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Abstract1

1: Monitoring small, mobile organisms is crucial for science and conservation, but is technically challenging.2

Migratory birds are prime examples, often undertaking nocturnal movements of thousands of kilometres3

over inaccessible and inhospitable geography. Acoustic technology could facilitate widespread monitoring of4

nocturnal bird migration with minimal human effort. Acoustics complements existing monitoring methods5

by providing information about individual behaviour and species identities, something generally not possible6

with tools such as radar. However, the need for expert humans to review audio and identify vocalizations7

are challenges to application and development of acoustic technologies.8

2: Here, we describe an automated acoustic monitoring pipeline that combines acoustic sensors with machine9

listening software (BirdVoxDetect). We monitor four months of autumn migration in the northeastern United10

States with five acoustic sensors, extracting nightly estimates of nocturnal calling activity of 14 migratory11

species with distinctive flight calls. We examine the ability of acoustics to inform two important facets of12

bird migration: (1) the quantity of migrating birds aloft and (2) the migration timing of individual species.13

We validate these data with contemporaneous observations from Doppler radars and a large community of14

citizen scientists, from which we derive independent measures of migration passage and timing.15
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3: Together, acoustic and weather data produced accurate estimates of the number of actively migrating16

birds detected with radar. A model combining acoustic data, weather, and seasonal timing explained 75% of17

variation in radar-derived migration intensity. This model outperformed models that lacked acoustic data.18

Including acoustics in the model decreased prediction error by 33%. A model with only acoustic information19

outperformed a model comprising weather and date (57% vs. 48% variation explained, respectively).20

4: Acoustics also successfully measured migration phenology: species-specific timing estimated by acoustic21

sensors explained 71% of variation in timing derived from citizen science observations.22

5: Synthesis and applications. Our results demonstrate that cost-effective acoustic sensors can monitor bird23

migration at species resolution at the landscape scale and should be an integral part of management toolkits.24

Acoustic monitoring presents distinct advantages over radar and human observation, especially in inaccessible25

and inhospitable locations, and requires significantly less expense. Managers should consider using acoustic26

tools for monitoring avian movements and identifying and understanding dangerous situations for birds.27

These recommendations apply to a variety of conservation and policy applications, including mitigating the28

impacts of light pollution, siting energy infrastructure (e.g. wind turbines), and reducing collisions with29

structures and aircraft.30

Keywords: acoustic monitoring, machine learning, bird migration, remote sensing, ecology31

Introduction32

Accurate, efficient, and non-invasive methods for monitoring animals are essential for biology and conser-33

vation. Small, highly mobile organisms present distinct challenges in these regards, especially migratory34

songbirds (order Passeriformes) (Runge et al. 2014). Many species travel thousands of kilometres each35

year at night (Newton 2008), and these movements can stymie traditional and modern monitoring methods:36

miniaturized tracking devices (i.e. on-bird sensors) require recapture and are frequently too large or expensive37

for small birds (Kays et al. 2015); Doppler weather surveillance radars are expensive and cannot separate38

individuals or identify species (Jacobsen and Lakshmanan 2017, Van Doren and Horton 2018); and visual39

observation is only possible with bright lights or by moonwatching (Lowery and Newman 1966, Gauthreaux40

1971, Van Doren et al. 2017). These methods provide significant detail about aspects of birds’ behaviours,41

but none is a universal solution. Given recent population declines among migratory birds and accelerating42

environmental change (Rosenberg et al. 2019), there is an urgent need for non-invasive tools and robust43

applied methods to monitor nocturnal avian migrations at individual resolution, under varied conditions,44

and in areas that are presently inaccessible (e.g. boreal wilderness) or inhospitable (e.g. deserts or ocean).45
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Acoustic monitoring can address these gaps. Migratory birds utter species-specific vocalizations, or “flight46

calls,” during nocturnal migratory flights (Farnsworth 2005). By recording and identifying flight calls, sci-47

entists can monitor bird movements across large areas using widely available audio recorders. Acoustic48

monitoring of flight calls can provide insight into long-distance migrations and reveal poorly known and49

overlooked local movements that are difficult to detect by traditional means. However, the need for ex-50

pert human knowledge to detect and identify calls is a major hurdle methods development and a barrier to51

widespread use (Salamon et al. 2016). Automating detection and identification of flight calls would greatly52

increase data throughput and allow for continent-wide networks to monitor nocturnal bird migration.53

Improved acoustic tools for monitoring bird migration would provide an important resource for applied54

conservation and policy initiatives. Airspace is increasingly recognized as important habitat for volant55

organisms (Diehl 2013)—a habitat increasingly impinged upon by human structures, vehicles, and lights.56

Birds’ use of the aerosphere is of great interest to wind energy and aviation industries, particularly for57

threatened species. Light pollution and light-induced collisions are particular concerns for migratory birds58

(Loss et al. 2015, Van Doren et al. 2017). Lights-out initiatives are a focus of current policy actions,59

and increasing evidence suggests that acoustic communication during nocturnal migration is an important60

factor in birds’ susceptibility to artificial light pollution (Watson et al. 2016, Winger et al. 2019, Gillings61

and Scott 2021). In addition, understanding the impacts of climate change on organisms is of conservation62

and policy concern, and additional tools that can monitor their behavioural responses and population are63

important resources for decision-making. In an era of rapid change, long-term monitoring efforts that can64

inform science, conservation, and policy are essential.65

BirdVox is a project funded by the National Science Foundation to develop machine learning software for66

acoustic monitoring of flight calls (Salamon et al. 2016, Salamon et al. 2017, Lostanlen et al. 2018, 2019b,67

2019c, Lostanlen et al. 2019a, Cramer et al. 2020b). The project’s BirdVoxDetect software processes audio68

recordings and outputs counts and timings at three taxonomic levels: order, family, and species (Lostanlen69

et al. 2019c, Cramer et al. 2020b). Despite this progress, it has not yet been demonstrated that any70

automated acoustic monitoring system can produce reliable estimates of the numbers of migrating birds71

aloft or accurately measure migration phenology at the species level. Studies using non-automated methods72

have demonstrated a link between acoustics and migration intensity, but these have been limited in scope73

due to the demands of manual processing (Larkin et al. 2002, Farnsworth et al. 2004, Sanders and Mennill74

2014, Horton et al. 2015). If automated acoustic approaches can increase data throughput while achieving75

reliable estimates of migration intensity and phenology, it may expand the application of this technology76

and enhance our understanding of animal migration.77

3



Here, we describe an automated acoustic pipeline that combines a network of sensors with BirdVoxDetect78

software. We use these tools to monitor an autumn migration season and extract nightly estimates of noc-79

turnal calling activity from migrating birds during migratory flights. We examine the ability of automated80

acoustic monitoring to provide information about (1) the number of migrating birds aloft and (2) the mi-81

gration timing of individual species. We use Doppler weather surveillance radar and community science82

(also known as citizen science) observations to derive independent measures of migration passage and timing,83

asking whether acoustics can accurately capture these measures—with only a fraction of the expense and84

effort of those methods. We also ask how information content of acoustic data varies across geographic space85

by examining the predictive importance of calling activity for radar stations at increasing distances from86

the acoustic sensor network. Our results demonstrate that cost-effective acoustic sensors could successfully87

monitor bird migration at wide spatial scales and species resolution, and extract valuable but presently88

underutilized behavioural information about bird migration aloft.89
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Figure 1: Study area. Acoustic sensor locations indicated by blue filled circles. KBGM radar indicated by
red diamond. Radar data were extracted above a circular region with radius 16 km, indicated by dashed red
circle. The radar is located 46 km from the centroid of the acoustic sensor network. Inset shows location of
study area within the northeast US, with the focal area shown by red box.
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Materials and Methods90

Acoustic monitoring91

Field sites and acoustic data collection92

We collected audio data with nine Recording and Observing Bird Identification Node (ROBIN) bioacoustic93

sensors developed by the Cornell Lab of Ornithology, deployed in residential areas surrounding the town94

of Ithaca in Tompkins County, New York State, USA. Each sensor was equipped with an omnidirectional95

microphone of moderate cost and a Raspberry Pi processing unit. See Salamon et al. (2016) and Lostanlen96

et al. (2022) for further details about the sensor hardware, design, and deployment. No animal ethics97

approval was required for this passive field study. We received permission from landowners for recording on98

site. Recording units collected data every night between civil twilight dusk and dawn (when the sun was 6º99

below horizon); nocturnal bird migration generally begins 30-45 minutes after local sunset (Hebrard 1971).100

Recording units recorded between 3 August and 8 December 2015, yielding 6651 hours of acoustic recordings.101

We excluded data from four units that experienced frequent malfunctions or had noise contamination that102

interfered with monitoring. Overall, we retained data from 5 units (Figure 1), totaling 4879 hours.103

Call detection and classification104

BirdVoxDetect (https://github.com/BirdVox/birdvoxdetect) (Lostanlen and Salamon 2022) is a software105

package for processing continuous audio recordings of nocturnal bird migration. BirdVoxDetect can be106

applied to audio data collected with any hardware and is not specific to devices used in this study. Previous107

work has presented the method and its performance using a subset of the data processed for the present108

study (Salamon et al. 2016, Salamon et al. 2017, Lostanlen et al. 2018, 2019b, 2019c, Lostanlen et al.109

2019a, 2022, Cramer et al. 2020b). BirdVoxDetect applies per-channel energy normalization to reduce the110

influence of background noise, detects and excludes periods of sensor malfunction, and passes audio to a111

convolutional neural network to detect flight call vocalizations (Lostanlen et al. 2022). Detections are then112

processed through a second neural network, which classifies calls at three taxonomic levels: order, family,113

and species. This network was trained on recordings from the BirdVox-ANAFCC-v2 dataset (Cramer et al.114

2020a, Lostanlen et al. 2022). We enforce taxonomic consistency of predictions by ensuring that predicted115

family is a member of predicted order and that predicted species is a member of predicted family. See116

Lostanlen et al. (2022) for further details about the classifier and processing pipeline.117
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Acoustic data processing118

The development and validation of BirdVoxDetect was previously performed on a subset of the present 4879-119

hour dataset. Detailed methods and results can be found in Cramer et al. (2020b), Lostanlen et al. (2018),120

Lostanlen et al. (2019c), Lostanlen et al. (2019a), Lostanlen et al. (2019b), Salamon et al. (2016), and121

Salamon et al. (2017), and are summarized in Lostanlen et al. (2022).122

For the present study, we ran BirdVoxDetect on the full 4879-hour autumn 2015 dataset. The software123

classified detections to order, family, and species (Table S1 in Supporting Information). BirdVoxDetect124

makes classifications of 14 species that are common nocturnal migrants and make distinctive calls. Although125

these species represent only a fraction of all migratory species in North America, they provide a useful sample126

of nightly migration activity. We retained detections with confidence scores of at least 50%; this threshold127

represents the optimal tradeoff between true and false positives in this dataset (Lostanlen et al. 2022). We128

further filtered detections to those where order, family, and species were all classified with a confidence of at129

least 50%. We retained detections belonging to the order Passeriformes, excluding other detections, which130

included both non-Passerines and non-avian sounds.131

We summarized call counts by night for each recording unit, calculating the nightly calling rate by divid-132

ing the number of detections by the nightly recording duration. This procedure accounted for units that133

malfunctioned and did not record a full night. We calculated total nightly calling rate for all Passerine134

species together, plus individual call rates for each family and species. We summarized total nightly call rate135

(for all Passerines) across recording units using principal component analysis, retaining the first principal136

component, which explained 63.5% of the variance in nightly call rate. This principal component was our137

nightly measure of overall flight calling activity (hereafter: nightly calling activity). This metric quantifies138

nightly Passerine calling activity across all species.139

Weather surveillance radar data140

To estimate densities of actively migrating birds for comparison with acoustic data, we used the United States141

Next Generation Radar Network (NEXRAD, WSR-88D) (Crum and Alberty 1993, Van Doren and Horton142

2018). The primary purpose of this network of Doppler weather surveillance radars (hereafter “radars”) is143

weather detection, but its use as a biological sensor network—particularly for the monitoring of nocturnal144

bird migration—is well established (Gauthreaux and Belser 2003, Bauer et al. 2017, Van Doren and Horton145

2018, Dokter et al. 2019). We extracted data from the 35 radar stations within 1000 km of our acoustic146

sensors using the R package bioRad (Dokter et al. 2019), focusing on data between 1 August and 30147
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November 2015. Bird migration through this region has been previously characterized by Farnsworth et al.148

(2016).149

We quantified nightly migration passage at each radar station by integrating migration traffic across vertical150

profiles from 0–3000 m, using the integrate_profile function in bioRad (Dokter et al. 2019). We then summed151

nightly migration traffic at each radar. In addition, we used the radar closest to the acoustic sensors (KBGM,152

Binghamton, NY) to extract bird migration densities directly above the sensors (Figure 1). The KBGM radar153

is located 46 km from the centroid of the acoustic sensors, and 36-58 km from the closest and farthest sensors,154

respectively. At these distances, the centre of the radar beam passes 397-705 m above the ground. Following155

methods from Van Doren et al. (2021), we extracted data from the 0.5-degree elevation angle for a circle156

with radius 16 km centred on the acoustic sensors. This ensured we sampled airspace above all acoustic157

sensors.158

Weather data159

We obtained concurrent weather data from the North American Regional Reanalysis (NARR) (Mesinger et160

al. 2006). Weather variables used were north-south wind component (m s−1); east-west wind component (m161

s−1); air temperature (C); total cloud cover (%); and visibility at the surface (m). NARR predictions are162

made every 3 hours on a 32-km grid. We matched NARR data to radar observations using the closest NARR163

data in space and time, averaging across the vertical profile (0–3000 m) for all grid cells covered by the radar164

domain (out to 37.5 km). For variables available at multiple pressure levels, we extracted data from the165

surface to 300 mb. We calculated altitude above ground level by subtracting surface geopotential height166

from the geopotential height at each pressure level, and we used linear interpolation to calculate vertical167

profiles of weather data at 100-m altitude bins from 0–3000 m. We subsequently averaged all observations168

in a night to produce a nightly summary of weather conditions.169

Community science data (eBird)170

We used community science (also known as citizen science) data to derive an independent measure of migra-171

tion timing for comparison with acoustic data. Our data came from eBird, a massive repository of global172

bird observations (Sullivan et al. 2014). The eBird database is a rich source of information on migration,173

and species reporting rates are frequently used to study migration phenology (Mayor et al. 2017, Youngflesh174

et al. 2021). Because eBird data come primarily from diurnal, in-habitat observations rather than nocturnal175

flights, we do not expect perfect correspondence with acoustic measures. For example, arriving species may176
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be detected during nocturnal migration a few days before they are widely detected by diurnal observers.177

However, eBird data provide a validated source of phenology information that is independent of our acoustic178

dataset.179

We downloaded the eBird Basic Database (February 2021 version) (eBird Basic Dataset. Version 2021) and180

corresponding sampling events file. Using the auk R package (Strimas-Mackey et al. 2018), we filtered eBird181

data to all checklists submitted in Tompkins County, New York, USA. between 1 August and 30 November182

2015 (n=4710 checklists). We zero-filled data to incorporate effort information and calculated daily reporting183

frequency of each of 14 focal species (and corresponding families) (Table S1). We only retained data for184

“complete checklists,” in which observers reported all species. We calculated daily reporting frequency by185

dividing number of checklists in which the focal taxon was reported by total number of complete checklists186

submitted on that day.187

Statistical analyses188

Quantifying the value of acoustic information for measuring migration densities189

Our first analytical objective was to determine whether nightly calling activity is a good measure of migration190

passage. Because radars directly measure migrating birds aloft, we constructed a statistical model to quantify191

the association between calling activity and radar-derived migration passage. Weather conditions greatly192

influence migration (Richardson 1990, Van Doren and Horton 2018) and may influence calling behaviour193

(Farnsworth 2005), so we also included variables describing weather conditions in our model to account for194

potential differences in the relationship between calling activity and migratory passage. We compared four195

models of nightly migration passage: models with (1) acoustic data, plus weather and time of season; (2)196

weather and time of season only; (3) acoustic data only; and (4) time of season only. By comparing these197

models, we quantified the value of acoustic data in measuring migration densities aloft.198

We modelled radar-measured bird densities aloft using a generalized linear model with a Gaussian error199

distribution and log link function. Our response variable was the average bird density measured directly200

above Tompkins County (16 km radius, units of birds km−3). To construct our base model, containing both201

weather and acoustic information, we included these predictor variables: nightly calling activity (derived202

from PCA of acoustic detections); north-south wind component (m s−1); east-west wind component (m203

s−1); air temperature (C); total cloud cover (%); visibility (m); and ordinal day of year (cubic polynomial204

term, to account for any additional nonlinear changes in migration activity through the season). We also205

tested two possible interactions, nightly calling activity × visibility and nightly calling activity × total cloud206
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cover, as previous research indicates calling behaviour may increase with lower visibility and increased cloud207

cover (Farnsworth 2005). Because our interest was in predictive performance, the final step in constructing208

our base model was to identify the weather variables of greatest predictive value to carry forward into the209

evaluation. We used the dredge function in the R package MuMIn (Barton 2020) to test a set of candidate210

models that varied only in weather predictors. All models included nightly calling activity and ordinal day211

of year (cubic polynomial term). The best-performing model measured by the corrected Akaike Information212

Criterion (AICc) served as our benchmark.213

We compared the benchmark model, containing weather, acoustic, and date information, to two sub-models:214

one with no acoustic information (only weather and date), and one with only acoustic information. Because215

our interest was primarily in prediction accuracy, we evaluated benchmark and sub-models using leave-one-216

out-cross-validation (LOOCV). In LOOCV, one observation is removed, the model is re-fit, and the re-fit217

model is used to predict the withheld observation; this is repeated for every observation. We evaluated218

performance using a combination of R2 (percent variance explained) and root mean squared error (RMSE)219

of the cross-validated predictions. We evaluated performance using both metrics to provide both relative220

(R2) and absolute (RMSE) performance measures. We then determined whether the addition of acoustic221

data improved the ability of the model to estimate the number of migrating birds aloft. We used default222

model configuration parameters in the R package caret (Kuhn et al. 2017) for training.223

Geographic range of acoustic information224

After estimating the value of acoustic data for quantifying migration densities above the acoustic sensor,225

we sought to determine the geographic extent across which acoustic data provide meaningful information226

about migration. We fit a model with the same predictor variables as the benchmark model above (weather,227

acoustics, and time of season); the response variable was nightly migration traffic at the radar closest to the228

acoustic sensors (KBGM). We then made predictions using this model at all radar stations within 1000 km of229

Tompkins County, NY, and measured R2, the proportion of variation explained by the model. Predictions at230

external radar stations used weather data drawn from those locations, but the model formula was unchanged;231

this test therefore simulated a scenario in which an acoustic model is trained at one location (here, from232

Tompkins County, NY) and applied elsewhere without re-training. We performed the same evaluation with233

a model that contained only acoustic data (no weather or date information). Finally, we quantified how234

acoustic information content degrades with distance from the acoustic sensor using a simple linear model.235
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Migration timing at the family and species levels236

We used identifications made by BirdVoxDetect to measure migration timing at family and species taxonomic237

levels, and we compared these with independent timing measures derived from the eBird database. To ensure238

reliable estimates, we only used species with average daily eBird reporting frequencies of at least 1% of239

checklists and average nightly call rates of at least 0.25 calls per hour. Ten out of 14 focal species satisfied240

these criteria.241

Our timing measure was date of peak migration passage through Tompkins County. For eBird reporting242

frequency and nightly calling activity, we quantified migration timing with a generalized additive model (R243

package mgcv) (Wood 2017) with these parameters: bs=“ds” (Duchon splines), k=7. We used a negative244

binomial family (log link) for nightly calling activity and a Gaussian family (identity link) for eBird reporting245

frequency. The date corresponding to the maximum value of the curve was our peak timing measure for both246

modalities. We quantified uncertainty in timing estimates by simulating from the model 10,000 times and247

recording peak date each time, from which we derived 95% confidence intervals. The simulation generated248

10,000 model coefficient vectors using the mvrnorm function in the R package MASS (Venables and Ripley249

2002) and used the “lpmatrix” option in the mgcv predict function to generate model predictions for each250

simulated coefficient vector. For each prediction vector, we saved the date corresponding to the maximum251

value of the curve and calculated 95% credible intervals from the simulation. We performed these assessments252

at family and species levels. We also quantified the correlation between species-level acoustic-derived and253

eBird-derived timing measures. We evaluated this correlation over model simulations to quantify uncertainty.254

Results255

Running BirdVoxDetect on the 4879-hour autumn 2015 dataset yielded 233124 detections, of which 90% were256

classified to family and of which 44% were classified to one of 14 focal species (Table S1). Total computation257

took approximately 1000 CPU-hours.258

Quantifying the value of acoustic and weather information for measuring migration densities259

We used AICc-based model selection to identify the single best generalized linear model containing weather260

and acoustic information for predicting radar-measured migration densities aloft. This benchmark model261

included north-south and east-west wind components in addition to nightly calling activity and time of262

season (Table S2). It performed well, explaining 75% of variation (Figure 2). The AICc-best model did263
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not contain air temperature, cloud cover, visibility, or interaction terms. However, models containing cloud264

cover and visibility also received support (i.e. within ~2 AICc units of the best model).265

Acoustic information greatly improved model performance, and acoustic data explained radar-observed mi-266

gration densities better than weather alone (Figures 2 and 3). Acoustic information increased model per-267

formance by 27 percentage points of variation (Figure 3g); prediction error decreased by 33% (Figure 3f).268

Notably, accuracy gains were particularly evident for the nights with the largest migration events.269
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Figure 2: Migration time series with model predictions. Gray line shows migration densities observed
by radar. Teal lines show cross-validated predictions made with different generalized linear models.

Geographic range of acoustic information270

Models comprising only a single acoustic predictor and trained on the radar station closest to the acoustic271

sensor predicted migration passage most accurately at radar stations close to the sensor (Figure 4). However,272

nightly calling activity in Tompkins County still explained significant variation in migration traffic at more273

distant radar sites (Figure 4). Nightly calling activity alone explained >30% of variation at radar stations274

11



R2 = 0.11

0

100

200

300

0 10 20 30 40 50

A
ct

ua
l m

ig
ra

tio
n

Date only
a

R2 = 0.48

0

100

200

300

0 50 100

Weather + date
b

R2 = 0.57

0

100

200

300

0 100 200 300

LOOCV prediction

A
ct

ua
l m

ig
ra

tio
n

Acoustic only
c

R2 = 0.75

0

100

200

300

0 50 100 150 200 250

LOOCV prediction

Acoustic + weather +
date

d

0.2

0.4

0.6

Dat
e

W
ea

th
er

+d
at

e

Aco
us

tic

Aco
us

tic
+

wea
th

er
+d

at
e

R2
e

20

25

30

35

Dat
e

W
ea

th
er

+d
at

e

Aco
us

tic

Aco
us

tic
+

wea
th

er
+d

at
e

RMSE
f

0% 10% 20% 30% 40%
Add'l variation explained

after adding acoustic

g

Data subset

All data

Top 50% of nights

Top 25% of nights

Figure 3: Acoustic information improves estimation of bird migration densities. The response
variable is radar-derived migration intensity (labeled “actual migration”). All performance measures were
evaluated with leave-one-out cross validation (LOOCV). (a,b,c,d) show predictions for date-only (a), weather-
only (b), acoustic-only (c), and acoustic + weather (d) generalized linear models. (e) and (f) compare
prediction performance for these three GLMs, evaluated with R2 (higher indicates more variation explained)
(e) and root mean square error (lower indicates less error) (f). (g) compares R2 between weather and
acoustic + weather models, showing how performance increases with the addition of acoustic data. Colours
show evaluation performance on different subsets of data, focusing on how well the model predicts the largest
migration events (specifically, top 50% and top 25%).

12



up to 500 km away (although some sites within 500 km also showed weak relationships). Distance was not275

the only factor governing performance; acoustic information appeared best linked to radars following an276

inland corridor from southern Maine to southern central Pennsylvania (Figure 4b). Radar stations along the277

Atlantic coast, Great Lakes, and Midwest showed lower associations. We observed similar patterns with a278

model comprising weather, acoustic, and date (Figure S1).279
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Migration timing at the family and species levels280

We subdivided nightly calling activity by family and species to compare acoustic information with ground281

observations of species from eBird data. Seasonal timing measured by acoustic sensors was consistent with282

that quantified by eBird at both taxonomic levels (Figures 5 and 6). At the species level, peak migration283

timing estimated from acoustic data explained 71% (95% CI [15% ,86%]) of variation in peak migration284

timing estimated from eBird (Figure 6).285

Discussion286

Methods to monitor and characterize nocturnal bird migration have received much attention from the ap-287

plied ecology and conservation communities. Acoustic monitoring presents distinct advantages over radar288

and human observation, especially in inaccessible and inhospitable locations, and requires significantly less289
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expense. We show that automated acoustic technologies can quantify the magnitude and species composi-290

tion of bird migration. Our model combining acoustics with weather and seasonal timing explained much291

of the variation in radar-measured migration passage, despite acoustic sensors being up to 200,000 times292

less expensive than a WSR-88D weather surveillance radar (compare e.g. $50 AudioMoth (Hill et al. 2018)293

vs. $10 million WSR-88D (Council 2008)). Furthermore, migration timing estimates from acoustics were294

consistent with those from a massive community science database, despite the fact that no humans needed295

to be present to collect acoustic data. Overall, automated acoustic methods provide a pathway to local,296

cost-effective bird migration monitoring at the species level.297

The link between counts of nocturnal flight calls and migration (e.g. intensity and phenology) has been a topic298

of much exploration (summarized in Farnsworth 2005). Previous studies have found relationships between299

acoustic activity and migration intensity measured by radar, thermal cameras, or mist nets, but acoustics300

typically explain little variation in migration intensity (Larkin et al. 2002, Farnsworth et al. 2004, Sanders301

and Mennill 2014, Horton et al. 2015). Nevertheless, flight calls have been used to study how migrants302

interact with topography and respond to weather (Smith et al. 2014, Gesicki et al. 2016) and light pollution303

(Watson et al. 2016, Winger et al. 2019, Gillings and Scott 2021). To our knowledge, no studies have used304

flight calls to track species-specific phenology (but see e.g. Smith et al. (2014)). Here, we demonstrate305

that flight calls do encode useful measures of migration intensity after incorporating information on weather306

conditions and time of season, and likewise that acoustic data accurately capture migration timing.307

Studies employ radar for characterizing nocturnal migration and providing accurate estimates of migrant308

densities aloft (Gauthreaux and Belser 2003, Dokter et al. 2011, Bauer et al. 2017, Van Doren and Horton309

2018). However, radars are not everywhere, and data may not be reliably available from governments and310

other entities even where they do exist (Shamoun-Baranes et al. 2021). Furthermore, radar has a very311

limited ability to discriminate species or individuals. This shortcoming precludes its use for important moni-312

toring tasks, such as: estimating species’ passage rates; tracking changing species phenology; understanding313

species’ interactions with local landscape features, light pollution, and weather; and revealing conspecific314

and heterospecific interactions during migratory flights. Acoustics can address these challenges, many of315

which are crucial to understanding birds’ responses to a changing world. Ultimately, acoustic data may be316

most valuable when used together with existing tools. Analyses combining taxonomic specificity of acoustic317

monitoring with the long-range, large-scale reach of weather surveillance radar will lead to a more complete318

understanding of nocturnal bird migration than either modality alone could provide.319

Acoustic monitoring can provide valuable information about migration in locations not covered by a radar320

and/or not frequented by birdwatchers. In our study, acoustic data in central New York State provided321
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meaningful information about migration passage at sites up to 500 km away. At the same time, acoustic322

sensors provide highly local information, which a large, stationary radar can only accomplish at locations close323

enough to the radar site. Acoustic monitoring has great potential to understand effects of local landscape324

features on different species of birds during active migration. Here, acoustic information from inland sensors325

was most predictive of migration activity along an inland corridor from Maine to Pennsylvania—and poorly326

predictive of coastal activity—aligning with previous work highlighting connectivity of migration in this327

region (Farnsworth et al. 2016). That study found that migration activity was correlated among inland328

radar stations in the northeast US but uncorrelated with migration activity at coastal stations. Our findings329

provide additional evidence that migration activity in the northeast US is characterized by separate inland330

and coastal flyways.331

Repositories of community science data collected by birdwatchers are powerful tools for studying and mon-332

itoring migratory birds (Sullivan et al. 2014). Our estimates of migration phenology derived from acoustic333

data were consistent with analogous metrics derived from nearly 3000 observation hours by nearly 400 vol-334

unteer observers in the birdwatching community. Although timing estimates we obtained with community335

science data were more precise (compare confidence bands in Figures 5 and 6), this is unsurprising given336

that Tompkins County, NY is the home of the Cornell Lab of Ornithology and enjoys exceptional commu-337

nity science coverage. Most areas do not approach this level of community science effort. Understanding338

migration phenology is of particular utility in biomes experiencing rapid climate change (e.g. tundra), which339

may have low human population densities and consequently minimal community science coverage. Acoustic340

monitoring could play an important role in tracking changing phenology in these regions.341

Despite the many advantages of acoustic monitoring, several important caveats warrant consideration. First,342

converting call counts to numbers of individuals is difficult, due to variation in calling behaviour by species,343

time of night, social environment, artificial lighting, and weather conditions. Acoustic arrays that can localize344

individuals are promising solutions (Gayk and Mennill 2020). Encouragingly, our study finds that acoustic345

activity (derived from call counts) is a valuable predictor of radar-derived measures of birds aloft, suggesting346

that the challenge of counting individuals is not a major issue. Second, not all migratory species vocalize347

regularly during migration. In North America, a large proportion of migratory species give flight calls, and348

decades of research have been invested in the species identification of calls. However, this is not true for all349

regions (e.g. Europe), which may limit the utility of acoustic monitoring in certain contexts. Third, ground-350

based acoustic sensors detect migrants flying in the lower atmosphere, and may be of limited utility for351

higher-flying migrants; this bias may vary within and among nights, as well as by species. Finally, acoustic352

sensors cannot easily discern the direction of movement of animals (unless an array is used), making it more353
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challenging to distinguish local movements from long-distance migration. Going forward, combining acoustic354

information with other data sources (e.g. tracking, radar and community science data) will allow scientists355

to monitor avian movements more accurately than any one approach alone.356

Contrary to our expectations, we did not find evidence through statistical interactions that cloud cover and357

visibility impact the relationship between call counts and migration passage rates. This suggests that call358

counts can reliably estimate migration passage under varied weather conditions. However, factors including359

weather and light pollution clearly calling behaviour (Farnsworth 2005, Van Doren et al. 2017). In addition,360

the 95% confidence set of models included many with cloud cover, visibility, and their interactions (Table361

S2). This indicates the importance of continuing explorations to understand and to account for relationships362

between weather conditions and calling behaviour in future studies. Acoustic data were particularly impor-363

tant for accurately quantifying nights with the largest migration events. These largest nights of migration364

drive the strong association between acoustics and migration intensity, but these events are also the most365

important to predict correctly, especially for applied science and targeted conservation action (e.g. light366

pollution mitigation).367

Overall, our study demonstrates that automated acoustic methods can accurately characterize bird migration368

at the species level, despite requiring only a small fraction of the expense and effort of multimillion-dollar369

radars and large-scale community science programs. This makes acoustic monitoring well-suited for areas370

outside of radar coverage, or where local-scale monitoring is of particular interest. Local-scale information371

on migration passage is essential for numerous applications, including infrastructure placement (e.g. wind372

and solar), aviation collision avoidance, and understanding how birds interact with the built and natural373

environments (e.g., stopover habitat selection, interactions with urbanized areas, and susceptibility to light374

pollution). These concerns are particularly salient for species of conservation interest, and acoustics monitor-375

ing is the only remote sensing method that can detect these species during nocturnal movements. Finally, we376

emphasize that acoustic monitoring is a viable and cost-effective approach for monitoring active nocturnal377

bird migration at species resolution across large scales and landscapes that are otherwise difficult to sample.378

Investing in widespread and acoustic monitoring infrastructure would provide an invaluable window onto379

global migration biology—an increasingly important task as these species continue to disappear at alarming380

rates (Rosenberg et al. 2019).381
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Data Availability Statement382

All BirdVox software is open source. BirdVoxDetect can be found on GitHub at https://github.com/383

BirdVox/birdvoxdetect (Lostanlen and Salamon 2022). The BirdVox-full-season audio dataset is archived384

at https://doi.org/10.5281/zenodo.5791744 (Farnsworth et al. 2022). Code and data associated with this385

paper are available via Mendeley Data at https://doi.org/10.17632/m4sgc32fpv.1 (Van Doren et al. 2022).386

Acknowledgements387

This work is partially supported by NSF awards 1633259 (BIRDVOX) and ICER 1927743 (GloBAM), an388

Atlanstic2020 award: TrAcS (“Trainable Acoustic Sensors”), a Cornell Presidential Postdoctoral Fellowship389

(to BMVD), Lyda Hill Philanthropies, and Leon Levy Foundation. We thank Jessie Barry, Ian Davies,390

Tom Fredericks, Jeff Gerbracht, Sara Keen, Holger Klinck, Anne Klingensmith, Ray Mack, Peter Marchetto,391

Ed Moore, Matt Robbins, Ken Rosenberg, and Chris Tessaglia-Hymes for designing autonomous recording392

units and collecting data. We thank Simon Gillings and one anonymous reviewer for helpful feedback on the393

manuscript. We acknowledge that the land on which the data were collected is the unceded territory of the394

Gayogo̱hó:nǫ� (the Cayuga Nation), which is part of the Haudenosaunee (Iroquois) confederacy.395

Conflict of Interest Statement396

The authors have no conflicts of interest to declare.397

Author Contributions398

Benjamin M. Van Doren designed the study, analysed data, and led the writing of the manuscript; Vincent399

Lostanlen, Aurora Cramer, Justin Salamon, Juan Pablo Bello, Steve Kelling, and Andrew Farnsworth de-400

veloped the acoustic analysis pipeline to process data; Adriaan Dokter processed radar data. All authors401

contributed critically to the drafts and gave final approval for publication. The authors have no conflicts of402

interests to declare.403

19

https://github.com/BirdVox/birdvoxdetect
https://github.com/BirdVox/birdvoxdetect
https://github.com/BirdVox/birdvoxdetect
https://doi.org/10.5281/zenodo.5791744
https://doi.org/10.17632/m4sgc32fpv.1


References404

Barton, K. 2020. MuMIn: Multi-model inference. manual. See https://CRAN.R-project.org/package=405

MuMIn.406

Bauer, S., J. W. Chapman, D. R. Reynolds, J. A. Alves, A. M. Dokter, M. M. H. Menz, N. Sapir, M. Ciach,407

L. B. Pettersson, J. F. Kelly, H. Leijnse, and J. Shamoun-Baranes. 2017. From agricultural benefits408

to aviation safety: Realizing the potential of continent-wide radar networks. BioScience 67:912–918.409

(doi:10.1093/biosci/bix074).410

Council, N. R. 2008. Evaluation of the Multifunction Phased Array Radar Planning Process. National411

Academies Press. See https://books.google.com?id=jvxjAgAAQBAJ.412

Cramer, J., V. Lostanlen, B. Evans, A. Farnsworth, J. Salamon, and J. Bello. 2020a. BirdVox-413

ANAFCC: A dataset for American Northeast Avian Flight Call Classification (1.0) [Data set]. Zenodo.414

(doi:doi.org/10.5281/zenodo.3666782).415

Cramer, J., V. Lostanlen, A. Farnsworth, J. Salamon, and J. P. Bello. 2020b. Chirping up the Right416

Tree: Incorporating Biological Taxonomies into Deep Bioacoustic Classifiers. Pages 901–905 ICASSP417

2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,418

Barcelona, Spain. (doi:10.1109/ICASSP40776.2020.9052908).419

Crum, T. D., and R. L. Alberty. 1993. The WSR-88D and the WSR-88D operational support420

facility. Bulletin of the American Meteorological Society 74:1669–1687. (doi:10.1175/1520-421

0477(1993)074<1669:TWATWO>2.0.CO;2).422

Diehl, R. H. 2013. The airspace is habitat. Trends in Ecology & Evolution 28:377–379. (doi:10.1016/j.tree.2013.02.015).423

Dokter, A. M., P. Desmet, J. H. Spaaks, S. van Hoey, L. Veen, L. Verlinden, C. Nilsson, G. Haase, H.424

Leijnse, A. Farnsworth, W. Bouten, and J. ShamounNANABarane. 2019. bioRad: Biological analysis425

and visualization of weather radar data. Ecography 42:852–860. (doi:10.1111/ecog.04028).426

Dokter, A. M., F. Liechti, H. Stark, L. Delobbe, P. Tabary, and I. Holleman. 2011. Bird migration427

flight altitudes studied by a network of operational weather radars. Journal of The Royal Society In-428

terface:rsif20100116. (doi:10.1098/rsif.2010.0116).429

eBird Basic Dataset. Version: EBD_relFeb-2021. 2021. Cornell Lab of Ornithology, Ithaca, New York.430

Farnsworth, A. 2005. Flight calls and their value for future ornithological studies and conservation research.431

The Auk 122:733–746. (doi:10.1093/auk/122.3.733).432

Farnsworth, A., S. A. G. Jr, and D. van Blaricom. 2004. A comparison of nocturnal call counts of mi-433

grating birds and reflectivity measurements on Doppler radar. Journal of Avian Biology 35:365–369.434

(doi:10.1111/j.0908-8857.2004.03180.x).435

20

https://CRAN.R-project.org/package=MuMIn
https://CRAN.R-project.org/package=MuMIn
https://CRAN.R-project.org/package=MuMIn
https://doi.org/10.1093/biosci/bix074
https://books.google.com?id=jvxjAgAAQBAJ
https://doi.org/doi.org/10.5281/zenodo.3666782
https://doi.org/10.1109/ICASSP40776.2020.9052908
https://doi.org/10.1175/1520-0477(1993)074%3C1669:TWATWO%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1993)074%3C1669:TWATWO%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1993)074%3C1669:TWATWO%3E2.0.CO;2
https://doi.org/10.1016/j.tree.2013.02.015
https://doi.org/10.1111/ecog.04028
https://doi.org/10.1098/rsif.2010.0116
https://doi.org/10.1093/auk/122.3.733
https://doi.org/10.1111/j.0908-8857.2004.03180.x


Farnsworth, A., B. M. Van Doren, W. M. Hochachka, D. Sheldon, K. Winner, J. Irvine, J. Geevarghese, and436

S. Kelling. 2016. A characterization of autumn nocturnal migration detected by weather surveillance437

radars in the northeastern USA. Ecological Applications 26:752–770. (doi:10.1890/15-0023).438

Farnsworth, A., B. M. Van Doren, S. Kelling, V. Lostanlen, J. Salamon, A. Cramer, and J. P. Bello. 2022.439

BirdVox-full-season: 6672 hours of audio from migratory birds. Zenodo. (doi:10.5281/zenodo.5791744).440

Gauthreaux, S. A. 1971. A Radar and Direct Visual Study of Passerine Spring Migration in Southern441

Louisiana. The Auk 88:343–365. (doi:10.2307/4083884).442

Gauthreaux, S. A., and C. G. Belser. 2003. Radar ornithology and biological conservation. The Auk443

120:266–277. (doi:10.1093/auk/120.2.266).444

Gayk, Z. G., and D. J. Mennill. 2020. Pinpointing the position of flying songbirds with a wireless mi-445

crophone array: Three-dimensional triangulation of warblers on the wing. Bioacoustics 29:375–386.446

(doi:10.1080/09524622.2019.1609376).447

Gesicki, D. V., M. M. Jamali, and V. P. Bingman. 2016. Coastal and offshore counts of migratory sparrows448

and warblers as revealed by recordings of nocturnal flight calls along the Ohio coast of Lake Erie. The449

Wilson Journal of Ornithology 128:503–509. (doi:10.1676/1559-4491-128.3.503).450

Gillings, S., and C. Scott. 2021. Nocturnal flight calling behaviour of thrushes in relation to artificial light451

at night. Ibis 163:1379–1393. (doi:10.1111/ibi.12955).452

Hebrard, J. J. 1971. The nightly initiation of passerine migration in spring: A direct visual study. Ibis453

113:8–18. (doi:10.1111/j.1474-919X.1971.tb05119.x).454

Hill, A. P., P. Prince, E. Piña Covarrubias, C. P. Doncaster, J. L. Snaddon, and A. Rogers. 2018. AudioMoth:455

Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods456

in Ecology and Evolution 9:1199–1211. (doi:10.1111/2041-210X.12955).457

Horton, K. G., W. G. Shriver, and J. J. Buler. 2015. A comparison of traffic estimates of nocturnal458

flying animals using radar, thermal imaging, and acoustic recording. Ecological Applications 25:390–401.459

(doi:10.1890/14-0279.1).460

Jacobsen, E., and V. Lakshmanan. 2017. Inferring the State of the Aerosphere from Weather Radar. Pages461

311–343 in P. B. Chilson, W. F. Frick, J. F. Kelly, and F. Liechti, editors. Aeroecology. Springer462

International Publishing, Cham. (doi:10.1007/978-3-319-68576-2_13).463

Kays, R., M. C. Crofoot, W. Jetz, and M. Wikelski. 2015. Terrestrial animal tracking as an eye on life and464

planet. Science 348. (doi:10.1126/science.aaa2478).465

Kuhn, M., J. Wing, S. Weston, A. Williams, C. Keefer, A. Engelhardt, T. Cooper, Z. Mayer, B. Kenkel,466

R. C. Team, M. Benesty, R. Lescarbeau, A. Ziem, L. Scrucca, Y. Tang, C. Candan, and T. Hunt. 2017.467

Caret: Classification and Regression Training. See https://github.com/topepo/caret/.468

21

https://doi.org/10.1890/15-0023
https://doi.org/10.5281/zenodo.5791744
https://doi.org/10.2307/4083884
https://doi.org/10.1093/auk/120.2.266
https://doi.org/10.1080/09524622.2019.1609376
https://doi.org/10.1676/1559-4491-128.3.503
https://doi.org/10.1111/ibi.12955
https://doi.org/10.1111/j.1474-919X.1971.tb05119.x
https://doi.org/10.1111/2041-210X.12955
https://doi.org/10.1890/14-0279.1
https://doi.org/10.1007/978-3-319-68576-2_13
https://doi.org/10.1126/science.aaa2478
https://github.com/topepo/caret/


Larkin, R. P., W. R. Evans, and R. H. Diehl. 2002. Nocturnal flight calls of Dickcissels and Doppler radar469

echoes over south Texas in spring. Journal of Field Ornithology 73:2–8. (doi:10.1648/0273-8570-73.1.2).470

Loss, S. R., T. Will, and P. P. Marra. 2015. Direct mortality of birds from anthropogenic causes. Annual471

Review of Ecology, Evolution, and Systematics 46:99–120. (doi:10.1146/annurev-ecolsys-112414-054133).472

Lostanlen, V., A. Cramer, J. Salamon, A. Farnsworth, B. M. V. Doren, S. Kelling, and J. P. Bello.473

2022. BirdVox: Machine listening for bird migration monitoring. bioRxiv:2022.05.31.494155.474

(doi:10.1101/2022.05.31.494155).475

Lostanlen, V., K. Palmer, E. Knight, C. Clark, H. Klinck, A. Farnsworth, T. Wong, J. Cramer, and J. Bello.476

2019a. Long-distance Detection of Bioacoustic Events with Per-channel Energy Normalization. Pages477

144–148 Proceedings of the Detection and Classification of Acoustic Scenes and Events 2019 Workshop478

(DCASE2019). New York University. (doi:10.33682/ts6e-sn53).479

Lostanlen, V., and J. Salamon. 2022. BirdVox/birdvoxdetect: 1.0. Zenodo. (doi:10.5281/zenodo.7414934).480

Lostanlen, V., J. Salamon, M. Cartwright, B. McFee, A. Farnsworth, S. Kelling, and J. P. Bello.481

2019b. Per-Channel Energy Normalization: Why and How. IEEE Signal Processing Letters 26:39–43.482

(doi:10.1109/LSP.2018.2878620).483

Lostanlen, V., J. Salamon, A. Farnsworth, S. Kelling, and J. P. Bello. 2018. Birdvox-Full-Night: A Dataset484

and Benchmark for Avian Flight Call Detection. Pages 266–270 2018 IEEE International Conference on485

Acoustics, Speech and Signal Processing (ICASSP). (doi:10.1109/ICASSP.2018.8461410).486

Lostanlen, V., J. Salamon, A. Farnsworth, S. Kelling, and J. P. Bello. 2019c. Robust sound event detection487

in bioacoustic sensor networks. PLOS ONE 14:e0214168. (doi:10.1371/journal.pone.0214168).488

Lowery, G. H., and R. J. Newman. 1966. A Continentwide View of Bird Migration on Four Nights in489

October. The Auk 83:547–586. (doi:10.2307/4083149).490

Mayor, S. J., R. P. Guralnick, M. W. Tingley, J. Otegui, J. C. Withey, S. C. Elmendorf, M. E. Andrew,491

S. Leyk, I. S. Pearse, and D. C. Schneider. 2017. Increasing phenological asynchrony between spring492

green-up and arrival of migratory birds. Scientific Reports 7:1902. (doi:10.1038/s41598-017-02045-z).493

Mesinger, F., G. DiMego, E. Kalnay, K. Mitchell, P. C. Shafran, W. Ebisuzaki, D. Jovi’c, J. Woollen, E.494

Rogers, E. H. Berbery, M. B. Ek, Y. Fan, R. Grumbine, W. Higgins, H. Li, Y. Lin, G. Manikin, D. Parrish,495

and W. Shi. 2006. North American Regional Reanalysis. Bulletin of the American Meteorological Society496

87:343–360. (doi:10.1175/BAMS-87-3-343).497

Newton, I. 2008. The Migration Ecology of Birds. Academic Press, Oxford. See https://books.google.com?498

id=BndIbshDWTgC.499

Richardson, W. J. 1990. Timing of bird migration in relation to weather: Updated review. Pages 78–101 in500

E. Gwinner, editor. Bird Migration. Springer Berlin Heidelberg.501

22

https://doi.org/10.1648/0273-8570-73.1.2
https://doi.org/10.1146/annurev-ecolsys-112414-054133
https://doi.org/10.1101/2022.05.31.494155
https://doi.org/10.33682/ts6e-sn53
https://doi.org/10.5281/zenodo.7414934
https://doi.org/10.1109/LSP.2018.2878620
https://doi.org/10.1109/ICASSP.2018.8461410
https://doi.org/10.1371/journal.pone.0214168
https://doi.org/10.2307/4083149
https://doi.org/10.1038/s41598-017-02045-z
https://doi.org/10.1175/BAMS-87-3-343
https://books.google.com?id=BndIbshDWTgC
https://books.google.com?id=BndIbshDWTgC
https://books.google.com?id=BndIbshDWTgC


Rosenberg, K. V., A. M. Dokter, P. J. Blancher, J. R. Sauer, A. C. Smith, P. A. Smith, J. C. Stanton, A.502

Panjabi, L. Helft, M. Parr, and P. P. Marra. 2019. Decline of the North American avifauna. Science503

366:120–124. (doi:10.1126/science.aaw1313).504

Runge, C. A., T. G. Martin, H. P. Possingham, S. G. Willis, and R. A. Fuller. 2014. Conserving mobile505

species. Frontiers in Ecology and the Environment 12:395–402. (doi:10.1890/130237).506

Salamon, J., J. P. Bello, A. Farnsworth, and S. Kelling. 2017. Fusing shallow and deep learning for507

bioacoustic bird species classification. Pages 141–145 2017 IEEE International Conference on Acoustics,508

Speech and Signal Processing (ICASSP). (doi:10.1109/ICASSP.2017.7952134).509

Salamon, J., J. P. Bello, A. Farnsworth, M. Robbins, S. Keen, H. Klinck, and S. Kelling. 2016. Towards510

the automatic classification of avian flight calls for bioacoustic monitoring. PLOS ONE 11:e0166866.511

(doi:10.1371/journal.pone.0166866).512

Sanders, C. E., and D. J. Mennill. 2014. Acoustic monitoring of nocturnally migrating birds accurately513

assesses the timing and magnitude of migration through the Great Lakes. The Condor 116:371–383.514

(doi:10.1650/CONDOR-13-098.1).515

Shamoun-Baranes, J., S. Bauer, J. W. Chapman, P. Desmet, A. M. Dokter, A. Farnsworth, B. Haest, J.516

Koistinen, B. Kranstauber, F. Liechti, T. H. E. Mason, C. Nilsson, R. Nussbaumer, B. Schmid, N.517

Weisshaupt, and H. Leijnse. 2021. Weather radars’ role in biodiversity monitoring. Science 372:248.518

(doi:10.1126/science.abi4680).519

Smith, A. D., P. W. C. Paton, and S. R. McWilliams. 2014. Using nocturnal flight calls to assess520

the fall migration of warblers and sparrows along a coastal ecological barrier. PLOS ONE 9:e92218.521

(doi:10.1371/journal.pone.0092218).522

Strimas-Mackey, M., E. Miller, and W. Hochachka. 2018. Auk: eBird data extraction and processing with523

AWK. manual. See https://cornelllabofornithology.github.io/auk/.524

Sullivan, B. L., J. L. Aycrigg, J. H. Barry, R. E. Bonney, N. Bruns, C. B. Cooper, T. Damoulas, A. A. Dhondt,525

T. Dietterich, A. Farnsworth, D. Fink, J. W. Fitzpatrick, T. Fredericks, J. Gerbracht, C. Gomes, W. M.526

Hochachka, M. J. Iliff, C. Lagoze, F. A. La Sorte, M. Merrifield, W. Morris, T. B. Phillips, M. Reynolds,527

A. D. Rodewald, K. V. Rosenberg, N. M. Trautmann, A. Wiggins, D. W. Winkler, W.-K. Wong, C. L.528

Wood, J. Yu, and S. Kelling. 2014. The eBird enterprise: An integrated approach to development and529

application of citizen science. Biological Conservation 169:31–40. (doi:10.1016/j.biocon.2013.11.003).530

Van Doren, B. M., and K. G. Horton. 2018. A continental system for forecasting bird migration. Science531

361:1115–1118. (doi:10.1126/science.aat7526).532

Van Doren, B. M., K. G. Horton, A. M. Dokter, H. Klinck, S. B. Elbin, and A. Farnsworth. 2017. High-533

intensity urban light installation dramatically alters nocturnal bird migration. Proceedings of the Na-534

23

https://doi.org/10.1126/science.aaw1313
https://doi.org/10.1890/130237
https://doi.org/10.1109/ICASSP.2017.7952134
https://doi.org/10.1371/journal.pone.0166866
https://doi.org/10.1650/CONDOR-13-098.1
https://doi.org/10.1126/science.abi4680
https://doi.org/10.1371/journal.pone.0092218
https://cornelllabofornithology.github.io/auk/
https://doi.org/10.1016/j.biocon.2013.11.003
https://doi.org/10.1126/science.aat7526


tional Academy of Sciences 114:11175–11180. (doi:10.1073/pnas.1708574114).535

Van Doren, B. M., V. Lostanlen, A. Cramer, J. Salamon, A. M. Dokter, S. Kelling, J. P. Bello, and A.536

Farnsworth. 2022. Data from: Automated acoustic monitoring captures timing and intensity of bird537

migration. Mendeley Data. (doi:10.17632/m4sgc32fpv.1).538

Van Doren, B. M., D. E. Willard, M. Hennen, K. G. Horton, E. F. Stuber, D. Sheldon, A. H. Sivakumar,539

J. Wang, A. Farnsworth, and B. M. Winger. 2021. Drivers of fatal bird collisions in an urban center.540

Proceedings of the National Academy of Sciences 118. (doi:10.1073/pnas.2101666118).541

Venables, W. N., and B. D. Ripley. 2002. Modern applied statistics with S. Fourth edition. Springer, New542

York. See https://www.stats.ox.ac.uk/pub/MASS4/.543

Watson, M. J., D. R. Wilson, and D. J. Mennill. 2016. Anthropogenic light is associated with increased vocal544

activity by nocturnally migrating birds. The Condor 118:338–344. (doi:10.1650/CONDOR-15-136.1).545

Winger, B. M., B. C. Weeks, A. Farnsworth, A. W. Jones, M. Hennen, and D. E. Willard. 2019. Nocturnal546

flight-calling behaviour predicts vulnerability to artificial light in migratory birds. Proceedings of the547

Royal Society B: Biological Sciences 286:20190364. (doi:10.1098/rspb.2019.0364).548

Wood, S. N. 2017. Generalized Additive Models: An Introduction with R. Second edition. Chapman and549

Hall/CRC.550

Youngflesh, C., J. Socolar, B. R. Amaral, A. Arab, R. P. Guralnick, A. H. Hurlbert, R. LaFrance, S. J.551

Mayor, D. A. W. Miller, and M. W. Tingley. 2021. Migratory strategy drives species-level variation in552

bird sensitivity to vegetation green-up. Nature Ecology & Evolution:1–8. (doi:10.1038/s41559-021-01442-553

y).554

24

https://doi.org/10.1073/pnas.1708574114
https://doi.org/10.17632/m4sgc32fpv.1
https://doi.org/10.1073/pnas.2101666118
https://www.stats.ox.ac.uk/pub/MASS4/
https://doi.org/10.1650/CONDOR-15-136.1
https://doi.org/10.1098/rspb.2019.0364
https://doi.org/10.1038/s41559-021-01442-y
https://doi.org/10.1038/s41559-021-01442-y
https://doi.org/10.1038/s41559-021-01442-y


Supporting Information

0.0

0.2

0.4

0.6

250 500 750 1000
Distance from acoustic sensor (km)

V
ar

ia
tio

n 
in

 m
ig

ra
tio

n 
ex

pl
ai

ne
d

 b
y 

ac
ou

st
ic

+
w

ea
th

er
+

da
te

 m
od

ela

36

40

44

La
tit

ud
e

−85 −80 −75 −70
Longitude

0.2

0.4

0.6

Variation
explained

b

Figure S1: Acoustic and weather information content degrades with distance. (a) shows the
performance of a model containing acoustic and weather information when predicting migration passage at
radar stations at varying distances from the acoustic sensor. Line is a loess smoother. (b) shows the same
information in map form. The blue asterisk is the location of the acoustic sensor.

Table S1: Species included in the BirdVoxDetect classifier..

Family Common Name Scientific Name
Passerellidae American Tree Sparrow Spizelloides arborea
Passerellidae Chipping Sparrow Spizella passerina
Passerellidae Savannah Sparrow Passerculus sandwichensis
Passerellidae White-throated Sparrow Zonotrichia albicollis
Cardinalidae Rose-breasted Grosbeak Pheucticus ludovicianus
Turdidae Gray-cheeked Thrush Catharus minimus
Turdidae Swainson’s Thrush Catharus ustulatus
Parulidae American Redstart Setophaga ruticilla
Parulidae Bay-breasted Warbler Setophaga castanea
Parulidae Black-throated Blue Warbler Setophaga caerulescens
Parulidae Canada Warbler Cardellina canadensis
Parulidae Common Yellowthroat Geothlypis trichas
Parulidae Mourning Warbler Geothlypis philadelphia
Parulidae Ovenbird Seiurus aurocapilla
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Table S2: Model selection for prediction of radar-derived bird densities using acoustic and
weather data. Shown is the 95% confidence set of models (cumulative AICc weight sums to 0.95). All
models include nightly calling activity and time of season. Note that the “Date (cubic)” variable represents
a cubic polynomial term, not a single term with an exponent. Columns are as follows: “Rsq” is 𝑅2, the
proportion of variance explained by the model; “df” is the number of model parameters; “logLik” is the
model log-likelihood; “AICc” is the corrected Akaike Information Criterion; “delta” is the difference in AICc
from the best (first-listed) model; “weight” is the AICc weight; “cumulative weight” is the cumulative AICc
weight.

terms Rsq df logLik AICc delta weight cumulative weight
Date (cubic) + Calling activity +
E/W wind + N/S wind

0.802 8 -474.779 966.957 0.000 0.249 0.249

Date (cubic) + Calling activity +
E/W wind + Visibility + N/S
wind

0.804 9 -474.027 967.818 0.862 0.162 0.411

Date (cubic) + Cloud cover +
Calling activity + E/W wind +
N/S wind

0.802 9 -474.659 969.082 2.126 0.086 0.497

Date (cubic) + Cloud cover +
Calling activity + E/W wind +
Visibility + N/S wind

0.806 10 -473.488 969.154 2.197 0.083 0.580

Air temp. + Date (cubic) +
Calling activity + E/W wind +
N/S wind

0.802 9 -474.747 969.259 2.302 0.079 0.658

Date (cubic) + Calling activity +
E/W wind + Visibility + N/S
wind + Calling activity
×Visibility

0.806 10 -473.681 969.539 2.583 0.068 0.727

Air temp. + Date (cubic) +
Calling activity + E/W wind +
Visibility + N/S wind

0.805 10 -473.868 969.915 2.958 0.057 0.783

Date (cubic) + Cloud cover +
Calling activity + E/W wind +
Visibility + N/S wind + Calling
activity ×Visibility

0.808 11 -472.862 970.363 3.406 0.045 0.829

Date (cubic) + Cloud cover +
Calling activity + E/W wind +
N/S wind + Cloud cover
×Calling activity

0.802 10 -474.644 971.466 4.509 0.026 0.855

Air temp. + Date (cubic) +
Cloud cover + Calling activity +
E/W wind + N/S wind

0.802 10 -474.654 971.487 4.530 0.026 0.881

Air temp. + Date (cubic) +
Calling activity + E/W wind +
Visibility + N/S wind + Calling
activity ×Visibility

0.806 11 -473.447 971.535 4.578 0.025 0.906

Air temp. + Date (cubic) +
Cloud cover + Calling activity +
E/W wind + Visibility + N/S
wind

0.806 11 -473.486 971.613 4.656 0.024 0.930

Date (cubic) + Cloud cover +
Calling activity + E/W wind +
Visibility + N/S wind + Cloud
cover ×Calling activity

0.806 11 -473.487 971.615 4.658 0.024 0.954
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