-grunts. Sev-
eral other call types that might be confused with the targets were
captured in the recordings which configures the main challenging
aspect of this data. Audio recordings were collected from two adult
females from the same group on Barro Colorado Island, Panama in
March 2020. These individuals wore collars which recorded high
resolution GPS data with an external attachment of a small audio
recording device (TS Market, Edic Mini Tiny+ A77, 22050 Hz).
Audio data were recorded during their active foraging period in day-
time hours.Fieldwork was carried out by Emily Grout, Josué Ortega
and Ben Hirsch.

Manx Shearwater (MS): Manx shearwaters are procellariform
seabirds that breed in dense island colonies in the North Atlantic
and winter in the South Atlantic off the South American coast.
Adult Manx shearwaters make loud, distinctive vocalisations while
present at their breeding colony in various contexts.The target class
is Chick begging vocalisations which typically comprise bouts of
short, high-pitched ‘peeps’. In a multi-year study, Audiomoth
recorders were placed in burrows during the breeding season. Field-
work on Skomer Island was undertaken by various members of the
Oxford Navigation Group (OxNav) and annotation was carried out
by Joe Morford.

Dolphin Quacks (QU): Bottlenose dolphins are highly acous-
tic animals with an expansive repertoire of acoustic signals used
for social interactions. The target class is Quacks which are short
signals (around 100 ms), low-frequencyand emitted at relatively
high rates, often with 100s of quacks in a single short vocal bout.
The recordings were obtained using sound-and-movement record-
ing DTAGs (Johnson and Tyack 2003) attached with suction cups
to bottlenose dolphins by F.Jensen in collaboration with Profs. Pe-
ter Tyack, Vincent Janik, and Laela Sayigh. All tags were deployed
during routine health assessments conducted by the Sarasota dol-

phin research project and under a National Marine Fisheries Service
research permit to Dr. Randall Wells of Chicago Zoological Soci-
ety. Individual quacks were labelled by Austin Dziki and validated
by F. Jensen.

Chick calls (MGE): Chickens are a precocial bird and upon
hatching undergo a process of ‘filial imprinting’ whereby they es-
tablish a strong attachment to their mother. Chicks are active par-
ticipants in this filial imprinting process and use their calls to sig-
nal they are in close proximity to their mother and other family
members (i.e. pleasure calls) and to signal distress during social
separation in order to solicit maternal contact (i.e. contact calls).
The dataset includes three chicks with each chick recorded for 10
minutes; pleasure calls were annotated in recordings from chicks
one and two, contact calls were annotated in recordings from chick
three. All data was collected by Elisabetta Versace, Shu Wang, and
Laura Freeland as part of a project from the Prepared Minds Lab
from Queen Mary University of London5. All data were annotated
by Shu Wang, Laura Freeland, and Michael Emmerson.

3. BASELINE METHODS AND EVALUATION

The baseline systems proposed did not change considerably from
last year’s edition [5]. Template Matching is based on spectrogram
cross-correlation and still commonly used in bioacoustics. This ap-
proach scored surprisingly well on last edition evaluation set and
thus it remains relevant as a baseline for this task. The second sys-
tem proposed is based on prototypical networks which remain the
state of the art for few-shot learning [4]. The changes from last
year’s system are the use of a ResNet, and adapting segment size de-
pending on the target class in the query set. These changes mainly
address the problem of high variation of event lengths and create a
more adaptive system.

The evaluation of this task is based on an event-level F -measure
with macro-averaged metric across all classes [5]. A positive
match between predicted events and reference is found by apply-
ing the Intersection over Union (IoU) with 30% minimum overlap,
followed by Hopcroft-Karp-Karzanov algorithm [18] for bipartite
graph matching. True Positives (TP), False Positives (FP), and False
Negatives (FN) can be computed after the matching step. These are
defined as: TP - predicted events that match ground truth events;
FP - predicted events that do not match any ground truth events;

5https://www.preparedmindslab.org/home
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Team code Code Eval set:
F -score % (95% CI)

Val set
F -score % Main characteristics

Du NERCSLIP (A) 60.22 (59.66-60.70) 74.4 CNN+ProtoNet; Frame-level embeddings; PCEN;
Liu Surrey (B) 48.52 (48.18-48.85) 50.03 CNN+ProtoNet; extra data; PCEN+△MFCC; various post-process.
Martinsson RISE (C) 47.97 (47.48-48.40) 60 ResNet+ProtoNet; Ensemble(15) based input size; logMel+PCEN
Hertkorn ZF (D) 44.98 (44.44-45.42) 61.76 CNN; Frequency resolution preserving pooling; various post-process
Liu BIT-SRCB (E) 44.26 (43.85-44.62) 64.77 CNN+ProtoNet; Transductive inference
Wu SHNU (F) 40.93 (40.48-41.30) 53.88 ResNet+ProtoNet; Continual-learning; spectrogram
Zgorzynski SRPOL (G) 33.24 (32.69-33.69) 57.2 CNN+Siamese Networks; Emsemble (3) average event-length;
Mariajohn DSPC (H) 25.66 (25.40-25.91) 43.89 CNN+ProtoNet; logMel; augmentation with time-shifting and mirroring
Wilbo RISE (I) 21.67 (21.32-21.97) 47.94 ResNet+ProtoNEt; Semi-supervised; Melspect+PCEN; various post-process
Zou PKU (J) 19.20 (18.88-19.51) 51.99 CNN+protoNet; mutual information loss; time frequency masking + mixup
Huang SCUT (K) 18.29 (18.01-18.56) 54.63 Transductive inference + Adapted central difference convolution
Tan WHU (L) 17.22 (16.82-17.55) 54.53 CNN+ProtoNet pretrained; transductive inference; task adaptive features
Li QMUL (M) 15.49 (15.16-15.77) 47.88 CNN+protoNet; PCEN; time, frequency masking + time warping
baseline-TempMatch [5] 12.35 (11.52-12.75) 3.37 Spectrogram Cross correlation
baseline-ProtoNet [5] 5.3 (5.1-5.2) 28.45 ResNet+ProtoNet
Zhang CQU (N) 4.34 (3.74-4.56) 44.17 CNN+protoNet; Fine tunning with MIMI; PCEN
Kang ET (O) 2.82 (2.76-2.87) - CNN+ProtoNEt; pretrained ECAPA-TDNN; Fine-tuning; Specaugment

Table 2: F -score results per team (best scoring system) on evaluation and validation sets, and summary of system characteristics. Systems
are ordered by higher scoring rank on the evaluation set. These results and technical reports for the submitted systems can be found on task 5
results page [17].
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Figure 1: F -Score results by dataset. Systems are ordered by high-
est scoring rank on the evaluation set.

FN - ground truth events that are not predicted. Matches to UNK
events are ignored from these counts as to not negatively impact
the systems that predict these events. Finally, the F -score metric is
computed per dataset in the evaluation set and the harmonic mean
over all is reported.

4. RESULTS

For the 2022 edition, 15 teams participated submitting a total of 46
systems. The results for the highest scoring submission for each
team are presented in Table 2, together with the reported F -scores
on the validation set and summary of the system characteristics. Fig.
1 presents the F -scores obtained by each team on each subset of
the evaluation data. The majority of systems adopted a prototypical
network approach. Similar to last year’s results, simple improve-
ments over the baselines were achieved by applying data augmen-

tation techniques and intelligent post-processing. Better ways to
construct the negative prototype were also explored by some teams
who report improved results (B, C, F, I). Transductive inference, the
method used by the past edition’s winning team, was also applied
here by several participants (B, M, L, J). The highest scoring sys-
tem implements a frame-level embedding learning approach which
confers to the system a high time resolution capability (A). The sys-
tem was particularly effective on the QU and MGE dataset (Fig.1).
This confirms that good time precision is fundamental, particularly
for classes with events of very short duration as the ones in these
datasets. The system ranked in second place implements a novel
approach designed to optimise the contrast between positive events
and negative prototypes (B). This, together with an adaptive seg-
ment length dependent on each target class, works well across all
the evaluation sets. The problem of very different lengths of events
across target classes was also directly addressed by other submis-
sions. Both (C) and (G) implemented an ensemble approach where
each individual model focuses on a different input size range. In
(E) this is explored through a multi-scale ResNet, and in (I) with a
wide ResNet containing many channels. Finally, it is worth men-
tioning the system in (D). Their few-shot adaptation was based on
fine-tuning alone. The innovation here is related to simple modifi-
cations to a CNN-based architecture in order to optimise the use of
information, particularly in the frequency axis. Furthermore, by al-
lowing the network to overfit (up to a degree) to the 5 shots, the sys-
tem achieves surprisingly good performance across all the datasets
of the evaluation set.

Overall, this edition saw some novel ideas being implemented
that tried to address previously identified challenges related to this
task: how to deal with very different event lengths; how to construct
a negative class when no explicit labels are given for this; and how
to bridge the gap between classification and detection for few-shot
sound event detection. We believe these remain relevant questions
for our goal and for SED in general, and that the collective work
developed here helped pushing few-shot bioacoustic sound event
detection into DCASE central stage.
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