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Abstract. Despite their potential, CONSTRUCT queries have gained
little attraction so far among data practitioners, vendors and researchers.
In this paper, we first exhibit performance bottlenecks of existing triple-
stores for supporting CONSTRUCT queries over large knowledge graphs.
Then, we describe a novel Spark-based architecture for big triplestores,
called TESS, that we have designed and implemented to overcome the
above limitations by using parallel computing. TESS ensures ACID prop-
erties that are required for a sound and complete implementation of
CONSTRUCT-based forward-chaining rules reasoning.
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1 Introduction

CONSTRUCT queries are SPARQL queries that enable ETL1 data pipelines
(to reduce large datasets to workable datasets), graph interoperability (to merge
graphs from different sources) and are a key component in several W3C specifi-
cations (e.g., SPIN2, and later SHACL3) for supporting rule-based inference.

However, despite their potential, CONSTRUCT queries have gained little
attraction so far among data practitioners, vendors and researchers. In fact,
CONSTRUCT queries are available since the first SPARQL specification (2008)
but their usage has been very limited in public SPARQL endpoints. According to
an analytical study of large SPARQL query logs conducted in [3], CONSTRUCT
queries represented only 1.84% from a total of 90 millions of unique queries
collected from 14 datasets between 2013 and 2017.

Query performance evaluation has been centered on SELECT queries and
have been neglected for CONSTRUCT queries for which no performance bench-
mark on large datasets is available. For example, from 29 SPARQL queries pro-
posed to measure performance of different types of queries in Task 2 of the
MOCHA 2018 Challenge 4, none of them was a CONSTRUCT query.

For current SPARQL implementations, the output size of CONSTRUCT
queries is restricted. For example, in Virtuoso, while millions of rows can be

1 Extraction, Transformation, Load
2 https://spinrdf.org/spin.html
3 https://www.w3.org/TR/shacl-af/#rules
4 https://project-hobbit.eu/challenges/mighty-storage-challenge2018/
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fully streamed for SELECT queries, CONSTRUCT query results cannot be fully
outputted beyond 1 million triples 5.

In this paper, we first exhibit (Section 3) performance bottlenecks of exist-
ing triplestores (namely Virtuoso and GraphDB) for supporting CONSTRUCT
queries over large knowledge graphs, even when we decompose their computa-
tion into the evaluation of SELECT queries followed by the construction and
the storage of the graph output. For this, in the absence of appropriate bench-
marks, we have set up an experimental protocol (described in Section 3.2) on
top of a big knowledge graph, called OntoSIDES [13], at the core of a learning
management system used in medical studies in France.

Then, we describe (Section 4) a novel Spark-based architecture for big triple-
stores, called TESS, that we have designed and implemented to overcome the
above limitations by using parallel computing. TESS ensures a part of ACID
properties that are required for a sound and complete implementation of CON-
STRUCT-based forward-chaining rules reasoning. We report in Section 4.2 the
experimental results on the performance of TESS that we have obtained.

Beforehand, Section 2 provides the background of this work. Finally, Section
5 positions it w.r.t. the related work and Section 6 concludes the paper.

2 Background

Let I, L, B, and V be pairwise disjoint sets of IRIs, literals, blank nodes, and
variables, respectively. An RDF graph is a set of RDF triples (s, p, o) ∈ (I∪B)×
I× (I ∪L∪B). A named graph is a pair consisting of an IRI and an RDF graph.
An RDF dataset is a collection of RDF named graphs. The CONSTRUCT and
SELECT queries that we consider are built on SPARQL 1.1 graph patterns ([5]).

Definition 1 (SPARQL 1.1 graph pattern).
- A basic graph pattern is a set of triple patterns (s, p, o) ∈ (I ∪ V ) × (I ∪

V )× (I ∪ L ∪ V ).
- A SPARQL 1.1 graph pattern is an expression P generated from the fol-

lowing grammar:
P : := BGP | (P1 Union P2) | (P1 And P2) | (P1 Opt P2) | P FILTER R

| Graph g P | FILTER NOT EXISTS P
where BGP is a basic graph pattern, g ∈ V ∪ I and R is a constraint expression
over variables in P .

Definition 2 (SELECT queries). By x we denote a vector of variables.
- A simple SELECT query is of the form:

SELECT x WHERE { GP } where GP is a SPARQL 1.1 graph pattern in-
cluding variables in x . When evaluated over an RDF graph (or dataset) G ,
there are as many answers µ(x̄) as mappings µ allowing to match GP with a
subgraph of G.

5 https://community.openlinksw.com/t/sparql-query-limiting-results-to-100000-
triples/2131
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- An aggregate SELECT query is of the form

SELECT x, f(y) WHERE { GP } GROUP BY x

where f is an aggregate function and GP a SPARQL 1.1 graph pattern including
variables in x∪y. When evaluated over G, there are as many groups as mappings
allowing to match the tuple x̄ with tuples of values v̄ and as many answers (v̄,
av) where av is computed by the aggregate function on the corresponding group.

- A nested SELECT query is a SELECT query for which the WHERE clause is
of the form { GP { SQ } } where GP is a SPARQL 1.1 graph pattern and SQ
is a (simple or aggregate) SELECT query. The inner SELECT query is called a
subquery and is evaluated first. The subquery result variable(s) can then be used
in the outer SELECT query.

Definition 3 (CONSTRUCT queries). A CONSTRUCT query is written:

CONSTRUCT { Template } WHERE { GP [{ SQ }] }
where GP is a SPARQL 1.1 graph pattern, Template is a basic graph pattern
(possibly containing blank nodes) with variables appearing in GP , and SQ is an
optional SELECT subquery.

The result of the evaluation over an RDF graph G is the union of graphs obtained
by instantiating the variables x in Template with values µ(x) for each mapping
µ satisfying the WHERE clause.

The induced SELECT query is: SELECT x̄ WHERE { GP [{ SQ }] }
where x̄ is made of all the variables in the graph pattern GP .

Based on Definitions 2 and 3, the computation of the result of a CON-
STRUCT query can be decomposed into the evaluation of its induced SELECT
query followed by the construction of the output graph as the union of the tem-
plate instances obtained by replacing each variable by its corresponding value
in the answer set of the SELECT query. Fig. 1 shows an example of a CON-
STRUCT query and of its induced SELECT query.

Fig. 1: Example of a CONSTRUCT query and of its induced SELECT query
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CONSTRUCT-based forward-chaining rules reasoning:
Like in SHACL and SPIN specifications, CONSTRUCT queries can be used to
express rules that allow to derive inferred RDF triples from existing asserted
triples. For example, the CONSTRUCT query in Fig. 1 participates to the rule-
based definition of two properties for answers in the e-learning setting of On-
toSIDES (see Section 3.1): the numerical property has_for_result and the
boolean property stronglyWrong.

A forward-chaining reasoner can thus be implemented on top of any RDF
triplestore by iterating the triggering of the CONSTRUCT queries and the
adding of their results in the triplestore.The termination is guaranteed when
the rules are safe, i.e., when no new blank nodes appear in the the template of
the corresponding CONSTRUCT queries. In addition, when the rules are non
recursive, i.e., when the underlying dependency graph [8] is acyclic, they can
be organized in independent reasoning layers that can be computed at compile
time. Then, rule triggering can be ordered in a serial or parallel manner so that
each corresponding CONSTRUCT query is evaluated only once.

3 Performance evaluation of Virtuoso and GraphDB

In the absence of appropriate benchmarks (for CONSTRUCT queries or for
SELECT queries on big knowledge graphs), we have chosen to conduct our
performance evaluation on the OntoSIDES knowledge graph the size of which
(12 Billions triples) is comparable to that of Wikidata (14 billions triples as of
2020) and DBpedia (21 billions triples as of 2021).

3.1 OntoSIDES benchmark for CONSTRUCT queries

OntoSIDES is a big knowledge graph at the core of an ontology-based learn-
ing management system used in medical studies in France, in which the edu-
cational content, the traces of students’ activities and the correction of exams
are described in RDF using a lightweight ontology [13]. Thanks to an automatic
mapping-based data materialization and rule-based data saturation, OntoSIDES
contains about 12 Billions triples to date, and describes training and assessments
activities performed by more than 145,000 students over almost 6 years. Students
activities are described at the granularity of time-stamped clicks of answers done
by students for choosing among the proposals of answers associated to multiple
choices questions.

Among the 48 properties defined in the OntoSIDES ontology, 6 properties
are defined by 18 rules expressed as CONSTRUCT queries provided in Fig. 2.

As summarized in Table 1 and Table 2, the considered CONSTRUCT queries
cover a variety of SPARQL 1.1 features.

3.2 Experimental protocol

The goal is to study how CONSTRUCT query evaluation performance is im-
pacted by the growing size of the input RDF datasets. We first explain how we
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Q1

CONSTRUCT
{?question sides:has for number of proposals
?np}
WHERE { select ?question (COUNT (?p) As
?np)
{?question
sides:has for proposal of answer?p}
group by ?question
}

Q2

CONSTRUCT {
?answer sides:has for number of wrong tick
?nw }
WHERE {
select ?answer (COUNT (?a) As ?nw)
{?a sides:is part of ?answer.
?a sides:has wrongly ticked ?p}
group by ?answer
}

Q3

CONSTRUCT
{?answer
sides:has for number of missed right tick
?nm}
WHERE {select ?answer (COUNT(?p) As
?nm)
{?answer sides:correspond to question ?q.
?q sides:has for proposal of answer ?p.
?p sides:has for correction
”true”ˆˆxsd:boolean.
FILTER NOT EXISTS {?a sides:is part of
?answer.
?a sides:has rightly ticked ?p}
}
group by ?answer
}

Q4

CONSTRUCT
{?answer sides:has for number of discordance
”0”ˆˆxsd:integer}
WHERE {?answer a sides:answer.
FILTER NOT EXISTS {?answer
sides:has for number of wrong tick ?nw}
FILTER NOT EXISTS {?answer
sides:has for number of missed right tick
?nm}
}

Q5

CONSTRUCT
{?answer sides:has for number of discordance
?count}
WHERE {
select ?answer (?nw + ?nm as ?count)
{
?answer sides:has for number of wrong tick
?nw.
?answer
sides:has for number of missed right tick ?nm
}
}

Q6

CONSTRUCT
{?answer sides:has for number of discordance
?nw}
WHERE {?answer
sides:has for number of wrong tick ?nw.
FILTER NOT EXISTS {?answer
sides:has for number of missed right tick
?nm}
}

Q7

CONSTRUCT
{?answer sides:has for number of discordance
?nm}
WHERE {?answer
sides:has for number of missed right tick ?nm.
FILTER NOT EXISTS {?answer
sides:has for number of wrong tick ?nw. }
}

Q8

CONSTRUCT
{?answer sides:has for result 1}
WHERE {?answer
sides:has for number of discordance
”0”ˆˆxsd:integer
}

Q9

CONSTRUCT
{ ?answer sides:has for result
”0”ˆˆxsd:integer .
?answer sides:stronglyWrong
”true”ˆˆxsd:boolean .}
WHERE {
?a sides:is part of ?answer.
?a sides:has wrongly ticked ?p.
?p sides:has for weight of correction
”Unacceptable”ˆˆxsd:string
}

Q10

CONSTRUCT
{?answer sides:has for result ”0”ˆˆxsd:integer
.
?answer sides:stronglyWrong
”true”ˆˆxsd:boolean .
}
WHERE {
?answer sides:correspond to question ?q.
?q sides:has for proposal of answer ?p.
?p sides:has for correction
”true”ˆˆxsd:boolean .
?p sides:has for weight of correction
”Indispensable”ˆˆxsd:string .
FILTER NOT EXISTS {
?a sides:is part of ?answer.
?a sides:has rightly ticked ?p }
}

Q11

CONSTRUCT
{ ?answer sides:has for result
”0”ˆˆxsd:integer .
?answer sides:stronglyWrong
”true”ˆˆxsd:boolean .
}
WHERE {
?answer sides:correspond to question ?q.
?q rdf:type sides:QUA.
?answer sides:has for number of discordance
?d.
FILTER (?d > 0)
}

Q12

CONSTRUCT
{?answer sides:has for result
0.5ˆˆxsd:decimal}
WHERE {
?answer sides:has for number of discordance
”1”ˆˆxsd:integer .
?answer sides:correspond to question ?q.
?q sides:has for number of proposals
”5”ˆˆxsd:integer.
FILTER NOT EXISTS {?answer
sides:stronglyWrong ”true”ˆˆxsd:boolean }
}

Q13

CONSTRUCT
{?answer sides:has for result
”0.2”ˆˆxsd:decimal}
WHERE {?answer
sides:has for number of discordance
”2”ˆˆxsd:integer .
?answer sides:correspond to question ?q.
?q sides:has for number of proposals
”5”ˆˆxsd:integer .
FILTER NOT EXISTS {?answer
sides:stronglyWrong ”true”ˆˆxsd:boolean }
}

Q14

CONSTRUCT
{?answer sides:has for result
”0.425”ˆˆxsd:decimal}
WHERE {?answer
sides:has for number of discordance
”1”ˆˆxsd:integer .
?answer sides:correspond to question ?q.
?q sides:has for number of proposals
”4”ˆˆxsd:integer .
FILTER NOT EXISTS {?answer
sides:stronglyWrong ”true”ˆˆxsd:boolean }}

Q15

CONSTRUCT
{ ?answer sides:has for result
”0.1”ˆˆxsd:decimal
}
WHERE
{?answer sides:has for number of discordance
”2”ˆˆxsd:integer .
?answer sides:correspond to question ?q.
?q sides:has for number of proposals
”4”ˆˆxsd:integer .
FILTER NOT EXISTS {
?answer sides:stronglyWrong
”true”ˆˆxsd:boolean }
}

Q16

CONSTRUCT
{?answer sides:has for result
”0”ˆˆxsd:integer}
WHERE
{?answer sides:correspond to question ?q.
?q sides:has for number of proposals ?np.
?answer sides:has for number of discordance
?n.
FILTER (?np > 3 && ?np < 6 && ?n > 2).
}

Q17

CONSTRUCT
{?answer sides:has for result
”0.3”ˆˆxsd:decimal}
WHERE {
?answer sides:has for number of discordance
”1”ˆˆxsd:integer .
?answer sides:correspond to question ?q.
?q sides:has for number of proposals
”3”ˆˆxsd:integer .
FILTER NOT EXISTS {
?answer sides:stronglyWrong
”true”ˆˆxsd:boolean }
}

Q18

CONSTRUCT
{?answer sides:has for result ”0”ˆˆxsd:integer
}
WHERE
{?answer sides:has for number of discordance
?n.
?answer sides:correspond to question ?q.
?q sides:has for number of proposals
”3”ˆˆxsd:integer.
FILTER (?n > 1)
}

Fig. 2: 18 CONSTRUCT queries over OntoSIDES knowledge graph
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Table 1: Classification by category

Category Queries

Simple (BGP) Q5,Q8,Q9

Aggregate subquery Q1,Q2,Q3

FILTER on terms (FRT) Q11,Q16,Q18

FILTER NOT EXISTS on graph
patterns (FGP)

Q3,Q4,Q6,
Q7,Q10,Q12,
Q13,Q14,Q15,
Q17

Table 2: Classification by
their template size

Template
size

Queries

1 Q1,Q2,Q3,Q4,Q5,
Q6,Q7,Q8,Q12,Q13,
Q14,Q15,Q16,Q17,
Q18

2 Q9,Q10,Q11

have built the different RDF datasets over which the 18 CONSTRUCT queries
described above will be evaluated. Then, we describe the measures that we con-
sider for evaluating the performance of each CONSTRUCT query in isolation as
well as for the whole process of forward-chaining reasoning.

RDF datasets. We have extracted 10 datasets from the whole OntoSIDES
knowledge graph (before saturation) which growing sizes ranging from 121 mil-
lions of triples to 1.6 billion triples as shown in Table 3.

Table 3: Ontosides datasets

Dataset Size (millions triples)

D1 121

D2 194

D3 273

D4 380

D5 497

D6 633

D7 791

D8 977

D9 1209

D10 1604

For doing so, we have adapted the notion of traversal views introduced in
[11] and we have structured the OntoSIDES knowledge graph (before saturation)
as the union of named graphs whose IRI is a given student’s IRI, so that each
of these named graph contains the RDF description of all the answers done by
the student and of all the corresponding questions. The 10 datasets have been
obtained by grouping increasing numbers of students’ named graphs (from 880
students’ named graphs for the D1 dataset to 8845 students’ named graphs for
the D10 dataset). By doing so, each extracted dataset contains the required data
for each of the 18 CONSTRUCT queries to produce a sound and complete result
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for the computation of the inferred properties on meaningful fragments of the
full OntoSIDES knowledge graph.

Performance measures.
For each CONSTRUCT query, in addition to measuring its execution time that
we denote the construct execution time, we will also measure:

- the body execution time, the time to evaluate its induced SELECT query
- the template execution time, the time to instantiate the template. Since

triplestores do not provide the template execution time, we will compute it as
the difference between the construct execution time and the body execution time

- the construct storing time, the update time needed to add the output of a
CONSTRUCT query to the triplestore

- the inference time, the sum of the construct execution time and the construct
storing time, which estimates the cost of a CONSTRUCT query used as an
update rule.

Given the set of the 18 CONSTRUCT queries in Fig. 2 used as rules, we will
also evaluate the performance of both serial and parallel implementations of
CONSTRUCT-based forward-chaining reasoning. Based on their dependency
graph, the rules can be structured in 4-depth layers of reasoning:

- Layer 1 = {Q1, Q2, Q3, Q9, Q10}
- Layer 2 = {Q4, Q5, Q6, Q7}
- Layer 3 = {Q8, Q12, Q11}
- Layer 4 = {Q13, Q14, Q15, Q16, Q17, Q18}
The serial versus parallel implementations of CONSTRUCT-based forward-

chaining reasoning differ in the sequential versus parallel execution of the CON-
STRUCT queries within each layer. The layers are themselves handled by in-
creasing depth. We will measure and compare:

- the serial forward-chaining reasoning time, as the sum of inference times of
all the queries applied sequentially in the order induced by the different layers,

- the parallel forward-chaining reasoning time, as the sum of the parallel
execution and update times for each of the 4 reasoning layers.

Hardware. The server used in our experiments has the following characteristics:
- Processor: 32 cores, Intel(R) Xeon(R) Gold 6144 CPU @ 3.50Ghz.
- Disk: 7 disks, 2 Terabytes size each.
- Memory: 566 Gigabytes RAM.

3.3 Limitations of Virtuoso and GraphDB

Virtuoso is a column-store triplestore where SPARQL queries are translated into
SQL to be executed. GraphDB is a native triplestore where SPARQL queries are
executed directly on data. In our experiments, we used Virtuoso 07.20.3229 Com-
munity Edition, GraphDB 9.0.0 Enterprise Edition and Docker 19.03.8. Both
have been configured for optimal parallelization and memory usage according
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their online documentation. Blazegraph was not considered because it was out-
performed by Virtuoso in 3 of 4 tasks in Mocha 2018 (RDF data ingestion, data
storage, versioning).

Each dataset from Table 3 was stored in a Virtuoso and a GraphDB triple-
store. Each triplestore run on top of a Docker container configured for 32 CPU
cores and 128GB RAM.

Figure 3.a shows how the forward-chaining reasoning time (y axis) evolves
in function of the sizes (x axis) of the 10 datasets reported in Table 3:

- for GraphDB, the CONSTRUCT-based forward-chaining rules reasoning
can be completed in a reasonable time for D1, D2 and D3 datasets only.

- Virtuoso does not show up at all because the output of each of the 18
CONSTRUCT queries was greater than 1 million triples which is the maximum
limit for a CONSTRUCT query output in Virtuoso.

In Figure 3.b, the y axis corresponds to the sum of the execution times of
the SELECT queries induced by the 18 CONSTRUCT queries. Virtuoso does
not suffer of the above limitations on output size for SELECT queries. However,
we have discovered that for the datasets greater than D4 (380 million triples),
Virtuoso does not compute the correct answers for aggregate queries like Q3
(and others aggregate queries outside the strict setting of our experiment). We
have used PostgreSQL as reference to validate the correctness of the results after
transforming the SELECT queries into SQL queries.

0

0
.5 1

1
.5 2

2
.5

0

20

40

60

Size (billion triples)

T
im

e(
m
in
)

(3.a) Forward-chaining completeness

0

0
.5 1

1
.5 2

2
.5

0

20

40

60

Size (billion triples)

T
im

e(
m
in
)

(3.b) Correctness of the induced SELECT queries
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Fig. 3: Forward chaining reasoning time performance. Best viewed in color

These experiments show the limitation of Virtuoso for outputting CON-
STRUCT results of more than 1 million triples, and to compute correct answers
to aggregate SELECT queries over datasets of size greater than 380 millions
triples. They also show the limitation of GraphDB to compute SELECT or
CONSTRUCT queries in a reasonable time over datasets of size greater than
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275 millions triples. This motivates the needs for an architecture supporting
parallel computing.

4 TESS architecture and performance

In this section, we describe TESS, a novel architecture for big RDF triplestores,
and we provide experimental results on its performance. TESS has been designed
to support CONSTRUCT queries. Since CONSTRUCT queries can be used
to update triplestores, it is important to guarantee data integrity during this
updating step. This is particularly important when CONSTRUCT queries are
used for supporting rule-based reasoning. For this reason, we have included in the
TESS architecture a transactional management module that enforces atomicity
property.

4.1 TESS architecture

TESS is based on a modular architecture that supports log-based transactions
for data updates. Transactions in TESS are highly scalable and enables key data
management features like query point-in-time and rollback operations.

For the implementation, we chose Spark [18], (the leading platform for large-
scale SQL and batch processing as of today [9]), as base technology to select the
proper software for each architecture component.

Figure 4 shows the 5 layers of the TESS architecture with the selected tech-
nologies for each component (on the right side) and two inputs types supported
by TESS: at the top, the Spark Application for CONSTRUCT-based forward-
chaining reasoning and, on the left side, a SPARQL query. However, only the
SPARQL query has an external output since the outcome of the forward chaining
reasoning is meant to be stored in the distributed storage for later querying.

Fig. 4: TESS triplestore architecture

We now describe each component. The modular architecture makes possible
to disable some of them, like the transactions manager or the cluster resource
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manager if they are not useful, for instance if the CONSTRUCT queries are not
used for updates or if parallel computation is not necessary.

Distributed Storage. We define a schema of 4 columns (i.e. <s, p, o, g>)
to store RDF data. One-table layout is very efficient for updates because an
update does not need to be normalized into the many tables of other layouts. In
addition, ACID properties provided by Delta Lake only supports transactions
on one table at a time [22]. This structure, using a column storage format for
performance purpose (a collection of versioned Parquet [19] files), is referenced
as the ACID table. The storage is based on Hadoop Distributed FileSystem
(HDFS) cluster [20] which operates in a fully distributed mode. It comprises a
namenode (master) and a datanode (slave) servers.

Cluster resource management. This component allows to execute a query
plan using high parallel computing based on standalone Spark cluster. It com-
prises a master and workers nodes, usually as many workers as queries/rules
to manage with. The master receives Spark applications and schedules worker
resources to be run among them. A Spark application is organized around jobs,
the top level work unit. By default, Spark jobs within an application are exe-
cuted serially, but they can also be run in parallel if concurrency is enabled at
application level.

Transactions management. This layer is in charge of the reliability and the
correctness of RDF data with update transactions. Based on Delta Lake [21]
that adds ACID service to Spark: a) keep track of all the commits made to the
ACID table and b) use time travel for loading the ACID table at a given version
or timestamp [10].

Parallel query engine. A query optimization/execution component based on
Spark SQL which starts from the logical query plan to generate an optimized
physical query plan. Then, the optimized query plan is used to generate efficient
code to exploit modern compilers and CPUs.

Query translator. This component is needed to rewrite SPARQL queries into
SQL in order to use Spark SQL, a Spark module for dataframe-based struc-
tured data processing. We retained sparql to sql text() Virtuoso [12] function to
generate self-joins queries for the ACID table.

4.2 TESS performance evaluation

For our experiments, we used Spark 3.1.1, Delta Lake 0.8.0 and HDFS 2.9.2.
Each dataset from Table 3 was stored in the HDFS as an ACID table.
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Serial forward-chaining reasoning time
For this experiment, TESS run on top of a network of 5 Docker containers: 2
containers for the Hadoop namenode and datanode. 2 containers for the Spark
Standalone cluster (1 for the master node, 1 for the worker node) and 1 container
for sending the Spark Application to the Spark Standalone Cluster in client
mode. We assign 128GB RAM and 32 CPU cores to each container member of
the Spark Standalone cluster.

Figure 5 shows that TESS completes the forward-chaining reasoning for all
datasets in reasonable time and that the time grows linearly w.r.t the size of
the input datasets. (see black curve CONSTRUCT with square shaped dots).
It also makes explicit how the construct execution time is split into the body
execution time (see blue curve with triangle shaped dots) and the template exe-
cution time (see red curve with circle shaped dots). We observe that the impact
of body execution time is much greater than the template execution time for
CONSTRUCT-based forward-chaining reasoning.
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Fig. 5: Evaluation of serial forward-chaining reasoning time. Best viewed in color.

Figure 6 shows the individual performance of each of the 18 queries. We
observe that for most of the queries, the coefficient of the linear progression of
time in function of dataset size is very small (for Q1, Q14, Q15, Q17 and Q18)
or small (for Q5, Q6, Q7, Q9, Q11, Q12, Q13 and Q16). The same figure shows
that the difference between construct execution time and body execution time
may be important when the graph output of the CONSTRUCT queries is not
restricted to a single triple pattern, like in the queries Q9, Q10 and Q11.

In Figure 7, we focus on the 5 most expensive queries, namely Q2, Q3,Q4,
Q8 and Q10, and we show the correlation between the query output size and
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Fig. 6: CONSTRUCT queries performance. Best viewed in color.
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the construct execution time. In this Figure, the center of each circle represents
the construct execution time (y axis) of a query for a given dataset size (x axis),
and the radius of each circle represents the size of the query output size. For
Q2,Q3,Q4, the query cost can be explained both by the complexity of graph
patterns in their body and the size of their output. For Q8, the cost is due to the
size of its output since its graph pattern is very simple: a single triple pattern
with a single variable. Yet, its execution time is close to the execution time of
Q2 (whose body has an aggregate subquery) or of Q3 and Q4 (whose body has
FILTER NOT EXISTS clauses).

Figure 7 also shows that for queries like Q10 with a template size > 1, the
CONSTRUCT performance can be costly despite a small query output size. We
have analyzed that its high cost is due to join operations between tables of very
different size (with a ratio of 1/453), and the fact that the query plan computed
by Spark SQL did not choose the most efficient type of joins.
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Fig. 7: The 5 most expensive queries performance. Best viewed in color.

Parallel forward-chaining reasoning time For the experiment with the
parallel algorithm, TESS runs on top of a network of 10 Docker containers: 2
containers for the Hadoop namenode and datanode. 7 containers for the Spark
Standalone cluster (1 for the master node, 6 for the worker nodes) and 1 container
for sending the Spark Application to the Spark Standalone Cluster in client
mode. We deployed 6 worker nodes because it is the maximum number of queries
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in a layer of reasoning. The Spark Application executes a query per worker node.
We reduce the number of workers from 6 to 1 for setting up the experiment
with the serial algorithm for comparison purposes. Furthermore, we assign 64GB
RAM and 4 CPU cores to each container member of the Spark Standalone
cluster.

Figure 8 shows how the TESS implementation of the parallel forward-chaining
algorithm outperforms the serial algorithm for all the datasets. The execution
time seems to grow linearly but with a much smaller coefficient than for the
serial case.
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Fig. 8: Parallel vs Serial performance. Best viewed in color.

The source code of the Spark cluster and CONSTRUCT-based forward chain-
ing implementation along with the 18 CONSTRUCT queries used in the exper-
iments are available in https://github.com/asanchez75/ontosides-bpe.

5 Related work

To the best of our knowledge, CONSTRUCT queries performance has been
barely covered in two benchmarks: the Berlin SPARQL Benchmark (BSBM)
[2] and the Featured-Based SPARQL Benchmark Generation Framework (FEA-
SIBLE) [15]. However, it was restricted to centralized triplestores (e.g. Virtuoso,
Sesame, Jena Fuseki and OWLIM-SE) and the size of the biggest dataset was
232.5 millions triples.

SELECT queries performance has received more attention. In [16], an ex-
tensive analysis of eleven SPARQL benchmarks has been carried out on cen-
tralized triplestores (e.g. Virtuoso and Fuseki). Despite one of the benchmarks
(BowlognaBench [6]) included aggregate queries, they were not considered and

https://github.com/asanchez75/ontosides-bpe
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the survey only covered SELECT queries without aggregate. The size of the
biggest dataset in the survey was 232 millions triples.

An exhaustive evaluation of Big RDF frameworks is performed in [4]. The
survey shows how distributed storage and parallel query processing for RDF data
have evolved over time. For SPARQL parallel query processing, MapReduce
has been replaced gradually by Spark, whereas for distributed storage, Hive
and HBase has been superseeded by HDFS and Parquet. Although some of the
frameworks considered aggregate queries in their performance studies, none of
them dealt with FILTER NOT EXISTS queries. None of the approaches provided
ACID support for RDF data transactions.

Big RDF frameworks based on Spark has been studied in [1]. In contrast
with SANSA [17], Bellman [7] loads RDF data directly into Dataframes and
execute SPARQL queries (even CONSTRUCT queries) translated into Spark-
SQL. However, it does not support full SPARQL 1.1 and it is not clear if it
supports aggregate queries due to lack of documentation.

Regarding RDF storage layouts, even though the experiments reported in
[14] show that vertical partitioning and property tables outperform single table
layout for some scenarios, single table layout remains as the dominant layout in
real-world deployments (e.g. Virtuoso). The implementation of the other layouts
is a time consuming task that requires data normalization and query rewriting.

6 Conclusion

We have first shown in a real-world application that existing triplestores have
intrinsic limitations for supporting CONSTRUCT queries at big scale. Then,
we have described TESS, a novel modular Spark-based infrastructure for big
RDF triplestores that we have designed and implemented based on modern
technologies for distributed computing over big data. We have built on com-
ponents offered by the growing ecosystem of Big Data SQL management tools.
A distinguishing point of TESS is that it implements part of ACID proper-
ties, namely atomicity, which is required to reliably support CONSTRUCT-
based updates of triplestores. This is particularly crucial when CONSTRUCT
queries are used to implement forward-chaining rules reasoning. Our experiments
have demonstrated that TESS triplestores can manage full SPARQL 1.1 CON-
STRUCT queries on large datasets. We have also shown the performance gain
when we exploit TESS components to implement parallel CONSTRUCT-based
forward-reasoning. As future work, we plan to conduct a query performance
comparison between CPU-based and GPU-based TESS architecture, and a per-
formance study of workload (supporting thousands of queries per second) for
CONSTRUCT-based ontology modularization.
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