
HAL Id: hal-03979660
https://hal.science/hal-03979660v2

Preprint submitted on 17 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strong mixing for the periodic Lorentz gas flow with
infinite horizon

Françoise Pène, Dalia Terhesiu

To cite this version:
Françoise Pène, Dalia Terhesiu. Strong mixing for the periodic Lorentz gas flow with infinite horizon.
2023. �hal-03979660v2�

https://hal.science/hal-03979660v2
https://hal.archives-ouvertes.fr


Strong mixing for the periodic Lorentz gas flow with
infinite horizon

Françoise Pène * Dalia Terhesiu �

August 15, 2024

Abstract

We establish strong mixing for the Zd-periodic, infinite horizon, Lorentz gas
flow for continuous observables with compact support. The essential feature of
this natural class of observables is that their support may contain points with
infinite free flights. Dealing with such a class of functions is a serious challenge
and there is no analogue of it in the finite horizon case. The mixing result for
the aforementioned class of functions is obtained via new results: 1) mixing for
continuous observables with compact support consisting of configurations at a
bounded time from the closest collision; 2) a tightness-type result that allows
us to control the configurations with long free flights. To prove 1), we establish
a mixing local limit theorem for the Sinai billiard flow with infinite horizon,
previously an open question. As far as we know, our approach to the tightness
result has no analogue in the literature.

1 Introduction and Main result

We are interested in mixing for the continuous time dynamics of the Zd-periodic
Lorentz gas (d ∈ {1, 2}). This model has been introduced by Lorentz in [20] to model
the diffusion of electrons in a low conductive metal. It describes the behaviour of a
point particle moving at unit speed in the plane D2 := R2 (when d = 2) or on the tube
D1 := R× T (when d = 1, writing as usual T := R/Z for the one-dimensional torus)
between a Zd-periodic locally finite configuration of convex obstacles with disjoint
closures and C3 boundary (with non null curvature), with elastic collisions on them
(pre-collisional and post-collisional angles being equal). We write Ωd for the set of
possible positions, that is the set of positions in Dd that are not inside an obstacle.
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The set of configurations is the set M̃ of couples of position and unit velocity
(q, v⃗) ∈ Ωd × S1, identifying pre-collisional and post-collisional vectors at a collision

time (rigorously, M̃ is the quotient of Ωd × S1 by the equivalence relation identifying
pre- and post-collisional vectors). The Lorentz gas flow (Φt)t maps a configuration
(q, v⃗) (corresponding to a couple position and velocity at time 0) to the configuration
Φt(q, v⃗) = (qt, v⃗t) corresponding to the couple position and velocity at time t of a
particle that was at time 0 at position q with velocity v⃗. This flow (Φt)t preserves the
infinite Lebesgue measure ν̃ on Ωd×S1, normalized so that ν̃ ((Ω2 ∩ [0, 1[2)× S1) = 1
if d = 2 and so that ν̃ ((Ω1 ∩ ([0, 1[×T))× S1) = 1 if d = 1. It is natural to consider

also the dynamics at collision times. The space M̃ for this dynamics is the set of
configurations (q, v⃗) ∈ M̃ with q ∈ ∂Ωd. The collision map T̃ : M̃ → M̃ , that maps
a configuration at a collision time to the configuration at the next collision time, is
referred to as the Lorentz gas map and preserves an infinite measure µ̃ absolutely
continuous with respect to the Lebesgue measure. Let us write W̃t : M̃ → Dd for the
map corresponding to the displacement up to time t :

∀(q, v⃗) ∈ M̃, Φt(q, v⃗) = (qt, v⃗t) ⇒ W̃t(q, v⃗) = qt − q .

If d = 1 we set W̃ ′
t : M̃ → R for the first coordinate of W̃t. If d = 2, W̃t takes its

values in R2, we then just set W̃ ′
t = W̃t. In both cases, W̃ ′

t is the natural projection

of W̃t on Rd.
When every trajectory touches eventually at least one obstacle, we speak of finite

horizon Lorentz gas. In the finite horizon case, it follows from [6, 7] that W̃t satisfies

a standard central Limit Theorem meaning that (W̃ ′
t/
√
t)t converges strongly in dis-

tribution1, as t→ +∞, to a centered Gaussian random variable with non degenerate
variance matrix given by an infinite sum.
When there exists at least a trajectory that never touches an obstacle, we speak
of infinite horizon Lorentz gas. In this article, we focus on the ”fully dimensional”
infinite horizon case, meaning that there exist at least d non parallel unbounded tra-
jectories touching no obstacle. In this case it follows from [34] by Szász and Varjú
(see subsection 2.3, in particular Proposition 2.5 for details) that2

W̃ ′
t√

t log t
=⇒ N (0,Σ) , as t→ +∞ , (1.1)

where Σ is a d-dimensional definite positive symmetric matrix which, furthermore, is
given by an explicit formula in terms of the configuration of obstacles (recalled at the
beginning of Section 6).

1In this article, the strong convergence in distribution means the convergence in distribution with
respect to any probability measure absolutely continuous with respect to the Lebesgue measure.

2The notation =⇒ N (0, C) means the strong convergence in distribution to a Gaussian random
variable of distribution N (0, C), that is centered with variance matrix C.
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We are interested here in the question of strong mixing. We recall that an infinite
measure preserving system (X̂, T̂ , µ̂) is said to be strongly mixing if there exist a
sequence ân → ∞ and a class of integrable functions f, g so that

ân

∫
M̂

f.g ◦ T̂ n dµ̂→
∫
M̂

f dµ̂

∫
M̂

g dµ̂ , (1.2)

as n → +∞. The sequence ân gives the speed of convergence to 0 of
∫
M̂
f.g ◦ T̂ n dµ̂.

The first such rate was obtained in [35] for a very restrictive class of intermittent
maps preserving an infinite measure. This was later generalized to larger classes of
such maps in [23] and [17]. For other notions of mixing in the infinite measure set up
(such as local-global and global-global) were introduced in [19] (see also [13, 15] and
references therein).

In the set up of the discrete time Lorentz gas (M̃, T̃ , µ̃), mixing in the sense
of (1.2) is well understood in both finite and infinite horizon case and it is a direct
consequence of a mixing local limit theorem (MLLT) for the cell change (see e.g. [27,
Section 3]). For the finite horizon case, we refer to [33] for the key LLT (which can
be generalized in MLLT and thus provides mixing) and to [28] for expansions of any
order. In the much more difficult set up of infinite horizon case, we refer to [34] for
LLT (which, again, leads to MLLT and mixing) and to [29] for error terms. There is a
plethora of limit theorems known in the discrete time set up with finite horizon case.
Some results are also known for the discrete time Lorentz gas with infinite horizon
case (in particular, [34, 9] and more recently, [29]).

Mixing for continuous time Lorentz gas (M̃, (Φt)t, ν̃) is seriously more challenging.
Even in the set up of the finite horizon Lorentz gas flow, mixing in the sense of (1.2)
was open until the work of [12] and very recently, expansions of any order have been
obtained in [15]. Strictly speaking, the work [12] focused on a mixing local limit
theorem (MLLT) for the Sinai billiard flow with finite horizon, but as in [15], mixing
in the sense of (1.2) and MLLT are equivalent. For related, but weaker, results
on MLLT for group extensions of suspension flows with bounded roof function, not
applicable as such to Sinai billiards we refer to [2].

Nothing is known about the mixing for the Lorentz gas flow with infinite horizon.
In this paper we address this open question and establish

Theorem 1.1 For any continuous compactly supported functions f, g : Ωd×S1 → R,∫
M̃
f.g ◦ Φt dν̃ ∼

∫
M̃ f dν̃

∫
M̃ g dν̃

(2πt log t det(Σ))
d
2

, as t→ +∞ , (1.3)

where Σ is the variance matrix appearing in (1.1).

Theorem 1.1 gives mixing for observables with support that may contain configura-
tions with infinite free flights. In the set up of the Lorentz gas flow with infinite
horizon, this class of observables is the natural one. Theorem 1.1 can be rephrased in
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terms of vague convergence (see comments after Corollary 2.3). The main ingredients,
which are new and important results on their own, used in the proof of Theorem 1.1
are

1. Strong mixing for observables f, g with supports uniformly ’close’ to a collision
time (Corollary 2.3 of Proposition 2.2), i.e. the supports of f, g are at a bounded
time of the closest collision time (either in the past or in the future). This mixing
result is an easy consequence of a MLLT for the Sinai billiard flow with infinite
horizon. The present MLLT, Proposition 2.2 and its variant Theorem 2.6, are
first main results and are established via two joint local limit results for the
Sinai billiard map on the cell change function and flight time together: a) Joint
MLLT, Lemma 3.4; b) Joint Local Large Deviation, Lemma 3.5.

2. A tightness type result, Theorem 5.1, that allows f, g to have any compact
support in M̃. In particular, the supports of f, g can contain configurations of
particles that will never hit an obstacle. The proof of Theorem 5.1 provided
in Section 5 exploits a very delicate decomposition of the type of possible free
flights along with Joint MLLT with good error terms for the Sinai billiard map
(as in Lemma 3.2 and Corollary 3.3), combined with a series of subtle new
estimates (including a large deviation estimate). We emphasize that the Joint
MLLT with error terms (not only the JMLLT mentioned in the above item,
and even with sharper error terms than the one obtained in [29] in the non
joint MLLT) together with several other new technical estimates are required
ingredients for the proof of Theorem 5.1.

We conclude the introductory section with a very brief summary of the various
results along with an outline of the paper.

In Section 2, we introduce most of the required notations, and state MLLTs for
the Sinai billiard flow as in Proposition 2.2 for the cell change function, and as in
Theorem 2.6 for the flight function. In Section 2 we also record a consequence of
Proposition 2.2, namely Corollary 2.3 that proves mixing for continuous observables
with compact support consisting of configurations at a bounded time from the closest
collision; in short, this gives mixing for continuous observables supported on a region
on which the free flights (either in the past or in the future) are uniformly bounded.

In Section 3, we state the joint limit results (Joint CLT, Joint MLLT with error
terms, Joint LLD) for the Sinai billiard map, for the couple formed by the cell change
function with the flight time. Using the statement of these key technical ingredients,
in Sections 4 and 5 we prove Theorem 2.6, and Theorem 1.1.

The proofs of the technical key results stated in Section 3 are included in Sec-
tions 6, 7 and in Appendix A. While the joint LLD, Lemma 3.5, follows by slightly
modifying the proof of LLD for the cell change function obtained in [22], all the other
technical results obtained in this paper, namely, the Joint CLT and the Joint MLLT
with error terms stated in Section 3 are new and require serious new ideas and work.
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In Section 5 we state and prove the tightness result Theorem 5.1. At the be-
ginning of Section 5, we use the statement of Theorem 5.1 to complete the proof of
Theorem 1.1. The role and the novelty of Theorem 5.1 has been already summarized
in item 2 above. Finally, we mention that, in Section 5, as a by product of certain
technical lemmas we obtain a large deviation result, namely Proposition 5.2, which
is of independent interest.

Notation We use “big O” and ≪ notation interchangeably, writing bn = O(cn) or
bn ≪ cn if there are constants C > 0, n0 ≥ 1 such that bn ≤ Ccn for all n ≥ n0.
As usual, bn = o(cn) means that there exists εn such that, for all n large enough,
bn = cnεn and limn→+∞ εn = 0 and bn ∼ cn means that bn = cn + o(cn). Unless
otherwise specified, given x ∈ Rd, we let |x| be the usual Euclidean norm of x.
Throughout this article, when d = 1, we identify Z1 (resp. R1) with Z × {0} (resp.
R× {0}). In particular, for any (q, z) ∈ Ω1 × R, the notation q + z means q + (z, 0).

2 MLLT for the Sinai billiard flow and mixing for

the Zd-extension flow

2.1 Notations and previous results

Let d ∈ {1, 2}. The domain Ωd of the Zd-periodic Lorentz gas is given by Ωd :=
Dd \

⋃I
i=1

⋃
ℓ∈Zd(Oi + ℓ) where O1, ...,OI is a nonempty finite family of convex open

sets with C3 boundary of non null curvature such that the obstacles Oi + ℓ have
pairwise disjoint closures. We recall that we are interested in the fully dimensional
infinite horizon and so assume throughout that the interior of the billiard domain
Ωd contains at least d unbounded corridors (made of unbounded parallel lines) the
direction of which are not parallel to each other.

Sinai billiard

Quotienting the system (M̃, (Φt)t) by Zd (for the position), we obtain the Sinai
billiard flow (M, (ϕt)t) (see [32]) which describes the evolution of point particles
moving at unit speed in Ω := Ωd/Zd = T2 \

⋃I
i=1Oi with elastic reflection off ∂Ω

(where Oi is the image of Oi by the canonical projection pd : Dd → T2). The flow
(ϕt)t preserves the probability measure ν on M = (Ω × S1)/ ≡ that is proportional
to the Lebesgue measure, where ≡ is the equivalence relation identifying pre- and
post-collisional vectors. The Poincaré map of ϕt with Poincaré section ∂Ω× S1 is the
Sinai billiard map (M,T, µ), where the two-dimensional phase space M = {(q, v⃗) ∈
M : q ∈ ∂Ω} (position in ∂Ω and unit post-collisional velocity vector) is identified
with ∂Ω × (−π/2, π/2) (we parametrise here the post-collisional velocity vector by
its angle with the normal to ∂Ω). This map T sends a post-collisional vector to the
post-collisional vector corresponding to the next collision. This map preserves the
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probability measure µ with density cosφ/(2|∂Ω|) at the point (q, φ) ∈ ∂Ω× [−π
2
, π
2
].

The flight time between consecutive collisions is the return time of (ϕt)t to M and we
denote it by τ :M → R+. In this notation, we have the following identification

T (x) = (ϕτ )(x) = ϕτ(x)(x) .

We set τn :=
∑n−1

k=0 τ ◦ T k, with the usual convention τ0 := 0. For any x ∈ M, we
set Nt(x) ∈ N0 for the collisions number in the time interval (0, t] starting from the
configuration x. We observe that, for x ∈M , this quantity satisfies

τNt(x)(x) ≤ t < τNt(x)+1(x) . (2.1)

Furthermore, for all x ∈ M and all u ∈ [0, τ(x)) and any t ∈ [0,+∞), Nt(ϕu(x)) =
Nt+u(x). With these notations, the Sinai billiard flow (M, (ϕt)t, ν) is isomorphic to

the suspension flow (M̂, (ϕ̂t)t, ν̂), given by

M̂ = {(x, u) ∈M × [0,+∞) : 0 ≤ u < τ(x)}
ϕ̂s(x, u) = (TNs+u(x)(x), s+ u− τNs+u(x)(x))

ν̂ = (µ× Leb)/µ(τ), where µ(τ) :=

∫
M

τ dµ ,

via the isomorphism (x, u) ∈ M̂ 7→ ϕu(x) ∈ M (this map is injective, its image is the
set of configurations in M that do not belong to an infinite free flight).

Zd-extension and cell change function

We recall that the Zd-periodic Lorentz gas map (M̃, T̃ , µ̃) can be represented by the
Zd-extension of the Sinai billiard map (M,T, µ) by the cell change function κ that
can be defined as follows. For any ℓ ∈ Zd, we call ℓ-cell the set Cℓ of configurations
(q, v) ∈ M̃ such that q ∈

⋃I
i=1(∂Oi + ℓ). Because of the Zd-periodicity of the model,

there exists κ :M → Zd, called the cell change function, such that

x̃ = (q, v⃗) ∈ Cℓ ⇒ T̃ (x) ∈ Cℓ+κ(pd(q),v⃗) . (2.2)

Note that, for any x̃ ∈ M̃ , there exists a unique x = ((q, v⃗), ℓ) ∈ M × Zd such that3

x̃ = (p−1
d,0(q) + ℓ, v⃗), where pd,0 denotes the restriction of pd to

⋃I
i=1 ∂Oi (v⃗ is the

velocity of x̃, setting q̃ for the position of x̃, (q, ℓ) is such that q = pd(q̃) and x̃ ∈ Cℓ).
Formula (2.2) can be rewritten under the form

∀((q, v⃗), ℓ) ∈M×Zd, T (q, v⃗) = (q′, v⃗′) ⇒ T̃ (p−1
d,0(q)+ℓ, v⃗) =

(
p−1
d,0(q

′) + ℓ+ κ(q, v⃗), v⃗′
)
.

(2.3)

3Recall that, if d = 1, we identify Z1 with Z×{0}, meaning that for any q′ ∈ D1 and any ℓ ∈ Z1,
the notation q′ + ℓ means q′ + (ℓ, 0).
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This gives the identification of (M̃, T̃ , µ̃) by the Zd-extension of (M,T, µ) by κ :M →
Zd. A direct and classical induction ensures that, for any ((q, v⃗), ℓ) ∈ M × Zd and
any n ∈ N,

T n(q, v⃗) = (q′n, v⃗
′
n) ⇒ T̃ n(p−1

d,0(q) + ℓ, v⃗) =
(
p−1
d,0(q

′
n) + ℓ+ κn(q, v⃗), v⃗

′
n

)
, (2.4)

where we set κn :=
∑n−1

j=0 κ ◦ T j.

2.2 Mixing for the Lorentz gas seen as a suspension flow

We will use crucially the fact established in the previous section that (M̃, (Φt)t, ν̃)

can be represented as a suspension flow by (x, ℓ) 7→ τ(x) over (M̃, T̃ , µ̃) which itself

can be represented as a Zd extension of (M,T, µ) by κ. Thus, we can represent M̃
by M̂×Zd. In this part, we state a mixing local limit theorem for κn and see how we
can use it to easily derive Theorem 1.1 in the case of functions f, g with support at
a bounded time from a collision, i.e. for functions that are compactly supported in
M̂×Zd. As detailed in Section 5, these functions form a much more restrictive class
than the ones of Theorem 1.1. To state these results, we shall introduce two classes of
sets F (resp. F̃) that will correspond to the set of measurable sets of configurations

in M (resp. M̃) with previous collision in some fixed subset of M (resp. some fixed

cell of M̃), at some time in a fixed bounded time interval.

Definition 2.1 Let F be the class of measurable subsets A of M of the form A =
ϕI(A0) = {ϕu(x), x ∈ A0, u ∈ I} that are represented in M̂ by A0×I ⊂ M̂ (implying
that I ⊂ [0, infA0 τ)), with A0 ⊂M a measurable set satisfying µ(∂A0) = 0 and with
I a bounded interval.
Let F̃ be the set of subsets of M̃ corresponding to A0 × I × {ℓ} ⊂ M̂ × Zd, with
ϕI(A0) ∈ F and ℓ ∈ Zd, that is sets of the form{

Φu(p
−1
d,0(q) + ℓ, v⃗) : (q, v⃗) ∈ A0, u ∈ I

}
with ϕI(A0) ∈ F , ℓ ∈ Zd .

We state now a MLLT for κNt defined on M by

∀(x, u) ∈ M̂, ∀t ∈ [0,+∞), κNt(ϕu(x)) := κNt(ϕu(x))(x) = κNt+u(x)(x) .

This observable κNt will be understood as the cell change during the time interval
(0, t].

Proposition 2.2 Let A,B ∈ F and let K be a bounded subset of Dd with Leb(∂K) =
0. Then

∀ℓ ∈ Zd, (t log t)
d
2 ν (A ∩ {ϕt ∈ B, κNt = ℓ}) ∼ g̃d (0) ν(A)ν(B) , (2.5)

as t→ ∞, where g̃d is the density of the d-dimensional Gaussian distribution N (0,Σ)
appearing in (1.1).
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This result is contained in a more general MLLT stated in Proposition 4.1 (applied
with wt = ℓ, w = 0, K = {0}). An immediate consequence of Proposition 2.2 is
the following light version of Theorem 1.1 for compactly supported observables in the
’extended suspension’ M̂ × Zd; in particular, the supports of these functions only
contain configurations that have hit or will hit an obstacle in a bounded time.

Corollary 2.3 Let n ∈ N, setting

E±n =

{
Φ±u(q + ℓ, v⃗) ∈ M̃ : q ∈

I⋃
i=1

∂Oi, u ∈ [0, n], ℓ ∈ Zd, |ℓ| ≤ |n|

}
,

then, for any f, g : M̃ → R that are µ-a.e. continuous functions and supported
respectively in E−n and in En,∫

M̃
f.g ◦ Φt dν̃ ∼

∫
M̃ f dν̃

∫
M̃ g dν̃

(2πt log t det(Σ))
d
2

, (2.6)

as t→ +∞.

Proof Let A,B be two sets belonging to F̃ corresponding to respectively A0×I×{ℓ0}
and B0 × J × {ℓ′0} in M̂ × Zd. We observe that

ν̃ (A ∩ Φ−t(B)) = ν(ϕI(A0) ∩ {ϕt ∈ ϕJ(B0), κNt = ℓ′0 − ℓ0}) .

Thus, it follows from (2.5) that

(t log t)
d
2 ν̃ (A ∩ Φ−t(B)) ∼ g̃d(0)ν(ϕI(A0))ν(ϕJ(A0)) = g̃d(0)ν̃(A)ν̃(B) .

This result extends directly to any finite union A,B ⊂ M̃ of sets belonging to F̃ ,
implying Krickeberg mixing as defined in [18] for the family of sets (En)n≥1. It follows
from [18, Section 2] (see also, [24, Section 9] for the Krickeberg argument written for
suspension flows) that (2.6) holds true for any f, g supported in some En and µ-almost
everywhere continuous. To end the proof of Corollary 2.3, we notice that, Φ being
invertible, if f is supported in E−n, then f ◦ Φ−n is supported on En and we finally
conclude with the use the following formula∫

M̂
f.g ◦ Φt dν̃ =

∫
M̂
f ◦ Φ−n.g ◦ Φt−n dν̃ ,

since (t− n) log(t− n) ∼ t log t.

The mixing result in Corollary 2.3 can be rephrased in terms of the vague con-
vergence of the family of µt to µ ⊗ µ where µt is the measure on (M̂)2 defined by

µt(A
′×B′) = µ(A′∩Φ−tB

′) for A′, B′ ∈ F̃ (this is a consequence of the Portmanteau
theorem as in, for instance, [30]), and the same applies for Theorem 1.1.
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Remark 2.4 We remark that mixing of the type of Corollary 2.3 has been previously
obtained in [36] for Z-extensions of Gibbs Markov semiflows with roof and displace-
ment functions in the domain of a nonstandard CLT. The method of proof in [36] is
very different; in particular, it does not go via a MLLT for the base map.

2.3 MLLT for the infinite horizon Sinai flow

In this section we state the MLLT for a natural cocycle of the Sinai billiard flow,
which corresponds to the displacement.

Free flight

Due to the Zd-periodicity, the free flight Ṽ : M̃ → Dd which is defined by

∀(q, v⃗) ∈ M̃, T̃ (q, v⃗) = (q̃, v⃗1) ⇒ Ṽ (q, v⃗) = q̃ − q (2.7)

goes to the quotient by Zd, i.e. there exists V :M → Dd such that

Ṽ (q, v⃗) = V (pd(q), v⃗) . (2.8)

When d = 2, this quantity is related to the flight time τ via the following identity

if d = 2 , τ = |V | . (2.9)

Let us show that the free flight V is cohomologous to the cell change κ. It follows
from (2.3), (2.7) and (2.8) that, for all x = (q, v⃗) ∈M , if T (q, v⃗) = (q′, v⃗′), then

V (x) = Ṽ
(
p−1
d,0(q), v⃗

)
= p−1

d,0(q
′) + κ(q, v⃗)− p−1

d,0(q) = κ(x) +H0(T (x))−H0(x) , (2.10)

with H0(q, v⃗) = p−1
d,0(q). Proceeding as for W̃t in Section 1, if d = 1 we set V ′ : M → R

for the first coordinate of V , and if d = 2, V takes its values in R2, we then just set
V ′ = V . The following nonstandard CLT was proved in [34] for V ′:

a−1
n

n−1∑
j=0

V ′ ◦ T j =⇒ N (0,Σ0) , (2.11)

where an =
√
n log n and where Σ0 ∈ Rd×d is a positive-definite symmetric d-

dimensional matrix (see (6.3) and (6.4)) for precise formulas). An important in-
gredient of [34] is that V lies in the domain of a nonstandard CLT; that is, there
exists c > 0 such that

µ(|V | > t) ∼ ct−2 . (2.12)
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Displacement function Wt

We have already defined in Section 1 the displacement function W̃t : M̃ → Dd and
W̃ ′

t : M̃ → Rd its projection on Rd. Due to the Zd-periodicity of our model, both
displacement functions go the quotient by Zd, i.e. there exists Wt : M → Dd and
W ′

t : M → Rd such that

∀(q, v⃗) ∈ M̃, W̃t(q, v⃗) = Wt(pd(q), v⃗) and W̃ ′
t(q, v⃗) = W ′

t(pd(q), v⃗) .

Observe that Wt is a cocycle:

∀x ∈ M, ∀t, s ≥ 0, Wt+s(x) = Ws(x) +Wt(ϕs(x)) (2.13)

and that
∀x = (q, v⃗) ∈M, V (x) = Wτ (x) := Wτ(x)(x) . (2.14)

Thus the nonstandard CLT for V ′ stated in (2.11) implies a nonstandard CLT for
W ′

t via the relation (2.14) together with the classical scheme of lifting limit theorems
from the induced map to the original system (map or flow) [21, 16]. This leads to
the following result where we use the notation at :=

√
t log t.

Proposition 2.5 (CLT [34]) As t → +∞, a−1
t W ′

t =⇒ N (0,Σ) where Σ ∈ Rd×d,
Σ = Σ0/µ(τ)

1/2 with Σ0 as in (2.11).

Let v0 : M → S1 be the velocity map which is given by v0(q, v⃗) = v⃗. Note that

if d = 2, Wt :=

∫ t

0

v0 ◦ ϕs ds . (2.15)

If d = 1, thenWt is the equivalent class in D1 (that is, Wt is the canonical projection)
of the ergodic integral

∫ t

0
v0 ◦ ϕs ds.

MLLT for the displacement function

Let us see that, due to (2.14), the coboundary equation (2.10) for V − κ leads to
a similar equation involving W . We consider the function H1 : M → Dd mapping
x ∈ M to the position of its representant in Dd with previous collision in C0, that is

∀((q, v⃗), u) ∈ M̂, H1(ϕu(q, v⃗)) = p
(
Φu

(
p−1
d,0(q), v⃗

))
= p−1

d,0(q) +Wu(q, v⃗) , (2.16)

where p : M̃ → Ωd is the natural projection. In other words, if d = 2, then

H1(ϕu(q, v⃗)) = H0(q, v⃗) +Wu(q, v⃗) = p−1
d,0(q) + uv⃗ ; (2.17)

if d = 1, H1(ϕu(q, v⃗)) is the class of p
−1
d,0(q)+uv⃗ in D1. Recall that we set Nt : M → N0

for the collisions number in the time interval (0, t] (see in particular (2.1)). The above
defined function H1 satisfies the following important property:

∀(x = (q, v⃗), u) ∈ M̂ , Wt(ϕu(x)) = κNt+u(x)(x) +H1(ϕt(ϕu(x)))−H1(ϕu(x)) .
(2.18)
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Indeed, setting N := Nt+u(x), we notice that

ϕt(ϕu(x)) = ϕu′(q′, w⃗), with u′ := u+t−τN(x), (q′, w⃗) := TN(x) = ϕτN (x) , (2.19)

and (TN(x), u′) is in M̂. Therefore, it follows from (2.13) and (2.14) that

Wt(ϕu(x)) = Wt+u(x)−Wu(x) = Wu′(ϕτN (x)) +WτN (x)−Wu(x)

= Wu′(TN(x)) +WτN (x)−Wu(x)

= Wu′(TN(x)) + VN(x)−Wu(x) .

Finally, using (2.10) and (2.17), we obtain that

Wt(ϕu(x)) = Wu′(TN(x)) + κN(x) +H0(T
N(x))−H0(x)−Wu(x)

= H1(ϕt(ϕu(x))) + κN(x)−H1(ϕu(x)) ,

as announced.

Recall that at =
√
t log t.

Theorem 2.6 (MLLT for Wt) Let A,B ∈ F and let K be a bounded subset of Dd

with Leb(∂K) = 0. Let w ∈ Rd and let wt ∈ Rd such that limt→+∞wt/at = w. Then4

adt ν (A ∩ {ϕt ∈ B, Wt ∈ wt +K})

∼ g̃d (w)

∫
A×B

#((K + wt +H1(x)−H1(y)) ∩ Zd) dν(x) dν(y) , (2.20)

as t→ ∞, where g̃d is the density of the d-dimensional Gaussian distribution N (0,Σ)
appearing in Proposition 2.5 and where H1 is the function that has been defined
in (2.16).

The proof of Theorem 2.6 is provided in Section 4, and will appear as a consequence
of an analogous result (Proposition 4.1) stated for κNt instead of Wt.

3 Statements of the Joint LLT with error term and

the joint LLD for the billiard map

Let d ∈ {0, 1, 2}. In this section we state the main technical results that will be used
in the proofs of Theorem 2.6 (MLLT for the Sinai flow) and Theorem 1.1 (mixing for
the Lorentz gas), including those used in the proof of the key tightness-type result
Theorem 5.1 (stated in Section 5). We are interested in joint MLLT and LLD for the
pair

Ψ̂ = Ψ̂(d) := (κ, τ̃) :M → Dd × R , with τ̃ := τ − µ(τ) , if d ∈ {1, 2}
4Again, in this formula, if d = 1, the notation wt +K means (wt, 0) +K and Zd means Z× {0}.
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or for
Ψ̂ = Ψ̂(0) := τ̃ , if d = 0 .

Note that
∫
M
Ψ̂ dµ= 0. When d ∈ {1, 2}, our joint limit results are related to the fact

that that the sums of (κ◦T k, τ̃ ◦T k)k satisfies a CLT with nonstandard normalization

a−1
n . In particular, as clarified in the proof of Sublemma 6.1 below, the vector Ψ̂ is

so that µ(|Ψ̂| > t) ∼ ct−2. As usual, we write Ψ̂n =
∑n−1

j=0 Ψ̂ ◦ T j and similarly for

Vn, τn, τ̃n. We start with a nondegenerate CLT with nonstandard scaling for Ψ̂n.

Lemma 3.1 (Joint CLT for the billiard map) a−1
n Ψ̂n =⇒ N (0,Σd+1) as n →

∞, where Σd+1 ∈ R(d+1)×(d+1) is positive-definite (see (6.5) for an explicit formula).

This result is proved in Section 6 by adapting the proof of the CLT for Vn established
in [34] via [3], writing Ψ̂n as a function of the two dimensional cell change plus a
Lipschitz function.

Let us state a MLLT for Ψ̂n with a uniform error term. We write Λd+1 for the
Haar measure on Zd ×R given by the product of the counting measure on Zd and of
the Lebesgue measure on R.

Lemma 3.2 (Joint MLLT for the billiard map) Let p > 2 and R > 0. We take
an such that a2n = 2n log(an) ∼ n log n = a2n. Assume G,H :M → R are two bounded
dynamically Hölder continuous functions and that h : Zd × R → R is integrable with
compactly supported Lipschitz Fourier transform ĥ : Td×R → C. There exists a0 > 0
(depending only on p and on the Hölder exponent of G and H) such that, for all
kn < n/4,

Eµ

[
G.h(Ψ̂n − L).H ◦ T n

]
= a−d−1

n Eµ [H]Eµ [G]

(
gd+1

(
L

an

)∫
Zd×R

h dΛd+1 +O
(
(log n)−1 +

kn
n

))
+O

(
e−a0kn∥G∥Holder∥H∥Holder + a−d−2

n (kn∥G∥L1∥H∥Lp + ∥H∥L1∥Ψ̂2kn .G∥L1(µ))
)
,

uniformly in L ∈ Zd × R, in (n, kn) as above, and in h such that supp(ĥ) ⊂ B(0, R)

and ∥ĥ∥Lipschitz ≤ R, where gd+1 is the density for the (d+ 1)-dimensional Gaussian
in Lemma 3.1.

This result is proved in Section 7. The scheme of its proof follows the one of the MLLT
established in [29, Theorem 2.2] but there are at least two main differences. First, here
we need to obtain a Joint MLLT, which is different from [29, Theorem 2.2] which was
a MLLT with error terms for the cell change function. The new ingredients needed
to deal with the Joint MLLT (with error) are summarized in Section 6. Second, the
error term obtained in [29] is not sharp enough for the present purposes. To establish
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Lemma 3.2, we need to be much more careful with the error terms all throughout the
proof and this requires entirely new estimates, all obtained in Section 7.

A consequence of Lemma 3.2 is

Corollary 3.3 Under the assumptions of Lemma 3.2, then

Eµ

[
G.h(Ψ̂n − L).H ◦ T n

]
− Eµ[G]Eµ[H]Eµ[h(Ψ̂n − L)]

= O
(
e−a0kn∥G∥Holder∥H∥Holder + a−d−2

n (kn∥G∥L1∥H∥Lp + ∥H∥L1∥Ψ̂2kn .G∥L1(µ))
)
.

Proof We observe that

Eµ

[
G.h(Ψ̂n − L).H ◦ T n

]
− Eµ[G]Eµ[H]Eµ

[
h(Ψ̂n − L)

]
= Eµ[(G− Eµ[G]).h(Ψ̂n − L).H ◦ T n])] + Eµ[G]Eµ[h(Ψ̂n − L).(H − Eµ[H]) ◦ T n])] ,

and we apply Lemma 3.2 to the two terms of the right hand side of the above equality,
since ∥Ψ̂2kn∥L1(µ) = O(kn), the function Ψ̂ being integrable.

The following MLLT for Ψ̂n will be shown (in Section 7) from Lemma 3.2.

Lemma 3.4 Let A0, B0 ⊂ M be measurable sets such that µ(∂A0) = µ(∂B0) = 0.
Let K ⊂ Zd × R be a bounded set with Λd+1(∂K) = 0 (boundary in Zd × R). Then,
for any L > 0,

ad+1
n µ

(
A0 ∩ T−n(B0) ∩ {Ψ̂n(x) ∈ z +K}

)
− gd+1

(
z

an

)
µ(A0)µ(B0)Λd+1(K) (3.1)

converges to 0 uniformly in z ∈ Zd × R : |z| ≤ Lan, as n→ +∞.

The joint LLD we shall need is

Lemma 3.5 (Joint LLD for the billiard map) Let U ⊂ Rd+1 be an open ball.
Then

µ(Ψ̂n ∈ z + U) ≪ n

ad+1
n

log(2 + |z|)
1 + |z|2

(3.2)

uniformly in n ≥ 1 and z ∈ Rd+1.

The proof of this result, given in Section A.4 is a more or less obvious adaptation of
the proof of [22] with the additional complication that Ψ̂n, τn are non-lattice valued.
As already mentioned in the introduction, this is the only result of the current paper
that does not require any novelty, but just a straighforward adaptation with some
care.
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4 Proof of MLLT for the Sinai flow (Proposi-

tion 2.2 and Theorem 2.6)

In this section we assume d = 1 or d = 2. In this section, we complete the proof of
Theorem 2.6 by stating and proving the following result (assuming, for the moment,
the statement of the results stated in Section 3).

Proposition 4.1 Let A,B ∈ F . Let K be a bounded subset of Rd, let w ∈ Rd and
wt ∈ Rd be such that limt→+∞wt/at = w. Then

adt ν (A ∩ {ϕt ∈ B, κNt ∈ wt +K}) ∼ g̃d (w) ν(A)ν(B)#((K + wt) ∩ Zd) , (4.1)

where g̃d is the density of the Gaussian limit of Proposition 2.5 and with the following
natural convention

∀(x, u) ∈ M̂, (κNt)(ϕu(x)) := κNt+u(x)(x) .

Using Proposition 4.1 we complete

Proof of Theorem 2.6 We first recall that we need to show that

adt ν (A ∩ {ϕt ∈ B, Wt ∈ wt +K}) ∼ g̃d (w) I(A×B,wt) , (4.2)

where K is so that Leb(∂K) = 0, where H1 is as in (2.16) and where we set

I(A×B,wt) :=

∫
A×B

#((K + wt +H1(x)−H1(y)) ∩ Zd) dν(x) dν(y) .

For any positive integer m, we partition A (resp. B) in a finite number of atoms
Ak,m ∈ F and Bk,m ∈ F of diameter at most 1/m, and consider the sets

K−
i,j,m :=

{
z ∈ Rd : ∀(x, y) ∈ Ai,m ×Bj,m, z +H1(y)−H1(x) ∈ K

}
and

K+
i,j,m :=

{
z ∈ Rd : ∃(x, y) ∈ Ai,m ×Bj,m, z +H1(y)−H1(x) ∈ K

}
.

Note that H1 is Lipschitz continuous in (x, u) and bounded on A and B. It follows
from (2.18) that

ν (A ∩ {ϕt ∈ B, Wt ∈ wt +K})
= ν (A ∩ {ϕt ∈ B, κNt +H1 ◦ ϕt −H1 ∈ wt +K)

≤
∑
i,j

ν
(
Ai,m ∩ {ϕt ∈ Bj,m, κNt ∈ wt +K+

i,j,m}
)

(4.3)
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and, analogously,

ν (A ∩ {ϕt ∈ B, Wt ∈ wt +K}) ≥
∑
i,j

ν
(
Ai,m ∩ {ϕt ∈ Bj,m, κNt ∈ wt +K−

i,j,m}
)
.

(4.4)

By Proposition 4.1,

ν
(
Ai,m ∩ {ϕt ∈ Bj,m, κNt ∈ wt +K±

i,j,m}
)

∼ a−d
t g̃d(w)#((wt +K±

i,j,m) ∩ Zd)ν(Ai,m)ν(Bj,m) . (4.5)

Furthermore,

#((wt +K−
i,j,m) ∩ Zd)ν(Ai,m)ν(Bj,m) ≤ I(Ai,m ×Bj,m, wt) (4.6)

I(Ai,m ×Bj,m, wt) ≤ #((wt +K+
i,j,m) ∩ Zd)ν(Ai,m)ν(Bj,m) . (4.7)

Let (x, y, z) ∈
⋃

i,j

(
Ai,m ×Bj,m ×

(
Zd ∩ (wt + (K+

i,j,m \K−
i,j,m))

))
. Then there exist

x,x′ ∈ Ai,m and y,y′ ∈ Bj,m such that z − wt + H1(y) − H1(x) ∈ K but z − wt +
H1(y

′)−H1(x
′) ̸∈ K. Recall that H1 is Lipschitz. Thus the above conditions means

that z ∈ Zd and that (x, y) is at distance smaller than 1/m of Ewt−z := {(x,y) :
H1(y)−H1(x) ∈ wt− z+∂K}. This z should be one of the elements of Zd contained
in the ball of radius supA |H1|+ supB |H1|+ sups∈K |s| around wt. But, for each such
z, the measure of this neighbourhood of Ewt−z satisfies

ν⊗2
(
(Ewt−z)

[1/m]
)
≤ sup

|u|≤3 supA∪B |H1|+sups∈K |s|
ν
(
H−1

1 ((u+ ∂K))[1/m]
)

≤ sup
|u|≤3 supA∪B |H1|+sups∈K |s|

Leb
(
((u+ ∂K))[1/m]

)
,

which converges to 0 as m → +∞ since Leb(∂K) = 0. Since the number of possible
z is uniformly bounded, we have proved that

lim
m→+∞

sup
t

∑
i,j

#((wt + (K+
i,j,m \K−

i,j,m)) ∩ Zd)ν(Ai,m)ν(Bj,m) = 0 . (4.8)

The desired conclusion (4.2) follows from (4.3), (4.4), (4.5), (4.6), (4.7) and (4.8).

4.1 Proof of Proposition 4.1

Recall that A = ϕI(A0) and B = ϕJ(B0) with A0, B0 ⊂ M such that µ(∂A0) =
µ(∂B0) = 0 and I, J ⊂ R two bounded intervals. We start by proving the lemma for
wt ∈ Zd and K = {0}. We follow a decomposition somewhat similar to [1, Proof of
Lemma 4.3], see also [12, Proof of Theorem 3.1] and [2, Proof of Theorem 1], with
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the obvious difference that one needs to figure out how to exploit the Joint LLT 3.4
and the Joint LLD 3.5.

Writing x = ϕu(x) with (x, u) ∈ M̂, we use the product structure of the measure
ν̂ and partition the set considering the different values taken by Nt:

ν (A ∩ {ϕt ∈ B, κNt = wt}) =
1

µ(τ)

∑
n≥0

∫
I

Qn(t, u) du , (4.9)

where

Qn(t, u) := µ
(
A0 ∩ T−nB0 ∩ {κn = wt, τ̃n ∈ u+ t− nµ(τ)− J}

)
= µ

(
A0 ∩ T−n(B0) ∩

{
Ψ̂n ∈ (wt, t− nµ(τ)) + {0} × Ju

})
,

with Ju = u− J , recalling that Ψ̂n = (κn, τ̃n). For L large, we split the sum as

ν (A ∩ {ϕt ∈ B, κNt = wt}) = S1(t, L) + S2(t, L) ,

where

S1(t, L) :=
1

µ(τ)

∑
n : |n−t/µ(τ)|≤Lat

∫
I

Qn(t, u) du ,

S2(t, L) :=
1

µ(τ)

∑
n : |n−t/µ(τ)|>Lat

∫
I

Qn(t, u) du .

The main ingredient needed for the Proof of Proposition 4.1 is

Lemma 4.2 (a) limL→∞ limt→∞ adtS1(t, L) = g̃d(w)ν(A)ν(B),

(b) limL→∞ lim supt→∞ adtS2(t, L) = 0.

The proof of Lemma 4.2 is provided in the paragraph 4.2 below. Equipped with the
statement of Lemma 4.2 we can complete

Proof of Proposition 4.1 Note that (4.1) for wt ∈ Zd and K = {0} follows directly
from Lemma 4.2 due to (4.9). It remains to go from this special case to the general
case. Let wt ∈ Rd and consider a bounded subsetK of Rd. Then (wt+K)∩Zd contains
at most (diam(K) + 1)2 integers, we can label them wt,i for i = 1, ..., (diam(K) + 1)2

(ordering them e.g. by their first coordinate, and then by their second, and completing
if necessary by the successors of the last one for this order). Then

adt ν (A ∩ {ϕt ∈ B, κNt ∈ wt +K}) = adt

#((wt+K)∩Zd)∑
i=1

ν (A ∩ {ϕt ∈ B, κNt = wt,i})

∼ #((wt +K) ∩ Zd)g̃d(w)ν(A)ν(B) ,

applying (4.1) with K = {0} for each sequence (wt,i)t. Indeed, since K is a bounded
set, limt→+∞wt/at = w and limt→+∞ at = +∞, we obtain that limt→+∞wt,i/at = w
for all i.
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4.2 Proof of Lemma 4.2

We will use Lemmas 3.4 and 3.5.
Proof of Lemma 4.2(a) This will follow from Lemma 3.4. We consider the range

|n − t/µ(τ)| ≤ Lat. Since wt

an
= wt

at
at
an

∼
√
µ(τ)w and since t−nµ(τ)

an
is bounded, it

follows from Lemma 3.4 that

ad+1
n

Qn(t, u)

µ(τ)
∼ 1

µ(τ)
gd+1

(√
µ(τ)w,

t− nµ(τ)

an

)
µ(A0)µ(B0)Λd+1({0} × J)

∼ µ(τ)

|I|
gd+1

(√
µ(τ)w,

t− nµ(τ)

an

)
ν(A)ν(B) ,

uniformly in n such that |n− t/µ(τ)| ≤ Lat. Hence

adtS1(t, L) ∼
∑

n : |n−t/µ(τ)|≤Lat

(µ(τ))1+
d
2

an
gd+1

(
w
√
µ(τ),

t− nµ(τ)

an

)
ν(A)ν(B) .

Approximating Riemann sums by Riemann integrals, the right hand side converges,
as t→ +∞, to

(µ(τ))
d
2

∫ Lµ(τ)3/2

−Lµ(τ)3/2
gd+1

(
w
√
µ(τ), z

)
dz ν(A)ν(B)

which itself converges to g̃d(w)ν(A)ν(B) as L → +∞, as announced, since g̃d(w) =

(µ(τ))
d
2

∫
R gd+1(w

√
µ(τ), z) dz.

For the proof of Lemma 4.2(b), note that Qn(t, u) ≤ Q̃n(t) where

Q̃n(t) = sup
u∈I

µ
(
Ψ̂n ∈ (wt, t− nµ(τ)) + {0} × Ju

)
.

Lemma 4.2(b) is an immediate consequence of the next two sublemmas.

Sublemma 4.3 For any c ∈ (0, 1/µ(τ)), lim
L→∞

lim sup
t→∞

adt
∑

n>ct:Lat<|n−t/µ(τ)|

Q̃n(t) = 0 .

Proof In this range, n ≫ t, so n

ad+1
n

= n− d−1
2 (log n)−

d+1
2 ≪ t

ad+1
t

. Thus, for any L

large enough, using Lemma 3.5 with |z|∞ = |t− nµ(τ)|, we obtain that∑
n>ct:Lat<|n−t/µ(τ)|

Q̃n(t) ≪
t

ad+1
t

∑
n>ct:Lat<|n−t/µ(τ)|

| log |t− nµ(τ)||
1 + |t− nµ(τ)|2

≪ t

ad+1
t

log(at)

Lat
≪ 1

Ladt
,

since log u/u2 has primitive −(1 + log u)/u and since a2t = t log t ∼ 2t log at.
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Sublemma 4.4 For any c ∈ (0, 1/µ(τ)), limL→∞ lim supt→∞ adt
∑

n<ct Q̃n(t) = 0.

Proof In this range, t− nµ(τ) ≈ t≫ n. Thus it follows from Lemma 3.5 that∑
n<ct

Q̃n(t) ≪
∑
n<ct

n

ad+1
n

1 + log t

t2

≪ 1 + log t

t2

∑
n<ct

1

n
d−1
2 (log n)

d+1
2

≪ 1 + log t

t2
t
3−d
2

(log t)
d+1
2

≪ t−
d+1
2 (log t)−

d−1
2 = o(a−d

t ) .

5 Proof of mixing for the Lorentz gas (Theo-

rem 1.1)

In this section we assume d = 1 or d = 2. Corollary 2.3 states mixing for functions
with compact support in the suspension M̂ × Zd. To deal with the natural class of
functions (with compact support in the manifold) in Theorem 1.1 we crucially rely
on the following tightness-type result, which is the most delicate part of this work.

Theorem 5.1 Let K0 > 0 be fixed and let B0 be the set of x ∈ M̃ with position at a
distance at most K0 of the origin. For any positive integer R0, let BR0 be the set of

configurations x ∈ M̃ belonging to B0 and with no collision during the time interval
[0, R0). Then

lim
R0→+∞

lim sup
t→+∞

adt ν̃ (BR0 ∩ Φ−t(B0)) = 0 .

Before proceeding to the proof of Theorem 5.1, let us see how Theorem 1.1 follows
from Corollary 2.3 and Theorem 5.1.
Proof of Theorem 1.1 Assume that f and g are nonnegative with support in

B0. We will use Corollary 2.3 and the sets E±n defined therein. Observe that B0 \
E−n ⊂ Bn. Let (fn)n (resp. (gn)n) be an increasing sequence of continuous functions
supported in E−2n (resp. E2n) coinciding with f (resp. g) on E−n (resp. En) and
converging pointwise to f (resp. g). Thus it will follow from Theorem 5.1 and time-
reversibility of Φ that

lim
n→+∞

lim sup
t→+∞

∣∣∣∣adt ∫
M̃
[f.g ◦ Φt − fn.gn ◦ Φt] dν̃

∣∣∣∣
≤ lim

n→+∞
lim sup
t→+∞

2∥f∥∞∥g∥∞adt ν̃ (Bn ∩ Φ−t(B0)) = 0 . (5.1)
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Thus, for every n,

lim sup
t→+∞

∣∣∣∣adt ∫
M̃
f.g ◦ Φt − g̃d(0)

∫
M̃
f dν̃

∫
M̃
g dν̃

∣∣∣∣ ≤ lim sup
t→+∞

∣∣∣∣adt ∫
M̃
[f.g ◦ Φt − fn.gn ◦ Φt] dν̃

∣∣∣∣
+ lim sup

t→+∞

∣∣∣∣adt ∫
M̃
fn.gn ◦ Φt dν̃ − g̃d(0)

∫
M̃
fn dν̃

∫
M̃
gn dν̃

∣∣∣∣
+ g̃d(0)

∣∣∣∣∫
M̃
fn dν̃

∫
M̃
gn dν̃ −

∫
M̃
f dν̃

∫
M̃
g dν̃

∣∣∣∣
≤ lim sup

t→+∞

∣∣∣∣adt ∫
M̃
[f.g ◦ Φt − fn.gn ◦ Φt] dν̃

∣∣∣∣
+ g̃d(0)

∣∣∣∣∫
M̃
fn dν̃

∫
M̃
gn dν̃ −

∫
M̃
f dν̃

∫
M̃
g dν̃

∣∣∣∣ ,
where we used Corollary 2.3 applied to fn, gn in the last inequality. Since this holds
true for any n, we conclude by taking the limit as n → +∞ thanks to (5.1) and to
the dominated convergence theorem.

The rest of this section is devoted to the proof of Theorem 5.1. Recall that K0 is
fixed and that we have to estimate ν̃(BR0 ∩ Φ−t(B0)). The strategy of our proof is
divided in two steps. In a first step (corresponding to Subsection 5.2), we explain how
we can neglect ”bad” configurations with first or last long free flights (Lemma 5.4)
or having a small number of collisions within the time interval [0, t] (Lemmas 5.3
and 5.6). In a second step (corresponding to Subsection 5.3), we will estimate the
probability of the set of ”good” configurations belonging to BR0 ∩Φ−t(B0) by writing
(as in the proof of Proposition 4.1 but with additional sums and complications) this
set as a union of sets, the measure of which corresponds to the measure of a set that
can be expressed in terms of the Sinai billiard map T .

In the process of proving Theorem 5.1, we obtain the following large deviation
result (proved in Section 5.2), which is interesting in its own right.

Proposition 5.2 For c1 small enough,

µ(τ⌊c1t⌋ > t) ≤ ν(Nt ≤ c1t)/min τ = O(log t/t) .

The bound O(log t/t) is optimal because τ is in the domain of non standard CLT
with normalization

√
t log t. This bound is in accord with the optimal result in the

i.i.d. scenario with
√
t log t normalization, see [5, 31].

5.1 Notations and recalls for the proof of Theorem 5.1

Before entering deeper in the proof, let us introduce some needed notations. Recall
that κ stands for the cell change (with values in Zd). It will be useful to consider
κ̃ : M → Z2 for the cell-change for the Z2-periodic Lorentz gas; so that κ = πd(κ̃)
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where π2 = Id and π1 : R2 → R is the canonical projection on the first coordinate.
Note that, when d = 2, κ̃ = κ. We extend the definition of κ̃ to M̃ by setting
κ̃(Φu(q, v⃗)) = κ̃(pd(q), v⃗) for every x = (q, v⃗) ∈ M̃ and every u ∈ [0, τ(x)). Let us

write Ñt(x) for the number of collisions in the time interval (0, t] for a trajectory

starting from x ∈ M̃. Recall that H0 is the bounded coboundary defined in (2.10).
Throughout the rest of this section we fix c1 so that

c1 ∈ (0, 1/(1000µ(τ))) and 2c1∥H0∥∞ < 1/100. (5.2)

We consider the constant a0 appearing in Lemma 3.2. Up to decreasing if necessary
its value, it follows from e.g. [10, Theorem 7.37, Remark 7.38] that there exists C ′

0 > 0
such that

∀n′ ∈ N0, Cov
(
f((κ̃ ◦ Tm)m≥n′), g((κ̃ ◦ Tm′

)m′≤0)
)
≤ C ′

0∥f∥∞∥g∥∞e−a0n′
, (5.3)

for any bounded measurable functions f, g. by noticing that f((κ̃◦Tm)m≥0) is constant
on stable curves and that g((κ̃◦Tm′

)m′≤−1) is constant on unstable curves and as such,
these functions are bounded by their infinite norms in the respective spaces H− and
H+ considered in [10].
We fix K > 0 so that

C ′
0e

−a0⌊K log t⌋ ≤ t−100 (5.4)

We recall that it is proved in [34] that

µ(κ̃ = z) = O(|z|−3) , (5.5)

and that the set C of unit vectors of R2 corresponding to the corridor directions in
D2 (i.e. the direction of a line in R2 touching no obstacle) is finite. Finally, recall
that by [34, Propositions 11–12, Lemma 16],

∀V > 0, µ
(
κ̃ = z,∃|j| ≤ V log(|z|+ 2), j ̸= 0, |κ̃| ◦ T j > |z|4/5

)
= O

(
|z|−3− 2

45

)
.

(5.6)

5.2 Control of ”bad” configurations

The first next lemma allows us to neglect trajectories with no collision before time t.

Lemma 5.3 The following estimate holds true as t→ +∞,

ν̃
(
B0 ∩ Φ−t(B0) ∩ {Ñt = 0}

)
= o(a−d

t ) .
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Proof When d = 2, the lemma is immediate: as soon as t > 4K0, Ñt ≥ 1, otherwise,
at time t, the trajectory cannot be 2K0-close of its initial position, at time 0.
When d = 1, we can have Ñt = 0 because of possible long free-flights in the vertical
direction that remain at a bounded distance. However, using the representation of
(M̃, (Φt)t, ν̃) as a suspension flow over a Z-extension,

ν̃
(
B0 ∩ {Ñt = 0}

)
≤ (2K0 + 1)ν(Ñt = 0)

≤ 2K0 + 1

µ(τ)

∫ +∞

0

µ(τ > s+ t) ds

≪
∫ +∞

0

(1 + s+ t)−2 ds≪ t−1 = o(a−1
t ) ,

where we used (2.12) and (2.9).

The next lemma ensures that we can neglect trajectories with long first or long
last free flight.

Lemma 5.4 There exists a constant C ′ > 0 such that, for all R0 and t large enough,

ν̃
(
B0 ∩ {|κ̃| > adt logR0}

)
≤ C ′a−d

t / logR0 .

Remark 5.5 Note that, since Φt preserves the measure ν̃, we also have
ν̃
(
Φ−t

(
B0 ∩ {|κ̃| > adt logR0}

))
≤ C ′a−d

t / logR0.

Proof [Proof of Lemma 5.4] Using again the representation of (M̃, (Φt)t, ν̃) as a
suspension flow over a Zd-extension, we note that

ν̃
(
B0 ∩ {|κ̃| > adt logR0}

)
≤ (2K0 + 1)2ν

(
|κ̃| > adt logR0

)
≤ (2K0 + 1)2

µ(τ)
Eµ

[
τ1{|κ̃|>adt logR0}

]
≪
∫ +∞

adt logR0

µ(τ > s) ds+ adt logR0µ(|κ̃| > adt logR0))

≪
∫ +∞

adt logR0

s−2 ds+ (adt logR0)
−1 ≪ a−d

t / logR0 ,

using (2.12).

The lemma below deals with the remaining range, namely n = Nt ≤ c1t with c1
as in (5.2).

Lemma 5.6 For all R0 > 0,

ν̃
(
B0 ∩ Φ−t(B0) ∩ {Ñt ≤ c1t}

)
= o(a−d

t ) ,

as t→ +∞.
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To prove this lemma, we will deal separately with the cases d = 1 and d = 2. The
main ingredients of the proofs below in these two cases come down to a very delicate
decomposition of the involved sum along with fine estimates via the use of (5.6) and
of Lemma 3.5 (joint LLD). The proof of Lemma 5.6 for d = 1 will use the following
intermediate results.

Sublemma 5.7 Recall that K satisfies (5.4). Then

ν̃
(
B0 ∩ {Ñt/100 ≤ K log t}

)
≤ (2K0 + 1)2ν(Nt/100 ≤ K log t) ≪ (log t)/t .

Proof of the sublemma Recall that B0 has diameter 2K0. The first inequality
comes from the fact that B0 contains at most (2K0 + 1)2 copies of M. Let us prove
the second inequality. Observe that

ν(Nt/100 ≤ K log t) =
1

µ(τ)
Eµ

[
τ.1{τ⌊K log t⌋+1≥t/100}

]
≪ Eµ

[
τ.1⋃⌊K log t⌋

k=0 {τ◦Tk>t/(100(1+K log t)}

]
(5.7)

≪ E[τ.1{τ≥t/(100(1+K log t))}] + E
[
τ.1⋃⌊K log t⌋

k=1 {τ<t/(100(1+K log t)), τ◦Tk≥t/(100(1+K log t))}

]
.

(5.8)

Now, proceeding as in the proof of Lemma 5.4, it follows from (2.12) that for all
t > 2,5

Eµ

[
τ.1{τ> t

100(K log t+1)}
]
=

∫ +∞

0

µ
(
τ.1{τ> t

100(K log t+1)} > z
)
dz

=

∫ t
100(K log t+1)

0

µ

(
τ >

t

100(K log t+ 1)

)
dz +

∫ +∞

t
100(K log t+1)

µ (τ > z) dz

≪ (t/ log t)−1 , (5.9)

providing a control of the first term of the right hand side of (5.8). For the second
term of the right hand side of (5.8), we distinguish the case of small (resp.big) values
of τ . Set m := (1 + 1

45
)−1. On the one hand,

Eµ

[
τ1{τ≤tm}.1⋃⌊K log t⌋

k=1 {τ◦Tk≥t/(100(1+K log t))}

]
≪ tm log t(t/ log t)−2 = tm−2(log t)3 ,

(5.10)

5We use here again the classical formula Eµ[X] =
∫ +∞
0

µ(X > z) dz valid for any positive
measurable X : M → [0,+∞).
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where we used τ ≤ tm and µ
(⋃⌊K log t⌋

k=1 {τ ◦ T k ≥ z}
)
≤ K log t µ(τ > z) ≪ z−2 log t.

On the other hand, since τ − |κ̃| is uniformly bounded by some constant L0,

Eµ

[
τ1{tm≤τ≤t/(100(1+K log t))}.1⋃⌊K log t⌋

k=1 {τ◦Tk≥t/(100(1+K log t))}

]
≤

∑
z:tm−L0≤|z|≤t/(100(1+K log t))+L0

(|z|+ L0)µ

(
κ̃ = z, ∃k = 1, ..., K log t, |κ̃| ◦ T k >

t

100K log t
− L0

)
≪

∑
z∈supp(κ̃) : |z|≥tm−L0

(|z|+ L0)|z|−3− 2
45 ≪ t−m(1+ 2

45
) = tm−2 , (5.11)

where we apply (5.6) with V = 2K
m

(indeed, for t large enough, K log t ≤ V log(tm −
L0 + 2)). Thus, the last bound of the sublemma follows from (5.8), (5.9), (5.10)
and (5.11) since m− 2 = −47

46
< −1.

Lemma 5.6 in the case d = 1 follows from the following result.

Sublemma 5.8

ν̃
(
B0 ∩ {Ñt ≤ c1t}

)
≤ (1 + 2K0)

2ν(Nt ≤ c1t) ≪ (log t)/t .

Proof of the sublemma Again the first inequality follows from the fact that B0

contains at most (2K0+1)2 copies of M. The main issue is to establish the last upper
bound. Since the flow ϕ preserves ν, ν(Nt ≤ c1t) = ν(Nt ◦ϕ−t/2 ≤ c1t). Furthermore,
the fact that Nt ◦ ϕ−t/2 ≤ c1t means that there are at most c1t collisions in the
time interval [−t/2; t/2], so at most c1t collisions in both time intervals [−t/2; 0] and
[0; t/2], which implies that both τ⌊c1t⌋ and τ − τ−⌊c1t⌋ are larger than t/2, writing as

usual τ−k := −
∑−1

m=−k τ ◦ Tm and τm(ϕu(x)) := τm(x) for all (x, u) ∈ M̂. Therefore

ν(Nt ≤ c1t) = ν(Nt ◦ ϕ−t/2 ≤ c1t) ≤ ν(τ⌊c1t⌋ > t/2, τ − τ−⌊c1t⌋ > t/2) , (5.12)

In what follows we show that this quantity is o(a−1
t ). By Lemma 5.4, ν(τ > a2t ) ≪ a−2

t

and by Sublemma 5.7, ν(τ⌊K log t⌋ > t/100) ≪ (log t)/t and ν(τ−τ−⌊K log t⌋ > t/100) ≪
(log t)/t (up to time reversibility of Φ). This combined with (5.12) ensures that

ν(Nt ≤ c1t) ≤ pt +O((log t)/t) , (5.13)

with

pt := ν
(
τ < a2t , τ⌊c1t⌋ > t/2, τ − τ−⌊c1t⌋ > t/2, τ⌊K log t⌋ < t/100, τ − τ−⌊K log t⌋ < t/100

)
=

a2t∑
a′=0

µ
(
τ > a′, τ⌊c1t⌋ > t/2, τ − τ−⌊c1t⌋ > t/2, τ⌊K log t⌋ < t/100, τ − τ−⌊K log t⌋ < t/100

)
≤

a2t∑
a′=0

µ
(
|κ̃| > a′ − 2∥H0∥∞, τ⌊c1t⌋ > t/2,

, τ + τ−⌊c1t⌋ > t/2, τ⌊K log t⌋ < t/100, τ − τ−⌊K log t⌋ < t/100
)
,
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with the function H0 appearing in (2.10) (since |V | = τ when d = 2). Observe that

τ⌊c1t⌋ ◦ T ⌊K log t⌋ > τ⌊c1t⌋−⌊K log t⌋ ◦ T ⌊K log t⌋ = τ⌊c1t⌋ − τ⌊K log t⌋

and that

−τ−⌊c1t⌋ ◦ T−⌊K log t⌋ > −τ−⌊c1t⌋+⌊K log t⌋ ◦ T−⌊K log t⌋ = −τ−⌊c1t⌋ + τ − τ + τ−⌊K log t⌋ .

It follows that

pt ≤
a2t logR0∑
a′=0

µ
(
|κ̃| > a′ − 2∥H0∥∞, τ⌊c1t⌋ ◦ T ⌊K log t⌋ > 49t/100, |τ−⌊c1t⌋| ◦ T−⌊K log t⌋ > 49t/100

)
.

Recall that, for all m ∈ Z, |κ̃m| ≥ τm−2m∥H0∥∞ and that, due to (5.2), 2c1∥H0∥∞ <
1/100. Thus,

pt ≤
a2t logR0∑
a′=0

µ
(
|κ̃| > a′ − 2∥H0∥∞, |κ̃|⌊c1t⌋ ◦ T ⌊K log t⌋ > 48t/100,−|κ̃|−⌊c1t⌋ ◦ T−⌊K log t⌋ > 48t/100

)
.

Thus, using (5.3) (twice) combined with (5.4),

pt ≤
a2t logR∑
a′=0

(
µ (|κ̃| > a′ − 2∥H0∥∞)

(
µ
(
|κ̃|⌊c1t⌋ > 48t/100

))2
+O(t−100)

)
. (5.14)

By Lemma 3.5 (with d = 0) and since τ is µ-integrable,

µ
(
|κ̃|⌊c1t⌋ > 48t/100

)
≤ µ

(
τ⌊c1t⌋ > 47t/100

)
≤ µ(τ⌊c1t⌋ > t2) + µ

(
47t/100 < τ⌊c1t⌋ < t2

)
≪

Eµ[τ⌊c1t⌋]

t2
+

t2∑
k=2t/5

t√
t log t

log(k − ⌊c1t⌋µ(τ))
1 + (k − ⌊c1t⌋µ(τ))2

≪ t−1 +
∑

k≥t(2/5−c1µ(τ))

t√
t log t

log t

1 + k2

≪ t√
t log t

log t

t
=

√
log t

t
.

Combining this with (5.14) and (5.13), we infer

ν(Nt < c1t) ≤
a2t logR0∑
a′=0

(
(a′ + 1)−2 log t

t
+O(t−100)

)
+O((log t)/t) = O(log t/t) .
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We take the line below to quickly complete

Proof of Proposition 5.2 We observe that

µ(τ⌊c1t⌋ > t) ≤
ν̂({(x, u) ∈ M̂ : τ⌊c1t⌋(x) > t, u ≤ min τ})

min τ

≤ ν̂({(x, u) ∈ M̂ : Nt(x) < ⌊c1t⌋, u ≤ min τ})
min τ

≤ ν(Nt ≤ ⌊c1t⌋)
min τ

≤ ν(Nt ≤ c1t)

min τ
,

and conclude due to Sublemma 5.8.

We continue with

Proof of Lemma 5.6 When d = 1, the result follows from Sublemma 5.8 since

ν̃
(
B0 ∩ Φ−t(B0) ∩ {Ñt ≤ c1t}

)
≤ ν̃

(
B0 ∩ {Ñt ≤ c1t}

)
≪ (log t)/t = o(a−1

t ) .

Unfortunately this estimate is not enough when d = 2. We assume from now on
throughout this proof that d = 2. Recall that we have to prove that

ν̃
(
B0 ∩ Φ−t(B0) ∩ {Ñt ≤ c1t}

)
= o(a−2

t ) = o((t log t)−1) (assuming d = 2) .

We start with some preliminary calculation that will allow us to argue that we can
neglect the configurations with more than one long free flight (of length larger than
t/(100(K log t)2)) among the K log t future and past collision times. Let us write

Dt := {∃k, ℓ : k ̸= ℓ; |k|, |ℓ| ≤ K log t,min(τ ◦ T k, τ ◦ T ℓ) > t/(100(K log t)2)} ⊂ M

and D̃t for the corresponding event in M̃.

Sublemma 5.9 For all ε ∈ (0, 1
45
),

ν̃
(
B0 ∩ Φ−t/2(D̃t)

)
≤ (2K0 + 1)2ν(Dt) = o(t−1− 1

45
+ε) = o(a−2

t ) , as t→ +∞ .

Proof of the sublemma. Again, as in the proofs of Sublemmas 5.7 and 5.8, the
first inequality follows from the fact that M̃ is made of at most (2K0 + 1)2 copies
of M and that ϕ preserves the measure ν. It remains to prove the last estimate.
Using the suspension flow representation and the Hölder inequality applied for any
p < 2 < q such that 1

p
+ 1

q
= 1 and close enough to 2, we observe that

ν(Dt) ≤ 2
∑

−K log t≤k<ℓ≤K log t

Eµ[τ.1τ◦Tk>t/(100(K log t)2), τ◦T ℓ>t/(100(K log t)2)]

≤ 2
∑

−K log t≤k<ℓ≤K log t

∥τ∥Lp

(
µ(τ ◦ T k > t/(100(K log t)2), τ ◦ T ℓ > t/(100(K log t)2))

) 1
q

≤ 2
∑

−K log t≤k,ℓ≤K log t : k ̸=ℓ

∥τ∥Lp

 ∑
i∈Supp(κ̃):|i|>t/(100(K log t)2)

µ(κ̃ ◦ T k = i, |κ̃| ◦ T ℓ > |i|
4
5

 1
q

.
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Finally applying (5.6) with V = 4K and t large enough so that 2K log t < V log(2 +
t

100(K log t)2
), we conclude that, for t large enough,

ν(Dt) ≪ (log t)2

 ∑
i>t/(100(K log t)2)

i−3− 2
45

 1
q

,

and this bound holds true for an arbitrary real number q > 2.

We are back to the proof of Lemma 5.6 assuming that d = 2. We will decompose
the quantity we have to estimate in pt,1 + pt,2, distinguishing the case where the free
flight at time t/2 is larger or smaller than t/4.

Estimate when the free flight at time t/2 is larger than t/4. In this part,
we study

pt,1 := ν̃
(
B0 ∩ Φ−t(B0) ∩ {Ñt ≤ c1t, τ ◦ Φ t

2
> t/4}

)
. (5.15)

We will use the fact that we can neglect the trajectories such that τ ◦Φt/2 > a3t since,
due to Lemma 5.4,

ν̃(B0 ∩ {τ ◦ Φt/2 > a3t}) ≤ (2K0 + 1)2ν
(
τ ◦ ϕt/2 > a3t

)
≪ a−3

t . (5.16)

It follows from (5.16) and from Sublemma 5.9 that

pt,1 = ν̃

(
B0 ∩ Φ−t(B0) ∩

{
Ñt ≤ c1t

}
∩ Φ− t

2

({
τ ∈

[
t

4
, a3t

]}
\ D̃t

))
+ o(a−2

t ) .

(5.17)
Let us study the event appearing in the above formula.
The fact that τ ◦ Φ t

2
> t/4 and that Φt/2 ̸∈ Dt implies that the K log t free flights

just before and just after the one occurring at time t/2 have all length smaller than
t/(100(K log t)2) and thus that

τ⌊K log t⌋ ◦ T̃ ◦ Φt/2 < t/(100(⌊K log t⌋)) and |τ−⌊K log t⌋| ◦ Φt/2 < t/(100(⌊K log t⌋)) .
(5.18)

Recall that the configuration is in B0 ∩ Φ−t(B0) and satisfies τ ◦ Φt/2 > t/4. Since

Ñt ≤ c1t and since we are in dimension 2, the free flight of length t/4 made at time
t/2 has to be canceled by the sum of the other (at most (⌊c1t⌋− 1)) free flights made
during the time interval [0; t]. So,

|τ−⌊c1t⌋| ◦ Φt/2 > t/8 or (τ⌊c1t⌋ − τ) ◦ Φt/2 > t/8 . (5.19)

The combination of Conditions (5.18) and (5.19) implies that at least one of the two
next conditions should holds true

|τ−⌊c1t⌋| ◦ T̃−⌊K log t⌋ ◦ Φt/2 > |τ−⌊c1t⌋| ◦ Φt/2 − |τ−⌊K log t⌋| ◦ Φt/2 > 11t/100
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or

τ⌊c1t⌋ ◦ T̃ ⌊K log t⌋ ◦ Φt/2 > (τ⌊c1t⌋ − τ) ◦ Φt/2 − τ⌊K log t⌋ ◦ T̃ ◦ Φt/2 > 11t/100 .

Note that the second condition above corresponds to the first one above one up to
composing by Φt and up to using time reversal. Therefore,

pt,1 ≤ 2ν̃

(
B0 ∩

{
τ ◦ Φ t

2
∈
[
t

4
; a3t

]
, τ⌊c1t⌋ ◦ T̃ ⌊K log t⌋ ◦ Φt/2 >

11t

100

})
+ o(a−2

t )

≤ 2(2K0 + 1)2ν

(
τ ◦ ϕ t

2
∈
[
t

4
; a3t

]
, τ⌊c1t⌋ ◦ T ⌊K log t⌋ ◦ ϕt/2 >

11t

100

)
+ o(a−2

t )

using again the fact that B0 is made of at most (2K0 + 1)2 copies of M. Now using
the ϕt/2-invariance of ν, we obtain

pt,1 ≤ 2(2K0 + 1)2ν

(
τ ∈

[
t

4
; a3t

]
, τ⌊c1t⌋ ◦ T ⌊K log t⌋ >

11t

100

)
+ o(a−2

t ) (5.20)

≪ o(a−2
t ) +

a3t∑
a′=t/4

µ
(
τ > a′, τ⌊c1t⌋ ◦ T ⌊K log t⌋ > 11t/100

)
≪ o(a−2

t ) +

a3t∑
a′=t/4

µ
(
|κ| > a′ − 2∥H0∥∞, |κ|⌊c1t⌋ ◦ T ⌊K log t⌋ > 10t/100

)
≪ o(a−2

t ) +

a3t∑
a′=t/4

(
µ (|κ| > a′ − 2∥H0∥∞)µ

(
|κ|⌊c1t⌋ > 10t/100

)
+O(t−100)

)
≪ o(a−2

t ) +

a3t∑
a′=t/4

(a′)−2µ
(
|κ|⌊c1t⌋ > t/10

)
. (5.21)

But, using Lemma 3.5 (with d = 0) and the µ-integrability of τ ,

µ
(
|κ̃|⌊c1t⌋ > t/10

)
≤ µ

(
τ⌊c1t⌋ > 9t/100

)
≤ µ

(
τ⌊c1t⌋ > t3

)
+ µ

(
9t/100 < τ⌊c1t⌋ ≤ t3

)
≪ Eµ[τc1t]

t3
+

t3∑
k=9t/100

t√
t log t

log(k − ⌊c1t⌋µ(τ))
1 + (k − ⌊c1t⌋µ(τ))2

≪ t−2 +
∑

k≥t(9/100−c1µ(τ))

t√
t log t

log t

1 + k2

≪ t−2 +
t√
t log t

log t

t
=

√
log t

t
. (5.22)
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This together with (5.21) implies that

pt,1 = o(a−2
t ) . (5.23)

Estimate when the free flight at time t/2 is smaller that t/4. Let

pt,2 := ν̃
(
B0 ∩ Φ−t(B0) ∩ {Ñt ≤ c1t, τ ◦ Φ t

2
≤ t/4}

)
.

Using again the fact that B0 is made of at most (2K0+1)2 copies of M and that ϕt/2

preserves ν,

pt,2 ≤ (2K0 + 1)2ν(Nt ≤ c1t, τ ◦ ϕt/2 ≤ t/4) (5.24)

≤ (2K0 + 1)2ν
(
Nt/2 ≤ c1t, N−t/2 ≤ c1t, τ ≤ t/4

)
.

This together with Sublemma 5.9 and time reversibility gives that

ν(Nt < c1t, τ ◦ ϕt/2 ≤ t/4)

≤ o(a−2
t ) + ν

(
Nt/2 ≤ c1t, N−t/2 ≤ c1t, τ ≤ t/4,min(τ⌊K log t⌋ − τ, |τ−⌊K log t⌋)| ≤ t/100

)
≤ o(a−2

t ) + 2ν
(
Nt/2 ≤ c1t, N−t/2 ≤ c1t, τ ≤ t/4, |τ−⌊K log t⌋| < t/100

)
.

Since we also know that

|τ−⌊c1t⌋|◦T−⌊K log t⌋ = |τ−⌊K log t⌋−⌊c1t⌋−τ−⌊K log t⌋| > |τ−⌊c1t⌋−τ |−|τ−⌊K log t⌋−τ | >
t

2
− t

4
− t

100
.

we obtain

ν(Nt ≤ c1t, τ ◦ ϕt/2 ≤ t/4) ≤ o(a−2
t ) + 2ν(Nt/2 ≤ c1t, |τ−⌊c1t⌋| ◦ T−⌊K log t⌋ > 24t/100, τ ≤ t/4).

Let
Aa′,t′ = {τ ≥ a′ − 4∥H0∥∞, τ⌊c1t⌋ − a′ > 48t/100} .

Using again the representation by a suspension flow and the correlation estimate (5.3)
combined with (5.4),

ν(Nt ≤ c1t, τ ◦ ϕt/2 ≤ t/4) + o(a−2
t )

≤
⌊t/4⌋∑
a′=0

µ
(
τ ≥ a′, τ⌊c1t⌋ − a′ ≥ t/2, |τ−⌊c1t⌋| ◦ T−⌊K log t⌋ > 24t/100

)
≤

⌊t/4⌋∑
a′=0

µ
(
|κ| ≥ a′ − 2∥H0∥∞, |κ|⌊c1t⌋ − a′ ≥ 49t/100,

∣∣|κ|−⌊c1t⌋
∣∣ ◦ T−⌊K log t⌋ > 23t/100

)
≤

⌊t/4⌋∑
a′=0

(
µ (Aa′,t)µ

(
|τ−⌊c1t⌋| > 22t/100

)
+O(t−100)

)
≤

⌊t/4⌋∑
a′=0

µ (Aa′,t)

√
log t

t
,
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where in the last line we have used (5.22).
The previous displayed estimate gives that

ν(Nt ≤ c1t, τ ◦ ϕt/2 ≤ t/4) ≤ o(a−2
t ) + ν(N48t/100+4∥H0∥∞ ≤ c1t)

√
log t

t

= o(a−2
t ) ,

which together with (5.24) ensures that pt,2 = o(a−2
t ), which combined with (5.23)

ends the proof of Lemma 5.6 in the case d = 2.

5.3 Control on ”good” configurations

Due to Lemmas 5.6 and 5.4 and to Remark 5.5, it remains to study the ν̃-measure
of the set of configurations x ∈ BR0 ∩Φ−t(B0), that have at least c1t collisions in the
time interval [0, t) and with first and last free flight both smaller than adt logR. The
next lemma provides the domination of this measure by a sum. Let us write C for the
set of unit direction of corridors in D2. We recall that this set is finite (see e.g. [34]).

Lemma 5.10 There exists a positive integer L0, a positive real number C0 and a
compact set K ′ ⊂ Zd × R such that, for all integer R0 > L0 and all t > 0,

µ̃
(
BR0 ∩ Φ−t(B0) ∩ {Ñt > c1t, |κ̃| ≤ adt logR, |κ̃ ◦ Φt| ≤ adt logR}

)
≤ C0

∑
w⃗1,w⃗2∈C

⌊t/min τ⌋∑
n=⌊c1t⌋

⌊adt logR0⌋∑
a=R0−L0

⌊adt logR0⌋∑
b=0

µ(A′
a,b,n,t(w⃗1, w⃗2, K

′)) ,

where we set

A′
a,b,n,t(w⃗1, w⃗2, K

′) =
{
Ψ̂n ∈ (−πd(aw⃗1 + bw⃗2), t− nµ(τ)− b− a) +K ′,

|κ̃ ◦ T−1| ≥ a, |κ̃ ◦ T n| ≥ b
}
. (5.25)

Proof Let x ∈ BR0 ∩ Φ−t(B0) ∩ {Ñt > c1t, |κ̃| ≤ adt logR, |κ̃ ◦ Φt| ≤ adt logR}. We
will parametrise x by (x,−u, ℓ) ∈M × (−∞,−R0]×Zd, with u ∈ [0, τ(T−1(x))). We

write x under the form Φ−u(x̃) with x̃ ∈ M̃ corresponding to the configuration of the
particle at the next (future) collision time. This configuration x̃ belongs to some cell
Cℓ with ℓ ∈ Zd and thus x̃ can be rewritten under the form (p−1

d,0(q) + ℓ, v⃗) for some
x = (q, v⃗) ∈ M (as explained in Section 2.1). By construction u ∈ [R0, τ(T

−1(x))).

We parametrize Φt(x) by ((T n(x), s), ℓ′) ∈ M̂ × Zd, as follows. Recalling that Nt

is the lap number introduced above (2.1), we write Φt(x) under the form Φs(T̃
n(x̃))

with n = Nt(ϕ−u(x)) − 1 and s ∈ [0, τ(T n(x)). Due to our assumptions on x, we
know that Nt(ϕ−u(x)) ≥ ⌊c1t⌋ + 1 so that n ≥ ⌊c1t⌋. Moreover, Nt ≤ 1 + t/min τ .
Thus

⌊c1t⌋ ≤ n ≤ t/min τ . (5.26)
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It follows from (2.9) and (2.10) that τ − |κ̃| is uniformly bounded. Recall that u ≤
τ(T−1(x)) and s ≤ τ(T n(x)). We discretise u, s by setting

a := max(0, ⌊u⌋ − ∥τ − |κ̃|∥∞) ≤ |κ̃(T−1(x))| ≤ adt logR0 , (5.27)

b := max(0, ⌊s⌋ − ∥τ − |κ̃|∥∞) ≤ |κ̃(T n(x))| ≤ adt logR0 . (5.28)

With the previous notations,

τ̃n(x) = t− nµ(τ)− u− s = t− nµ(τ)− a− b+O(1) , (5.29)

where O(1) is uniformly bounded (independently of x). Furthermore, there exist two
unit directions of corridors w⃗1, w⃗2 ∈ C that are ”close” to be collinear to, respectively,
the first and last free flight, meaning that

κ̃(T−1(x)) = |κ̃(T−1(x))|w⃗1 +O(1) and κ̃(T n(x)) = |κ̃(T n(x))|w⃗2 +O(1) ,

with O(1) uniformly bounded (independently of x). This implies that ℓ = aπd(w⃗1) +
O(1) and ℓ′ = −bπd(w⃗2) + O(1), where again O(1) is uniformly bounded (indepen-
dently of x). Thus, for a given (a, b, w⃗1, w⃗2), only a uniformly bounded number of
values of (ℓ, ℓ′) are possible. Second, this implies also that

κn + πd(aw⃗1 + bw⃗2) = ℓ′ − ℓ+ aπd(w⃗1) + bπd(w⃗2) = O(1). (5.30)

Recalling that Ψ̂n = (κn, τ̃n), it follows from (5.27), (5.28), (5.29) and (5.30) that we
can find a compact set K ′ independent of x such that, with previous notations,

x ∈ A′
a,b,n,t(w⃗1, w⃗2, K

′) .

The bounds on n, a, b comes from respectively (5.26), (5.27) (and u ≥ R0) and (5.28).
The multiplicative constant C0 comes from the bounded number of possible values of
(ℓ, ℓ′, ⌊u⌋, ⌊s⌋) once a and b are fixed. This ends the proof of the lemma.

Since C is finite, it is enough to fix w⃗1, w⃗2 and to prove that

lim
R0→+∞

lim sup
t→+∞

adt

⌊t/min τ⌋∑
n=⌊c1t⌋

⌊adt logR0⌋∑
a=R0

⌊adt logR0⌋∑
b=0

µ(A′
a,b,n,t(w⃗1, w⃗2, K

′)) = 0 . (5.31)

The aimed result (5.31) will be proved via the next technical lemma, the proof of
which uses a splitting of the summation over n, a, b in smaller ranges.

Lemma 5.11 There exists C ′ > 0 such that for all R0

⌊t/min τ⌋∑
n=⌈c1t⌉

∑
a,b=0,...,⌊adt log(R0)⌋ :max(a,b)≥R0

µ(A′
a,b,n,t(w⃗1, w⃗2, K

′)) ≤ C ′a−d
t R

− 2
45

0 + o(a−d
t ) ,

as t→ +∞.
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Proof Note that, by measure preserving and time reversal, (κ̃ ◦T−1, Ψ̂n, κ̃ ◦T n) has
the same distribution as (−κ ◦ T n, (−κ̃n, τ̃n),−κ̃ ◦ T−1) and so

µ(A′
a,b,n,t(w⃗1, w⃗2, K

′)) = µ(A′
b,a,n,t(−w⃗2,−w⃗1, K

′′))

with K ′′ = {(ℓ, r) ∈ Zd × R : (−ℓ, r) ∈ K ′}, with the notation (5.25). Thus, up
to replacing (a, b, w⃗1, w⃗2, K

′) by (b, a,−w⃗2,−w⃗1, K
′′), it is enough to prove that there

exists C ′′
0 such that, for all R0,

⌊t/min τ⌋∑
n=⌈c1t⌉

⌊adt log(R0)⌋∑
a=R0

a∑
b=0

µ(A′
a,b,n,t(w⃗1, w⃗2, K

′)) ≤ C ′′
0a

−d
t R

− 2
45

0 + o(a−d
t ), as t→ +∞ .

(5.32)
The main ingredients of the proof of this are Lemma 3.2 together with its Corollary 3.3
and an argument similar to the one used in the proof of Lemma 4.2. To exploit
Lemma 3.2, recall (5.25) and note that

µ(A′
a,b,n,t(w⃗1, w⃗2, K

′)) ≤ Eµ

[
1|κ̃|◦Tn≥b1|κ̃|◦T−1≥a.h

(
Ψ̂n − (−πd(aw⃗1 + bw⃗2), t− b− a− nµ(τ))

)]
,

(5.33)

where h : Zd × R → (0,∞) is the integrable function with compactly supported

Fourier transform given by h(y1, ..., yd+1) := K ′′1|y1|,|yd|≤K′′
(1−cos(yd+1/K

′′))

y2d+1
for some

suitable K ′′ > 0. Recall (5.3) and (5.4) and assume that n > 4⌊K log t⌋. Let kn =
kt = ⌊K log t⌋. It follows from (5.33) and Corollary 3.3, that, for any ε0 ∈

(
0, 1

2
− 1

45

)
and any n = ⌊c1t⌋, ..., t/min τ ,

µ(A′
a,b,n,t(w⃗1, w⃗2, K

′)) ≪ µ(|κ̃| ≥ a)µ(|κ̃| ≥ b)Q̃
(0)
n,a,b(t) (5.34)

+O
(
t−100 + log t a−d−2

t (µ(|κ̃| ≥ a)µ(|κ̃| ≥ b)
1
2
−ε0 (5.35)

+a−d−2
t µ(|κ̃| ≥ b)

∥∥∥Ψ̂2kn1{|κ̃|◦T−1≥a}

∥∥∥
L1

)
, (5.36)

with Q̃
(0)
n,a,b(t) := Eµ

[
h
(
Ψ̂n − (−πd(aw⃗1 + bw⃗2), t− b− a− nµ(τ))

)]
. (5.37)

Estimating the term in the right hand side of (5.34).
We claim that, adapting carefully the argument of Lemma 4.2,

sup
a,b

⌊t/min τ⌋∑
n=⌈c1t⌉

Q̃
(0)
n,a,b(t) = O(a−d

t ) , (5.38)

which implies that

⌊t/min τ⌋∑
n=⌈c1t⌉

∑
b≥0,a≥R0

µ(|κ̃| ≥ a)µ(|κ̃| ≥ b)Q̃
(0)
n,a,b(t) = O(a−d

t R−1
0 ) . (5.39)
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We prove the claim (5.38). Fix L > 0.
First, it follows from Lemma 3.2 that

Q̃
(0)
n,a,b(t) ≪ a−d−1

t

(
gd+1

(
−πd(aw⃗1 + bw⃗2), t− b− a− nµ(τ)

at

)
+ (log t)−1

)
and so that∑

n : |t−b−a−nµ(τ)|<Latµ(τ)

Q̃
(0)
n,a,b(t) ≪ a−d

t

∫
R
gd+1

(
−πd(aw⃗1 + bw⃗2)

at
, y

)
dy + o(a−d

t )

≪ a−d
t ∥gd∥∞ + o(a−d

t ) ≪ a−d
t , (5.40)

with gd :=
∫
R gd+1(·, y) dy.

Second, if n > c1t and Lat < |n− (t− b− a)/µ(τ)|, then, as soon as t large enough,
it follows from Lemma 3.5 that, setting va,b,n := (−πd(aw⃗1 + bw⃗2), t− b− a− nµ(τ)),

Q̃
(0)
n,a,b(t) ≪

∑
k3∈Z

1

1 + k23
µ
(
Ψ̂n − va,b,n = (0, 0, k3) +O(1)

)
≪ t

ad+1
t

∑
k3∈Z

1

1 + k23

log(2 + |va,b,n + k3|)
(2 + |va,b,n + k3|)2

. (5.41)

But, on the one hand,∑
k3:|va,b,n+k3|≥|va,b,n|/2

1

1 + k23

log(2 + |va,b,n + k3|)
(2 + |va,b,n + k3|)2

≪ log(4 + |va,b,n|)
(1 + |va,b,n|)2

∑
k3

1

1 + k23

≪ log(4 + |va,b,n|)
(1 + |va,b,n|)2

, (5.42)

and, on the other hand,∑
k3:|va,b,n+k3|<|va,b,n|/2

1

1 + k23

log(2 + |va,b,n + k3|)
(2 + |va,b,n + k3|)2

≪
∑

u:|u|<|va,b,n|/2

1

1 + |u− va,b,n|2
log(2 + |u|)
(2 + |u|)2

≪ 1

|va,b,n|2
∑

u:|u|<|va,b,n|/2

log(2 + |u|)
(2 + |u|)2

≪ 1

|va,b,n|2
.

(5.43)

It follows from (5.41), (5.42) and (5.43) that

Q̃
(0)
n,a,b(t) ≪

log(2 + |va,b,n|)
(1 + |va,b,n|)2

,
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as Q̃n(t) in sublemma (4.3). Therefore∑
n>c1t:Lat<|n−(t−b−a)/µ(τ)|

Q̃
(0)
n,a,b(t)

≪ t

ad+1
t

∑
n:Lat<|n−(t−a−b)/µ(τ)|

| log |nµ(τ)− (t− a− b)||
1 + |nµ(τ)− (t− a− b)|2

≪ t

ad+1
t

log(at)

Lat
≪ 1

Ladt
≪ a−d

t , (5.44)

since log u/u2 has primitive −(1 + log u)/u and since a2t = t log t ∼ 2t log at. The
claim (5.38) follows from (5.40) and (5.44).

Estimating the terms in (5.35). The first term leads to

⌊t/min τ⌋∑
n=⌈c1t⌉

⌊adt logR0⌋∑
a=R0

a∑
b=0

t−100 ≪ t−99a2dt (logR0)
2 = o(a−d

t ) . (5.45)

It remains to estimate the contribution of the second part of (5.35). Note that

∑
a≥R0

µ(|κ̃| ≥ a)

(
a∑

b=0

µ(|κ̃| ≥ b)
1
2
−ε0

)
≪
∑
a≥R0

a−2

(
a∑

b=0

(b+ 1)−1+2ε0

)
≪
∑
a≥R0

a−2+2ε0 = R−1+2ε0
0 ,

since ε0 <
1
2
. Since we also know that t log t = a2t , we obtain that

⌊t/min τ⌋∑
n=⌈c1t⌉

∑
a≥R0

a∑
b=0

log t a−d−2
t µ(κ̃ ≥ a)µ(κ̃ ≥ b)

1
2
−ε0 ≪ a−d

t R
−(1−2ε0)
0 , (5.46)

with 1− 2ε0 > 0.
Estimating the term in (5.36) We claim that∑

a≥R0

∥∥∥Ψ̂2kn1{|κ̃|◦T−1≥a}

∥∥∥
L1

≪ R
− 2

45
0 log t . (5.47)

Since we also know that t log t = a2t and that
∑

b≥0 µ(|κ̃| ≥ b) = E[|κ̃|] < ∞, we
obtain that

⌊t/min τ⌋∑
n=⌈c1t⌉

∑
a≥R0

∑
b≥0

a−d−2
t µ(|κ̃| ≥ b)

∥∥∥Ψ̂2kn1{|κ̃|◦T−1≥a}

∥∥∥
L1

= O
(
a−d
t R

− 2
45

0

)
. (5.48)
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We now prove the claim (5.47). First, compute that

∑
a≥R0

∥∥∥Ψ̂2kn1{|κ̃|◦T−1≥a}

∥∥∥
L1

≤
2kn−1∑
ℓ=0

∑
a≥R0

∑
a′≥a

∑
b′≥1

b′µ(|κ̃| ◦ T−1 = a′, |κ̃| ◦ T ℓ = b′)

≤
2kn∑
ℓ=1

∑
a′≥R0

a′∑
a=R0

∑
b′≥1

b′µ(|κ̃| = a′, |κ̃| ◦ T ℓ = b′)

≤
2kn∑
ℓ=1

∑
a′≥R0

∑
b′≥1

a′b′µ(|κ̃| = a′, |κ̃| ◦ T ℓ = b′) ,

where the sum over a′, b′ is taken over the positive real numbers (non necessarily
integer) such that the summand is non null.

We claim that, uniformly in n and in ℓ = 1, ..., 2kn,∑
a′≥R0

∑
b′≥1

a′b′µ(|κ̃| = a′, |κ̃| ◦ T ℓ = b′) ≪ R
− 2

45
0 (5.49)

The previous two displayed equations give the claim (5.47).
It remains to prove the claim (5.49). We proceed via considering all relevant cases

of a′, b′.
Case 1: Contribution of the a′, b′ such that b′

4
5 ≤ a′ ≤ b′.∑

b′≥1

∑
a′∈[max(R0,(b′)4/5);b′]

a′b′µ(|κ̃| = a′, |κ̃| ◦ T ℓ = b′)

≤
∑
b′≥R0

b′Eµ

 ∑
a′∈[(b′)4/5;b′]

a′1|κ̃|=a′1|κ̃|◦T ℓ=b′


≤
∑
b′≥R0

|b′|2µ(|κ̃| ≥ (b′)
4
5 , |κ̃| ◦ T ℓ = b′) ,

where in the last equation we used that∑
a′∈[a−;a+]

a′1{|κ̃|=a′} ≤ a+1{|κ̃|≥a−} . (5.50)

Thus applying (5.6) with V := 100/a0, we obtain

µ(|κ̃| ≥ (b′)
4
5 , |κ̃| ◦ T ℓ = b′) ≪ |b′|−3− 2

45 ,

uniformly in ℓ ≤ 100 log(2+|b′|)
a0

, and it follows from (5.3) combined with (5.5) that

µ(|κ̃| ≥ (b′)
4
5 , |κ̃| ◦ T ℓ = b′) ≤ µ(|κ̃| ≥ (b′)

4
5 )µ(|κ̃| ◦ T ℓ = b′) + C ′e−a0ℓ ≪ |b′|−3− 2

45
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uniformly in ℓ ≥ 100 log(2+|b′|)
a0

. Therefore∑
a′∈[max(R0,(b′)4/5);b′]

a′b′µ(|κ̃| = a′, |κ̃| ◦ T ℓ = b′) ≪
∑
b′≥R0

|b′|2 |b′|−3− 2
45 (5.51)

≪
∑
b′≥R0

|b′|−1− 2
45 ≪ R

− 2
45

0 . (5.52)

Case 2: Contribution of the a′, b′ such that (a′)
4
5 < b′ < a′.∑

b′≥1

∑
a′∈[max(R0,b′);(b′)

5
4 ]

a′b′µ(|κ̃| = a′, |κ̃| ◦ T ℓ = b′)

≤
∑
a′≥R0

∑
b′∈[(a′)

4
5 ;a′]

a′b′µ(|κ̃| = a′, |κ̃| ◦ T ℓ = b′)

≤
∑
a′≥R0

|a′|2µ(|κ̃| = a′, |κ̃| ◦ T ℓ > (a′)
4
5 )

≪
∑
a′≥R0

|a′|2|a′|−3− 2
45 ≪

∑
a′≥R0

|a′|−1− 2
45 ≪ R

− 2
45

0 , (5.53)

using again (5.50) and (5.6) again with V = 100/a0 when ℓ ≤ V log(2+ |a′) and (5.3)
otherwise.

Case 3: Contribution of the a′, b′ such that a′ < (b′)γ < b′ for some
γ ∈ (0, 1) (e.g. γ = 4

5
).

∑
b′≥1

∑
a′∈[R0;(b′)γ ]

a′b′µ(|κ̃| = a′, |κ̃| ◦ T ℓ = b′)

≤
∑

b′≥R
1
γ
0

∑
a′∈[R0;(b′)γ ]

a′b′µ(|κ̃| = a′, |κ̃| ◦ T ℓ = b′)

≤
∑

b′≥R
1
γ
0

|b′|γb′µ(|κ̃| ≥ R0, |κ̃| ◦ T ℓ = b′)

≪
∑

b′∈Supp(|κ̃|):b′≥R
1
γ
0

(b′)γ|b′| |b′|−3 ≪ R
1
γ
(−1+γ)

0 , (5.54)

using (5.5).
Case 4: Contribution of the a′, b′ such that b′ < (a′)γ < a′ with γ ∈ (0, 1)

(e.g. γ = 4
5
).

35



∑
a′≥R0

∑
b′∈[1;(a′)γ ]

a′b′µ(|κ̃| = a′, |κ̃| ◦ T ℓ = b′) ≤
∑
a′≥R0

(a′)γ|a′|µ(|κ̃| = a′)

≪
∑

a′∈Supp(|κ̃|):a′≥R0

(a′)γ|a′||a′|−3 ≪ R−1+γ
0 . (5.55)

The claim (5.49) follows from (5.52), (5.53), (5.54) and (5.55), ending the
proof of (5.47) and so of (5.48). Estimate (5.32) and so the lemma then follows
from (5.34), (5.39), (5.45), (5.46) and (5.48)

5.3.1 Concluding the proof of Theorem 5.1

The conclusion follows from Lemmas 5.4 (and the comment thereafter), 5.6, 5.10
and 5.11.

6 Proof of joint CLT (Lemma 3.1)

Let d ∈ {0, 1, 2}. In this section we show that arguments established in [3] and [29]

can be adapted to the study of Ψ̂ instead of κ. The main idea comes down to a
basic observation, namely that Ψ̂ can be written as the sum of a vector in Zd+1

that ’behaves like’ κ and of a bounded function. The mentioned vector in Zd+1 is
precisely (κ, |κ̃| − Eµ[|κ̃|]) which, as κ, is constant on good sets and has a similar tail

probability. In particular, the distribution of Ψ̂ is in the domain of a nonstandard
CLT with normalization

√
n log n. The details are provided around equation (6.12)

below.
We will prove the convergence in distribution of (Ψ̂n/

√
n log n)n by establishing the

pointwise convergence of its characteristic function, with the use of Fourier perturbed
operator on the quotient tower constructed by Young in [37](see [8]) as Szász and
Varjú did in [34] to establish the CLT and LLT for κ. It follows from (2.10) that
τ = |V | = |κ̃|+O(1), where κ̃ :M → Z2 is the cell change in the Z2-periodic Lorentz
gas (see Subsection 5.1).
We have already recalled several properties of κ̃. Let us recall, in particular, the
precise tail of κ̃ (this is partially recalled in (5.5)). By [34] completed by [29], there
exist L0 > 0 and a finite set E made of (L,w) ∈ (Zd)2 with w prime such that

|κ̃| > L0 ⇒ ∃(L,w) ∈ E , ∃N ∈ N∗ κ̃ = L+Nw (6.1)

and

µ(κ̃ = L+Nw) = cL,wN
−3 +O(N−4) , as N → +∞ , (6.2)
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with cL,w > 0. This set E parametrizes the set of corridors mentioned in Section 5
(the set C therein corresponds to the set of unit vectors proportional to some w such
that there exists L ∈ Z2 such that (L,w) ∈ E). Then, when d = 2, the variance
matrix Σ0 (for the Sinai billiard map) appearing in the Central Limit Theorem for
the displacement given by (2.11) corresponds to the following quadratic form

If d = 2, ∀t ∈ R2, ⟨Σ0t, t⟩ :=
1

2

∑
(L,w)∈E

cL,w⟨t, w⟩2 . (6.3)

It is not degenerate since, when d = 2, we assume the existence of at least two non
parallel corridors, and so of two non parallel w,w′ such that there exists L,L′ ∈ Z2

such that (L,w), (L′, w′) ∈ E .
When d = 1, setting π1(w1, w2) = w1, Σ0 is given by the formula

If d = 1, Σ0 :=
1

2

∑
(L,w)∈E

cL,w(π1(w))
2 (6.4)

which is non null since we assumed the existence of at least an unbounded line touch-
ing no obstacle.

We recall that the variance matrix Σ for the flow appearing in (1.1) is given by
Σ = Σ0/

√
µ(τ).

The variance matrix Σd+1 of the limit of a−1
n Ψ̂n will appear to be given by the

following pretty similar formula:

∀t ∈ Rd+1, ⟨Σd+1t, t⟩ :=
1

2

∑
(L,w)∈E

cL,w⟨t, (πd(w), |w|)⟩2 , (6.5)

with, as in Section 5.1,

∀w ∈ Z2, π2(w) = w and π1(w1, w2) = w1 ,

and with the convention

∀(w, z) ∈ Z2 × R, (π0(w), |w|) = w and more generally (π0(w), z) = z.

Throughout this section, we fix some (arbitrary) q ∈ [1, 2), and some bq > 2 so
that

1

bq
+

1

q
< 1 . (6.6)

This choice will determine the choice of the Banach space on the Young tower.
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6.1 Expression of the characteristic functions via Fourier
Perturbed operator

We observe that
|Ψ̂(x)− Ψ̂(y)| ≤ d(x, y) + d(T (x), T (y)) ,

for any x, y in the same connected component of M \ (S0 ∪ T−1(S0)), where S0 is
the set of post-collisional vectors tangent to ∂Ω. We recall that the diameter of the
connected components of M \

⋃n
k=−n T

−k(S0) is O(βn
1 ) for some β1 ∈ (0, 1).

As in [34], we consider the towers constructed by Young in [37] (see also [8]). We
recall some facts on Young towers and introduce some notations that we shall use in
the remainder of this paper. We let (∆, f∆, µ∆) be the hyperbolic tower, which is an
extension of (M,T, µ) by π : ∆ 7→ M (with π(x, ℓ) = T ℓ(x)) and write

(
∆, f∆, µ∆

)
for the quotient tower (obtained from ∆ by quotienting out the stable manifolds).
The quotient tower is identified with ∆ := {(x, ℓ) ∈ ∆ : x ∈ Y }, where Y is an
unstable curve of a well chosen set Y ⊂ M , and write π : ∆ → ∆ for the projection
corresponding to the holonomy along the stable curves of ∆. The dynamical system
(∆, f∆, µ∆) is given by

� The space ∆ is the set of couples (x, ℓ) ∈ Y × N0 such that ℓ < R(x), where R
is a return time to Y .

� The map f∆ is given by f∆(x, ℓ) = (x, ℓ+1) if ℓ < R(x)−1 and f∆(x,R(x)−1) =
(TR(x)(x), 0).

� The probability measure µ∆ is given by µ∆(A × {ℓ}) = µ∆(A ∩ {R >
ℓ})/Eµ[R.1Y ], for any measurable set A ⊂ Y .

We assume that the greatest common divisor (g.c.d.) of R is 1, which can be done
because of total ergodicity6 of T ; this assumption is not essential, since one can also
deal directly with g.c.d.(R) ̸= 1, but it helps simplifying the proofs and notation
throughout the remainder of this paper.

The partition P on ∆ consists of a union of partitions of the different levels which
become finer and finer as one goes up in the tower. The partition P is used to define
a separation time s(·, ·) on ∆:

s(x, y) := inf{n ≥ −1 : P(fn+1
∆ (x)) ̸= P(fn+1

∆ (y))} ,

The separation time s(x, y) satisfies the following property: π(x) and π(y) are in the
same connected component of M \ (S0 ∪ T−1(S0)) if s(x, y) ≥ 0. In particular if
s(x, y) > 2n, then π(fn

∆(x)) and π(fn
∆(y)) are in the same connected component of

M \
⋃n

k=−n T
−k(S0). Since the atoms of the partition P are unions of stable curves,

6The idea of using the total ergodicity of T for constructing a new tower with g.c.d.(R) = 1 was
suggested in [37, Section 4] and used in [33] for ensuring aperiodicity of the version of κ on ∆. The
details of such a tower construction are contained in [26, Appendix B].
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this separation time has a direct correspondent s(·, ·) on the quotient tower ∆. Let
P be the transfer operator of

(
∆, f∆, µ∆

)
, i.e. P is defined on L1(µ∆) by∫

∆

H.P (G) dµ∆ =

∫
∆

H ◦ f∆.G dµ∆ .

Let β ∈ (β
1
4
1 , 1) and close enough to 1. It follows from [37] and [8] that there exists

ε′ > 0 such that, for all ε ∈]0, ε′[, P is quasicompact on the Banach space B = Bε

corresponding to the set of functions of the form eεωH, withH ∈ B0, where ω(x, ℓ) = ℓ
and where B0 is the Banach space of bounded functions H : ∆ → C that are Lipschitz
continuous with respect to the ultrametric βs(·,·) (the space B0 corresponds to the space
Bε when ε = 0). The space B is then endowed with the norm ∥ · ∥B given by

∥H∥B = ∥e−εωH∥B0 . (6.7)

Recall bq satisfies (6.6). Choose ε small enough so that eεω ∈ Lbq(µ∆) which implies
that B is continuously embedded in Lbq(µ∆) since

∥H∥Lbq ≤ ∥eεω∥Lbq∥e−εωH∥∞ ≤ ∥eεω∥Lbq∥H∥B . (6.8)

(This particular choice of bq will be used in the proof of Sublemma 6.2 below.) Since
we assume that g.c.d.(R) = 1, 1 is the only (dominating) eigenvalue of modulus 1
of P , and it is simple and isolated in the spectrum of P . In particular, there exists
θ ∈ (0, 1) (depending on (β, ε)) such that

∥P n − Eµ∆
[·]1∆∥L(B) = O(θn) , as n→ +∞ . (6.9)

Let t ∈ Rd+1. Recall that via [4, eq. (6.2) verified in Corollary 9.4],

Ψ̂ ◦ π = Ψ ◦ π + χ ◦ f∆ − χ , (6.10)

with Ψ = (κ, τ) : ∆ → Zd × R, where τ is the version of τ̃ = τ − µ(τ) on ∆ given by

τ := τ̃ ◦ π +
∑
n≥1

(
τ ◦ π ◦ fn

∆ − τ ◦ π ◦ fn−1
∆ ◦ f∆

)
and where χ = (0, χ0) with 0 the null element of Zd and with

χ0 :=
∑
n≥0

(τ ◦ π ◦ fn
∆ − τ ◦ π ◦ fn

∆ ◦ π) .

By [4, Proof of Lemma 8.3] (see also Section B) τ is locally Lipschitz continuous (on
each atom of Young’s partition) with respect to the ultrametric βs(·,·), and χ : ∆ →
{0}d × R is bounded and Lipschitz in the following sense:

sup
k≥1

sup
x,y:s(x,y)>2k

|χ(fk
∆(x))− χ(fk

∆(y))|
βk

<∞ , (6.11)
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It follows from the coboundary equation (6.10) that

Eµ[e
i⟨t, Ψ̂n

an
⟩] = Eµ∆

[
e−i⟨ t

an
,χ⟩ei⟨

t
an

,Ψn⟩◦πei⟨
t

an
,χ◦fn

∆⟩
]
.

Let K : ∆ → Z2 be the version of κ̃ on ∆, i.e. the function such that K ◦ π = κ̃ ◦ π.
It follows from (2.10) and (6.10) that the function Θ : ∆ → Rd+1 defined by

Θ := Ψ−Υ, with Υ :=
(
πd(K), |K| − Eµ∆

[|K|]
)
, (6.12)

is bounded and Lipschitz, and Υ is constant on partition elements (as κ = πd(K)
corresponding to the cell change). Since both Ψ and Υ have mean zero, Eµ∆

[Θ] = 0.

We define the Fourier-perturbed operators Pt, P̃t ∈ L(B) by Ptv =

P (ei⟨t,Ψ⟩v), P̃tv = P (ei⟨t,Υ⟩v) for t ∈ Rd+1. By [34] (which exploits [37, 8]), up to
enlarging the value of θ ∈ (0, 1) appearing in (6.9), there exist β0 ∈ (0, π], a continu-
ous function t 7→ λt ∈ C and two families of operators (Πt)t and (Ut)t acting on B such
that t 7→ Πt ∈ L(B, L1(∆)) is continuous and such that, for every t ∈ [−β0, β0]d+1

and every positive integer n,

P n
t = λnt Πt + Un

t , P̃ n
t = λ̃nt Π̃t + Ũn

t , (6.13)

with sup
t∈[−β0,β0]d

(
∥Un

t ∥B + ∥Ũn
t ∥B

)
= O (θn) , as n→ +∞ . (6.14)

Set k = kn := (log n)2 and Fk,u(x) := ei⟨u,Ψk(π(x))+χ◦fk
∆(x)⟩. It follows from (6.10) that

Eµ[e
i⟨t, Ψ̂n

an
⟩] = Eµ∆

[
e−i⟨ t

an
,χ◦fk

∆⟩ei⟨
t

an
,Ψn⟩◦π◦fk

∆ei⟨
t

an
,χ◦fn+k

∆ ⟩
]

= Eµ∆

[
Fk,− t

an
ei⟨

t
an

,Ψn⟩◦πFk, t
an

◦ fn
∆

]
.

We approximate Fk,u(x) by its conditional expectation F̂k,u(x) = F k,u(π(x)) on the
set {y ∈ ∆ : s(x, y) > 2k}, where s is the separation time on ∆ as recalled earlier in

this section. Since ei⟨u,Ψ⟩ is bounded and Lipschitz on ∆ and since ei⟨t,χ⟩ is bounded
and Lipschitz on ∆ (in the sense of (6.11)), it follows that

Eµ[e
i⟨t, Ψ̂n

an
⟩] = Eµ∆

[
F k,− t

an
ei⟨

t
an

,Ψn⟩F k, t
an

◦ fn
∆

]
+O(βk)

= Eµ∆

[
F k, t

an
P n

t
an

(F k,− t
an
)
]
+O(βk)

= λn−2k
t/an

Eµ∆

[
F k,tΠ t

an
(P 2k

t
an

(F k,− t
an
))
]
+O(βk + θn−2k) ,

as n → +∞. Furthermore ∥F k,u∥∞ ≤ 1 and P 2k
t

an

(F k,− t
an
) are uniformly (in k, n)

Lipschitz with respect to Young’s ultrametric βs(·,·). Thus by continuity of t 7→ Πt ∈
L(B, L1(∆)),

Eµ[e
i⟨t, Ψ̂n

an
⟩] = λn−2k

t
an

(
Eµ∆

[
F k, t

an

]
Eµ∆

[
P 2k

t
an

(F k,− t
an
))
]
+ o(1)

)
,
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as n→ +∞. Observe that, for every t ∈ Rd+1,

Eµ∆

[
F k, t

an

]
= Eµ∆

[
ei⟨

t
an

,Ψk◦π+χ◦fk
∆⟩
]
= 1 + o(1) as n→ +∞ ,

due to the dominated convergence theorem (using the fact that limk→+∞ Ψk/k = 0
µ∆-almost-surely). Analogously

∀t ∈ Rd+1, Eµ∆

[
P 2k

t
an

(F k,− t
an
))
]
= Eµ∆

[
ei⟨

t
an

,Ψk◦π−χ⟩◦fk
∆

]
= 1+o(1) , as n→ +∞ .

Thus

Eµ[e
i⟨t, Ψ̂n

an
⟩] = λn−2k

t
an

+ o(1) . (6.15)

An important observation that will allow us to adapt the results of [29] to the present
context is that

Pt − P̃t = P
((
ei⟨t,Ψ⟩ − ei⟨t,Υ⟩

)
·
)
= P̃t

((
ei⟨t,Θ⟩ − 1

)
·
)
.

6.2 Regularity of the dominating eigenvalues and its spectral
projector

In this part, we prove that for q ∈ [1, 2) chosen before (6.6),

∥Πt − Π0∥B→Lq(µ∆) = O(t) and λt = 1− log(1/|t|)⟨t,Σd+1t⟩+O(t2) ,

as t→ 0. We do so, via the following several steps: we first establish in Sublemma 6.1
an equivalent of λt − 1, and we use it to establish in Sublemma 6.2 the announced
estimate of ∥Πt − Π0∥B→Lq(µ∆) that we finally use to establish in Sublemma 6.3 the
announced expansion of λt.

To obtain such estimates, we will control the error between λt and λ̃t, and between
Πt and Π̃t. Here we crucially exploit that Υ and κ satisfy similar properties. This
allows us to adapt some results obtained for κ in [34, 29] with the use of [3].

We start by studying Pt − P̃t. Observe that (ei⟨t,Θ⟩ − 1)· ∈ L(B) is dominated by∥∥∥ei⟨t,Θ⟩ − 1
∥∥∥
B0

. This implies that
∥∥∥P̃t − Pt

∥∥∥
L(B)

= O(|t|), and thus that∥∥∥Πt − Π̃t

∥∥∥
B
= O(t) , (6.16)

using the usual Cauchy integral expression for Πt and Π̃t. In particular, the an-
nounced estimate on ∥Πt − Π0∥B→Lq(µ∆) will follow from the same estimate for

∥Π̃t − Π̃0∥B→Lq(µ∆).
Lemma 3.1 follows immediately from (6.15), combined with the continuity of t 7→

Πt ∈ L(B → L1(µ∆)) and from the first sublemma below.
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Sublemma 6.1 As t→ 0, 1−λt ∼ log(1/|t|)⟨t,Σd+1t⟩, where Σd+1 is given by (6.5).

Proof of Sublemma 6.1 To study the expansion of t 7→ λt, in both Sublemmas 6.1
and 6.3, we consider the normalized eigenvectors vt, ṽt of respectively Pt, P̃t associated

with λt, λ̃t given by vt =
Πt(1∆)

Eµ∆
[Πt(1∆)]

and ṽt =
Π̃t(1∆)

Eµ∆
[Π̃t(1∆)]

, and we will use the following

expressions

λt = Eµ∆
[Pt(vt)] = Eµ∆

[ei⟨t,Ψ⟩vt] and λ̃t = Eµ∆
[P̃t(ṽt)] = Eµ∆

[ei⟨t,Υ⟩ṽt] ,

Therefore

λt − λ̃t = I1(t) + I2(t) , (6.17)

with

I1(t) :=

∫
∆

ei⟨t,Ψ⟩(vt − ṽt) dµ∆ =

∫
∆

(1− ei⟨t,Ψ⟩)(ṽt − vt) dµ∆ ,

and

I2(t) :=

∫
∆

(ei⟨t,Ψ⟩ − ei⟨t,Υ⟩)ṽt dµ∆ .

As argued below, I1(t) and I2(t) are O(|t|2). Regarding I2, we first note that (ei⟨t,Ψ⟩−
ei⟨t,Υ⟩)· ∈ L(B) is dominated by the Lipschitz norm of (ei⟨t,Ψ⟩−ei⟨t,Υ⟩) = ei⟨t,Υ⟩(ei⟨t,Θ⟩−
1). It follows from the definitions of vt, ṽt and(6.16) that

∥vt − ṽt∥L(B) = O(t), as t→ 0 .

Recall that B ⊂ Lbq with bq > 2 fixed satisfying (6.6). Further, note that by (6.2),Υ
and thus Ψ are in Lq for any q < 2. By the choice of bq, bq > q/(q − 1). Hence,

|I1(t)| ≪ |t|
∫
∆

|Ψ| |ṽt − vt| dµ∆ ≪ |t| ∥Ψ∥Lq∥ṽt − vt∥
L

q
q−1

≪ |t| |ṽt − vt∥B ≪ t2.

Next, recalling the definition of Θ in (6.12),

I2(t) =

∫
∆

ei⟨t,Υ⟩(ei⟨t,Θ⟩ − 1)ṽt dµ∆ =I12 (t) + I22 (t)

with

I12 (t) := it

∫
∆

ei⟨t,Υ⟩ Θ ṽt dµ∆, and I22 (t) :=

∫
∆

ei⟨t,Υ⟩(ei⟨t,Θ⟩ − 1− itΘ)ṽt dµ∆ .

Now, since Θ is bounded,

|I22 (t)| ≪ |t|2
∫
∆

|Θ|2 |ṽt| dµ∆ ≪ (|t| ∥Θ∥∞)2
∫
∆

|ṽt| dµ∆ ≪ |t|2.
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For I12 , write

I12 (t) = it

∫
∆

ei⟨t,Υ⟩ Θ ṽ0 dµ∆ + it

∫
∆

ei⟨t,Υ⟩ Θ(ṽt − ṽ0) dµ∆

= it

∫
∆

Θ dµ∆ + it

∫
∆

(ei⟨t,Υ⟩ − 1)Θ ṽ0 dµ∆ +O(|t|2)

= 0 +O(|t|2), as t→ 0 ,

where we have used that
∫
∆
Θ dµ∆ = 0. Putting the above together, |I2(t)| ≪ |t|2.

The bounds for I1 and I2 together with (6.17) give that

λt = λ̃t +O(|t|2), as t→ 0 . (6.18)

It remains to show that 1 − λ̃t has the desired asymptotic, using the form of Υ
in (6.12). To this end we observe that

1− λ̃t = Eµ∆
[1− P̃t(ṽt)] = Eµ∆

[(1− ei⟨t,Υ⟩)ṽt] = I ′1(t) + I ′2(t) , (6.19)

with

I ′1(t) :=

∫
∆

(1− ei⟨t,Υ⟩)ṽ0 dµ∆ and I ′2(t) :=

∫
∆

(1− ei⟨t,Υ⟩)(ṽt − ṽ0) dµ∆ .

We estimate I ′1(t). Recall equations (6.1), (6.2) and that
∫
∆
Υ dµ∆ = 0. For any

L,w,N , write WN(L,w) := (πd(L+Nw), |L+Nw| − Eµ[|κ̃|]) and compute that

I ′1(t) =

∫
∆

(1− ei⟨t,Υ⟩ − i⟨t,Υ⟩) dµ∆

=
∑

(L,w)∈E

∑
N≥1

(
ei⟨t,WN (L,w)⟩ − 1− i⟨t,WN(L,w)⟩

)
µ({κ = L+Nw}) +O(|t|2)

=
∑

(L,w)∈E

1/|t|∑
N=1

(
ei⟨t,WN (L,w)⟩ − 1− i⟨t,WN(L,w)⟩

) (
cL,wN

−3 +O(N−4)
)

+O

|t|2 + |t|
∑

(L,w)∈E

|w|
∑

N>1/|t|

N.N−3


=

∑
(L,w)∈E

cL,w
2

1/|t|∑
N=1

⟨t,WN(L,w)⟩2N−3 +O(|t|2) .

Since ⟨t,WN(L,w)⟩2N−3 = N−1⟨t, (πd(w), |w|)⟩2 +O(|t|2N−2) ,

I ′1(t) =
∑

(L,w)∈E

cL,w
2

log(1/|t|)⟨t, (πd(w), |w|)⟩2 +O(|t|2)

= log(1/|t|)⟨Σd+1t, t⟩+O(|t|2) . (6.20)
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For I ′2(t), we just need to explain that the argument of [34] via [3], which provides
the asymptotic of the eigenvalue associated to perturbation by κ instead of Υ as here,
goes through. The required ingredients in the argument of [34, 3] are: 1) tail of κ and
2) the ’double probability’ estimate (5.6). Regarding 1), we already know the tail of
Υ: see equations (6.1) and (6.2). Regarding 2), an analogue of (5.6), we recall that
we already know that this holds for κ̃. Because of the expression of Υ (via κ̃), the
arguments used in [34, Proofs of Propositions 11–12] ensure that

µ∆ (AN,V ) = O(N−3−ε), as N → +∞ , (6.21)

where

AN,V :=
{
Υ = WN(L,w), ∃|j| ≤ V log(n+ 2), |Υ ◦ f j| > |WN(L,w)|4/5

}
.

Equations (6.2) and (6.21) together with [3, Proof of Theorem 3.4] ensure that7

I ′2(t) = o
(
|t|2 log(1/|t|)

)
, as t→ 0 , (6.22)

The conclusion from this together with (6.18), (6.19) and (6.20).

In the remainder of this section, we prove a stronger version of Sublemma 6.1,
along with a strong continuity estimate on Πt, that will be essential in the proofs of
Lemmas 3.2 and 3.4 carried out in Section 7.

Recall that q ∈ [1, 2) has been fixed at the beginning of the present section.

Sublemma 6.2∥∥∥Π̃t − Π̃0

∥∥∥
B→Lq(µ∆)

+ ∥Πt − Π0∥B→Lq(µ∆) = O(t) as t→ 0 .

Proof Due to (6.16), it is enough to control
∥∥∥Π̃t − Π̃0

∥∥∥
B→Lq(µ∆)

. We claim that with

the choice of bq (see (6.6)) and ε in the text before (6.8), [29, Proposition 5.4] applies
to ensure that

∥1Y (Π̃t − Π̃0)∥B→B0 = O(|t|), as t→ 0 . (6.23)

Using (6.23), we modify the proof of [29, Proposition 5.3] to conclude the proof of the
sublemma. Set π0(x, ℓ) := x, recall that ω(x, ℓ) = ℓ and, using [29, Formula (44)], we

write (Π̃t − Π̃0)(w)(x) = I1,t(x) + I2,t(x) + I3,t(x) with

I1,t(x) :=
[
(ei⟨t,Υω(x)(π0(x))⟩ − 1)Π̃0(w)

]
I2,t(x) :=

[
ei⟨t,Υω(x)(π0(x))⟩(Π̃t − Π̃0)(w)(π0(x))

]
I3,t(x) := (λ̃

−ω(x)
t − 1)[ei⟨t,Υω(x)(π0(x))⟩Π̃t(w)(π0(x))] .

7More precisely, see Estimate of λt (there) in the proof of [3, Proof of Theorem 3.4]. In particular,
see [3, Lemma 3.16 and 3.19]
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First,

∥I1,t∥qLq(µ∆) = Eµ∆

[(
(ei⟨t,Υω(·)(π0(·))⟩ − 1)

)q] ∥w∥qL1(µ∆)

≤ |t|qEµ∆

[∣∣Υω(·)(π0(·))
∣∣q] ∥w∥qL1(µ∆)

≪ |t|q
∑
n≥0

Eµ

[
1Y ∩{R>n}|Υn|q

]
∥w∥qL1(µ∆)

≪ |t|q
∑
n≥0

µY (R > n)1/q
′∥|Υn|q∥Lp′ (µY )∥w∥

q
L1(µ∆) ≪ |t|q∥w∥qB , (6.24)

taking p′ > 1 and q′ > 1 such that 1
p′
+ 1

q′
= 1 and qp′ < 2, and using the fact that

µY (R ≥ n) decreases exponentially fast. Second, it follows from (6.23) that

∥I2,t∥qLq(µ∆) ≤
∥∥∥(Π̃t − Π̃0)(w)(π0(·))

∥∥∥q
Lq(µ∆)

≪ ∥1Y (Π̃t − Π̃0)(w)∥q∞ ≪ |t|q∥w∥qB . (6.25)

Third, by Sublemma 6.1, there exists some a′ > 0 such that, for t small enough,

1 > |λ̃t| > e−a′ |t|
2 log(1/|t|)

2 , and so

∥I3,t∥qLq(µ∆) ≤
∥∥∥1Y Π̃t(w)

∥∥∥
∞

|λt − 1|q Eµ∆

[∣∣∣∣ω(·)ea′ |t|2 log(1/|t|)
2

(ω(·)−1)

∣∣∣∣q]
≪
(
|t|2 log(1/|t|)

∥∥∥Π̃t(w)
∥∥∥
B

)q∑
n≥1

µY (R > n)nqea
′q n|t|2 log(1/|t|)

2

≪
(
|t|2 log(1/|t|)∥w∥B

)q
, (6.26)

provided |t| is small enough, using again that µY (R > n) decays exponentially fast in
n. The conclusion follows from (6.24), (6.25) and (6.26).

It remains to complete
Proof of the claim (6.23). Recall bq satisfies (6.6) and that ε has been fixed

in the text before (6.8); in particular, 1
bq

+ 1
q
< 1. There exists p ∈ (2, bq) so that

1
p
+ 1

q
< 1. In particular, 1 < q p−1

p
and so 2p−1

p
> 2

q
> 1. Let γ ∈

(
1, p−1

p

)
. Let

h ∈ B. Note that h = vw, with w := e−εωh ∈ B0 and with v := eεω ∈ Lbq constant on
partition elements.

With these choices, h, v, p, b = bq, γ satisfy the assumptions of [29, Proposition
5.4, Lemma C.2] which still holds true with the same proof in when replacing Πt

therein by the present Π̃t (this is equivalent to replacing κ in [29] by the present Ψ).
Again, this adaptation is possible because Ψ is constant on partition elements and Ψ
has a similar tail to that of κ (again, see equations (6.1) and (6.2)). (The similar tail
ensures, in particular, that Ψ. is as integrable as κ. ) As a consequence, [29, Proof
of Lemma C.2] goes through with κ replaced by Ψ. Moreover, because of the same
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properties of Ψ, the proof of [29, Proposition 5.4] can be easily modified to prove the
claim (6.23).

The adaptation of [29, Proposition 5.4] implies that

∥1Y (Π̃t − Π̃0)(h)∥B0 ≪ |t|∥1Y Π̃′
0(h)∥B0 + |t|γ

(
∥h∥B + ∥e−εωh∥B0∥eεω∥Lbq

)
.

By [29, Lemma C.2] with κ replaced by Ψ,(
∥1Y Π̃′

0(h)∥B0 ≤ ∥h∥B + ∥e−εωh∥B0∥eεω∥Lbq

)
,

We conclude that

∥1Y (Π̃t − Π̃0)(h)∥B0 ≪ |t|
(
∥h∥B + ∥e−εωh∥B0∥eεω∥Lbq

)
≪ |t|∥h∥B ,

since ∥e−εωh∥B0 = ∥h∥B.

Sublemma 6.3 As t→ 0, 1− λt = log(1/|t|)⟨t,Σd+1t⟩+O(|t|2).

Proof We keep the notations of the proof of Sublemma 6.1. It follows from
(6.18), (6.19) and (6.20) that 1 − λt = log(1/|t|)⟨t,Σd+1t⟩ + I ′2(t) + O(|t|2). The
proof that |I ′2(t)| = O(|t|2) follows exactly as in the proof of [29, Lemma 6.1] (replac-

ing everywhere κ, Pt,Πt, vt, λt therein by Υ, P̃t, Π̃t, ṽt, λ̃t and following the proof line
by line). This is due to the fact that Υ satisfies the following properties (that are also
satisfied by κ): Υ is constant on partition elements, equations (6.2), (6.22) and (5.6)

hold, and the estimate on Π̃t stated in Sublemma 6.2 holds.

7 Proofs of joint MLLT (Lemmas 3.2 and 3.4)

Let d ∈ {0, 1, 2}. Compared to CLT, a specific property required to prove the MLLT
is the non-arithmeticity (or minimality), which is treated in the next lemma.

Lemma 7.1 For every proper closed subgroup Γ of Zd×R and for every a ∈ Zd×R,

µ
(
Ψ̂ + g − g ◦ T ̸∈ a+ Γ

)
> 0 .

Proof We adapt the proof of [11, Lemma A.3] to d+1-dimensional observable Ψ̂, with
a slightly different presentation. Assume there exists a proper subgroup Γ of Zd ×R,
a measurable function g = (g1, ..., gd+1) :M → Zd×R and a = (a1, ..., ad+1) ∈ Zd×R
such that Ψ̂ + g − g ◦ T ∈ a+ Γ µ-almost surely.
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� Let us prove that we can find a family (v1, ..., vd+1) of generators of Γ of the
form

vi := (ei, αi) for i = 1, ..., d, vd+1 := (0, αd+1) ,

where ei is the i-th vector of the canonical basis of Rd and where 0 is the null
element of Zd. Let α1, ..., αd ∈ R be such that vi := (ei, αi) ∈ Γ for i = 1, ..., d.
Such numbers exist since the projection of Γ on the first d coordinates generates
Zd (since it has been proved in [34] that κ :M → Zd is non-arithmetic).

Observe that Γ ∩ ({0} × R) is a discrete subgroup of {0} × R. Indeed it is a
closed subgroup, and it cannot be {0} ×R otherwise Γ would be Zd ×R, since
then any element (a′1, ..., a

′
d+1) of Zd × R could be rewritten

(∑d
i=1 a

′
i.vi

)
+(

a′d+1 −
∑d

i=1 a
′
iαi

)
(0, 1). Hence, Γ ∩ ({0} × R) is discrete and has the form

{0} × (αd+1Z) for a non-negative real number αd+1. Set vd+1 := (0, αd+1) ∈ Γ.

Let us prove that (v1, ..., vd+1) generates the group Γ. Let a′ = (a′1, ..., a
′
d+1) ∈

Γ ⊂ Zd×R. Set w = a′−
∑d

i=1 a
′
ivi = (0, β). By definition of αd+1, there exists

m ∈ Z such that β = mαd+1. Thus a
′ ∈
∑d+1

i=1 Zvi.

� Let us prove that there exist r, α ∈ R and two measurable functions c′ :M → Z
and G :M → R such that µ(0 < G < min τ) > 0 and

τ − µ(τ) = r + α.c′ +G−G ◦ T .

It follows from the previous item that there exists a measurable function c =
(c1, ..., cd+1) :M → Zd+1 such that

Ψ̂ + g − g ◦ T = a+
d+1∑
i=1

ci.vi µ− a.s. ,

by taking ci = κi + gi − gi ◦ T − ai for i ∈ {1, ..., d} and

cd+1 =

(
τ − µ(τ) + gd+1 − gd+1 ◦ T − ad+1 −

d∑
i=1

αi.ci

)
/αd+11αd+1 ̸=0 . (7.1)

Thus

τ − µ(τ) + gd+1 − gd+1 ◦ T = ad+1 +
d+1∑
i=1

αi.ci .

Now we observe that κ = −κ ◦ ξ ◦ T and τ = τ ◦ ξ ◦ T with ξ the involution
mapping (q, φ) ∈ ∂Ω × [−π

2
; π
2
] to (q,−φ), so the previous identity composed

with ξ ◦ T becomes

τ − µ(τ) + gd+1 ◦ ξ ◦ T − gd+1 ◦ T ◦ ξ ◦ T = ad+1 +
d+1∑
i=1

αi.ci ◦ ξ ◦ T .
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Therefore, by taking the average of the two previous identities, we obtain

τ − µ(τ) +
gd+1 ◦ ξ ◦ T − gd+1 ◦ T ◦ ξ ◦ T

2

+
gd+1 − gd+1 ◦ T

2
= ad+1 +

d+1∑
i=1

αi
ci + ci ◦ ξ ◦ T

2
.

But for i = 1, ..., d,

ci + ci ◦ ξ ◦ T = gi − gi ◦ T − gi ◦ ξ ◦ T + gi ◦ T ◦ ξ ◦ T

is a coboundary, and so, due to (7.1), αd+1
cd+1+cd+1◦ξ◦T

2
−(τ−µ(τ)−ad+1) is also

a coboundary. Thus we have proved the existence of two measurable functions
c′ :M → Z and G :M → R such that

τ − µ(τ) = ad+1 +
αd+1

2
.c′ +G−G ◦ T , i.e. τ = r +

αd+1

2
.c′ +G−G ◦ T ,

with r := µ(τ) + ad+1. The condition µ(0 < G < min τ) > 0 is obtained
up to adding a constant to G. The above identity would contradict the non-
aritmeticity of τ .

� We follow exactly the second part of the proof of [11, Lemma A.3].
Set α := αd+1

2
. For δ > 0, we consider the set C ′′

δ of points y = ϕt(x) with
x ∈M , 0 < t < τ(x) and |t−G(x)| < δ.
It follows from the previous item that the first return time ζ to C ′′

0 takes its
values in rN + αZ. Indeed if y = ϕt(x) ∈ C ′′

0 with t = G(x) ∈ (0; τ(x)) and
ϕs(y) = ϕu(T

n(x)) ∈ C ′′
0 , with u = t + s − τn(x) = G(T n(x)) ∈ (0, τ(T n(x))),

then s = G(T n(x))− t+ τn(x) = G(T n(x))−G(x) + τn(x) = nr + αc′n.
We choose ε > 0 so that r + ε ∈ αQ. Let b be the smallest positive element of
αZ+ (r+ ε)Z, so that αZ+ (r+ ε)Z = bZ. Indeed, if r+ ε = αp

q
with p, q ∈ Z,

q ̸= 0, then αZ+ (r + ε)Z = α
q
(qZ+ pZ) = bZ, with b := |α| gcd(p,q)

|q| .

The first return time to C ′
0 := {(x,G(x)), x ∈ M,G(x) ≤ τ(x) + ε} for the sus-

pension flow ϕ(ε) over (M,T ) with roof function τ + ε is in αZ+(r+ ε)N ⊂ bZ.
Indeed, if y = ϕt(x) ∈ C ′

0 with t = G(x) ∈ (0; τ(x) + ε) and ϕ
(ε)
s (y) =

ϕ
(ε)
u (T n(x)) ∈ C ′

0, with u = t+s−τn(x)−nε = G(T n(x)) ∈ (0, τ(T n(x))+ε), then
s = G(T n(x))− t+ τn(x)+nε = G(T n(x))−G(x)+ τn(x)+nε = nr+αc′n+nε.
Thus, if δ ∈ (0, b/2), the return time of ϕ(ε) to C ′

δ (defined as C ′′
δ but for ϕ(ε))

occurs only at time t at distance at most 2δ of bZ, which contradicts the mix-
ing of ϕ(ε). As explained in [11, Lemma A.2], the proof of the mixing of the
suspension flow ϕ(ε) follows the same line as the mixing of the billiard flow
established in [10, Sections 6.10-6.11] thanks to the temporal distance (which
remains unchanged if we replace τ by τ + ε).
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Proof of Lemma 3.2 Let p > 2, G,H, h as in the assumptions of Lemma 3.2. To
prove the joint MLLT, we will use estimates established in Section 6. We keep the
notations of this section with the couple (q, pq) being chosen so that q ∈ [1, 2) such
that 1

p
+ 1

q
= 1 and bq > p (this will imply that 1

bq
+ 1

q
< 1).

On ∆ and ∆, we keep the convention un :=
∑n−1

k=0 u ◦ fk
∆ and un :=

∑n−1
k=0 u ◦ fk

∆

for any u : ∆ → Rd′ and u : ∆ → Rd′ .

For simplicity, we keep the notationG,H, Ψ̂ for the functions defined on ∆ (instead

of M) corresponding to G ◦ π,H ◦ π, Ψ̂ ◦ π respectively. Since the functions G and H
are bounded and dynamically Hölder continuous on M , the functions G and H are
also bounded and dynamically Hölder on ∆ in the following sense: up to increasing
the value of β ∈ (0, 1) in the Young Banach space B introduced in Section 6, G and
H satisfy the following property

s(x, y) > 2k ⇒ |G(fk
∆(x))−G(fk

∆(y))| < LGβ
k, |H(fk

∆(x))−H(fk
∆(y))| < LHβ

k .
(7.2)

Recall that ε in the definition of Young’s Banach space B (see text before (6.8)) is so
that B is continuously embedded in Lbq(µ∆). Also, by Sublemma 6.2,

∥Πt − Π0∥B→Lq(µ∆) = O(t) .

With the above notations, we are led to the study of the following quantity:

Eµ∆
[G.h(Ψ̂n − L)H ◦ fn

∆] .

It follows from the Fourier inversion theorem that

Eµ∆
[G.h(Ψ̂n − L)H ◦ fn

∆] =
1

(2π)d+1

∫
Td×R

e−i⟨t,L⟩ĥ(t)Eµ∆

[
Gei⟨t,Ψ̂n⟩H ◦ fn

∆

]
dt ,

(7.3)

with ĥ(t) :=
∑

ℓ∈Zd

∫
R h(ℓ, x)e

i⟨t,(ℓ,x)⟩ dx.

� Step 1: Transition to the quotient

– Approximation.
Recall, from (6.10) that Ψ̂ ◦ π = Ψ ◦ π + χ ◦ f∆ − χ, with Ψ = (κ, τ) with
values in Zd ×R uniformly locally Hölder on each partition element, with
χ bounded and dynamically Hölder in the sense of (6.11). Thus

Eµ∆
[Gei⟨t,Ψ̂n⟩H ◦ fn

∆] = Eµ∆
[G ◦ fkn

∆ ei⟨t,Ψn◦f
kn
∆

◦π+χ◦fkn+n
∆ −χ◦fkn

∆ ⟩H ◦ fkn
∆ ◦ fn

∆]

= Eµ∆

(
e−i⟨t,Ψkn◦π⟩(Ge−i⟨t,χ⟩) ◦ fkn

∆ .ei⟨t,Ψn◦π⟩.
(
(Hei⟨t,χ⟩) ◦ fkn

∆ ei⟨t,Ψkn◦π⟩
)
◦ fn

∆

)
.
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We approximate Ĝ(kn)(t) := e−i⟨t,Ψkn◦π⟩(Ge−i⟨t,χ⟩) ◦ fkn
∆ by G(kn)(t) ◦π with

G(kn)(t) ◦ π := Eµ∆
[e−i⟨t,Ψkn◦π⟩(Ge−i⟨t,χ⟩) ◦ fkn

∆ |s(., .) > 2kn]

and analogously ei⟨t,Ψkn◦π⟩(Hei⟨t,χ⟩) ◦ fkn
∆ by H(kn)(−t) ◦ π.

– Control of the error in this approximation.
Since G and H and ei⟨t,χ⟩ are uniformly bounded and dynamically Hölder
in the sense of (7.2) and (6.11), it follows that∥∥∥Ĝ(kn)(t)−G(kn)(t) ◦ π

∥∥∥
∞

≤ C (∥G∥∞|t|+ LG) β
kn . (7.4)

Therefore∣∣∣Eµ∆
[G.ei⟨t,Ψ̂n⟩.H ◦ fn

∆]− Eµ∆

[
G(kn)(t).e

i⟨t,Ψn⟩.H(kn)(−t) ◦ fn
∆

]∣∣∣
≤ C ′(1 + |t|) (∥G∥∞∥H∥∞ + LH∥G∥∞ + LG∥H∥∞) βkn .

Therefore

Eµ∆
[G.h(Ψ̂n − L)H ◦ fn

∆] (7.5)

=
1

(2π)d+1

∫
Td×R

e−i⟨t,L⟩ĥ(t)Eµ∆

[
G(kn)(t).e

i⟨t,Ψn⟩.H(kn)(−t) ◦ fn
∆

]
dt

+O
(
βkn (∥G∥∞∥H∥∞ + LH∥G∥∞ + LG∥H∥∞)

)
, (7.6)

since
∫
Rd(1 + |t|).|ĥ(t)| dt <∞.

� Step 2: Use of the transfer operator of f∆.

Due to (7.5), we are led to the study of the integral in t ∈ Rd of ĥ(t) multiplied
by:

Eµ∆

[
G(kn)(t).e

i⟨t,Ψn⟩.H(kn)(−t) ◦ fn
∆

]
= Eµ∆

[
H(kn)(−t).P n

t (G(kn)(t))
]

(7.7)

= Eµ∆

[
H(kn)(−t).P n−3kn

t (P 3kn
t (G(kn)(t)))

]
.

We already know that ∥H(kn)(−t)∥Lp ≤ ∥H∥Lp . Let m ≥ 2. Let us prove that
there exists C0 > 0 such that, for every n ≥ 3, t ∈ Rd+1 and x̄, ȳ ∈ ∆ such that
s(x̄, ȳ) > 0, the following inequality holds true∣∣Pmkn

t (G(kn)(t))(x̄)− Pmkn
t (G(kn)(t))(ȳ)

∣∣ ≤ C0(1+|t|)
∣∣Pmkn(|G(kn)(t)|)(x)

∣∣ βs(x̄,ȳ) .
(7.8)

Indeed, we observe that∣∣Pmkn
t (G(kn)(t))(x̄)− Pmkn

t (G(kn)(t))(ȳ)
∣∣

≤
∑

ϕ(mkn)

∣∣∣egmkn (ϕ(mkn)(x̄))ei⟨t,Ψmkn (ϕ(mkn)(x̄))⟩(G(kn)(t))(ϕ(mkn)(x̄))

−egmkn (ϕmkn (ȳ))ei⟨t,Ψmkn (ϕ(mkn)(ȳ))⟩(G(kn)(t))(ϕ(mkn)(ȳ))
∣∣∣ ,
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where the sum is taken over the inverse branches ϕ(mkn) of f
mkn
∆

and where g
satisfies

|eg(x) − eg(y)| ≤ Lge
g(x)βs(x,y), if s(x, y) > 1 . (7.9)

We conclude by noticing that

G(kn)(t)(ϕ(mkn)(x̄)) = G(kn)(t)(ϕ(mkn)(ȳ)) ,

since m ≥ 2 and that∣∣∣ei⟨t,Ψmkn (ϕ(mkn)(x̄))⟩ − ei⟨t,Ψmkn (ϕ(mkn)(ȳ))⟩
∣∣∣ ≤ |t|LΨ

mkn−1∑
j=0

β s̄(x̄,ȳ)+mkn−j

≤ |t|LΨβ
s(x̄,ȳ)+1/(1− β) , (7.10)

and∣∣egmkn (ϕ(mkn)(x̄)) − egmkn (ϕ(mkn)(ȳ))
∣∣ ≤ egmkn (ϕ(mkn)(x̄))

∣∣egmkn (ϕ(mkn)(ȳ))−gmkn (ϕ(mkn)(x̄)) − 1
∣∣

≤ egmkn (ϕ(mkn)(x̄))Lg

mkn−1∑
j=0

βs(x,y)+mkn−j+1

≤ egmkn (ϕ(mkn)(x̄))Lg
βs(x̄,ȳ)+1

1− β
, (7.11)

due to (7.9). This ends the proof of (7.8). Therefore

∥P 2kn(|G(kn)|)∥B ≤ ∥P 2kn(|G(kn)|)∥B0 = O (∥G∥∞) ,

and

∥P 3kn
t (G(kn)(t))∥B = O

(
(1 + |t|)∥P 3kn(|G(kn)|)∥B

)
= O

(
(1 + |t|)∥P kn(P 2kn(|G(kn)|))∥B

)
≤ O((1 + |t|)(Eµ[|G|] +O(θkn∥G∥∞))) , (7.12)

where we used (6.9) at the last line.

� Step 3: Restriction to a neighbourhood of 0.

Let K > 0 be such that the support of ĝ is contained in Td × [−K,K]. Using
Sublemma 6.3, we consider b0 ∈ (0;min(1, β0)) (see (6.13), (6.14)) small enough
so that there exists a′ > 0 such that, for all t ∈ [−b0, b0]d+1, the following holds
true

P n
t = λnt Πt +O(θn) , λt = e−Σd+1t·t log(1/|t|)+O(t2) , (7.13)

Πt − Eµ∆
[·]1∆ = O(|t|) in L((B, ∥ · ∥B) → Lq(µ∆)) , (7.14)

θ ≤ e−2Σd+1t·t log(1/|t|) ≤ |λt| ≤ e−a′|t|2 log(1/|t|) , (7.15)
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and that ∀y > x > b−1
0 , 1

2
(x/y)ϵ ≤ log(x)/ log(y) ≤ 2(y/x)ε (using for example

Karamata’s representation of slowly varying functions). This last condition
will imply that, for every n large enough (so that an > b−1

0 ) and for every
u ∈ [−b0an, b0an]d+1, the following inequalities hold true

1

2
min(|u|ε, |u|−ε) ≤ log(an/|u|)/ log an ≤ 2max(|u|ε, |u|−ε) . (7.16)

Lemma 7.1 ensures that the spectral radius of Pt is smaller than 1 for every t ̸= 0.
This implies that there exists θ0 ∈ (0, 1) such that supb0<|t|∞<K ∥P n

t ∥ = O(θn0 )
(by upper semi-continuity of the spectral radius). Thus∣∣∣∣∫

b0<|t|∞<K

e−i⟨t,L⟩ĥ(t)Eµ∆

(
H(kn)(−t).P n−3kn

t (P 3kn
t (G(kn)(t)))

)
dt

∣∣∣∣ (7.17)

≤ ∥h∥L1KO

(
θn−3kn
0 ∥H∥Lp sup

|t|<b0

∥P 3kn
t (G(kn)(t))∥B

)
, (7.18)

since Lp is continuously included in the dual of the Young space B. Thus, we
can focus on [−b0, b0]d. It follows from (7.13) and (7.14) that, in Lq(µ∆),

P n−3kn
t (P 3kn

t (G(kn)(t))) = λn−3kn
t

(
Eµ∆

[P 3kn
t (G(kn)(t))] +O(|t| ∥P 3kn

t (G(kn)(t))∥B)
)

+O
(
θn−3kn(1 + |t|)∥P 3kn

t (G(kn)(t))∥B
)
,

and so∫
[−b0,b0]d+1

e−i⟨t,L⟩ĥ(t)
(
Eµ∆

[
H(kn)(−t).P n−3kn

t (P 3kn
t (G(kn)(t)))

]
(7.19)

−Eµ∆

[
H(kn)(−t)

]
λn−3kn
t Eµ∆

[P 3kn
t (G(kn)(t))]

)
dt (7.20)

= O

(
∥H∥Lpa−d−2

n sup
|t|<b0

∥P 3kn
t (G(kn)(t))∥B

)
,

since∫
[−b0,b0]d+1

(
|t||λt|n−3kn + θn−3kn(1 + |t|)

)
dt ≤

∫
[−b0,b0]d+1

|t|e−a′n|t|2 log(1/|t|) dt+O
(
θ

n
2

)
≤ a−d−2

n

∫
[−b0an,b0an]d+1

|u|e−a′n|u/an|2 log(|an|/|u|) du+O
(
θ

n
2

)
≤ a−d−2

n

∫
[−b0an,b0an]d+1

|u|e−
a′|u|2

2 log(an)
log(|an|/|u|) du+O

(
θ

n
2

)
≤ a−d−2

n

∫
[−b0an,b0an]d+1

|u|e−
a′
4
|u|2−ε

du+O
(
θ

n
2

)
= O

(
a−d−2
n

)
, (7.21)
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where we used (7.16). Furthermore, it follows from the definition of H(kn) that

Eµ∆

[
H(kn)(−t)

]
= Eµ∆

(
ei⟨t,Ψkn◦π⟩(Hei⟨t,χ⟩) ◦ fkn

∆

)
(7.22)

= Eµ∆
[H] +O(knt∥H∥Lp) , (7.23)

since χ is uniformly bounded and ∥Ψ̂kn∥Lq(µ) ≪ kn∥Ψ̂∥Lq(µ) since q < 2. More-
over, due to (7.4), for all t ∈ [−b0; b0]d+1,

Eµ∆
[P 3kn

t (G(kn)(t))] = Eµ∆
[(ei⟨t,Ψ2kn◦π−χ⟩G) ◦ fkn

∆ ] +O(βkn)

= Eµ [G] +O
(
t∥G∥L1 + t∥Ψ̂2kn .G∥L1(µ)

)
.

Combining this last two estimates with (7.19) via (7.21), we infer that∫
[−b0,b0]d+1

e−i⟨t,L⟩ĥ(t)
(
Eµ∆

[
H(kn)(−t).P n−3kn

t (P 3kn
t (G(kn)(t)))

]
− Eµ∆

[H]Eµ∆
[G]λn−3kn

t

)
dt

= O

(
a−d−2
n

[
∥H∥Lp sup

|t|<b0

∥P 3kn
t (G(kn)(t))∥B + kn∥G∥L1∥H∥Lp + ∥H∥L1∥Ψ̂2kn .G∥L1(µ)

])
.

It follows from this last estimate combined with (7.5) and (7.7) that

Eµ∆
[G.h(Ψ̂n − L).H ◦ fn

∆]− a−d−1
n Eµ∆

[H]Eµ∆
[G]

∫
[−b0an,b0an]d+1

e−ia−1
n ⟨t,L⟩ĥ(t/an)λ

n−3kn
t/an

dt

(7.24)

= O

(
βkn∥G∥Holder.∥H∥Holder + a−d−2

n

[
∥H∥Lp sup

|t|<b0

∥P 3kn
t (G(kn)(t))∥B

(7.25)

+kn∥G∥L1∥H∥Lp + ∥H∥L1∥Ψ̂2kn .G∥L1(µ)

])
. (7.26)

Thus, due to (7.12), the above formula (7.24) is bounded by

O
(
max(β, θ)kn∥G∥Holder.∥H∥Holder + a−d−2

n

[
kn∥G∥L1∥H∥Lp + ∥H∥L1∥Ψ̂2kn .G∥L1(µ)

])
.

It remains to estimate∫
[−b0an,b0an]d+1

e−ia−1
n ⟨t,L⟩ĥ(t/an)λ

n−3kn
t/an

dt .

To this end, let us notice that, due to (7.16), for t ∈ [−anb0, anb0]
d,

λn−3kn
t/an

= λnt/anλ
−3kn
t/an−3kn

= e
− n

a2n
⟨Σd+1t,t⟩ (log(an/|t|))+O(n|t|2/a2n)eO( kn

n
max(|t|2−ϵ,|t|2+ϵ))

(7.27)

= e−
1

2 log(an)
⟨Σd+1t,t⟩ (log an−log(|t|))+O(max(|t|2−ϵ,|t|2+ϵ)ηn)

= e−
1
2
⟨Σd+1t,t⟩ (1− log |t|

log an
) +O

(
e−

a′ min(|t|2−ϵ,|t|2+ϵ)
2 max(|t|2−ε, |t|2+ε)ηn

)
,
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with ηn := 1
logn

+ kn
n
. Therefore, since ĥ is Lipschitz continuous and writing

[ĥ]Lip for its Lipschitz constant, it follows that∫
[−b0an,b0an]d+1

e−ia−1
n ⟨t,L⟩ĥ(t/an)λ

n−3kn
t/an

dt

=

∫
Rd+1

e−ia−1
n ⟨t,L⟩

(
ĥ(0) +O(t/an)

)
e−

1
2
⟨Σd+1t,t⟩(1−1|t|<b0an

log(|t|)
log(an)) dt+O

((
|ĥ(0)|+ [ĥ]Lip

an

)
ηn

)

=ĥ(0)

∫
Rd+1

e−ia−1
n ⟨t,L⟩e−

1
2
⟨Σd+1t,t⟩

(
1 +

1|t|<b0an

2
⟨Σd+1t, t⟩

log(|t|)
log(an)

+O

(
1|t|<b0an max

(
1, e

1
2
⟨Σd+1t,t⟩ log(|t|)log an

) |t|4(log(|t|))2

(log n)2

))
dt+O

(
|ĥ(0)|ηn +

[ĥ]Lip
an

)
,

where we used ex = 1 + x+O(max(1, ex)x2). Thus∫
[−b0an,b0an]d+1

e−ia−1
n ⟨t,L⟩ĥ(t/an)λ

n−3kn
t/an

dt = gd+1

(
L

an

)∫
Zd×R

h dλd+1 +O

(
|ĥ(0)|ηn +

[ĥ]Lip
an

)
,

(7.28)

with gd+1(z) :=
e−

1
2 ⟨Σd+1z,z⟩√

(2π)d detΣd+1

.

This ends the proof of Lemma 3.2.

Proof of Lemma 3.4 Let A0, B0 ⊂ M be measurable sets such that µ(∂A0) =
µ(∂B0) = 0. Let K ⊂ Zd × R be a bounded set with Λd+1(∂K) = 0 (boundary in
Zd×R) and let z ∈ Rd+1 and (zn)n be a sequence of Zd×R such that limn→+∞ zn/an =
z. Let us prove that

lim
n→+∞

ad+1
n µ

(
A0 ∩ T−n(B0) ∩ {Ψ̂n(x) ∈ zn +K}

)
= gd+1(z)µ(A0)µ(B0)λd+1(K) .

(7.29)
We will approximate A0 and B0 by A

±
n and B±

n respectively, where A−
n (resp. A+

n )
is the union of all connected components of M \

⋃mn

k=−mn
T−k(S0) contained in (resp.

intersecting) A0 with mn → +∞, analogously with B±
n with respect to B0. Since the

diameter of these connected components is smaller than Cϑn for some C > 0 and
some ϑ ∈ (0, 1) and since µ(∂A0) = µ(∂B0) = 0, we conclude that µ(A+

n \ A−
n ) and

µ(B+
n \ B−

n ) vanishes as n → +∞. Consider h as in Lemma 3.2 taking nonnegative
values. We set

Mn(A,B) := ad+1
n Eµ[1A.h(Ψ̂n − zn).1T−n(B)]

and

M(A,B) := µ(A)µ(B)gd+1 (z)

∫
Zd×R

h dΛd+1 .
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Since h ≥ 0, these two quantities are increasing in A and in B. Thus

Mn(A
−
m, B

−
m)−M(A+

m, B
+
m) ≤ Mn(A0, B0)−M(A0, B0) ≤ Mn(A

+
m, B

+
m)−M(A−

m, B
−
m) .

It then follows from Lemma 3.2 (with kn = log n) applied to 1A±
m
,1B−

m
since these

observables are dynamically Hölder and since an ∼ an that, for all m ≥ 1,

(µ(A−
m)µ(B

−
m)− µ(A+

m)µ(B
+
m))gd+1(z)

∫
Zd×R

g dλd+1 = lim
n→+∞

Mn(A
−
m, B

−
m)−M(A+

m, B
+
m)

≤ lim inf
n→+∞

Mn(A0, B0)−M(A0, B0) ,

from which we conclude that lim infn→+∞ Mn(A0, B0) −M(A0, B0) ≥ 0, we proceed
analogously with the lim sup exchanging exponents + and −, and we conclude that

lim
n→+∞

Mn(A0, B0) = M(A0, B0) = 0 , (7.30)

and extend this to the case of complex valued function g. Consider the function H0

appearing in (2.10). Let δ = 1/L > 0, where L is an integer such that L > 2∥H0∥∞
and K ⊂ (−L + 2∥H0∥∞, L − 2∥H0∥∞)d × (−2π

δ
, 2π

δ
). Let us consider the family of

functions (gδ,θ : Rd+1 → C)θ given by

gδ,θ(x) = ei⟨θ,x⟩hδ(x) , (7.31)

with hδ : (x1, ...xd+1) 7→ 1−cos(δxd+1)

(2L−1)2πδx2
d+1

1|x1|,...,|xd|<L (using the density of Polya’s distri-

bution). The Fourier transform of gδ,θ is t 7→
∑

|k1|,..,|kd|<L
ei

∑d
i=1 kiti

(2L−1)
max(0, 1−|(td+1+

θ)/δ|). The above convergence result (7.30) with h = gδ,θ for all θ implies the conver-
gence in distribution of (mn)n to m (since it ensures the convergence of characteristic
functions), where mn has density hδ

ad+1
n Eµ[1A0∩T−n(B0)

hδ(Ψ̂n−zn)]
with respect to the image

measure of ad+1
n 1A0∩T−nB0

µ by Ψ̂n − zn, and where m is the probability measure with
density hδ/gd+1(z) with respect to gd+1(z)Λd+1. Thus, sinceK ⊂ (−L,L)d×(−2π

δ
, 2π

δ
),

the previous distribution convergence implies that limn→+∞
∫
K

1
hδ
dmn =

∫
K

1
hδ
dm, i.e.

lim
n→+∞

ad+1
n µ

(
A0, Ψ̂n − zn ∈ K,T−n(B0)

)
ad+1
n Eµ[1A0∩T−n(B0)hδ(Ψ̂n − zn)]

= Λd+1(K) ,

and so, using again 7.30 for the denominator,

lim
n→+∞

ad+1
n µ

(
A0, Ψ̂n − zn ∈ K,T−n(B0)

)
gd+1(z)µ(A0)µ(B0)

= Λd+1(K) .

This ends the proof of pointwise MLLT for Ψ̂n (7.29).
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It remains to prove the uniformity in the convergence results. Assume that (3.1)
does not converge to 0 uniformly in z ∈ Zd×R : |z| ≤ Lan, as n→ +∞. Then, there
would exist a sequence (zn)n in Zd × R such that |zn| < Lan, a sequence of integers
m(n) and a real number η > 0 such that

∀n ≥ N0,

∣∣∣∣ad+1
n µ

(
A0 ∩ T−n(B0) ∩ {Ψ̂n ∈ zn +K}

)
− gd+1

(
z

an

)
µ(A0)µ(B0)λd+1(K)

∣∣∣∣ > η .

This ends the proof of Lemma 3.4.

A Proof of joint LLD (Lemma 3.5)

In this appendix, we prove Lemma 3.5. The proof is very similar to that of [22]
except that the function Ψ is not constant on partition elements. For completeness,
we explain in this appendix which adaptations have to be done to [22] to prove our
joint LLD estimate stated in Lemma 3.5.
We recall that optimal LLD for the cell change κ (and so for the flight function V ,
due to (2.10)), have been obtained in [22]. More precisely, by [22, Theorem 1.1 and

Remark 1.2], for any h > 0, there exists C > 0 so that µ(Vn ∈ B(x, h))) ≤ C n
adn

log |x|
1+|x|2 ,

for any n ≥ 1 and x ∈ Rd. Here B(x, h) denotes an open ball in Rd of radius h

centered at x. Similarly, µ(κn = N) ≤ C n
adn

log |N |
1+|N |2 for all N ∈ Zd and all n ≥ 1.

The proof of LLD for κ in [22] relies strongly on the fact that κ goes to the quotient
Young tower and that κ is constant on partition elements of the partition P for the
Young tower ∆ (as recalled in Section 6); the statement on V follows immediately

since, up to a bounded coboundary, V is the same as κ. Due to (6.10), Ψ̂ ◦ π can be

written as Ψ◦π = (κ, τ)◦π plus a bounded coboundary. Thus, LLD for Ψ̂ will follow
from LLD for Ψ. The function τ , and thus Ψ, is not constant on partition elements.
However, as argued below, the argument in [22] goes through to provide LLD as in

Lemma 3.5 for Ψ (and thus Ψ̂).
Throughout this section, let d ∈ {0, 1, 2} and U ⊂ Rd+1 be an open ball, as in the

statement of Lemma 3.5. To avoid a clash of notation below, the z in the statement
of Lemma 3.5 will be replaced by x. More precisely, here we shall prove that, for any
bounded set U ⊂ Rd+1,

µ(Ψ̂n ∈ x+ U) ≪ n

ad+1
n

(log |x|)
1 + |x|2

uniformly in n ≥ 1, x ∈ Rd+1 . (A.1)

As recalled in [22, Remark 1.3], the LLD in the range |x| ≤ an follows from the
involved LLT, while the range |x| ≥ an requires serious work.
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A.1 The range |x| ≤ an

It follows from the LLT estimate given in Lemma 3.2 that µ(Ψ̂n ∈ B(x, h)) ≪
a−d−1
n ≪ n

ad+1
n

| log |x||
1+|x|2 , where the first inequality holds true uniformly in n ≥ 1, x ∈ Rd+1

and where the second one holds true for n ≥ 1 and x ∈ Rd such that |x| ≤ an.
Indeed, t 7→ t2

| log |t|| as limit +∞ as t → +∞, has derivative t 7→ 2 log t−1
t

and

so it is increasing on [e
1
2 ,+∞[. Thus, for n large enough, if |x| ≤ an, then

|x|2
| log |x|| ≤

a2n
| log an| =

2n logn
logn+log logn

.

A.2 The range n≪ log |x|
In this range we proceed similarly to [22, Lemma 3.1] obtain

Lemma A.1 For any ϵ1 > 0 and any q ≥ 1, there exists Cq > 0 so that, for every

x ∈ Rd+1 and every n ≥ 1 such that ϵ1n ≤ log |x|, µ(Ψ̂n ∈ x+ U) ≤ Cq

nq |x|2 .

Proof There exists x0 such that if |x| > x0, then |x| > 2(diam(U) + ϵ−1
1 log |x|).

There exists a constant C ′
q such that µ(Ψ̂n ∈ x + U) ≤ C′

q

nq |x|2 for all x, n such that

ϵ1n ≤ log |x| ≤ log x0. It remains to treat the case |x| ≥ x0. One can observe that
the proof of [22, Lemma 3.1] only uses the fact that |κ|∞ takes integer values, that

µ(|κ|∞ = p) ≪ p−3 as x → +∞ and that µ(|κ|∞ = p, |κ|∞ ◦ T r ≥ cp
4
5 ) ≪ p−3− 2

45 .
These properties are also satisfied by (κ, ⌊τ̃⌋). Thus, for every q ≥ 1, there exists
C ′

q > 0 such that, for all y ∈ Rd and all n ≥ 1 such that ϵn ≤ log |y|, µ((κn, (⌊τ̃⌋)n) =
y) ≤ C′′

q

nq |y|2 and so

µ(Ψn ∈ x+ U) ≤
∑

y∈(x+U+{0}d×[−n;0])∩Zd+1

C ′′
q

nq|y|2
≤ (n+ 1)(diam(U) + 1)d+1

4C ′′
q

nq|x|2
.

since y in the first sum above satisfies

|y| ≥ |x| − diam(U)− n ≥ |x| − diam(U)− log |x|
ϵ1

≥ |x|/2 .

We conclude by taking e.g. Cq := max
(
C ′

q, 8C
′′
q+1(diam(U) + 1)

)
.

A.3 The range an ≤ |x| ≤ eϵ1n for a particular ϵ1

This ϵ1 is to be fixed so that it matches with the choice of ϵ1 in [22, Proposition
6.2]. As we shall explain below, it does not play a role in the current argument, but
see (A.4) for a particular choice.
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Since Ψ̂ ◦ π is equal to Ψ ◦ π plus a bounded coboundary, the desired LLD (A.1)

for Ψ̂ will follow from LLD for Ψ. So, in this range, we focus on LLD estimates for Ψ.
As clarified in Appendix B, Ψ is uniformly Lipschitz on Young’s partition elements.

We work in the set up of Section 6. As in Section 6, for simplicity, we assume
that8 the g.c.d. of R is 1.

Set δ = b0/4 with b0 ∈ (0,min(1, β0)) (with β0 introduced before (6.13)) and such
that there is a constant c > 0 such that9

∀t ∈ Rd, |t| < b0 ⇒ |λt| ≤ e−c|t|2Lt , with L(t) := log(|t|−1) = | log |t|| . (A.2)

Using (6.13) and (6.14), we consider a function r : Rd+1 → C is C2 with supp r ⊂
[−b0, b0]d+1 such that10

µ(Ψn ∈ x+ U) ≤
∫
[−δ,δ]d+1

e−i⟨t,x⟩r(t)P n
t 1 dt = An,x +O(θn) , (A.3)

with

An,x :=

∫
[−δ,δ]d+1

e−i⟨t,x⟩r(t)λnt Πt1 dt .

The desired LLD (A.1) in this range will follow from (A.3) together with the following
estimates on λt and Πt. The following result corresponds to the hardest estimate in
the set-up of [22]. Let ∂j = ∂tj for j = 1, . . . , d+ 1. For t, h ∈ Rd+1, b > 0, set

Mb(t, h) = |h|Lh

{
1 + Lh |t|2Lt + |h|−b|t|2LtL2

h |t|4L2
t

}
.

Lemma A.2 Analogue of [22, Lemma 4.1]. Let j ∈ {1, . . . , d}. The maps t 7→ λt
and t 7→ Πt : B0 → L1 are C1 on [−b0, b0]d+1.

Furthermore, there exist C > 0 and b > 0 such that for all t, h ∈ [−b0, b0]d+1,

|∂jλt+h − ∂jλt| ≤ CMb(t, h), ∥∂jΠt+h − ∂jΠt∥B0 7→L1 ≤ CMb(t, h).

In [22], we obtained the same formula forMb(t, h), while working with κ ∈ Zd instead
Ψ ∈ Rd+1). Given Lemma A.2 in the range an ≤ |x| ≤ eε1n for

ε1 := c/b (A.4)

with b > 0 as in Lemma A.2 and c > 0 as in (A.2), the desired LLD for Ψ (as in (A.1)

with Ψ instead of Ψ̂) follows word for word as in [22, Section 6 via Corollary 4.3]
(written for κ). Indeed, the proofs therein just use the statement of Lemma A.2, (A.2)
and the fact that an =

√
n log n.

8This assumption is not essential. One could, as in [22] work without, but in that case (6.13)
becomes slightly more complicated as there exists no longer a simple isolated eigenvalue at 1, but
finitely many eigenvalues of finite multiplicity.

9The existence of such a couple (b0, c) comes from Sublemma 6.1.
10The existence of such an r is guarantied by a classical smoothing argument; see, for instance, [25,

Footnote 1])
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A.4 Proof of Lemma A.2

We follow the proofs of [22]. We focus on the changes that are needed since Ψ is not
constant on the atoms of the Young partition. We will indicate which part of proofs
of [22] can be followed line by line. Throughout this section let Q : L1(Y ) → L1(Y )
be the transfer operator corresponding to the Gibbs-Markov map F : Y → Y (the
base map of the quotient tower (∆, f∆)). We recall that R is the return time of f∆
to Y , so that F (·) = f

R(·)
∆

(·). The proof of [22, Lemma 4.1] of which Lemma A.2 is
an analogue (in the set up of Lemma 3.5) starts from the following renewal equation

P̂ (z, t) =
∑
n≥0

znP n
t = Â(z, t)T̂ (z, t)B̂(z, t) + Ê(z, t), z ∈ C, |z| ≤ 1, t ∈ [−δ0, δ0]d+1

(A.5)

where the operators Â, T̂ , B̂, Ê and δ0 > 0 are to be defined/specified in the subsec-

tions to follow. In particular T̂ will be given by

T̂ (z, t) = (I − Q̂(z, t))−1 ,

with
Q̂(z, t) := Q

(
zR(·)ei⟨t,ΨR⟩·

)
=
∑
n≥1

znQ
(
1{R=n}e

i⟨t,Ψn⟩·
)
, (A.6)

where we write ΨR for the function defined by

∀y ∈ Y , ΨR(y)(y) =

R(y)−1∑
k=0

Ψ(y, k) .

Following the approach in [22], the proof of Lemma A.2 consists in using (A.5) to
clarify that

λt = (g0(t))
−1

where t 7→ g0(t) is continuous, satisfies g0(0) = 1 and is such that 1 is the dominating

eigenvalue of Q̂(g0(t), t) and that

Πt = λtÂ(g0(t), t)π̃0(t)B̂(g0(t), t)

where π̃0(t) is such that Ĥ(z, t) := T̂ (z, t) − (g0(t) − z)−1π̃(t) is analytic in z. As
in [22], the regularity (in terms of Mb) of the derivatives of λ (stated in Lemma A.2)

will follow, via the use of the implicit function theorem, from the study of Q̂(z, t) for
z close to 1, and from the properties satisfied by Ψ. The analogous property for Π
will follow from the properties satisfied by λ = 1/g0 and also from the study of the

derivatives in t of Â, T̂ , B̂, Ê for z close to 1.
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A.4.1 Renewal operators

Throughout, we write α for the partition corresponding the Gibbs Markov map
(F , Y , α, µY ). Also, let s

′(y, y′) be the usual separation time of points y, y′ ∈ Y (see,
for instance, [22, Section 2] for definition) and for β ∈ (0, 1), let dβ(y, y

′) := βs′(y,y′).
Let B1(Y ) be the Banach space of bounded observables v : Y → R Lipschitz with
respect to the metric dβ. It follows from the fact that R has exponential tail prob-
ability that µY (|Ψ|R > n) = O(n−2) as µ(|Ψ| > n) (see e.g. [29, Section 2] for this
argument).

Proposition A.3 There exists CΨ > 0 such that

∀a ∈ α, ∀y, y′ ∈ a,

R(a)−1∑
ℓ=0

|Ψ(y, ℓ)−Ψ(y′, ℓ)| ≤ CΨdβ(y, y
′) .

Proof Recall that Ψ is-Lipschitz with respect to Young’s metric βs(·,·). Let us write
C ′

Ψ
for its Lipschitz constant. Thus, for a ∈ α and y, y′ ∈ a,

|ΨR(y)−ΨR(y
′)| ≤

R(a)−1∑
ℓ=0

|Ψ(y, ℓ)−Ψ(y′, ℓ)|

≤ C ′
Ψ

R(a)−1∑
ℓ=0

βR(a)−ℓ+s(y,y′) ≤
C ′

Ψ
dβ(y, y

′)

1− β
,

since s′(y, y′) ≤ s(y, y′)−R(a) + 1.

Recall that
Q(u)(y) =

∑
a∈α

ξ(ya)u(ya) , (A.7)

where ya is the preimage of y under F that belongs to a, and with ξ = egR with
gR(y) :=

∑R(y)−1
k=0 g(y, k) where g satisfies (7.9). Thus

0 < ξ(ya) = egR(ya) ≤ CµY (a), |ξ(ya)− ξ(y′a)| ≤ CµY (a)dβ(y, y
′), (A.8)

for all y, y′ ∈ Y , a ∈ α, where we define gR as we have defined ΨR considering the
function g instead of Ψ.
The next result extends [22, Proposition 5.1] which was stated, in the context therein,
for a function u constant on elements of α (for which the local Lipschitz constant Ku

is null).

Proposition A.4 There exists C > 0 such that

∥Q(u)∥B1(Y ) ≤ C∥|u|+Ku∥L1(µY ) ,
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for every u ∈ L1(Y ) such that Ku ∈ L1(µY ) with

∀a ∈ π, ∀x ∈ a, Ku(x) := sup
y,y′∈a

|u(y)− u(y′)|
βs′(y,y′)

.

In particular, for all v ∈ B1(Y ) (set of Lipschitz functions on Y ),

∥Q(uv)∥B1(Y ) ≤ C∥|uv|+Kuv∥L1(µY ) ≤ C∥|u|+Ku∥L1(µY )∥v∥B1(Y ) . (A.9)

Proof of Proposition A.4 Let y, y′ ∈ Y . For a ∈ α, we write ya, y
′
a ∈ a for the

respective preimages of y, y′ under F . It follows from (A.7) and from the first part
of (A.8) that

∥Q(u)∥∞ ≪
∑
a∈α

µY (a) sup
a

|u| ≤ ∥|u|+Ku∥L1(µY ) ,

since, for all y, x ∈ a ∈ α, |u(y)| ≤ |u(x)|+Ku(x).
Next, let a ∈ α and y, y′ ∈ a, using the second part of (A.8), we obtain

|Q(u)(y)−Q(u)(y′)| ≤
∑
a∈α

µY (a) |u(ya)− u(y′a)|

≤
∑
a∈α

µY (a)Ku(a)β
s′(ya,y′a)

≤
∑
a∈α

µY (a)Ku(a)β
s′(y,y′)+1 ,

which ends the proof.

For z ∈ C with |z| ≤ 1 and t ∈ Rd, the operator Q̂(z, t) formally defined in (A.6)

defines an operator on L1(µY ) and can be decomposed in Q̂(z, t) =
∑∞

n=1 z
nQt,n,

where we set
Qt,n := Q

(
1{R=n}e

i⟨t,ΨR⟩·
)
.

The next result replaces [22, Proposition 5.2]. The conclusion is the same, but, in
our context, we have to deal with Ku, so we include entirely its proof.

Proposition A.5 There exists δ0 > 0 such that when regarded as functions with
values in the set of continuous linear operators on B1(Y ),

(a) z 7→ Q̂(z, t) is analytic on B1+δ0(0) for all t ∈ Rd;

(b) (z, t) 7→ (∂kz Q̂)(z, t) is C
1 on B1+δ0(0)× Rd for k = 0, 1, 2;

(d) z 7→ (∂jQ̂)(z, t) is C
1 on B1+δ0(0) uniformly in t ∈ B1(0) for j = 1, . . . , d.
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Proof It suffices to show that there exist a > 0, C > 0 such that

∥Qt,n∥B1(Y ) ≤ C(|t|+ 1)e−an, ∥∂jQt,n∥B1(Y ) ≤ C(|t|+ 1)e−an,

for all t ∈ Rd, j = 1, . . . , d, n ≥ 1. Since R is constant on partition elements, it
follows from Proposition A.4(a) that

∥Qt,n∥L(B1(Y )) ≪
∥∥1{R=n}(1 +K

ei⟨t,ΨR⟩)
∥∥
L1(µY )

,

and that

∥∂jQt,n∥L(B1(Y )) =
∥∥∥iQ(1{R=n}(ΨR)je

i⟨t,ΨR⟩
)∥∥∥

L(B1(Y ))

≪
∥∥∥1{R=n}

(
|ΨR|+K

(ΨR)je
i⟨t,ΨR⟩

)∥∥∥
L1(µY )

.

But it follows from Proposition A.3 that K
ei⟨t,ΨR⟩ ≤ CΨ|t| and that

K
(ΨR)je

i⟨t,ΨR⟩ ≤ CΨ(1 + |t| |ΨR|) . (A.10)

Therefore
∥Qt,n∥L(B1(Y )) ≪ (1 + |t|)µY (R = n) ,

and
∥∂jQt,n∥L(B1(Y )) ≪ (1 + |t|)

∥∥1{R=n}(1 + |ΨR|)
∥∥
L1(µY )

,

We complete the proof by noticing that, since Ψ ∈ Lr(Y ) for all r < 2 and R has
exponential tails, there exists a > 0 such that ∥1{R=n}(1 + ΨR)∥1 ≪ e−an.

For z ∈ C with |z| ≤ 1 and t ∈ Rd, define

Â(z, t) : L1(Y ) → L1(∆), Â(z, t)(v) =
∞∑
n=1

znAt,n(v)

where At,n(v)(y, ℓ) = 1{ℓ=n}P
n
t (v)(y, ℓ) = 1{ℓ=n}e

i⟨t,Ψn(y,0)⟩v(y).

Proposition A.6 There exists δ0 > 0 such that when regarded as functions with
values in the set of continuous linear operators from L∞(Y ) to L1(∆),

(a) z 7→ Â(z, t) is analytic on B1+δ0 t ∈ Rd;

(b) (z, t) 7→ (∂zÂ)(z, t) is C
1 on B1+δ0(0)× Rd.

Proof The proof goes word for word as [22, Proof of Proposition 5.3] since it just
uses the Hölder inequality combined with the fact that ∥1R>nΨR∥L1(Y ) decays expo-
nentially fast in n as n→ +∞.
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For z ∈ C with |z| ≤ 1 and t ∈ Rd, define

B̂(z, t) : L1(∆) → L1(Y ), B̂(z, t)(v) =
∞∑
n=1

znBt,n(v)

where

Bt,n(v) = 1Y P
n
t (1Dnv), Dn = {(y,R(y)− n) : y ∈ Y , R(y) > n}.

Proposition A.7 There exists δ0 > 0 such that when regarded a functions with values
in the set of continuous linear operators from B0 to B1(Y ),

(a) z 7→ B̂(z, t) is analytic on B1+δ0(0) for all t ∈ Rd;

(b) (z, t) 7→ (∂zB̂)(z, t) is C1 on B1+δ0(0)× Rd.

The proof is analogous to the one of [22, Proposition 5.4], but, again, we have have
to deal with the presence of Ku in Proposition A.4. So we detail this proof.

Proof of Proposition A.7 We observe that Bt,nv = Q(1{R>n}vt,n) where

vt,n(y) := ei⟨t,Ψn(y,R(y)−n)⟩v(y,R(y)− n).

Since R is constant on partition elements, it follows from Proposition A.4 that

∥Bt,n(v)∥B1(Y ) ≪
∥∥1{R>n}(|vt,n|+Kvt,n)

∥∥
L1(µY )

≤ (|t|+ 1)∥1{R>n}∥L1(µY ) (A.11)

and
∥∂jBt,n(v)∥B1(Y ) ≪

∥∥1{R>n}(|∂jvt,n|+K∂jvt,n)
∥∥
L1(µY )

. (A.12)

But on {R > n},

Kvt,n ≤ (1 + |t|CΨ)∥v∥B0 and K∂jvt,n ≤ |Ψ|RKvt,n + CΨ∥v∥∞, (A.13)

where CΨ is the constant appearing in Proposition A.3. Indeed, for any a ∈ α and
any y, y′ ∈ a, writing [v]B0 for the Lipschitz constant of v and using the fact that

s((y,R(a)− n), (y′, R(a)− n)) = s((F (y), 0), (F (y′), 0)) + n ≥ s′(F (y), F (y′)) + n

= s′(y, y′) + n− 1 ≥ s′(y, y′) ,

we observe that∣∣∣ei⟨t,Ψn(y,R(y)−n))⟩v(y,R(y)− n)− ei⟨t,Ψn(y′,R(y′)−n))⟩v(y′, R(y′)− n)
∣∣∣

≤ (|t|CΨ∥v∥∞ + [v]B0) β
s′(y,y′) ,
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which ends the proof of the first part of (A.13). The second comes from the stan-
dard bound of the Lipschitz constant of a product. It follows from (A.11), (A.12)
and (A.13) that

∥Bt,n(v)∥B1(Y ) ≪ (1 + |t|)∥1{R>n}∥L1(µY )∥v∥B0

and
∥∂jBt,n(v)∥B1(Y ) ≪ (1 + |t|)

∥∥1{R>n}|Ψ|R
∥∥
L1(µY )

∥v∥B0 .

The result follows from the fact that µY (R > n) decays exponentially fast in n as
n→ +∞ and from the fact that |Ψ|R is L2−ϵ for any ϵ > 0.

For z ∈ C with |z| ≤ 1 and t ∈ Rd, define

Ê(z, t) : B0 → L1(∆), Ê(z, t)(v) =
∞∑
n=1

znEt,n(v)

where Et,n(v)(y, ℓ) = 1{ℓ>n}P
n
t (v)(y, ℓ).

Proposition A.8 There exists δ0 > 0 such that regarded as operators from B0 to
L1(∆),

(a) z 7→ Ê(z, t) is analytic on B1+δ0(0) for all t ∈ Rd;

(b) (z, t) 7→ Ê(z, t) is C0 on B1+δ0(0)× Rd;

Proof The proof goes word for word as [22, Proof of Proposition 5.5] since it just uses
the Hölder inequality combined with the fact that ∥R1R>n∥L1(Y ) decays exponentially
fast in n as n→ +∞.

A.4.2 Further estimates

The results contained in this subsection are the analogue of [22, Proposition 5.6–
5.9]. Since, we will have to deal with Ku coming from (A.9), some modifications are
required in these proofs. We detail the parts corresponding to these modifications
and indicate which parts of the proofs of [22] remain the same.

Proposition A.9 There exist C > 0, δ0 > 0 and b > 0 such that

∥∂j∂zQ̂(z, t+ h)− ∂j∂zQ̂(z, t)∥B1(Y ) ≤ C|h|L2
h

{
1 + |h|−b log |z|Lh(|z| − 1)

}
,

for all t, h ∈ Bδ0(0), all z ∈ C with 1 ≤ |z| ≤ 1 + δ, and all j = 1, . . . , d.
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Proof We observe that

∂j∂zQ(z, t+ h)(v)− ∂j∂zQ(z, t)(v) = iQ
(
wt,hRz

R−1v)
)
,

with wt,h := (ΨR)je
i⟨t,ΨR⟩

(
ei⟨h,ΨR⟩ − 1

)
. It follows from Propositions A.4 and A.3

that

∥∂j∂zQ(z, t)∥B1(Y )

≪
∞∑
n=1

n|z|n−1
∥∥∥1{R=n}

(
|ΨR(e

i⟨h,ΨR⟩ − 1)|+Kwt,h

)∥∥∥
L1(µY )

,

≪
∞∑
n=1

n|z|n−1
∥∥∥1{R=n}

(
|ΨR(e

i⟨h,ΨR⟩ − 1)|(1 + (1 + |t|)CΨ) + CΨ|h| (|ΨR|+ CΨ)
)∥∥∥

L1(µY )
,

Indeed, for all partition element a and for all y, y′ ∈ a,

|wt,h(y)− wt,h(y
′)|

≤
∣∣∣(ΨR(y))je

i⟨t,ΨR(y)⟩ − (ΨR(y
′))je

i⟨t,ΨR(y′)⟩
∣∣∣ ∣∣∣ei⟨h,ΨR(y)⟩ − 1

∣∣∣+ ∣∣ΨR(y
′)
∣∣ |ei⟨h,ΨR(y)⟩ − ei⟨h,ΨR(y′)⟩|

≤ CΨ(1 + |t|)|ΨR|βs′(y,y′)
∣∣∣ei⟨h,ΨR(y)⟩ − 1

∣∣∣+ |h|
∣∣ΨR(y

′)
∣∣CΨβ

s′(y,y′) ,

due to (A.10) and Proposition A.3; this gives the required domination of Kwt,h
. Thus,

we have proved that

∥∂j∂zQ(z, t)∥L(B1(Y )) ≪
∥∥∥(|ΨR(e

i⟨h,ΨR⟩ − 1)|+ |h|(1 + |ΨR|)
)
RzR

∥∥∥
L1(µY )

≪
(∥∥|Ψ|R min(|h| |Ψ|R, 1)RzR

∥∥
L1(µY )

+ |h|
)
, (A.14)

provided δ is small enough since ΨR ∈ L2−ε for all ε ∈ (0, 2) and since µY (R > n)
decays exponentially fast in n as n → +∞. It remains to estimate the first term of
the right hand side of (A.14). For any x ∈ Y , let us write ψ(x) for the supremum of
the upper integer part of |Ψ|R on the partition atom containing x. Then∥∥|Ψ|R min(|h| |Ψ|R, 1)RzR

∥∥
L1(µY )

≤
∥∥ψmin(|h|ψ, 1)RzR

∥∥
L1(µY )

(A.15)

provided δ is small enough. But∥∥ψmin(|h|ψ, 1)RzR
∥∥
L1(µY )

≪
∞∑

m,n=1

rm,n

where

rm,n = µY (ψ = m,R = n)mnmin{|h|m, 1}|z|n. (A.16)

The rest of the proof then follows the same lines as [22, Proposition 5.6].
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Remark A.10 Similarly to [22, Remark 5.7], a simplified version of the argument
used in the proof of Proposition A.9 (only for the derivative in j) gives

∥∂jQ̂(z, t+ h)− ∂jQ̂(z, t)∥B1(Y ) ≤ C|h|Lh

{
1 + |h|−b log |z|Lh(|z| − 1)

}
.

Proposition A.11 There exist C > 0, δ > 0 and b > 0 such that

∥∂jÂ(z, t+ h)− ∂jÂ(z, t)∥B1(Y )7→L1(∆) ≤ C|h|Lh

{
1 + |h|−b log |z|Lh(|z| − 1)

}
,

for all t, h ∈ Bδ(0), all z ∈ C with 1 ≤ |z| ≤ 1 + δ, and all j = 1, . . . , d.

Proof We have

(Â(z, t)v)(y, ℓ) =
∞∑
n=1

zn1{ℓ=n}e
i⟨t,Ψn(y,0)⟩v(y) = zℓei⟨t,Ψℓ(y,0)⟩v(y),

for ℓ = 0, . . . , R(y) − 1. Hence we can proceed as in the proof of Proposition A.9,
except that there is one less factor of n (and so one less factor of Lh).

Proposition A.12 There exist C > 0, δ > 0 and b > 0 such that

∥∂jB̂(z, t+ h)− ∂jB̂(z, t)∥B0 7→B1(Y ) ≤ C|h|Lh

{
1 + |h|−b log |z|Lh(|z| − 1)

}
,

for all t, h ∈ Bδ(0), all z ∈ C with 1 ≤ |z| ≤ 1 + δ, and all j = 1, . . . , d,

Proof Let v ∈ B0. In the notation of Proposition A.7,

∂jB̂(z, t+ h)(v)− ∂jB̂(z, t)(v) = i
∑
n≥1

znQ(1{R>n} (∂jvt+h,n − ∂jvt,n)) (A.17)

with
vt,n(y) := ei⟨t,Ψn(y,R(y)−n)⟩v(y,R(y)− n).

Therefore

∂jvt+h,n−∂jvt,n =
(
Ψn(·, R(·)− n)ei⟨t,Ψn(·,R(·)−n)⟩

)
j

(
ei⟨h,Ψn(·,R(·)−n)⟩ − 1

)
v(·, R(·)−n) .

(A.18)
It follows from Proposition A.4 that∥∥Q(1{R>n}∂jvt+h,n − ∂jvt,n)

∥∥
B1(Y )

≪
∥∥1{R>n}

(
|∂jvt+h,n − ∂jvt,n)|+K∂jvt+h,n−∂jvt,n

)∥∥
L1(µY )

.

(A.19)
We proceed as in the proof of Proposition A.9. It follows from (A.18) that∥∥1{R>n}(∂jvt+h,n − ∂jvt,n)

∥∥
L1(µY )

≤
∥∥∥1{R>n}Ψn(·, R(·)− n)

(
ei⟨h,Ψn(·,R(·)−n)⟩ − 1

)∥∥∥
L1(µY )

∥v∥∞ .

(A.20)
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Furthermore, due to Proposition A.3, for all a ∈ π and all y, y′ ∈ a,

|(∂jvt+h,n − ∂jvt,n)(y)− (∂jvt+h,n − ∂jvt,n)(y
′)|

≪ βs(y,y′)
∥∥∥1R>n

(
1 + |Ψn(·, R(·)− n)|

) (
ei⟨h,Ψn(·,R(·)−n)⟩ − 1

)∥∥∥
L1(µ)

(1 + CΨ)∥v∥B0

+ |h|βs(y,y′)CΨ

∥∥1R>n(Ψn(·, R(·)− n))j
∥∥
L1(µ)

∥v∥∞ .

This combined with (A.19) and (A.20) ensures that

∥Q(1R>n∂jvt+h,n − ∂jvt,n)∥B1(Y )

≪
∥∥∥1{R>n}(1 + Ψn(·, R(·)− n))

(
ei⟨h,Ψn(·,R(·)−n)⟩ − 1

)∥∥∥
L1(µY )

∥v∥B0 + |h|∥v∥∞

≪
∥∥1{R>n}ψmin(|h| |ψ|)

∥∥
L1(µY )

∥v∥B0 + |h|∥v∥∞ . (A.21)

But∑
n≥1

∥∥zn1{R>n}ψmin(|h| |ψ|)
∥∥
L1(µY )

=
∑

m,n≥1

µY (ψ = m,R = n)mmin{|h|m, 1}|z|n ,

which can be estimated as in the proof of Proposition A.9. We conclude by combining
this estimate with (A.17) and (A.21).

The rest of the proofs of [22] (corresponding to Section 5.2 therein that provide

all the required spectral properties for Q̂(z, t)) go through unchanged.

B Smoothness of τ and χ

Recall that ∆ ⊂ ∆, Using the fact that T ◦ π = π ◦ f∆ on ∆, and that f∆ = π ◦ f∆
on ∆, τ and χ0 defined in Section 6 can be rewritten as follows

τ := τ̃ ◦ π +
∑
n≥1

(
τ ◦ T n ◦ π − τ ◦ T n−1 ◦ π ◦ π ◦ f∆

)
on ∆

and
χ0 :=

∑
n≥0

χ0,n, with χ0,n := (τ ◦ T n ◦ π − τ ◦ T n ◦ π ◦ π) on ∆ .

First, observe that, for every x ∈ ∆, π(x) and π(π(x)) are in the same stable manifold,
thus d(T n(π(x)), T n(π(π(x)))) ≤ C1β

n
1 , and so

∀x ∈ ∆, |χ0,n| ≤ 2C1β
n
1 . (B.1)

Analogously, for all x ∈ ∆,

|τ(T n(π(x)))− τ(T n−1(π(π(f∆(x)))))| = |τ(T n−1(π(f∆(x))))− τ(T n−1(π(π(f∆(x)))))|
(B.2)

≤ 2C1β
n−1
1 . (B.3)
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This ensures that χ0 and τ are well defined and we have proved the identity

τ̃ ◦ π − χ0 + χ0 ◦ f∆ = τ̃ ◦ π ◦ π +
∑
n≥0

(
τ ◦ T n+1 ◦ π ◦ π − τ ◦ T n ◦ π ◦ π ◦ f∆

)
= τ ◦ π

since π ◦ f∆ = f∆ ◦ π.
For any x, y ∈ ∆ such that s(x, y) = N ≥ 2k, then TN(π(x)) and TN(π(y))

are in a same unstable manifold and the same holds true for TN−1(π(f∆(x))) and
TN−1(π(f∆(y))). This implies that, for every n = 0, ..., N , d(T n(π(x)), T n(π(y))) ≤
C1β

N−n
1 and d(T n−1(π(π(f∆(y)))), T

n−1(π(π(f∆(x)))) ≤ C1β
N−n−1
1 . Therefore

|τ(x)− τ(y)| ≤ |τ̃(π(x))− τ̃(π(y))|+ 2
∑

n≥⌈s(x,y)/2⌉+1

∥τ ◦ T n ◦ π − τ ◦ T n−1 ◦ π ◦ π ◦ f∆∥∞

+

⌈s(x,y)/2⌉∑
n=1

∣∣τ(T n(π(x)))− τ(T n(π(y)))− [τ(T n−1(π(π(f∆(x)))))− τ(T n−1(π(π(f∆(y)))))]
∣∣

≤ 2

βs(x,y)
1 + 2

∑
n≥⌈s(x,y)/2⌉+1

βn
1 + 2

⌈s(x,y)/2⌉∑
n=1

β
s(x,y)−n−1
1


≤ 2β

s(x,y)
2

1

(
1 + 4

β−1
1

1− β1

)
.

Now, let us prove that χ0 satisfies

sup
k≥1

sup
x,y:s(x,y)>2k

|χ0(f
k
∆(x))− χ0(f

k
∆(y))|

βk
<∞ .

Observe that

χ0 ◦ fk
∆ =

∑
n≥0

χ0,n ◦ fk
∆, and χ0,n ◦ fk

∆ = τ ◦ T n+k ◦ π − τ ◦ T n ◦ π ◦ π ◦ fk
∆ . (B.4)

Let x, y ∈ ∆ be such that s(x, y) = N > 2k.

� for n > k/2, we observe that it follows from (B.1) that

|χ0,n(f
k
∆(x))− χ0,n(f

k
∆(y))| ≤ 2∥χ0,n∥∞ ≤ 4C1β

n
1 . (B.5)

� for n = 0, ..., k/2, we observe that π(x), π(π(x)) are in a same sta-
ble manifold, π(y), π(π(y)) are also in a same stable manifold, and that
TN(π(π(x)), TN(π(π(y)))) are in a same unstable manifold. Therefore

|τ(T n+k(π(x)))− τ(T n+k(π(π(x))))| ≤ 2C1β
n+k
1 ,

|τ(T n+k(π(y)))− τ(T n+k(π(π(y))))| ≤ 2C1β
n+k
1 ,

68



|τ(T n+k(π(π(x))))− τ(T n+k(π(π(y))))| ≤ 2C1β
N−n−k
1 ≤ 2C1β

k−n
1

Thus
|τ ◦ T n+k(π(x))− τ ◦ T n+k(π(y))| ≤ 6C1β

k−n
1 . (B.6)

Furthermore x′k = π(fk
∆(x)), y

′
k = π(fk

∆(y)) ∈ ∆ and s(x′k, y
′
k) = N − k. Thus

TN−k(π(π(fk
∆(x)))) and T

N−k(π(π(fk
∆(y)))) are in the same unstable manifold

and so

|τ(T n(π(π(fk
∆(x)))))− τ(T n(π(π(fk

∆(x)))))| ≤ 2C1β
N−k−n
1 ≤ 2C1β

k−n
1 (B.7)

It follows from (B.4) combined with (B.5), (B.6) and (B.7) that

∣∣χ0(f
k
∆(x))− χ0(f

k
∆(y))

∣∣ ≤ ∑
n>k/2

4C1β
n
1 +

k/2∑
n=0

6C1β
k−n
1 ≪ β

k
2
1 .

We conclude since β
1
2
1 ≤ β.
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