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Abstract

The “Holistic Evaluation of Audio Representations” (HEAR) is an emerging research
program towards statistical models that can transfer to diverse machine listening tasks.
The originality of HEAR is to conduct a fair, “apples-to-apples” comparison of many deep
learning models over many datasets, resulting in multitask evaluation metrics that are readily
interpretable by practitioners. On the flip side, this comparison incurs a neural architecture
search: as such, it is not directly interpretable in terms of audio signal processing. In this
paper, we propose a complementary viewpoint on the HEAR benchmark, which we name
GEAR: Generative Evaluation of Audio Representations. The key idea behind GEAR is to
generate a dataset of sounds with few independent factors of variability, analyze it with
HEAR embeddings, and visualize it with an unsupervised manifold learning algorithm.
Visual inspection reveals stark contrasts in the global structure of the nearest-neighbor
graphs associated to logmelspec, Open-L3, BYOL, CREPE, wav2vec2, GURA, and YAMNet.
Although GEAR currently lacks mathematical refinement, we intend it as a proof of concept
to show the potential of parametric audio synthesis in general-purpose machine listening
research.

1. Introduction

1.1. Towards machine listening

Machine listening (Rowe, 1992), also known as audio content analysis (Lerch, 2012), aims
to extract the information from a digital audio signal in the same way as a human listener
would. Since the 1950s and the earliest spoken digit recognizer (Davis et al., 1952), this
technology has gained in sophistication, thanks to a number of factors in conjunction: the
falling costs of audio acquisition hardware, the acceleration of personal computing, and
the massification of user-generated content (Gemmeke et al., 2017), just to name a few.
Over the past decade, the renewed interest for deep learning has spurred the development
of a new generation of machine listening systems. These systems tend to have certain
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traits in common: the resort to a mel-frequency or CQT representation as input, the “deep”
stacking of convolutional or recurrent layers, and training from a random initialization by
some variant of stochastic gradient descent (McFee, 2018). Yet, the debate surrounding
the best computational architecture for machine listening remains intense: for example,
recent research has shown that deep learning in the “raw waveform” domain may outperform
predefined time–frequency representations (Zeghidour, 2019). The same can be said of the
“Transformer,” a feedforward layer with multiplicative interactions which may outperform the
well-established convolutional layer (Gong et al., 2021). Lastly, many variants of pre-training,
either supervised or self-supervised, have shown a strong potential (Tagliasacchi et al., 2020).

1.2. On the proliferation of tasks

Another strong tendency of the past decade in machine listening resides in the rapid
diversification of its application scope. Once centered on English speech (e.g., TIMIT
dataset), deep learning for machine listening has progressively taken on a broad array of
other domains, such as music (Peeters and Richard, 2021), urban sounds (Bello et al., 2019),
animal vocalizations (Stowell, 2022), machine sounds (Koizumi et al., 2018), and healthcare
(Deshpande et al., 2022). Therefore, applied research in machine listening now benefits
practitioners in many other scientific fields, from conservation ecology to digital humanities.
However, at the level of fundamental research, it is difficult to assess whether the overarching
quest towards human-level machine listening is making much progress, if at all (Kim et al.,
2020). Indeed, at present, most of the models which are being actively maintained are
trained and evaluated on a single “niche” task.

1.3. The HEAR benchmark

In this context, the “Holistic Evaluation of Audio Representations” (HEAR) initiative aims
to offer a level playing field for fundamental machine listening research (Turian et al., 2022).
The key idea behind HEAR is that the human auditory system is holistic (general-purpose),
in the sense that it can readily learn to perform new tasks with little or no supervision. From
this observation, it follows that machine listening research should be evaluated “holistically;”
i.e., over as many tasks as possible. Hence, HEAR consists of a benchmark of 19 different
tasks, encompassing speech, environmental sound, and music. Participants to the HEAR
benchmark are not expected to solve the tasks one by one; but rather, to provide a general-
purpose feature map, or representation. For each audio input, this representation returns a
vector, known as embedding, which then serves to train a shallow neural network on the task
of interest. We refer to the official website of HEAR for a more detailed description1.

HEAR proposes to conduct “holistic evaluation” by juxtaposing many small niche tasks
in supervised machine listening, known to have various levels of difficulty: from 10–20%
mean average precision (mAP) for the recognition of vocal imitations up to 90–95% accuracy
for the recognition of Beijing Opera percussion instruments. The main appeal behind
such a juxtaposition is that the evaluation scores reflect a real-world purpose: for example,
the two tasks above stem from content-based information retrieval and digital musicology,
respectively.

1. Official website: https://hearbenchmark.com
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Figure 1: Flowchart of GEAR: Generative Evaluation of Audio Representations. Elements in blue
depend upon the choice of audio representation, whereas elements in black are shared.

1.4. Limitations of HEAR

On the flip side, we point out that HEAR is hampered by its limited capabilities for error
analysis at the task-agnostic level. The conclusion of HEAR 2021 takes the form of a matrix
with 29 rows (one per submission) and 19 columns (one per task), yielding 29× 19 = 551
entries in total (Turian et al., 2022, Fig. 1, p. 10). Although the benchmark organizers
have derived some summary visualizations from this table (see t-SNE plots in Fig. 2, op.
cit.), it remains difficult for the reader to figure out, at a glance, what a particular HEAR
submission can and cannot do.

Of course, it would be possible to increase the level of detail and break down accuracy
numbers not only per task, but also per class. However, such a procedure might not be
conclusive. Specifically, if model M tends to confuse X and Y on dataset D, it is uncertain if
such confusion indicates that M is invariant to an audio feature which separates X from Y ;
that intra-class and inter-class variabilities are strongly correlated; that M is oversensitive
to small audio perturbations in D; or some combination of the above.

Another drawback of HEAR is that submissions are not compared directly; but instead,
through the lens of a specific deep learning architecture, that is chosen by the organizers.
Here, Occam’s razor prevails: the ideal audio representation should separate classes linearly
and thus obtain an excellent score, even when paired with a shallow model. We understand
that such is the reason why the organizers opted for a hyperparameter selection by grid
search over a fairly simple design space: one or two hidden layers, four values of initial
learning rate, and two kinds of initial weight distributions (see Table 4, op. cit).

Yet, for all we know, expanding this grid search to deeper or wider architectures might
boost classification accuracy and even rearrange the leaderboard. As a consequence, when
consulting the scores of a HEAR submission, it is not clear how much of this score should
be attributed to properties of the underlying representation versus to the fitness of that
representation with respect to the hyperparameter grid.

1.5. Contribution

In the present paper, we propose a first attempt at remediating the two aforementioned
shortcomings, which we perceive in the HEAR benchmark: lack of visual interpretation
and dependency on a hyperparameter grid. To do so, we generate a synthetic dataset with
known independent factors of variability. Then, we run each audio sample in the dataset
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through the HEAR model under study, which we regard as a feature extractor. Thirdly,
we visualize the nearest-neighbor graph between feature vectors associated to the dataset,
by means of an unsupervised manifold learning algorithm. Lastly, we color the vertices
of this graph according to the values of the latent variables governing the known factors
of variability in the dataset. In this way, we hope to shed light on the model’s ability to
discover these factors of variability without any supervision.

Figure 1 illustrates our protocol. As a nod to HEAR, we call our method “Generative
Evaluation of Audio Representations,” or GEAR for short.

With GEAR, we do not have the ambition to compete with HEAR, nor to present an
alternative leaderboard. On the contrary, we intend to provide a complementary viewpoint
on the same benchmark: the strengths of GEAR are the weaknesses of HEAR and vice versa.
Indeed, the main drawback of GEAR is that it is not grounded in any real-world use case
or “task:” disentangling factors of variability is a necessary first step for high-dimensional
representation learning (Bengio, 2013) but rarely suffices on its own to correctly assign
patterns to classes. Meanwhile, GEAR operates as a visual “smoke test” which looks for some
of the most basic attributes of auditory perception. In this paper, we have experimented
with pitched sounds and varied three important parameters of the spectral envelope; but
we stress that GEAR is a general methodology and could, in the future, apply to more
sophisticated generative models than the one we present.

Our results are presented in Section 4. They reveal that the nearest-neighbor graphs which
proceed from seven of the embeddings in HEAR exhibit qualitatively different topologies:
some of them appear like 1-D strands; others a like 2-D sheaf; others like a 3-D dense volume
Nevertheless, we acknowledge that the interpretation of point clouds in Figure 3 is hampered
by the lack of shortcomings in the design of our synthetic dataset, which only became
evident once the study was complete. In particular, distances in the space of synthesis
parameters do not necessarily correlate with perceptual judgments of auditory similarity.
Thus, although the current formulation of GEAR may serve to check local properties of
continuity and independence between factors of variability, one should not make conclusions
about the global geometric properties of audio representations from GEAR visualization
alone. Still, we believe that finely manipulating audio data via parametric synthesizers has
a strong potential towards the better interpretability of deep audio representations. Section
4.3 summarizes the known limitations of GEAR, offers some “learned lessons” after running
it on HEAR challenge submissions, and offers some perspectives for future work.

1.6. Related work

The topics of “interpretability” and “explainability” are under growing attention in machine
listening research, as in other subdomains of artificial intelligence. A forerunner in these
topics, Sturm (2014) has proposed a witty analogy between the behavior of some high-
accuracy systems for music information retrieval and that of “Clever Hans;” that is, a horse
who seemingly had the ability to understand mathematics, yet was in fact responding to
unintentional cues of the questioner. Indeed, these systems were only achieving a good
performance by applying “tricks” such as detecting irrelevant factors of variability which
happen to be confounded with the relevant ones on the dataset on which they were being
evaluated. Such a concern for assessing whether machines encode audio similarity in a
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human-like way is reminiscent of the philosophical and methodological framework of Wiggins
(2009).

Since then, various methods have been proposed to assess whether a given machine
listening system is a “horse”—and if so, because of what unanticipated “trick.” Kereliuk
et al. (2015) have proposed to approach the problem from the perspective of adversarial
attacks in deep learning. More recently, Rodŕıguez-Algarra et al. (2019) have designed a
series of intervention for a music classification pipeline, both at the level of audio content
and that of class distribution, so as to characterize confounding effects. Kim et al. (2019)
have proposed to evaluate the “trustworthiness” of various audio representations by verifying
whether artificial perturbations in pitch or tempo yield consistent displacements in feature
space across all examples of a real-world music collection. Lastly, Melchiorre et al. (2021)
have paired a music recommendation system with a “listenable explanation;” i.e., a user
interface revealing which parts and which instruments of a given song are predicted as most
characteristic of their taste.

Another important inspiration for GEAR is the recent work of Turian and Henry (2020),
who proposed to evaluate whether low-level representations of audio (some engineered,
some learned) were capable of predicting which of two sine waves is higher in fundamental
frequency. We concur with the idea that parametric audio synthesis may provide insight on
the functioning of state-of-the-art audio representations.

Our paper extends the study of Lostanlen et al. (2020), which evaluated the ability of
the scattering transform to replicate psychoacoustic masking. The main novelties of our
paper reside in its systematic application to seven learned audio representations and in the
quantitative measurement of invariance.

1.7. Outline

Section 2 presents our parametric generative model; our synthetic audio dataset; and
our chosen graph-based algorithm for manifold learning, Isomap. Section 3 presents the
application of GEAR to the HEAR baseline, as well as six open-source audio representations.
Section 4 summarizes our findings in both qualitative and quantitative terms.

2. Methods

2.1. Additive Fourier synthesis

We build a dataset of complex tones according to the following additive synthesis model:

yθ(t) =

P∑
p=1

1 + (−1)pr

pα
cos(pf1t)ϕT (t), (1)

where ϕT is a Hann window of duration T . This additive synthesis model depends upon
three parameters: the fundamental frequency f1, the Fourier decay α, and the relative
odd-to-even amplitude difference r. We denote the triplet (f1, α, r) by θ. The Fourier decay
affects the perceived brightness of the of sound, while the relative odd-to-even amplitude
difference is linked to the boundary conditions of the underlying wave equation: a value
of r = 1 suggests a semi-open 1-D resonator, such as a clarinet, whereas a value of r = 0
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suggests a closed resonator such as a flute. Hence, our audio signal has three degrees of
freedom.

The reason why we focus on sustained pitched sounds for this study is that they are
present in music, speech and some bio-acoustic sounds. Besides, note that one-dimensional
audio descriptors such as spectral brightness and zero-crossing rate correlate with both f1
and α, hence a lack of disentanglement. Likewise, a previous publication has shown that
mel-frequency cepstral coefficients (MFCC), arguably the most widespread set of engineered
features for speech and music processing, is incapable of disentangling f1 from α and r
(Lostanlen et al., 2020). Thus, simulating the ability of our auditory system to represent
stimuli in Equation 1 is more challenging that it might seem at first glance.

2.2. Synthetic dataset

We generate N = 2500 signals in total, corresponding to 50 values of α between 0 and 2,
50 values of r between 0 and 1, and f1 being an integer chosen randomly between 12 and
24. In practice, we set T to 1024 samples and P to 32 harmonics. Figure 2 shows a small
subset of our synthetic dataset. In this plot, r varies horizontally, α varies vertically, and f1
takes random values. As we can see, in time domain graph, with the increasing of r, the
signal is sparser because the difference between the values in odd-even order is larger. As for
α, when it increases, the signal is smoother due to the fact that α inhibits high-frequency
components.

Note that human judgments of perceived dissimilarity grow monotonically with synthesis
parameters (f1, α, and r), but not linearly. In particular, it is known in psychoacoustics
that perceived differences in pitch are roughly proportional to differences in log(1 + cf1) for
some constant c. Hence, there is no reason to expect that a dataset of sounds in which f1
grow according to an arithmetic progression should map to evenly spaced points in feature
space. The same can be said of parameters α and r, which are mathematically simple but
are not calibrated according to a perceptually uniform psychoacoustic scale.

This lack of calibration in the design of the synthetic dataset has implications for the
GEAR methodology. It implies that pairwise comparisons in feature space are only “sensible”
if conducted between sounds whose variations in parameter space are small enough as to be
considered infinitesimal for the listener. Since deep neural networks and audio synthesizers
are both differentiable functions of their input, we may expect that these variations should
map to infinitesimal variations in feature space. For this reason, we compute distances in
feature space upon small Euclidean neighborhoods and rely on the Isomap data visualization
algorithm to visualize the global nonlinear structure of the dataset. Section 4.3 provides
additional perspectives on the problem of perceptual calibration of audio synthesizers and
the geometric analysis of audio representations beyond simple nearest-neighbor graphs.

2.3. Isomap dimensionality reduction

Isomap is an unsupervised algorithm for data visualization (Tenenbaum et al., 2000). It
operates in three stages: nearest-neighbor search, computation of shortest path distances,
and multidimensional scaling. For the first stage, we search nearest neighbors in terms of
smallest Euclidean distance in feature space. We arbitrarily set the number of neighbors
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= 1.0, r = 1.0 = 1.0, r = 1.2 = 1.0, r = 1.4 = 1.0, r = 1.6 = 1.0, r = 1.8

= 1.4, r = 1.0 = 1.4, r = 1.2 = 1.4, r = 1.4 = 1.4, r = 1.6 = 1.4, r = 1.8

= 1.8, r = 1.0 = 1.8, r = 1.2 = 1.8, r = 1.4 = 1.8, r = 1.6 = 1.8, r = 1.8

= 2.2, r = 1.0 = 2.2, r = 1.2 = 2.2, r = 1.4 = 2.2, r = 1.6 = 2.2, r = 1.8

= 2.6, r = 1.0 = 2.6, r = 1.2 = 2.6, r = 1.4 = 2.6, r = 1.6 = 2.6, r = 1.8

= 1.0, r = 1.0 = 1.0, r = 1.2 = 1.0, r = 1.4 = 1.0, r = 1.6 = 1.0, r = 1.8

= 1.4, r = 1.0 = 1.4, r = 1.2 = 1.4, r = 1.4 = 1.4, r = 1.6 = 1.4, r = 1.8

= 1.8, r = 1.0 = 1.8, r = 1.2 = 1.8, r = 1.4 = 1.8, r = 1.6 = 1.8, r = 1.8

= 2.2, r = 1.0 = 2.2, r = 1.2 = 2.2, r = 1.4 = 2.2, r = 1.6 = 2.2, r = 1.8

= 2.6, r = 1.0 = 2.6, r = 1.2 = 2.6, r = 1.4 = 2.6, r = 1.6 = 2.6, r = 1.8

Figure 2: Visualization of 25 samples in our synthetic dataset: r varies across columns, α across
rows, and f1 varies randomly. Blue: time domain. Red: Fourier domain.
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to K = 100. That being said, we note that the hyperparameter K has an impact on the
visualization and its role in GEAR is deserving of future work.

The second stage of Isomap is classically done by a shortest path algorithm; in our case,
Dijkstra’s algorithm. It yields a large matrix (N ×N) of geodesic distances, which we square
and recenter to null mean.

Lastly, multidimensional scaling (MDS) determines the top-three eigenvalues of this
matrix above and its associated eigenvectors in a space of dimension N . Displaying the
entries of these eigenvectors as a scatter plot produces a 3-D cloud of N points, each
corresponding to a different sound, which lends itself to visual interpretation: any two points
appearing nearby are similar in feature space, in the sense that there exists a short Euclidean
path connecting them. Furthermore, looking up the value of α, r, or f1 for these points
assigns them a color in a continuous scale: in our case, red–white–blue.

Hence, the core hypothesis of GEAR is that a desirable audio representation should
produce a dense arrangement of points in 3-D, in which all three parameters of interest
appear as smooth color progressions over orthogonal coordinates. This hypothesis may
be simply checked by visual inspection, or quantified automatically by defining a task of
parameter regression (see Figure 1).

3. Application to HEAR embeddings

3.1. Logmelspec

The first model we choose is the “naive” baseline, provided by the organizers of HEAR. This
baseline is a log-scaled mel-frequency spectrogram (logmelspec) followed by 4096 random
projections, in which the random matrix weights are Gaussian and independent.

3.2. Open-L3

Open-L3 is a deep convolutional network (convnet) that is trained entirely by self-supervision
(Cramer et al., 2019). In Open-L3, the “open” prefix stands for open-source while the suffix
L3 is short for “Look, Listen and Learn” (Arandjelovic and Zisserman, 2017). Open-L3

consists of two subnetworks: a video subnetwork and an audio subnetwork. The two
subnetworks are trained jointly to distinguish whether a video frame and a one-second audio
segment are from the same video file; a task known as audio-visual correspondence. These
files are sampled from a large unlabeled dataset of 60 million videos. The audio subnetwork
has reached state-of-the-art results in urban sound classification. We use this subnetwork as
a feature extractor in dimension 6144. Open-L3 is one of the three (non-naive) baselines
that are provided by the organizers of the HEAR benchmark.

3.3. Hybrid BYOL-S

BYOL (Bootstrap Your Own Latent) is a self-supervised learning algorithm, initially proposed
for computer vision (Grill et al., 2020), and then adapted to machine listening by Niizumi
et al. (2021), under the name BYOL-A (BYOL for Audio). The motivation behind BYOL is
to perform contrastive learning while circumventing the problem of mining negative samples.
While is trained on AudioSet (Gemmeke et al., 2017), a HEAR submission has proposed
to train it on a speech-only subset of AudioSet (Elbanna et al., 2022a,b): hence, BYOL-S
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Figure 3: Isomap visualization of our synthetic dataset after feature map by seven audio represen-
tations. Top to bottom: HEAR baseline, Open-L3, BYOL, CREPE, wav2vec2, GURA, YAMNet.
Shades of red (resp. blue) denote greater (resp. lower) values of the fundamental frequency f1 (left),
the spectral decay exponent α (center), and the odd-to-even harmonic energy ratio r (right).
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(BYOL for Speech). Eventually, the authors have extended BYOL-S so as to learn from
handcrafted features, yielding Hybrid BYOL-S. Hybrid BYOL-S was found to outperform
BYOL-S in the HEAR 2021 benchmark, which is why we prioritized it for inclusion in
GEAR.

3.4. CREPE

CREPE means “Convolutional Representation for Pitch Estimation” (Kim et al., 2018):
it was initially proposed to solve the problem of monophonic pitch tracking. It is a deep
convolutional neural network architecture whose originality is to operate directly on the
“raw waveform domain” rather than upon a time–frequency representation. After supervised
learning on synthetic data, CREPE outperforms other popular models for pitch estimation
on two real-world datasets. CREPE is made available as a (non-naive) baseline by the
organizers of HEAR.

3.5. Wav2vec2

Wav2vec2 (Baevski et al., 2020) is a self-supervised learning model built based on a contrastive
learning task. It is also one of the baselines in HEAR competition. Its feature encoder
consists of a convnet in the raw waveform domain, followed by a Transformer and a vector
quantization module for sequence modeling. Wav2vec2 has proven to extract cross-linguistic
speech units. On a downstream task of automatic speech recognition, wav2vec2 matches the
previous state of the art model with 100 times fewer labeled samples.

3.6. GURA Fusion

GURA 2 is a set of ensemble methods applied on three models: HuBERT (Hsu et al.,
2021), wav2vec2, and CREPE. The authors have considered several aggregation strategies:
feature concatenation, averaging, and fusion. For GEAR, we choose to visualize the
feature concatenation variant, referred to as “GURA Cat H+w+C” on the leaderboard and
“fusion cat xwc” in their repository. It concatenates three 1024-dimensional embeddings and
produces a 3072-dimensional embedding.

3.7. YAMNet

Developed by Google, YAMNet (Yet another Audio MobileNet) 3 is an instance of MobileNet
(Howard et al., 2017): it composes a depthwise convolution and a pointwise convolution,
hence a “depthwise separable” variant of the 2-D convnet which significantly reduces the
number of parameters. YAMNet is pre-trained on log-mel-spectrograms from AudioSet in a
supervised way. It produces a 1024-dimensional embedding.

2. GURA GitHub repository: https://github.com/tony10101105/HEAR-2021-NeurIPS-Challenge---NTU-GURA
3. YAMNet website: https://www.tensorflow.org/hub/tutorials/yamnet
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4. Results

4.1. Visual inspection

Figure 3 shows the result of Isomap for all seven embeddings listed in the previous section.
Each row corresponds to a different embedding while each columns corresponds to a different
synthesis parameter: i.e., f1, α, r.

We make the following observations:

base The logmelspec baseline is strongly sensitive to pitch (f1), especially for bright spectra
(low α) comprising a sparse harmonic series (high r).

Open-L3 Discontinuities in the color scale associated to f1 indicate that the topology of the
pitch axis is not preserved. This is consistent with the previous findings of Lostanlen
et al. (2020).

BYOL A 2-D manifold, roughly indexed by f1 and α coordinates. Clarinet-like sounds
(r = 1) appear as outliers.

CREPE Strongly sensitive to pitch (f1) and quasi-invariant to spectral envelope (α and r).
This is to be expected since CREPE was trained for fundamental frequency estimation.

wav2vec2 A 3-D manifold but whose coordinates do not align with the original degrees of
variability of the data.

GURA Similarly to BYOL, a 2-D manifold in which f1 is the dominant factor of variability.

YAMNet Arguably the best representation in the GEAR benchmark: YAMNet produces
a dense 3-D manifold in which the underlying parameters of audio synthesis (f1, α,
and r) appear as smoothly changing over perpendicular directions.

4.2. Nearest-neighbor regression

We complement the qualitative method above by a quantitative method: namely, nearest-
neighbor regression. Given a tuple of parameters θi, let us denote by NK(θi) the set of
its K nearest neighbors. We look up the parameters values θj in this set and compute an
unweighted mean over each of them, yielding the 3-D vector:

θ̃i =
1

K

∑
θj∈NK(θi)

θj . (2)

Our postulate is that theK nearest neighbors θj ∈ NK(θi) of a desirable audio representation
should be evenly distributed around the value θi, and thus yield a regression estimate θ̃i

which is close to θi itself. We measure the logarithm of the element-wise ratio between
estimated parameter and true parameter:

log

(
θ̃i

θi

)
= log θ̃i − log θi (3)
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Figure 4: Unsupervised benchmark results of our synthetic dataset after feature map by different
embedding models. subplot a corresponds to the unsupervised results of parameter f1, subplot b
corresponds to α, and subplot c corresponds to r. Different colors represent the results of different
models. The x-axis is the score on a logarithmic scale while the y-axis lists model names. Scores
closer to 1 (vertical center of the plot) are judged to be better.

and repeat the same operation for every synthetic sample i. Intuitively, an ideal audio
representation should yield small absolute values for the log-ratio above; i.e., ratios θ̃i/θi

that are all close to one.

For the regression task, we lower the value of the number of neighbors: K = 40, compared
to K = 100 in Isomap. Figure 4 displays the resulting distribution of log-ratios for each
parameter and each representation in GEAR. Unfortunately, the regression benchmark
remains inconclusive: all embeddings fare similarly in terms of estimation error for α and
r. The only assured finding is that the naive logmelspec baseline and CREPE are highly
sensitive to f1, which was to be expected. Hence, future work should not evaluate regression
error at the local scale of nearest neighbors; but rather, at the global scale of invariance and
disentanglement.

4.3. Perspectives

GEAR is an attempt at evaluating audio representations via generative models. In this way,
it takes a different approach than HEAR, which is based on real-world classification tasks.
Our paper has shown that GEAR is feasible in practice while incurring a moderate workload.
Specifically, this paper was achieved by two MSc students, working part time under the
supervision of one faculty member. In comparison, data collection and preparation for
HEAR required the work of 23 challenge organizers. Hence, we believe that the conceptual
simplicity of the GEAR methodology has the potential to expand the accessibility and
attractiveness of HEAR to newcomers, particularly at the undergrad and grad student levels.

However, we acknowledge that GEAR currently suffers from a lack of direct applicability
to research questions in machine listening. This leads to two avenues of methodological
clarification. First, to be meaningful for hearing scientists, parameters in the GEAR
synthesizer ought to be sampled according to a perceptually uniform progression. These
progressions are often nonlinear in terms of physical units: for example, the human perception
of pitch is nonlinear with respect to fundamental frequency in Hertz. In order to account for
these distinctions, it would be necessary to include some prior knowledge about auditory
perception into the design of the synthesizer. Such prior knowledge could take the form
of just-noticeable differences (JND) and could apply to low-level attributes such as pitch,
loudness, or roughness. It could also involve relative dissimilarity judgments such as those
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involved in the study of qualitative timbre. This former avenue of research connects with
ongoing work about the perceptual control of differentiable synthesizers.

A second avenue of research arises from the fact that GEAR is currently tied to Euclidean
nearest-neighbor searc in feature space. Meanwhile, the HEAR benchmark is not based
on nearest-neighbor classification but on some form of representation learning: namely, a
shallow neural network. Even though this shallow neural network is continuous with respect
to its input, it stretches distances nonuniformly and non-linearly, thus yielding a higher-level
metric space in which comparisons are no longer Euclidean in terms of embeddings. In order
to align better with the formulation of HEAR, GEAR should not be restricted to the raw
feature space but should also be performed at deeper levels of representation. The shallow
neural network could be trained in a supervised way, by performing parameter regression; or
in an unsupervised way, e.g., via self-supervised contrastive learning. Following this protocol
would incur a stage of neural architecture search, It would certainly be heavier in terms of
workload and computation than nearest-neighbor search in feature space; but also more
informative and more consistent with real-world audio classification in HEAR.

5. Conclusion

The HEAR benchmark provides a common API for sharing and improving general-purpose
machine listening models. In this paper, we have taken this opportunity to download HEAR
submissions en masse and run them as feature extractors to a synthetic dataset of pitched
sounds. In doing so, we have visualized deep audio embeddings as points in a 3-D space, with
colors denoting the parameters underlying synthesis. Our contribution, named GEAR, serves
as a qualitative counterpoint to HEAR: although it does not fulfil any real-world “task,”
it sheds light on the respective abilities of audio representations to disentangle auditory
attributes, without depending on a choice of supervised learning architecture downstream.
The companion website of our paper (see footnote of first page) contains all the necessary
source code to reproduce our findings, as well as to replicate them on future editions of
HEAR.

One limitation of GEAR in its current formulation is that it largely relies on visual
inspection. Our parameter regression benchmarks from Section 4 provide some quantitative
evidence for local neighborhoods, but not for global disentanglement. As such, GEAR would
not easily scale to hundreds of audio representations, nor to dozens of degrees of freedom in
the synthetic data. Furthermore, we note that Isomap may occasionally produce spurious
graphical patterns which were not structural properties of the underlying manifold (Donoho
and Grimes, 2003), hence deceiving the human eye. In this context, it would be interesting to
perform topological data analysis (TDA) on the nearest-neighbor graphs so as to automate
the characterization of the feature space (Hensel et al., 2021).

Although we only have experimented with fundamental frequency and two low-level
attributes of spectral envelope (α and r, see Section 2), we stress that the GEAR methodology
is very generic and could easily be transferred to different synthetic datasets in the future,
insofar that the underlying synthesizer is parametric with continuous independent parameters.
For example, beyond the case of sustained harmonic tones, one might run GEAR on a
physical synthesis model for virtual drum shapes (Han and Lostanlen, 2020); on a neural
audio synthesizer with perceptually relevant control (Roche et al., 2021); or on a text-to-
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speech rendering engine with global style tokens for expressive conditioning of prosody
(Wang et al., 2018).
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