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Abstract

We establish strong mixing for the Z?-periodic, infinite horizon, Lorentz gas
flow for continuous observables with compact support. The essential feature of
this natural class of observables is that their support may contain points with
infinite free flights. Dealing with such a class of functions is a serious challenge
and there is no analogue of it in the finite horizon case. The mixing result for
the aforementioned class of functions is obtained via new results: 1) mixing for
continuous observables with compact support consisting of configurations at a
bounded time from the closest collision; 2) a tightness-type result that allows
us to control the configurations with long free flights. To prove 1), we establish
a mixing local limit theorem for the Sinai billiard flow with infinite horizon,
previously an open question.

1 Introduction and Main result

We are interested in mixing for the continuous time dynamics of the Z-periodic
Lorentz gas (d € {1,2}). This model has been introduced by Lorentz in [I9] to model
the diffusion of electrons in a low conductive metal. It describes the behaviour of a
point particle moving at unit speed in the plane D, := R? (when d = 2) or on the
tube D; := R x T (when d = 1) between a Z?-periodic locally finite configuration of
convex obstacles with disjoint closures and C? boundary (with non null curvature),
with elastic collisions on them (pre-collisional and post-collisional angles being equal).
We write € for the set of possible positions, that is the set of positions in D, that
are not inside an obstacle. .

The set of configurations is the set M of couples of position and unit velocity
(q,7) € Qq x S', identifying pre-collisional and post-collisional vectors at a collision
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time (rigorously, M is the quotient of 0y x S! by the equivalence relation identifying
pre- and post-collisional vectors). The Lorentz gas flow (®;); maps a configuration
(q, V) (corresponding to a couple position and velocity at time 0) to the configuration
®,(q,7) = (qu, ¥;) corresponding to the couple position and velocity at time ¢ of a
particle that was at time 0 at position ¢ with velocity ¢. This flow (®;); preserves the
infinite Lebesgue measure 7 on Qy X S', normalized so that 7 ((Q2, N [0,1[%) x S') =1
if d =2 and so that 7 ((€; N ([0,1[xT)) x S') =1 if d = 1. It is natural to consider
also the dynamics at collision times. The space M for this dynamics is the set of
configurations (¢, v) € M with ¢ € 9§)4. The collision map 7" : M — M, that maps
a configuration at a collision time to the configuration at the next collision time, is
referred to as the Lorentz gas map and preserves an infinite measure g absolutely
continuous with respect to the Lebesgue measure. Let us write W; : M — D, for the
map corresponding to the displacement up to time ¢ :

V(g,7) e M, ®(q,7) = (¢, 7)) = Wilg,0)=q—q.

If d =1 we set /VIZ’ - M — R for the first coordinate of Wt. If d =2, Wt takes its
values in R?, we then just set W{ = W,. In both cases, W{ is the natural projection
of ﬁ/; on R4.

When every trajectory touches eventually at least one obstacle, we speak of finite
horizon Lorentz gas. In the finite horizon case, it follows from [5] 6] that W; satisfies
a standard central Limit Theorem meaning that (Wt’ /v/1); converges strongly in dis-
tributionEL as t — 400, to a centered Gaussian random variable with non degenerate
variance matrix given by an infinite sum.

When there exists at least a trajectory that never touches an obstacle, we speak
of infinite horizon Lorentz gas. In this article, we focus on the ”fully dimensional”
infinite horizon case, meaning that there exist at least d non parallel unbounded tra-
jectories touching no obstacle. In this case it follows from [33] by Szasz and Varji

(see Section thatf]

/

%ZX/V(O,Z), ast — 400, (1.1)
where X is a d-dimensional definite positive symmetric matrix which, furthermore, is
given by an explicit formula in terms of the configuration of obstacles (recalled at the
beginning of Section @

We are interested here in the question of strong mixing. We recall that an infinite
measure preserving system (X T, ft) is said to be strongly mixing if there exist a

n this article, the strong convergence in distribution means the convergence in distribution with
respect to any probability measure absolutely continuous with respect to the Lebesgue measure.

2The notation = N(0, C') means the strong convergence in distribution to a gaussian random
variable of distribution N (0,C'), that is centered with variance matrix C'.



sequence a,, — oo and a class of integrable functions f, g so that

an/A f.goT”d/l—>/A fd/fL/Agd,[L. (1.2)
M M M

The sequence @, gives the speed of convergence to 0 of [ ufgo T™ dji. The first such
rate was obtained in [34] for a very restrictive class of intermittent maps preserving
an infinite measure. This was later generalized to larger classes of such maps in [22]
and [I6]. For other notions of mixing in the infinite measure set up (such as local-
global and global-global) introduced in [18] (see also [12] 14] and the reference therein).

In the set up of the discrete time Lorentz gas (]TJ , T , f), mixing in the sense of
is well understood in both finite and infinite horizon case and it is a direct consequence
of a mixing local limit theorem (MLLT) for the cell change (see e.g. [27, Section 3]).
For the finite horizon case, we refer to [32] for the key LLT (which implies MLLT and
thus, mixing) and to [28] for expansions of any order. In the much more difficult set
up of infinite horizon case, we refer to [33] for LLT (which again, implies MLLT and
mixing) and to [29] for error terms. There is a pletora of limit theorems known in
the discrete time set up with finite horizon case. Some results are also known for the
discrete time Lorentz gas with infinite horizon case (in particular, [33], 8] and more
recently, [29]).

Mixing for continuous time Lorentz gas (M, (), v) is seriously more challenging.
Even in the set up of the finite horizon Lorentz gas flow, mixing in the sense of
was open until the work of [I1] and very recently, expansions of any order have been
obtained in [I4]. Strictly speaking, the work [11] focused on a mixing local limit
theorem (MLLT) for the Sinai billiard flow with finite horizon, but as in [14], mixing
in the sense of and MLLT are equivalent. For related, but weaker, results
on MLLT for group extensions of suspension flows with bounded roof function, not
applicable as such to Sinai billiards we refer to [2].

Nothing is known about the mixing for the Lorentz gas flow with infinite horizon.
In this paper we address this open question and establish

Theorem 1.1 For any continuous compactly supported functions f, g : Qg xS' — R,

—fdv [gdv
/f.goq)tdﬁw S5t 47 |59 Vd, as t — 400, (1.3)
M (2rtlogtdet(X))?

where X is the variance matriz appearing in (1.1)).

Theorem |[1.1|gives mixing for observables with support that may contain configuration
with infinite free flights. In the set up of the Lorentz gas flow with infinite horizon
this class of observables is the natural one. Theorem |1.1| can be rephrased in terms of
vague convergence (see comments after Corollary . The main ingredients, which
are new and important results on their own, used in the proof of Theorem are



1. Strong mixing for observables f, g with supports uniformly ’close’ to a collision
time (Corollary , i.e. the supports of f,g are at a bounded time of the
closest collision time (either in the past or in the future). This mixing result is
an easy consequence of a MLLT for the Sinai billiard flow with infinite horizon.
The present MLLT, Theorem [2.0] is a first main result and is established via two
joint local limit results for the Sinai billiard map on the cell change function and
flight time together: a) Joint LLT, Lemma ; b) Joint Local Large Deviation,
Lemma 3.5

2. A tightness type result, Theorem [5.1] that allows f,g to have any compact
support in M. In particular, the supports of f, g can contain configurations of
particles that will never hit an obtstacle. The proof of Theorem exploits a

very delicate decomposition of the type of possible free flights along with Joint
MLLT with error terms as in Lemma [3.2] and Corollary

We emphasize that the MLLT with error terms, namely Lemma and
Lemma [3.5] are required ingredients for the proof of Theorem [5.I A strategy
of the proof of Theorem is provided in Section [5} The proof of this result
exploits several new ideas, and several new technical estimates are obtained
throughout the proof.

We conclude the introductory section with a very brief summary of the various
results along with an outline of the paper.

In Section [2| we introduce most of the required notation, and state MLLTs for
the Sinai billiard flow as in Proposition for the cell change function, and as in
Theorem for the flight function. In Section [2] we also record a consequence of
Proposition namely Corollary that proves mixing for continuous observables
with compact support consisting of configurations at a bounded time from the closest
collision; in short, this gives mixing for continuous observables with 'non-infinite’ free
flights.

In Section , we state the joint limit results (Joint CLT, Joint MLLT with error
terms, Joint LLD) for the Sinai billiard map, for the couple formed by the cell change
function with the flight time. Using the statement of these key technical ingredients,
in Sections [4] and [f] we prove Theorem [2.6] and Corollary [1.1]

The proofs of the technical key results stated in Section [3] are included in Sec-
tions [0}, [7] and [A] While the joint LLD, Lemma [3.5] follows by slightly modifying the
proof of LLD for the cell change function obtained in [21], all the other technical
results obtained in this paper, namely, the Joint CLT and the Joint MLLT with error
terms stated in Section [3| are new and require serious new ideas and work.

In Section [5] we state and prove the tightness result Theorem [5.1] At the be-
ginning of Section [5, we use the statement of Theorem to complete the proof of
Theorem [I.1} The role and the novelty of Theorem has been already summarized
in item 2. above. Finally, we mention that in Section [5, as a by product of certain



technical lemmas we obtain a large deviation result, namely Proposition [5.2] which
is of independent interest.

Notation We use “big O” and < notation interchangeably, writing b, = O(c,) or
b, < ¢, if there are constants C' > 0, ng > 1 such that b, < C¢, for all n > ny.
As usual, b, = o(c,) means that there exists €, such that, for all n large enough,
b, = cue, and lim, e, = 0 and b, ~ ¢, means that b, = ¢, + o(c,). Unless
otherwise specified, given x € R? we let |z| be the usual Euclidean norm of z.
Thoroughout this article, when d = 1, we identify Z! (resp. R!) with Z x {0} (resp.
R x {0}). In particular, any (¢,z) € Q; X R, ¢+ z means g + (z,0).

2 MLLT for the Sinai billiard flow and mixing for
the Z%-extension flow

2.1 Notations and previous results

Let d € {1,2}. The domain Qg of the Z%periodic Lorentz gas is given by Qg :=
D, \ UL, Ureza(Oi 4 €) where Oy, ..., O; is a nonempty finite family of convex open
sets with C? boundary of non null curvature such that the obstacles O; + ¢ have
pairwise disjoint closures. We recall that we are interested in the fully dimensional
infinite horizon and so assume throughout that the interior of the billiard domain
() contains at least d unbounded corridors (made of unbounded parallel lines) the
direction of which are not parallel to each other.

Sinai billiard

Quotienting the system (M, (®;);) by Z¢ (for the position), we obtain the Sinai
billiard flow (M, (¢:):) (see [31]) which describes the evolution of point particles
moving at unit speed in Q := Qu/Z% = T? \ Uilzla with elastic reflection off 0f2
(where O; is the image of O; by the canonical projection pgq : Dy — T2). The flow
(¢¢): preserves the probability measure v on M = (2 x S')/ = that is proportional to
the Lebesgue measure, where = is the equivalence relation identifying pre- and post-
collisional vectors. The Poincaré map of ¢, with Poincaré’s section 9 x S! is the
Sinai billiard map (M, T, i), where the two-dimensional phase space M = {(q,9) €
M 1 q € 00} (position in 0 and unit post-collisional velocity vector) is identified
with 0Q x (—m/2,7/2) (we parametrize here the post-collisional velocity vector by
its angle with the normal to 9€). This map T sends a post-collisional vector to the
post-collisional vector corresponding to the next collision. This map preserves the
probability measure y with density cos ¢/(2|0€2|) at the point (g, ¢) € 92 x [-F, 7]
The flight time between consecutive collisions is the return time of (¢;); to M and we
denote it by 7 : M — R,. In this notation, we have the following identification

T(x) = (¢:)(2) = Pr(a) () -



We set 7, := Zk 0T O T*, with the usual convention 7 := 0. For any z € M, we
set Ny(x) € Ny for the collisions number in the time interval (0, ¢] starting from the
configuration . We observe that, for x € M, this quantity satisfies

@) (7) ST < TN (@)41 (@) - (2.1)

Furthermore, for all x € M and all v € [0,7(z)) and any t € [0, +00), Ni(pu(x)) =
Niyu(x). With these notations, the Sinai billiard flow (M, (¢),v) is isomorphic to

the suspension flow ( (¢t)t, V), given by
M = {(z,u) € M x [0,400) : 0 < u < 7(z)}
(2, 0) = (T"(2), 5 + U — TN (g () (7))
U= (ux Leb)/u(r), where u(r) = / Tdpu,
M

via the isomorphism (z,u) € M ¢u(x) € M (this map is injective, its image is the
set of configurations in M that do not belong to an infinite free flight).

Z%-extension and cell change function

We recall that the Z¢-periodic Lorentz gas map (M , T, 1) can be represented by the
Z%-extension of the Sinai billiard map (M, T, u) by the cell change function x that
can be defined as follows. For any ¢ € Z%, we call {-cell the set C; of configurations
(¢,v) € M such that ¢ € J/_,(90; + £). Because of the Z%-periodicity of the model,
there exists k : M — Z%, called the cell change function, such that

=(q,7)€C = T(2) € Cornipata)) (2.2)

Note, for any ¥ € M, there exists a unique (z = (q,7),{) € M x Z¢ such that
T= (pié(q) + ¢, 7) (¥ is the velocity of Z, setting g for the position of Z, (¢, ¢) is such
that ¢ = ps(q) and T € Cy). Formula (2.2)) can be rewritten under the form

Y((,7),0) € MXZ2, T(q,9) = (¢, 7) = Togha)+6,7) = (033(d) + €+ 5(0, 7). 7)

(2.3)
This gives the identification of (M T, i) by the Z4-extension of (M, T, 1) by x: M —
Z%. A direct and classical induction ensures that, for any ((¢,7),¢) € M x Z<,

T"(q,0) = (), %) = T"(pag(@) +6,9) = (pgp(q,) + L+ knlq,0),7,) ,  (2.4)

where we set #, 1= Y " ko T7.

Swhere, if d = 1, we identify Z! with Z x {0}, meaning that for any ¢’ € D; and any ¢ € Z!, the
notation ¢’ + ¢ means ¢” + (¢,0)



2.2 Mixing for the Lorentz gas seen as a suspension flow

We will use crucially the fact established in the previous section that (M, (®y)s, v)
can be represented as a suspension flow by (z,¢) — 7(x) over (]\7 , T, Ii) which itself
can be represented as a Z¢ extension of (M, T, u) by k. Thus, we can represent M
by M x Z2. In this part, we state a mixing local limit theorem for x, and see how
we can use it to easily derive Theorem in the case of functions f, g supported at
a bounded time from a collision, i.e. for functions that are compactly supported in
M x Z¢. As detailed in Section |5 these functions form a much more restrictive class
than the ones of Theorem To state these results, we shall introduce two classes
of sets F (resp. F) that will correspond to the set of sets of configurations in M
(resp. M ) with previous collision in some fixed subset of M (resp. some fixed cell of

M), at some time in a fixed bounded time interval.

Definition 2.1 Let F be the class of measurable subsets A of M of the form A =
o1(Ao) = {pu(z), x € Ag, u € I} that are represented in M by Aygx I C M (implying
that I C [0,infa, 7)), with 4(04g) = 0 and with I a bounded interval.

Let F be the set of subsets of M corresponding to Ay x I x {¢} C M x Z¢%, with
d1(Ag) € F and £ € Z¢, that is sets of the form

{@u(p;é(q) +0,7) : (¢q,0) € Ag,u € I} with ¢;(Ag) € F, £ € Z°.

We state now a MLLT for ky, defined on M by

V(z,u) € M, ¥t € [0,400), ki, (6u()) = Eny(ou@) () = K@) () -

This observable ky, will be understood as the cell change during the time interval
(0, ¢].

Proposition 2.2 Let A, B € F and let K be a bounded subset of Dy with Leb(0K) =
0. Then

Veez, v(An{¢, € B, ky, =L}) ~ G4 (0) v(A)w(B), (2.5)

ast — oo, where gq is the density of the d-dimensional Gaussian distribution N (0, )
appearing in[1.1]

This result is contained in a more general MLLT stated in Proposition (applied
with wy, = ¢, w = 0, K = {0}). An immediate consequence of Theorem is the
following light version of Theorem for compactly supported observables in the
‘extended suspension’ M x Z%; in particular, the supports of these functions only
contain configurations that have hit or will hit an obstacle in a bounded time.



Corollary 2.3 Let n € N, setting
s I
E.i, = {@iu(q—i-ﬁ,ﬁ) eEM:qe U&Oi7 w e [0,n], £€Z |{ < |n|} ,
i=1

Then, for any f,q : M — R that are [-a.e. continuous functions and supported
respectively in E_, and in E,,

= fdv [ gdv
/f.go@tdﬁw Jsi 47 I 9 -
M (2ntlogtdet(X))?

(2.6)

Proof Let A, B be two sets belonging to F corresponding to respectively AgxIx{ly}
and By x J x {{,} in M x Z*. We observe that

v(AN®_(B)) = v(or(Ao) N {de € ds(Bo), iz, = b — lo}).
Thus, it follows from that
V(AN ®_4(B)) ~ ga(0)v(d1(Ao))v(¢.(Ao)) = ga(0)v(A)v(B) .

This result extends directly to any finite union A, B C M of sets belonging to F ,
implying Krickeberg mixing as defined in [I7] for the family of sets (E,,),>1. It follows
from [I7, Section 2] (see also, [23, Section 9] for the Krickeberg arguent written for
suspension flows) that holds true for any f, g supported in some F,, and p-almost
everywhere continuous. To end the proof of Corollary 2.3 we notice that, ® being
invertible, if f is supported in E_,,, then f o ®_, is supported on F, and we finally
conclude with the use the following formula

/f.goq%dﬁ:/ Fod ngod, ,dp,
M M

since (t — n)log(t —n) ~ tlogt. |
The mixing result in Corollary can be rephrased in terms of the vague con-

vergence of the family of y; to u ® p where p; is the measure on (/Y/l\)2 defined by
(A’ x B") = w(AANd_,B’) for A', B € F (this is a consequence of the Portmanteau

theorem as in, for instance, [30]), and the same applies for Theorem [L.1]

Remark 2.4 We remark that mixing of the type of Corollary [2.3|has been previously
obtained in [35] for Z-extensions of Gibbs Markov semiflows with roof and displace-
ment functions in the domain of a nonstandard CLT. The method of proof in [35] is
very different; in particular, it does not go via a MLLT for the base map.



2.3 MLLT for the infinite horizon Sinai flow

In this section we state the MLLT for a natural cocycle of the Sinai billiard flow,
which corresponds to the displacement.

Free flight
Due to the Z%periodicity the free flight VM — D, which is defined by

goes to the quotient by Z, i.e. there exists V : M — Dy such that

Vg, ) =V (pa(q), V) - (2.8)
When d = 2, this quantity is related to the flight time 7 via the following identity
ifd=2, 7=|V]|. (2.9)

Let us show that the free flight V' is cohomologous to the cell change k. It follows

from (2.3)), (2.7)) and (2.3)) that, for all z = (q,v) € M, if T'(¢, V) = (¢, ?"), then

V(z) =V (pas(q), v)
= pao(d) + #(q,7) — pgo(q) = w(x) + Ho(T(x)) — Ho(), (2.10)

with Hy(q,7) = p;é(q). Proceeding as for fI/IZ in Section , ifd=1wesetV': M —> R
for the first coordinate of V, and if d = 2, V takes its values in R?, we then just set
V' = V. The following nonstandard CLT was proved in [33] for V"

n—1
a," Y V'oT/ = N(0,%0), (2.11)

n
Jj=0

where a, = /nlogn and where ¥, € R¥? is a positive-definite symmetric d-
dimensional matrix (see and (6.4)) for precise formulas). An important in-
gredient of [33] is that V lies in the domain of a nonstandard CLT; that is, there
exists ¢ > 0 such that

p(|V]| >t) ~et2. (2.12)

Displacement function W,

We have already defined in Section [1] the displacement function Wt ‘M — D, and
W/ : M — R? its projection on R%. Due to the Z%periodicity of our model, both

displacement functions go the quotient by Z?, i.e. there exists W, : M — D, and
W/ : M — R such that

V(q,7) € M, Wilq,7) = Wi(pa(q),7) and W/(q,7) = W/(pa(q), 7).

9



Observe that W; is a cocycle:
Vee M, Vt,s >0, Wys(x) =Ws(z)+ Wi(ops(x)) (2.13)

and that
Vo= (q,v) e M, V(z)=W.(2):=Wrp(z). (2.14)

Thus the nonstandard CLT for V' stated in implies a nonstandard CLT for
W/ via the relation together with the classical scheme of lifting limit theorems
from the induced map to the original system (map or flow) [20, I5]. This leads to
the following result where we use the notation a; := 1/t logt.

Proposition 2.5 (CLT [33]) Ast — +oo, a; 'W] = N(0,%) where ¥ € R™9,
¥ = Yo/ u()Y? with Xy as in 2.11)).

Let vy : M — S* be the velocity map which is given by v(q, ¥) = 7. Note that
t
ifd=2, W; ::/ Vg 0 O, ds . (2.15)
0

If d = 1, then W, is the equivalent class in D; (that is, W, is the canonical projection)
of the ergodic integral fg Vo © ¢ ds.

MLLT for the displacement function

Let us see that, due to (2.14]), the coboundary equation (2.10|) for V' — « leads to a
similar equation involving W. We consider the function H; : My — Dy mapping
x € M to the position of its representant in Dy with previous collision in Cy, that is

V(g 0),u) € M, Hi(¢u(g,0)) = p (Pu (76(0), 7)) = prola) + Wulq,7), (2.16)
where p : M — Q24 is the natural projection. In other words, if d = 2, then
Hy(¢u(q, 7)) = pao(q) + ub; (2.17)

if d =1, Hi(¢,(q,7)) is the class ofp;é(q)—i-uﬁ in D;. Recall that we set V; : M — Ny
for the collisions number in the time interval (0, ¢] (see in particular (2.1))). The above
defined function H; satisfies the following important property:

V= (q,9),u) € M, Wy(u(2)) = Ko@) + Hi(d1(u())) - Hl(cbu(f()) .
2.18
Indeed, setting N := Ny, (), we notice that

$i(du(x)) = du(d, @), with o' :=utt—7y(2), (¢, @) :== TV (2) = ¢ry(2), (2.19)

10



and (TN (z),) is in M. Therefore, it follows from (2.13)) and (2.14)) that

Wi(9u(r)) = Witu(x) = W) = Wi (dry () + Wiy (2) — W(2)
= W (TN () + Wiy () = Wy (2)
=Wy (TN(x)) + VN(iL‘) — Wu(ZL‘) .

Finally, using (2.10) and (2.17]), we obtain that

Wi(¢u(x)) = W (T (2)) + k(@) + Ho(T™ (x)) — Ho(x) — Wa(2)
= Hi(¢u(du())) + rin(2) — Hi(du()),

as announced.

Theorem 2.6 (MLLT for W) Let A,B € F and let K be a bounded subset of Dy
with Leb(OK) = 0. Let w € R? and let w; € RY such that limy_, o wy/a; = w. The7ﬁ

v(An{¢; € B, W, € w; + K})
~ Ga (w) #((K +w, + Hi(x) — Hi(y)) N 2% dv(x) dv(y), (2.20)

AxB

ast — oo, where gq 1s the density of the d-dimensional Gaussian distribution N (0, )
appearing in Proposition and where Hy is the function that has been defined

The proof of Theorem is provided in Section [4, and will appear as a consequence
of an analogous result (Proposition stated for ky, instead of W,

3 Statements of the Joint LLT with error term and
the joint LLD for the billiard map

Let d € {0,1,2}. In this section we state the main technical results that will be used
in the proofs of Theorem (MLLT for the Sinai flow) and Theorem (mixing for
the Lorentz gas), including those used in the proof of the key tightness-type result
Theorem (stated in Section [5]). We are interested in joint MLLT and LLD for the
pair

U=U0" = (k7)) :M—-DyxR, with7:=7—pu(r), ifde{1,2}

or for

~

U=00.=F ifd=0.

4Again, in this formula, if d = 1, the notation w; + K means (w;,0) + K and Z? means Z x {0}.

11



Note that [,, U dp= 0. When d € {1, 2}, our joint limit results are related to the fact
that that the sums of (koT* 70T*), satisfies a CLT with nonstandard normalization

. In partlcular as clarified in the proof of Sublemma below the vector U is
SO that p(|U] > ) ~ ct=2. As usual, we write W, =30 T U o 7Y and similarly for

Viuy Tn, Tn- We start with a nondegenerate CLT with nonstandard scaling for \T!n

Lemma 3.1 ¢,'W, = N(0,%411) as n — oo, where Ygy € R g
positive-definite (see (6.5)) for an explicit formula).

This result is proved in Section 6] by adapting the proof of the CLT for V,, established
n [33] via [3], writing ¥,, as a function of the two dimensional cell change plus a
Lipschitz function. R

Let us state a MLLT for ¥,, with a uniform error term uniform. We write Ay
for the Haar measure on Z? x R given by the product of the counting measure on Z?
and of the Lebesgue measure on R.

Lemma 3.2 Let p > 2 and R > 0. We take a,, such that a? = 2nlog(a,). Assume
G,H : M — R are two bounded dynamically Holder continuous functions and that
h: Z4 x R — R is integrable with compactly supported Lipschitz Fourier transform
h:T¢xR — C. There exists ag > 0 (depending only on p and on the Holder exponent
of G and H ) such that, for all k, < n/4,

E, [G.h(@n _L).Ho T"]

= 8, (18, (6] (o () [ ks + Of(1ogm) ™)

+ O (G sttt | F sotaer + a2 (G| G I o+ 1 T 2B, G ))

uniformly in L € Z¢ x R, in (n,k,) as above, and in h such that supp(ﬁ) C B(0,R)
and ||h| Lipschit= < R, where gq+1 is the density for the (d + 1)-dimensional Gaussian
in Lemma [31]

This result is proved in Section [7} The scheme of this proof follows the one of the
MLLT established in [29, Theorem 2.2| but there are at least two main differences.
First, here we need to obtain a Joint LLT, which is different from [29, Theorem 2.2],
which obtains LLT with error terms for the cell change function. The new ingredi-
ents needed to deal with the Joint LLT (with error) are summarized in Section [6]
Moreover, the error term obtained therein is not sharp enough for the present pur-
poses. To establish Lemma [3.2] we need to be much more careful with the error
terms all throughout the proof and this requires entirely new estimates, all obtained
in Section [7l
A consequence of Lemma is

12



Corollary 3.3 Under the assumptions of Lemmal[3.3, then
E, [G.h(\fl” _L)Ho T"] — E,[GIE[H|E,[h(T, — L))

= O (e |G totter | Hll otder + a2 (kall Gll 2 |1 o+ [ H |52 [ Wk, -Gl 1) )

Proof We observe that
E, [G.h(@n _L).Ho T"] — E,[G]E,[H]E, [h(@n - L)]
= E,[(G = B,[G).h(V, — L).H o T"))] + E,[GI E,,[h(¥,, — L).(H — E,[H]) o T"])],

and we apply Lemmal3.2]to the two terms of the right hand side of the above equality,
since [|[Wag, |11 () = O(ky), the function ¥ being integrable. n

The following MLLT for U, will be shown (in Section [7)) from Lemma .

Lemma 3.4 Let Ay, By C M be measurable sets such that pu(0Ag) = pn(0By) = 0.
Let K C Z% x R be a bounded set with Ngy1(0K) = 0 (boundary in Z* x R). Then,
for any L > 0,

n =~ z
@i (Ao N T (By) N {0 () € 2 + K}) = g (—) H(A(B)Ausa (K) (3.1)
converges to 0 uniformly in z € Z¢ x R : |z| < La,, as n — +o0o.

The joint LLD we shall need is

Lemma 3.5 Let U C R be an open ball. Then

n  log|z|

U, €24U) € ———2
1 z+ ><<ag+11+|z|2

(3.2)

uniformly inn > 1 and z € R4,

The proof of this result, given in Section is a more or less obvious adaptation of
the proof of [21] with the additional complication that W, 7, are nonlattice valued.
As already mentioned in the introduction, this is the only result of the current paper
that does not require any novelty.

4 Proof of MLLT for the Sinai flow (Proposi-
tion 2.2 and Theorem 2.6

In this section we assume d = 1 or d = 2. In this section, we complete the proof of
Theorem by stating and proving the following result (assuming, for the moment,
the statement of the results stated in Section [3).

13



Proposition 4.1 Let A,B € F. Let K be a bounded subset of R?, let w € R? and
w; € R be such that lim;_, o wy/a; = w. Then

v(AN{¢, € B, kn, € wy + K}) ~ a; %Gy (w) v(A)v(B)#((K +w,) NZY,  (4.1)
where gq is the density of the Gaussian limit of Proposition[2.5
Using Proposition we complete
Proof of Theorem [2.61 We first recall that we need to show that
W(AN{p, € B,W, €w, + K}) ~ ga(w)I(A x B,w,), (4.2)
where K is so that Leb(OK) = 0, where H; is as in ([2.16)) and where we set
Z(A X B,wy) = L #((K +w + Hy(x) — Hi(y)) N Z%) dv(x) dv(y) .

For any positive integer m, we partition A (resp. B) in a finite number of atoms
Agm € F and By, € F of diameter at most 1/m, and consider the sets

K =1{2€R : ¥(2,y) € Aj sy X Bjm, z+ Hi(y) — Hi(z) € K}

Z!J9m

and

K ={2€R": I(2,y) € Aiy X Bjm, 2+ Hi(y) — Hi(z) € K} .

1,J,m
Note that H; is Lipschitz continuous in (z,u) and bounded on A and B. Therefore,
U(Aﬂ{@ < B, Wt G’U)t“—K})

=v(ANn{¢: € B, ky, + Hiopp — Hy € wy + K)

<v(AN{¢ € B, kn, € w+ K}

(4.3)
and, analogously,
v(An{pr € B Wy ew, + K}) > v (An{¢ € B, iy, ews + K ,.}) . (4.4)
By Proposition [4.1]
v(AN{¢: € B, Ky, € wy + K

©,7,m )

~ a7 %G4(2) Z H((wy + KE,) N ZY0( A ) V(Bym) (4.5)

Furthermore,

#((w + K;,,) N ZYV(Ajn)v(Bjm)
Z(Aim X Bjm,w)

I(Azm X Bj m,wt) (46)

<
< H((wr + K5) N ZY( A0 (Bym) . (A7

14



Let (z,y,2) € U;; (Aim X Bjm x (2N (wy + (K35 \ KZ_Jm)))) Then there exist
x,x' € A, and y,y' € Bj,, such that z —w, + Hi(y) — Hi(x) € K but z — w; +
H,(y') — Hi(x') ¢ K. This means that w € Z¢ and that (z,y) is at distance smaller
than 1/m of &,,—. == {(x,y) : Hi(y) — Hi(x) € w; — 2+ 0K }. This z should be one
of the elements of Z% contained in the ball of radius sup 4 |H;|+supg |H1|+sup,c g |s|
around w;. But, for each such w,

v (Eums) M) < s v (Hr ((w+08))" ™)

|u|<3supup [Hi|+supsex Is|

< sup Leb (((u + aK))[l/m}> ’

|u|<3sup aup [Hi|+sup,e |s|

which converges to 0 as m — 400 since Leb(0K) = 0. Since the number of possible
z is uniformly bounded, we have proved that

m—+0o0 ¢

lim sup Y #((w, + (K, \ i) N Z0(Ai)v(Bjm) = 0. (4.8)
i,
The desired conclusion (4.2)) follows from ([.3), (4.4), (4.5), (4.6), (4.7) and 4.8 m

4.1 Proof of Proposition 4.1

Recall that A = ¢;(Ay) and B = ¢;(By) with Ay, By C M such that u(0A4,) =
w(0By) = 0 and I,J C R two bounded intervals. We start by proving the lemma
for w; € Z¢ and K = 0. We follow a decomposition somewhat similar of [I, Proof of
Lemma 4.3], see also [II], Proof of Theorem 3.1] and [2, Proof of Theorem 1], with
the obvious difference that one needs to figure out how to exploit the Joint LLT
and the Joint LLD B.5

Writing x = ¢, (x) with (x,u) € M , we use the product structure of the measure
v and partition the set considering the different values taken by N;:

1
v(AN{¢: € B, kn, = wi}) = ) ;/f@n(t,u) du, (4.9)

where
Qn(t,u) :=p (AO NT "By N{k, =wy, Ty Eu+t—nu(T)— J})
— (AO N T~"(By) N {\T/n e (we,t — nu(r)) + {0} x J}) ,

with J, = u — J, recalling that \Tfn = (Kn, Tn). For L large, we split the sum as

V(Aﬂ {¢t € B, RN, = U)t}) = Sl(t7L) + Sg(t, L),

15



where

S\t L) = % 3 /Qn(t,u) du.

)n:|n t/u(r)|<La 4

Sa(t, L) := (LT) Z /Qn (t,u)

H n:|n—t/u(t)|>Lat
The main ingredient needed for the Proof of Proposition [4.1]is

=

Lemma 4.2 (a) limy o lim; o alS;(t, L) = ga(w)v(A)v(B),
(b) limy,_,o limsup,_, . alSs(t, L) = 0.

The proof of Lemma is provided in the paragraph below. Equipped with
the statement of Lemma [£.2] we can complete

Proof of Proposition E Note that for w; € Z¢ and K = 0 follows directly
from Lemma due to (]4__9D It remains to go from this special case to the general
case. Let w; € R? and consider a bounded subset K of R?. Then (w; + K) N Z¢
contains at most (diam(K) +1)?, we can label them w,; for i = 1, ..., (diam(K) + 1)?
(ordering them e.g. by their first coordinate, and then by their second, and completing
if necessary by the successors of the last one for this order). Then

#((we+K)NZ)
V(Aﬂ{(ﬁ,géB, /thewt‘f“K}): Z V(Aﬂ{¢t€B, /th:wm-})

~ (w0, + K) 0 25w (A (B),

applying (4.1) with K = 0 for each sequence (w;;);. Indeed, it follows from the
fact that K is bounded and that lim; .. w;/a; = w, and lim;_, ., a; = +oo that
limy oo Wy /ay = w for all . |

4.1.1 Proof of Lemma [4.2]

Proof of Lemma [4.2(a) This will follow from Lemma [3.4 We consider the range
In —t/u(7)| < Lay. Since P+ = 2+t ~ /p(T)w and since % is bounded, it
follows from Lemma [3.4] that

affl QZ((Z)U) ~ Ml Gd+1 (\/Ww, M) 11(Ao)p(Bo) A1 ({0} x J)
s (Vi =) v,

uniformly in n such that |n —t/u(7)| < La;. Hence

dsien~ Y U (wva S aym).

n:|n—t/u(r)|<Lat
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Approximating Riemann integrals by Riemann sums, the right hand side converges,
as t — +oo, to

et [ LL’;(::Z gusr (w/i(7). 2) dz(AYu(B)

which itself converges to gg(w)v(A)v(B) as L — 400, as announced, since gq(w) =

))% Jg Gar (wy/p(7), 2) dz. .

For the proof of Lemma (b), note that Q,(t,u) < |I|Q,(t) where

Qu(t) = supp (T, € (wy,t = npu(r)) + {0} x ).

uel

Lemma [4.2(b) is an immediate consequence of the next two sublemmas.

Sublemma 4.3 For any c € (0,1/u(7)), hm lim sup a Z Qu(t) =0

00 ¢
oo n>ct:Lay<|n—t/u(7)|

Proof In this range, n > ¢, so <45 = (n_%(log n) " < —tr. Thus, for any L
large enough, using Lemma [3.5| with |z|s = |t — nu(T )| we obtam that

~ t | log [t — nyu(7)|| t log(a) 1
n t a1 )
2 @<m ) TR S L I

a
n>ct:Lay<|n—t/p(7)| ¢ n>ct:Lag<|n—t/u(7)| t

since logu/u? has primitive —(1 4 logu)/u and since a? = tlogt ~ 2tlog a;. n

Sublemma 4.4 For any ¢ € (0,1/u(7)), lim; o limsup, , o af >, ., Qn(t) = 0.

Proof In this range, ¢ — nu(7) ~t > n. Thus it follows from Lemma that

Z@n <<Z le—f—logt

n<ct n<ct n
1+ logt 1
<—3 o
n<ctn 2 (].Ogn) R
1+ logt 3¢
< 5 S T <Lt (log t) T = o(a; ).
= (logt) ™
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5 Proof of mixing for the Lorentz gas (Theo-
rem (1.1

In this section we assume d = 1 or d = 2. Corollary states mixing for functions
with compact support in the suspension M x Z%. To deal with the natural class of
functions (with compact support in the manifold) in Theorem we crucially rely
on the following tightness-type result, which is the most delicate part of this work.

Theorem 5.1 Let Ky > 0 be fized. For any positive integer Ry, we set Bpr, for the

set of configuration x € M contained in the ball By centered at (0,0) of radius K.
with no collision during the time interval [0, Ry). Then

lim limsup a/v (Bg, N ®_4(By)) = 0.

Ro—+00 (5400

Before proceeding to the proof of Theorem [5.1] let us see how Theorem [5.1] follows
from Corollary and Theorem [5.1]

Proof of Theorem In this proof we start from Corollary 2.3/ and Theorem [5.1]
Assume that f and g are nonnegative with support in the ball of radius K,. We will
use Corollary and the sets E), defined therein. Let ny be a positive integer such
that UJI.:1 O; C Dy is contained in the ball of radius ng centered at (0,0). Then
observe, for all n € N, By \ E,, C B_pn,. Let (fu)n (resp. (gn)n) be an increasing
sequence of continuous functions supported in E_o, (resp. Fs,) coinciding with f
(resp. g) on E_, (resp. E,) and converging pointwise to f (resp. g). Thus it will
follow from Lemma [5.1] and time-reversal of ® that

lim lim sup
n—=+00 {3400

at/ [f.g0 Py — fr.gno®dv
M
< lim htmsup2Hf|’00HgHOOat~(BRO N®_(By)) =0. (5.1)

n—+oo

For every n,

lim sup at/ f.g0® —g4(0 / fdl// gdvr| < limsup at/ [f.go Dy — fr.gno D] dv
t—+o00 t—+o00
+ lim sup at/ frn-gn 0 @y dv —ga(0 /fndV/ gn dv
t——+o0

+§d<0>‘/ fnda/ gndv—/ fda'/ gdv
M M M M
< lim sup

at/[fgo@ fugn o @) i
t—+o00

+34(0 ‘/ fndu/ gndl/—/ fdu/ gdv

18
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where we used Corollary applied to f,, g, in the last inequality. Since this holds
true for any n, we conclude by taking the limit as n — +oo thanks to (5.1 and to
the dominated convergence theorem. |

The rest of this section is devoted to the proof of Theorem Recall that Ky is
fixed and that we have to estimate v(Bg, N ®_4(By)). The strategy of our proof is
divided in two steps. In a first step (corresponding to Subsection , we explain how
we can neglect "bad” configurations with first or last long free flights (Lemma
or having a small number of collisions within the time interval [0,¢] (Lemmas
and . In a second step (corresponding to Subsection , we will estimate the
probability of the set of ”good” configurations belonging to Bg, N®_;(By) by writing
(as in the proof of Proposition but with additional sums and complications) this
set as a union of sets the measure of which corresponds to the measure of a set that
can be in terms of the Sinai billiard map 7'.

In the process of proving Theorem [5.1 we obtain the following large deviation
result, which is interesting in its own right.

Proposition 5.2 For ¢; small enough,
1(Tieye) > t) S V(N < et)/minT = O(logt/t) .

The bound O(logt/t) seems to be optimal because 7 is in the domain of non standard
CLT with normalization y/tlogt. Although, a proof of the optimal bound seems to
be lacking in the i.i.d. scenario with y/tlogt normalization, one could form the idea
about the optimal bound by redoing several steps in [25].

5.1 Notations and recalls for the proof of Theorem 5.1

Before entering deeper in the proof, let us introduce some needed notations. Recall
that x stands for the cell change (with values in Z9). It will be useful to consider % :
M — 72 for the cell-change for the Z2-periodic Lorentz gas; so that x = m4(%) where
mo = Id and 7, : R?> = R is the canonical projection on the first coordinate. Note
that, when d = 2, K = k. We extend the definition of k to M by setting (P, (q, v)) =
k(pa(q), V) for every (q,v) € M and every u € [0, 7(x)). Let us write N,(x) for the
number of collisions in the time interval (0,¢] for a trajectory starting from x € M.
Recall that Hj is the bounded coboundary defined in . Throughout the rest of

this section we fix ¢; so that
c1 € (0,1/(1000u(7))) and 2¢; ||Hpl|s < 1/100. (5.2)

We consider the constant ag appearing in Lemma [3.2 Up to decreasing if necessary
its value, it follows from e.g. [0, Theorem 7.37, Remark 7.38] that there exists Cjj; > 0
such that

!

Vi € Noy - Cov (((50 T™)mzwe), 9((50 T Ywrco) ) < Gl Islglloce™™" . (5.3
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for any bounded measurable functions f, g. by noticing that f((koT™),,>¢) is constant
on stable curves and that g((koT™ ),<_1) is constant on unstable curves and as such,
these functions are bounded by their infinite norms in the respective spaces H~ and
H* considered in [9].

We fix K > 0 be so that

C(l)e—aoKlogt S 75—100 (54)
We recall that it is proved in [33] that
(i =z) = 0(27), (5.5)

and that the set € of unit vectors of R? corresponding to the corridor directions in
D, (i.e. the direction of a line in R? touching no obstacle) is finite. Finally, recall
that by [33, Propositions 11-12, Lemma 16],

YV >0, p(F=2z3 < Vieg(|z| +2), j£0, [FloT? > |2|Y%) = 0O <|Z|—3—%> _
(5.6)

5.2 Control of ”bad” configurations

The first next lemma allows us to neglect trajectories with no collision before time t.

Lemma 5.3 The following estimate holds true as t — 400,

v <BO N®_(By) NN, = 0}) = o(a; %) .

Proof When d = 2, the lemma is immediate: as soon as t > 4K, Nt > 1, otherwise,
at time ¢, the trajectory cannot be 2Ky-close of its initial position, at time 0.

When d = 1, we can have N; = 0 because of possible long free-flights in the vertical
direction that remains at a bounded distance. However, using the representation of
(M, (®,);,7) as a suspension flow over a Z-extension,

v (Bo N{N, = 0}) < 2Ky + (N, = 0)

2Ky +1 [T
O—+/ pu(r >s+t)ds
u(r) Jo

+o00
<</ (1+s+t)2ds<t =o(a;"),
0

where we used (2.12)) and (2.9). n

The next lemma ensures that we can neglect trajectories with long first or long
last free flight.
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Lemma 5.4 There exists a constant C' > 0 such that, for all Ry and t large enough,
U (Bo N{[R| > aflog Ro}) < C'a;?/log Ry .

Remark 5.5 Note that, since ®; preserves the measure v, we also have
V(P (BoN{[R| > aflog Ro})) < C'a;?/log Ry.

Proof [Proof of Lemma Using again representation of (Mv , (P4)s, V) as a suspen-
sion flow over a Z-extension, we note that

U (Bo N {[K| > aflog Ro}) < (2K + 1)*v (|&| > af log Ry)
2
< (2K + 1)
p(7)
+0o0
< / p(T > 5)ds + allog Ru(|| > aflog Ry))

f log Ro

+oo
< / s72ds + (allog R)™ < a;%/log Ry .
a? log Ro

E, [Tl{mpag log Ro}]

The lemma below deals with the reamining range, namely n = N; < ¢;t with ¢;

as in .
Lemma 5.6 There exists C' > 0 such that, for all Ry > 0,

v (BO N ®_(By) N {N; < clt}> = o(a7?),
ast — +o0.

To prove this lemma, we will deal separately with the cases d = 1 and d = 2. The
main ingredients of the proofs below in these two cases come down to a very delicate
decomposition of the involved sum along with fine estimates via the use of and
of Lemma [3.5. The proof of Lemma for d = 1 will use the following intermediate

results.
Sublemma 5.7 Recall that K satisfies (5.4). Then
v <BO N {Nt/IOO S KlOgt}) S (2K0 + 1)2V<Nt/100 S KlOg t) < (lOg t)/t .

Proof of the sublemma Recall that By has diameter 2K,. The first inequality
comes from the fact that By contains at most (2K, + 1)? copies of M. Let us prove
the second inequality. Observe that

v(Nijioo < Klogt) = E, [T'l{TLKIogtHlEt/lOO}] <E, [T'lu,g’:ﬂ;%” {ToTk>t/(1OO(1+Klogt)}:|

< E[T-l{fzt/(loo(lﬂflogt))}] +E [T'lu,gﬁjog” {r<t/(100(1+K logt)), ToTth/(100(1+Klogt))}i| :
(5.7)
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But, it follows from (2:12) that for all ¢ > 2[]

+oo
E‘u |:T'1{T>100(Kltogt+1)}i| :/0 H (T'1{7>100(K1togt+1)} - Z) dz

IOO(Kltog t+1) t d +oo d
= > >
/0 P\" 7 100(Klogt + 1) Z+/ p(r>z) dz

t
TOO(K log t+1)

< (t/logt)™t, (5.8)

providing a control of the first term of the right hand side of (5.7]). For the second
term of the right hand side of (5.7]), We distinguish the case of small (resp.big) values
of 7. Set m := (14 5-)~'. On the first hand,

E, [T1{r<my 1 ] < t"logt(t/logt)? =™ *(logt)?,

(5.9)

ULK o8t 0Tk >1/(100(14 K logt))}

where we used 7 < t™ and (U,Elz(llogtj{T oTk > z}> < Klogtu(r > z) < 2 ?logt.

On the second hand, since 7 — [£| is uniformly bounded by some constant Ly,

E, [Tl{thTﬁt/(wO(HKlogt))}'1UIL€§11°g“ {ToTth/(100(1+Klogt))}]

~ ~ t
< Z (|2| + Lo)p (H:Z, Jk=1,..,Klogt, KoT" >

zit™—Lo<|z|<t/(100(1+K logt))+Lo

< > (2] + Lo)|2| 3 % < ¢~m(Has) = ym=2 (5.10)

z€supp(R) : |z|>t™—Lo

where we apply (5.6) with V' = % (indeed, for t large enough, K logt < V log(t™ —
Lo + 2)) Thus, the last bound of the sublemma follows from (5.7), (5.8)), (5.9)
and (5.10) since m —2 = —4f < —1. |

Lemma [5.6|in the case d = 1 follows from the following result.
Sublemma 5.8

7 (Bo n{N, < clt}) < (14 2K0)20(N; < ert) < (logt) /1.

Proof of the sublemma Again the first inequality follows from the fact that B,
contains at most (2K, +1)? copies of M. The main issue is to establish the last upper
bound. Since the flow ¢ preserves v, v(Ny < ¢1t) = v(Nyo ¢_yj2 < cit). Furthermore,
the fact that N; o ¢_;/» < ¢it means that there are at most ¢t collisions in the time

5We use here the classical formula E,.[X] = O+°°

X M — [, +00).

w(X > z)dz valid for any positive measurable
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interval [—t/2;t/2], so at most ¢; collisions in both time intervals [—t/2; 0] and [0; ¢/2],
which implies that both 7. and —7 — 7_|.,4| are larger than t/2, writing as usual

Th=—S1  ToT™
Therefore

V(N <) =v(Nyod_yo < i) S v(Tjee) > /2,7 — T (o) > t/2), (5.11)

In what follows we show that this quantity is o(a;'). Note that it follows from
Lemma (5.4)) (with Ry = 2) and from Lemma that v(7 > a?) < a;? and that
V(Ti1ogt > 1/100) < (logt)/t and v(T — T_k10g¢ > t/100) < (logt)/t (up to use time
reversibility of ®). This combined with ensures that

V(N < eit) < pp + O((logt)/t) (5.12)
with

D=V (7’ <A} Ty > /2,7 — Ty > t/2, Ticrogt < /100, T — T_K10gt < t/lOO)

2
ag

= Z (T >d, T > /2,7 — Toeyt > /2, Tic10gt < /100, 7 — T_ e 10g¢ < £/100)
a’=0

2
a

< Z 2 (‘7{‘ >a' — 2HH0H007 Tlert] > t/27 T+ T—|crt] > t/27 TKlogt < t/1007 T —T-Klogt < t/lOO) )

a’=0
with the function Hy appearing in (2.10) (since |V| = 7). Observe that

Klogt Klogt
Tleit] © T &> T|eit]—Klogt © T g = Tleit] — TKlogt

and that
—K1 —-K1
—T—|eit] © T o8t > —T—|e1t)]+Klogt © T gt — —T—|c1t] +T =7+ T-Klogt -

It follows that

a? log Ry

p< > p(IE > a = 2||Holloo, Tieye) 0 TH'8" > 49t/100, |7_ 0| 0 T8 > 49¢/100) .

a’=0

Recall that, for all m € Z, |kKy,| > T — m||Hpl| and that, due to (5.2)), 2¢;||Holleo <
1/100. Thus,

a? log R
p< > p(IE > a = 2||Holloo, ety 0 T 5" > 48t /100, —[F|—|¢,o 0 T~ 18" > 48t/100) .
a’=0

23



Thus, using ((5.3)) combined with (5.4]),
at log R

pe < Z (1 (7 > @ = 20 Hollo) (1 ([l > 48¢/100))" + O@™)) . (5.13)

By the second part of Lemma [3.5],

1 ([R[ere) > 48t/100) < po (T(eye) > 47¢/100)
< N(TLcltJ > t2) + ,u (47t/100 < Tlegt] < t2)

E, [T[cltj Z t log(k — [eit]u(7))

<

t2 gt Vitlogtl+ (k— [ert]u(r))?
t logt
PYSERND yppan 11
K42/ mer(r) tlogtl+k
t logt logt
\/tlog t t
Combining this with (5.13)) and (5.12)), we infer
a?log Ry 10 "
V(N <at)< ) (( +1)72 f; + O(t‘mo)) +O((logt)/t) = O(log t/t).
a’=0
This combined with (5.13)) ends the proof of the sublemma. |

We take the line below to quickly complete
Proof of Proposition [5.2] We observe that

v({(z,u) € M : Tleyt)(®) > t, u < minT})

P Tleye) > 1) <

min T
< v({(x,u) € M : Ni(z) < |egt], uw <minT})
min 7
< v(Ny § leat]) < u(Nt.g cit) |
min T min 7
and conclude due to Sublemma [5.8 |

We continue with
Proof of Lemma When d = 1, the result follows from Sublemma [5.8] that

v (BO N ®_,(Bo) N {N, < clt}) <7 (BO N{N, < clt}) < (logt)/t = o(a;Y).

Unfortunately this estimate is not enough when d = 2. We assume from now on
throughout this proof that d = 2. Recall that we have to prove that

v (BO N®_,(By) N{N; < clt}> = o(a;?) = o((tlogt)™) (assuming d = 2).
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We start with some preliminary calculation that will allow us to argue that we can
neglect the configurations with more than one long free flight (of length larger than
t/(100(K logt)?)) among the K logt future and past collision times. Let us write

Dy = {3k, 0 : k#6;|k|, (| < Klogt,min(r o T*, 70T > t/(100(K logt)*)} ¢ M
and lN)t for the corresponding event in M.

Sublemma 5.9 For all ¢ € (0, 55),

v (BO N @,t/2<5t)> < (2K +120(D,) = o™= %) = o(a?), ast — +oo.

Proof of the sublemma. Again, as in the proof of Sublemmas [5.7 and the
first inequality follows from the fact that M is made of at most (2K, + 1)* copies
of M and that ¢ preserves the measure v. It remains to prove the last estimate.
Using the suspension flow representation and the Hoélder inequality applied for any
p < 2 < g such that % + % = 1 and close enough to 2, we observe that

v(Dy) <2 Z B [T 1ok st/(100(K log £)2), Tt/ (100(K log 1)2)]
—Klogt<k</<Klogt
1
<2 > 7)o (u( 0 TF > ¢/(100(K logt)?), 7 o T* > ¢/(100(K logt)?))) *
—Klogt<k</<Klogt
<2 > 17| o Yo proTF=i ol >
—Klogt<k/<Klogt:k#l i>t/(100(K logt)2?)

Fmally applying (5.6) with V = 4K and ¢ large enough so that 2K logt < Vlog(2 +

—100( Klog?) 5 ), we conclude that, for ¢ large enough,

v(D;) < 2(logt)? Z i3
i>t/(100(K logt)?)
and since the previous bound holds true for an arbitrary real number ¢ > 2. |

We are back to the proof of Lemma assuming that d = 2. We will decompose
the quantity we have to estimate in p; 1 + py o, distinguishing the case where the free
flight at time t/2 is larger or smaller than /4.

Estimate when the free flight at time ¢/2 is larger than ¢/4. In this part,
we study

Py =D (Bo NG (By) N{N, < est,rods > t/4}) . (5.14)
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We will use the fact that we can neglect the trajectories such that 7o ®; 5 > af since,
due to Lemma [5.4

V(BonN{ro®yn > a}}) < (2Ko+ 1)°v (1o ¢rpo > a}) < a;°. (5.15)

It follows from ((5.15)) and from Sublemma [5.9| that

pui=7 (Bo N ®_,(Bo) N {Nt < clt} no_ ({T e Ea?} } \f)t)) +o(ar?).

(5.16)

Let us study the event appearing in the above formula.
The fact that 7o (IJ% > t/4 and that @, ¢ D, implies that the K logt free flights

just before and just after the one occuring at time ¢/2 have all length smaller than
t/(100(K logt)?) and thus that

TKlOgtOTO Py0 < t/(100(Klogt)) and |T_gioge|0 Pya < t/(100(K logt)). (5.17)

Recall that the configuration is in By N ®_,(By) and satisfies 7 0 ®;/5 > t/4. Since

N, < eqt implies and since we are in dimension 2, the free flight of length ¢/4 made
at time t/2 has to be canceled by the sum of the other (|c;t] — 1) free flights made
during the time interval [0;t]. So,

Tt ©Pyjo > /8 or (Tep —7) 0 Dyp >1/8. (5.18)

The combination of Conditions ([5.17) and (5.18]) implies that at least one of the two

next conditions should holds true
T 0 T K18 0 &,y > 7 01y 0 Byjy — Ticrogr 0 Byjp > 11¢/100

or
Teyt [©] TKlOgt (6] q)t/g > (Tc1t — T) (©] (I)t/Q — TKlogt (¢] T o (I)t/Z > 11t/100 .

Note that the second condition above corresponds to the first one above one up to
composing by ®; and up to using time reversal. Therefore,

-~ t ~ 11¢
P < 2v (Bo N {T o q)% € {ZQG?} y Teit o THlet o Dy > m}) +O(at_2)

t 11t
< 2(2K, + 1)%v (7‘ o ¢% € [4_1’ G?] , T 0 TH% o Dr/2 > m) +o(a;?)

using again the fact that By is made of at most (2Kj + 1)? copies of M. Now using
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¢¢/2 invariance of v, we obtain

t 11¢
pr1 < 2(2K, +1)%v (T € [Z;ai’] | T 0 TEo8t > ﬁ) + o(a; ?) (5.19)

3
a

<ola®)+ Y p(r > a0 THE > 11t/100)
a’'=t/4

a’'=t/4

a’'=t/4
<ola?) + 3 (@) 2 (Isle > /10). (5.20)
a'=t/4
But, using the second part of Lemma |3.5

p([Rlese > £/10) < (72 > 9¢/100)
< (Teye > 1) 4 p (9/100 < 70y < #2)

< E, [T ] N tz t log(k — crtu(T))

’ — 2
! £=9t/100 Vilogt 1+ (k— citp(r))

t logt

cre Y o Ldwt

ko1(0/100meun(ry V1081 k

_ t logt \/@
e Ve 5.1
tlogt t + (5.21)
This together with ([5.20)) implies that

pia = ola;”). (5.22)

Estimate when the free flight at time ¢/2 is smaller that ¢/4. Let
P2 =V (Bo N®_(By) N{N, < ext, 70 ®: < t/4}> :

Using again the fact that By is made of at most (2K, + 1)? copies of M and that ¢/,
preserves v,

pra < (2K + 1)*v(Ny < 1t 7o ¢yjo < t/4) (5.23)
S (2K0 + 1)21/ (Nt/g S Clt, N,t/g S Clt,T S t/4) .
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This together with Sublemma and time reversibility gives that

V(Nt < ct,To ¢t/2 < t/4)
<o(a;?) +v (Nt/Q <cat,Noyp < at, 7 <t/4,min(Tgioge — T, T-Klogt) < t/lOO)
<o(a;®) 4+ 2v (N2 < ity Noyjo < ety T < /4, T_k10g¢ < 1/100) .

Since we also know that

_Klo t t
ToetoT Klogt _ T_Klogt—cit — T—Klogt > T—cit T T — T — T_Klogt > 5717700
we obtain
V(N < crt, 7o o < t/4) < ola;?) + 2v(Nyjg < cit, Toeyp o T F188 > 241/100, 7 < t/4).

Let
Apy ={1 > d — 4||Ho| s, Teye — a’ > 48t/100} .

Using again the representation by a suspension flow and the decorrelation esti-

mate ((5.3) combined with ((5.4)),

V(N < eit, 7o dyyp < t/4)
[t/4]
< Z i (T > Toy —a > 1t)2,7 o0 T8> 2415/100)
a’=0
1t/4]
<37 (Kl > d = 2| Holloo, |lere — @' > 49t/100, |K| e, 0 T~ 15 > 23¢/100)
a’=0
[t/4]
< Z 11 (T—eyp > 22t/100) + O(¢ 1))

Lt/ 4J

<ZM log ’

where in the last line we have used ([5.21]).
The previous displayed estimate together with the argument used in the proof

of (5.13)) gives that
_9 logt
V(Ny < eit,modyo < t/4) < olag ™) + v(Nase/10044) Holloo < C1) -

(a;%),

which together with (5.23) ensures that p;o = o(a; %), which combined with ([5.22))
ends the proof of Lemma ([5.6)) in the case d = 2. |

I
S
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5.3 Control on ”good” configurations

Due to Lemmas [5.3] [5.6] and Remark [5.5] it remains to study the p-measure of
the set of configurations x € Bg, N ®_;(By), that have at least ¢;t collisions in the
time interval [0,¢) and with first and last free flight both smaller than aflog R. The
next lemma provides the domination of this measure by a sum. Let us write € for the
set of unit direction of corridors in Dy. We recall that this set is finite (see e.g. [33]).

Lemma 5.10 There exists a positive integer Ly, a positive real number Cy and a
compact set K' C 74 x R such that, for all integer Ry > Loy and all t > 0,

i (BRO N®_(By) NN, > crt, [8] < allog R, |Fo®,| < allog R)

|t/ min 7| |adlog Ro] |af log Ro |

Co D, > > Z (ALt (1, 0, K7)),

w1, W EC TL—LCltJ a=Ro—Lg

where we set

Aiz’b’n’t(w'l, W, K') = {\/I}n € (—my(awy + b)), t — nu(t) —b—a) + K',
[KoT7'|>a,[KoT" > b} . (5.24)

Proof Let x € Bp, N ®_,(By) be such that N,(z) > eit, [&] < allogR and |& o
®;| < allog R. We will parametrise x by (z, —u,f) € M x (—oo0, —Ry] x Z%, with
uw € [0,7(T(x))). We write x under the form ®_,(7) with T € M corresponding to
the configuration of the particle at the next (future) collision time. This configuration
Z belongs to some cell C;, with ¢ € Z% and thus Z can be rewriten under the form
(Pa0(q) +¢,7) for some 2 = (¢, 7) € M (as explained in Sectlon . By construction
u € [Ry, (T 1(x))). We parametrize ®;(x) by ((T"(z),s), ') € M x Z%, as follows.
Recalling that NV, is the lap number introduced in (2.1)), we write ®;(x) under the form
&, (T™(7)) with n = Ny(¢_,(2)) — 1 and s € [0, 7(T™(z)). Due to our assumptions on
x, we know that Ny(¢_,(z)) > |eit]+1so that n > |¢it|. Moreover, Ny < 14t/ min 7.
Thus

lert] <n<t/minT. (5.25)

It follows from with (2.10)) and (2.9) that 7 — || is uniformly bounded. Recall that
uw < 7(T7(z)) and s < 7(T™(x)). We discretize u, s by setting

@ = max(0, |u] — |7 — [Fllle) < R @) < allog Ry, (5.26)
b:=max(0, |s| — |7 — |F||ls) < |R(T™(2))| < allog Ry . (5.27)

With the previous notations,
To(x) =t —np(t) —u—s=t—nu(t) —a—b+ O(1), (5.28)
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where O(1) is uniformly bounded (independently of x). Furthermore, there exist two
unit directions of corridors wh, ws € € that are ”close” to be colinear to, respectively,
the first and last free flight, meaning that

R(T ™ (x) = [R(T(@))[d + O(1)  and K(T"(x)) = [R(T"(2))|w + O(1),

with O(1) uniformly bounded (independently of x). This implies that ¢ = am,(w;) +
O(1) and ¢’ = —brg(wy) + O(1), where again O(1) is uniformly bounded (indepen-
dently of x). Thus, for a given (a, b, w;,@s), only a uniformly bounded number of
values of (¢, /') are possible. Second, this implies also that

Kp + Wd(awl + b’LUQ) = gl —/ + aﬂd(zﬁl) + bﬂd(?ﬁQ) = O(l) (529)

Recalling that U, = (r,, 7,), it follows from (5.26)), (5.27), (5.28) and (5.29) that we

can find a compact set K’ independent of x such that, with previous notations,

Z'GA (wl,?ﬁg,K,).

a,b,n,t

The bounds on n, a, b comes from respectively ([5.25)), (5.26) (and u > Ry) and ([5.27)).

The multiplicative constant Cjy comes from the bounded number of possible values of
(0,0, |u],|s]) once a and b are fixed. This ends the proof of the lemma. |

Since € is finite, it is enough to fix w, W, and to prove that
|t/ minT| |af log Ro] |ag log Ro

lim lim sup a? Z Z Z Al g (W1, W2, K')) = 0. (5.30)

Ro—+00
t=+o0 n=|cit] a=Ryp

The aimed result ((5.30]) will be proved via the next series of technical lemmas, splitting
the summation over n, a, b in smaller ranges.

Lemma 5.11 There exists C' > 0 such that for all Ry

[t/ minT]|

Z Z (Aiz,b,n,t<wlv W, K/)) < Olat_dR(;R + O(Qt_d) )

n=[cit| a,b=0,..., La log(Ro) | : max(a,b)>Ro

ast — +00.

Proof Note that, by measure preserving and time reversal, (ko T, \Tln, KoT™) has
the same distribution as (—k o T™, (—=Fp, Tn), —k o T™1) and so

M(A;,b,n,t<w17w27K)) (A;)ant( w27_w17K//))

with K” = {({,r) € Z? xR : (—f,7) € K'}, with the notation [5.24 Thus, up
to replace (a, b, w, Wy, K') by (b, a, —wy, —, K"), it is enough to prove that there
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exists Cf such that, for all Ry,

[t/ minT| [adlog(Ro)] a

_2
Z Z Z,u o (W1, W2, K')) < Cga; "Ry ® + o(a; %), ast— +o0.
n=[cit] a=Rg b=0
(5.31)
The main ingredients of the proof of this are Lemma[3.2] together with its Corollary[3.3]
and an argument similar to the one used in the proof of Lemma 4.2, To exploit

Lemma [3.2] recall (5.24) and note that

(AL (1T, K1) < By | gparnsUer 20 h (B = (malaiy +b0),t = b— a = np(7))) | |
(5.32)

where h : R4 — (0, 00) is an integrable function with compactly supported Fourier
transform; such a function h can be defined precisely, but the precise details are not
important at this stage (the compactly supported Fourier transform can be given
by, for instance, equation (|7.31)) used in the proof of Lemma . Recall
and and assume that n > 4Klogt. Let k, = k, = Klogt. It follows
from (5.32), Lemma and its Corollary , that, for any o € (0,2 — &) and

any n = |¢it],...,t/ minT,

(A o (W1, W, K')) < pu([R| > a)p([R] > 5)Q nab(t) (5.33)
+0 (7% + logta; *2(u(7| = a)pu([F| = )5~ (5.34)
+a;d*2/£(|%| > b) H\Tj%nl{l'ﬁloT—lza} L1> , (535)
with Q) (1) :=E, [h (@n — (malat®, + b)), t —b+a— w(f))ﬂ . (5.36)

Estimating the term in the right hand side of (5.33)).
We claim that, proceeding as in Lemma [4.2]

[t/ minT|

sup Y QY (1) =0(a?), (5.37)

which implies that

[t/ minT|

SN wlE = @u(FE = 0)QY (1) = O(a Ry . (5.38)

n=[cit] b>0,a>Ro

We prove the claim (5.37). Fix L > 0. First, it follows from Lemma that

ég??z,b(t) < at—d—l (gd+1 (Wd(awl + bwz)ﬂf —b—a-— nlu(T)) + (log t)—l)

Gy
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and so that

~ _ Td au71 + bU72 _
Z Qv(ﬂ?i,b(t) < ay d/ gd+1 ( ( a )7y) dy + O<at d)
n:|t—b—a—np(7)|<Lap(r) R t
< a7l galloe + o(a; ) < a7, (5.39)

with g4 = [ gas1(-,y) dy. Second, if n > ¢t and La, < [n — (t — b — a)/pu(7)],
then, as soon as t large enough, it follows from Lemma applied with |z|, =
|np(r) — (t — a — b)| that

0
S Qs (1)
n>cit:Lar<|n—(t—b—a)/u(T)|
3 | log [nu(T) — (t —a —b)|

< L+ [np(r) — (t—a — D)2

ad+1
U niLag<|n—(t—a—b)/u(7)]

t 1 1
og(at) <

—d
5.40
a/;i.}_l La/t La%i << a’t ) ( )

<

since logu/u? has primitive —(1 + logu)/u and since ai = tlogt ~ 2tloga;. The

claim follows from (5.39)) and ((5.40)).

Estimating the terms in (5.34)). The first term leads to

[t/ minT]| |aflog Ro| a

Z Z Zt—loo < %9 logRO _ o(at_d). (5.41)

n=[cit] a=Ryo =

It remains to estimating the contribution of the second part of (5.34]). Note that

S u(l7l = o) (Zu 7l > by ) «Ya 2(2 1)%0)

a>Ro a>Ro b=0
< E a72+250 — Ral-‘y—?&o 7
a> Ry

since g9 < % Since we also know that tlog? = a?, we obtain that

[t/ minT)|

Z Z Z“Ogtat W& > a)p(k > b) = o(a;?). (5.42)

n=[c1t] a=Rp b=0

Estimating the term in ([5.35) We claim that

Z H Wop, L{[7jor 120} o

a>Ro

_2
< Ry logt. (5.43)
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Since we also know that tlogt = a7 and that Y-, u(|5] > b) = E[[&]] < oo, we
obtain that

[t/ minT]|

Z Z Zat (|5 > b) H‘I’%nl{on 120},

n= |—Clt-| a>Ro b>0
We now prove the claim (5.43|). First, compute that

S [Tt r s, < 3 3 S0 S (o T a7 0T — )

a>Ro (=0 a>Rpoa’>ab'>1

§ZZ ZZ()’ 5| =d, || o T" =)

: ’>R0a RO b/>1

2kn,
SO dVu(fFE| = d, R o T =),

(=1 />Ry b'>1

=0 ('R, *> . (5.44)

where the sum over a/,b is taken over the positive real numbers (non necessarily
integer) such that the summand is non null.
We claim that, uniformly in n and in ¢ =1, ..., 2k,

N adWu(E = [FloT" =V) < R, ® (5.45)
a’>Ro b/ >1

The previous two displayed equations give the claim ([5.43)).

It remains to prove the claim ([5.45)). We proceed via considering all relevant cases
of d, V.
4
Case 1: Contribution of the o',V such that t's <a <V

> > abu(REl=d T =)

b'>1 o’ €[max(Ro,(b')4/5);v]

< Z VE, Z @' o Lgjort =ty

Y'>Ro a’€[(6)4/530
< S WPu(R = ()37l o T = 1),
b'>Ro

where in the last equation we used that

> @y < 0z (5.46)

a’€la_;ay]
Thus applying (5.6) with V' := 100/ay, we obtain

PR 2 ()7, 7] o T¢ = ¥) < |77
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uniformly in ¢ < %(O%WD, and it follows from([5.3) combined with (5.5)) that

p(lR] > )3, [Flo T = 1) < p(|&] > (0)5)u(|Fl o T = 1) + Cle~®! < |1/| 2%

100 log(2+(b’|)

uniformly in ¢ > ” . Therefore
. dVulRl=d meT =¥) < Y WPWITE (547)
a’€[max(Ro,(b')4/5);b'] b'>Ro
_2
< SR <Ry (5.48)
b'>Ro

Case 2: Contribution of the a’, such that (a/)s < < d'.

> > dV (R =d, |7l o Tt =¥)

/ 5
V21 e max(Ro,b);(0') 1)

<> Y dVu([FRl=d [FloT =V

@2H0 ye(ar) 3 a)
< N laPu([E = o, 7] o T > (a)?)
a’>Ro
_2
< Z |a/|2|a/|—3—% < Z |a/|—1—% < Ry, (549>
a’> Ry a’> Ry

using again ((5.46]) and (5.6]) again with V' = 100/ag when ¢ < V'log(2+ |a’) and ([5.3))

otherwise.

Case 3: Contribution of the ',V such that o < (V') < V' for some
v €(0,1) (e.g. v =73).

> > abu(Rl=d.[FoT =V)

¥>1a’€[Ro;(b')7]

Z > ab'u(y%y:a',moﬂ:b')

b,>R; a’ €[Ro; (V)"
< > WPYu(E = R, [R o T" = V)
U>R%
< S @ywwt<r] T, (5.50)

1
b’ eSupp([&|):b'>R]

using ([5.5)).
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Case 4: Contribution of the &/, such that V' < (d')” < o’ with v € (0,1)
(e.g. v=13).

S @R = F@eT =) < S (@)l (R = o)

a’>Ro ¥ €[1;(a’)7] a’>Ro

< > (a')'|d'||d'| ™% < Ry (5.51)

o/ €Supp([R|):a’>Ro

The claim (5.45) follows from (5.48), (5.49), (5.50) and (5.51), ending the

proof of (5.43) and so of (5.44). Estimate and so the lemma then follows
from (5.38)), (5.41)), (5.42)) and ((5.44]) |

5.3.1 Concluding the proof of Theorem

The conclusion follows from Lemmas (and the comment thereafter), |5.6 |5.10
and (.11}

6 Proof of joint CLT (Lemma 3.1

Let d € {0,1,2}. In this section we show that arguments established in [3] and [29]
can be adapted to the study of U instead of x. The main idea comes down to a
basic observation, namely that U can be written as the sum of a vector in Z+! that
"behaves like’ £ and a bounded function. The mentioned vector in Z**! is precisely
(k, |k| — E,[[K]]) which, as & is constant on good set and has a similar tail probability.
In particular, VU is in the domain of a nonstandard CLT with normalization v/n log 7.
For details are provided around equation ((6.12)).

We will prove the convergence in distribution of (\Tln /\/n)n by establishing the
pointwise convergence of its characteristic function, with the use of Fourier perturbed
operator on the quotient tower constructed by Young in [36](see [7]) as Szédsz and
Varju did in [33] to establish the CLT and LLT for . It follows from that
7 =|V|=|k|+O(1), where & : M — Z? is the cell change in the Z*-periodic Lorentz
gas (see Subsection [5.1]).

We have already recalled several properties of k. Let us recall, in particular, the
precise tail of x (this is partially recalled in (5.5))). By [33] completed by [29], there
exists Ly > 0 and a finite set & made of (L, w) € (Z%)? with w prime such that

kK| > Ly = 3J(L,w)e& INeN"K=L+ Nw (6.1)
and

pE=L+Nw)=c, ,N3*+O(N*), as N — +oo, (6.2)
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with ¢r,, > 0. This set £ parametrizes the set of corridors mentionned in Section
(the set € therein corresponds to the set of unit vectors proportional to some w such
that there exists L € Z? such that (L,w) € £). Then, when d = 2, the variance
matrix ¥ (for the Sinai billiard map) appearing in the Central Limit Theorem for
the displacement given by corresponds to the following quadratic form

1
Ifd=2, VtecR? (3ot,t) =3 § craw(t, w)?. (6.3)
(Lyw)e€

It is not degenerate since, when d = 2, we assume the existence of at least two non
parallel corridors, and so of two non parallel w,w’ such that there exists L, L' € Z?
such that (L,w), (L',w') € &.

When d = 1, setting m(wq, ws) = wy, X is given by the formula

Ifd=1, ¥, ::% > cpw(m(w))? (6.4)

(Lyw)e€

which is non null since we assumed the existence of at least an unbounded line touch-
ing no obstacle.
We recall that the variance matrix ¥ for the flow appearing in ((1.1)) is given by

5 = S/ y/(").

The variance matrix ¥4.1 of the limit of a 1@% will appear to be given by the
following pretty similar formula:

vt e R™ (B4t t) Z cLw(t, (ma(w), [w]))?, (6.5)
(L'w )e€

with, as in Section [5.1},
Vw € Z*, m(w)=w and m(wy,wy) = w,
and with the convention
V(w,z) € Z* xR, (mo(w),|w]) =w and more generally (mo(w),2) = z.

Throughout this section, we fix some (arbitrary) ¢ € [1,2), and some b, > 2 so
that

Ll (6.6)
rtg <t .

This choice will determine the choice of the Banach space on the Young tower.
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6.1 Expression of the characteristic functions via Fourier
Perturbed operator

We observe that R R
W (z) = ¥(y)| < d(x,y) +d(T(z), T(y)),

for any z,y in the same connected component of M \ (Sp U T~(Sy)), where Sy is
the set of post-collisional vectors tangent to 0€2. We recall that the diameter of the
connected components of M \ J;__, T7%(Sy) is O(B}) for some 3 € (0,1).

As in [33], we consider the towers constructed by Young in [36] (see also [7]). We
recall some facts on Young towers and introduce some notation that we shall use in
the reminder of this paper. We let (A, fa, 1a) be the hyperbolic tower, which is an
extension of (M,T,n) by 7 : A — M (with 7(z, () = T%(z)) and write (A, fx, ix)
for the quotient tower (obtained from A by quotienting out the stable manifolds).
The quotient tower is identified with A := {(x,f) € A : 2 € Y}, where Y is an
unstable curve of a well chosen set Y C M, and write 7 : A — A for the projection
corresponding to the the holonomy along the stable curves of A. The dynamical
system (A, fa, ) is given by

e The space A is the set of couples (z,¢) € Y x Ny such that ¢ < R(x), where R
is a return time to Y.

e The map fa is given by fa(x,l) = (x,0+1)if ¢ < R(z)—1 and fa(z, R(z)—1) =
(S (2),0).

e The measure px is given by p(A x {¢}) = p(AN{R > ¢})/E,[R.1y], for any
measurable set A C Y.

We assume that the greatest common divisor (g.c.d.) of R is 1, which can be done
because of total ergodicityﬂ of T ; this assumption is not essential, since one can also
deal directly with g.c.d.(R) # 1, but it helps simplifying the proofs and notation
throughout the reminder of this paper.

The partition P on A consists of a union of partitions of the different levels which
become finer and finer as one goes up in the tower. The partition P is used to define
a separation time s(-,-) on A:

s(z,y) =inf{n > -1+ P(fi"(2)) # P(f2" (1))}

The separation time s(z,y) satisfies the following property: 7(x) and m(y) are in the
same connected component of M \ (So U T 1(Sp)) if s(z,y) > 0. In particular if
s(z,y) > 2n, then w(fR(z)) and 7(fR(y)) are in the same connected component of
M\ U;__, T7%(Sy). Since the atoms of the partition P are unions of stable curves,

6The idea of using the total ergodicity of T for constructing a new tower with g.c.d.(R) =1 was
suggested in [36, Section 4] and used in [32] for ensuring aperiodicity of the version of k on A. The
details of such a tower construction are contained in [26, Appendix B].
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this separation time has a direct correspondent 5(-, ) on the quotient tower A. Let
P be the transfer operator of (A, fxs ,uz), i.e. P is defined on L'(ux) by

A A

Let 8 € (ﬁli, 1) and close enough to 1. It follows from [36] and [7] that there exists
g’ > 0 such that, for all ¢ €]0,¢'[, P is quasicompact on the Banach space B = B,
corresponding to the set of functions of the form e** H, with H € By, where w(x, ) =/
and where By is the Banach space of bounded functions H : A — C that are Lipschitz
continuous with respect to the ultrametric 5°¢-) (the space B, corresponds to the space
B. when € = 0). The space B is then endowed with the norm || - ||z given by

|Hls = [le” H]|s, - (6.7)

Recall b, satisfies (6.6). Choose ¢ so that e € L’ (uz) which implies that B is
continuously embedded in L% (ux) since

[ o < [l pralle™ Hlloo < [1€%|l o | H [l - (6.8)

(This particular choice of b, will be used in the proof of Sublemma below.) Since
we assume that g.c.d.(R) = 1, 1 is the only (dominating) eigenvalue of modulus 1
of P, and it is simple and isolated in the spectrum of P. In particular, there exists
0 € (0,1) (depending on (3,¢)) such that

|P" =B, [Nzlles = O00"), asn— +oo. (6.9)

Let t € R, Recall that via [4, eq. (6.2) verified in Corollary 9.4],
Vor=UoR—+yofa—X, (6.10)
with U = (&, 7) : A — Z¢ x R, where 7 is the version of 7 = 7 — u(7) on A given by

?;:?ow—}—Z(TOﬂ'on—Toyro Z—lon)
n>1
and where Y = (0, xo) with 0 the null element of Z? and with
Xo ::Z(TOWOfZ—TOWOonf) :
n>0

By [, Proof of Lemma 8.3] (see also Section [B|) 7 is locally Lipschitz continuous (on
each atom of Young’s partition) with respect to the ultrametric 4°0), with y : A —
{0}¢ x R bounded and Lipschitz in the following sense:

sup sup IX(fR(2) = x(fX(»))]
k>1 zy:s(z,y)>2k Bk

< o0, (6.11)
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It follows from the coboundary equation (|6.10]) that

E, [V = E [e i) il o z<ffo>} .

pua
Let K : A — 72 be the version of % on A, i.e. the function such that K o7 = & o 7.
It follows from ) and - that the function © : A — R defined by

©:=U -7, with T:= (m(K),|K| - MKHKH) : (6.12)

is bounded and Lipschitz, and T is constant on partition elements (as & = mq(K)
corresponding to the cell change). Since both ¥ and Y have mean zero, E,.(©)=0.

We define the Fourier-perturbed operators P, P, € L(B) by Pv =
P )y), Pu = P(etDy) for ¢ € R, By [33] (which exploits [36, [7]), up to
enlarging the value of 6 € (0,1) appearing in (6.9), there exist 3, € (0, 7], a continu-
ous function ¢t — \; € C and two families of operators (I1;); and (U;); acting on B such
that ¢ ~ II, € L£(B, L'(A)) is continuous and such that, for every t € [—f,, Fo]?+?
and every positive integer n,

P = I, + U, P'= XTI, + U, (6.13)
with sup (HUt”HB + umg) —O@"), asn—+oo.  (6.14)
te[—Bo,60]¢

Set k = k,, := (logn)? and Fj,(z) := e T@)+x°/X@) - Observe that

Eu[ei@"ﬁ)] =E

ia [efi<ﬁ,xof£> it, \I/n>o7rofA€ <\f Xofn+k>]

i( - W, ) o
—E [F L T Tn onn}.
na k,—ﬁ k,ﬁ fA

We approximate Fy ,(x) by its conditional expectation ﬁku(m) = Fiu(7(z)) on the
set {y € A : s(w,y) > 2k}, where s is the separation time on A as recalled earlier in

this section. Since e*™¥) is bounded and Lipschitz on A and since e“*X) is bounded
and Lipschitz on A (in the sense of (6.11))), it follows that

7 \i—" Enl 7 7n T n
E,[e"" V)] = E. [ij_%e v >F,€,L o fz} +0(B")

as k,n — +oo. Furthermore ||F,|lc < 1 and P% ( k?\%) are uniformly (in k,n)
vn ’ n

Lipschitz with respect to Young’s ultrametric B0,

L(B,L'(A)),

Thus by continuity of ¢t — II; €

) n—2k Il 2k (T
E, [V = X (Bug [Pt | B [Pﬁ(F,m_ﬁ

D] +o() .

/n
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Observe that, for every t € R4+,

_t

due to the dominated convergence theorem (using the fact that limy_, o ¥y/k = 0
px-almost-surely). Analogously
_t_

vt e R B, [Pﬁ(Fk_%))} —E,, [e“ﬁ@ﬁ‘x)"fﬁ] = 140(1), asn — +oo.
vn ’ n

Thus

o

E,[e"" Vi) = A7 4 o(1) (6.15)
N

An important observation that will allow us to adapt the results of [29] to the present
context is that

P—D =P ((ez'(t,@ _ ei(t,T>) ) ~- P ((em,@) _ 1> > .

6.2 Regularity of the dominating eigenvalues and its spectral
projector

In this part, we prove that for ¢ € [1,2) chosen before ,
||Ht — HOHB%LQ(MK) and )\t =1- 10g(1/|t|)<t, Ed+1t> + O(tz) s

ast — 0. We do so, via the following several steps: we first establish in Sublemma [6.1
an equivalent of \; — 1, and we use it to establish in Sublemma the announced
estimate of |[Tl; — Ilo||5—1a(.y) that we finally use to establish in Sublemma [6.3| the
announced expansion of \;. B

To obtain such estimates, we will control the error between A; and A, and between
IT; and II;. Here we crucially exploit that T and xsatisfy similar properties. This
allows us to adapt some results obtained for x in [33], 29] with the use of [3].

We start by studying P, — P,. Observe that (¢ — 1). € £(B) is dominated by

¢i-® — 1|l . This implies that ‘ P,— P = O(]t]), and thus that
Bo L(B)

-

L= 00). (6.16)

In particular, the announced estimate on [|TI; — || 14(,.) Will follow from the same

estimate for Hﬁt — ﬁOHBan(px)-
Lemma [3.1] follows immediately from ([6.15]), combined with the continuity of
I; € L(B — L'(ux)) and from the first sublemma below.
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Sublemma 6.1 Ast — 0, 1— X\ ~ log(1/|t])(t, Xas1t), where gy is given by (6.5)).

Proof of Sublemma To study the expansion of ¢ — A, in both Sublemmas

and [6.3], we consider the elgenvectors vy, v; of respectively P, Pt associated with A;, )\t

i (1a) Ht(lA)

By (1a)] and v; = B (s and we will use the following expressions

given by v =

)‘t = E.“A [Pt<vt)] = EHA [€i<t7\p>vt] and Xt = EHA [é(at)] = ]EHA [6i<t7T>5t] )

Therefore
A= X =L(t)+ I(t), (6.17)
with
R(o)i= [ D=5 dug = [ (1= PG - u) dus.
A A
and

L(t) = /(6i<t7\1’> — NG, dp
A

As argue below, I1(t) and I5(t) are O(|t|*). Regarding I5, we first note that (et¥) —
). € L£(B) is dominated by the Lipschitz norm of (e’¥) — it 1)) = i1 (cit6)
1). It follows from the definitions of v, v; and((6.16)) that

|ve = Uellegy = O(t), ast—0.

Recall that B C Lb with b, > 2 fixed satisfting (6.6). Further, note that by (6.2),Y
and thus ¥ are in L? for any ¢ < 2. By the choice of b,, b, > ¢/(q — 1). Hence,

1L (1)) <[] / U1 [0: = vel dpy < [P 2ol = vell 2, < [t][0 = vells < £2.
Next, recalling the definition of © in (6.12)),

L(t) = / (4T (00— 1)T, dyug =I5 (1) + I2(0)
A

with
L(t) = it/ T OV dux, and I2(t) := / (T (O — 1 — itO)D, dyx .
A A

Now, since © is bounded,
28] < |t /A O[3l dyix < (1] [©]])? /A Bl dyix < |2,
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For I, write
)=t / ("1 O, dux +t / ("1 O (B — Do) dux
A A
= t/@d,uA—l— 15/(ei<t’T> — 1) O v dux + O(|t|?)
A A
=0+ O(|t]), ast—0,

where we have used that [ © dux = 0. Putting the above together, |I,(t)| < [t[>.
The bounds for I; and I, together with (6.17)) give that

A=N+O(t?), ast—0. (6.18)

It remains to show that 1 — ), has the desired asymptotic, using the form of T
in (6.12)). To this end we observe that

1= X =B, [l - B@)] =B (- DT = L0 + (), (6.19)

with

I (t) :z/(l—e“tm)'ﬁtduA and  I5(t) ::/(1 ") (T, — o) dpig -
A

A

Let us prove that I7(t) Recall equatlons and (6.2). For any L,w, N, write

Wn(L,w) := (mg(L + Nw), |L + Nw| — [|n|]) and compute that
= ) > (B _ 1 — it Wy(L,w))) p({k = L+ Nw})
(Lw)e€ N>1
1/1t]
= ) > (eI 1 — il Wh(L,w))) (L NP+ O(NT))
(Lyw)eE N=1

+O 1t > |w ) NNP
(

Lw)e& N>1/|t|

1/[t]
CrLw —
> TE {t, Wx(L,w))>’N~% + O(|t|*).
(Lyw)e€ N=1

Since (t, Wy (L, w))?N =3 = N=Ht, (mq(w), |lw|))? + O(|t|?)N7?),
L= Y = = log(1/[th{t, (ma(w), [w]))* + O(It*)
(Lyw)e&

— log(1/[t])(Sasit, £) + O(t]?). (6.20)
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For I(t), we just need to explain that the argument of [33] via [3], which provides
the asymptotic of the eigenvalue associated to perturbation by k instead of T as here,
goes through. The required ingredients in the argument of [33, 3] are: 1) tail of
and 2) the ’double probability’ estimate (5.6). Regarding 1), we already know the

tail of T: see equations (6.1)) and (6.2)). Regarding 2), an analogue of (5.6)), we recall
that we already know that this holds for k. Recall that (5.6 holds for k. Because of

the expression of T (via k), the arguments used in [33] Proofs of Propositions 11-12]
ensure that

px (Ayy) = O(N*79), as N = 400, (6.21)
where
Any = {Y =Wy(L,w), 3j| < Vlog(n+2), [To f/| > [Wy(L,v)**}.
Equations and together with [3, Proof of Theorem 3.4] ensure thatm

I(t) = o (|t]*log(1/]t])) , ast—0, (6.22)
The conclusion from this together with (6.18]), (6.19) and (/6.20)). n

In the reminder of this section, we prove a stronger version of Sublemma [6.1]
along with a strong continuity estimate on II;, that will be essential in the proofs of
Lemmas 3.2l and B.4] carried out in Section [7.

Recall that ¢ € [1,2) has been fixed at the beginning of the present section.

Sublemma 6.2

HHt - HOHBHLQ(N‘A) + HHt - HOHB‘)LQ(HZ) == O(t) as t —> 0 .
Proof Due to (6.16), it is enough to control ||II, — ﬁOHB ey We claim that with
— L4 HA

the choice of b, (see (6.6)) and  in the text before (6.8)), [29, Proposition 5.4] applies
to ensure that L
|11y (IT; — o) ||p—5, = O(|t]), ast—0. (6.23)

Using ((6.23)), we modify the proof of [29, Proposition 5.3] to conclude the proof of
the sublemma. Set my(x,¢) := x, recall that w(z, ) = ¢ and write (II; — IIp)(w)(x) =
ILt({IJ) + Ig’t<x> + 137,5(3;) with

La(z) == [(ei@,%u)(m(m)» _ 1)ﬁ0(w)}
L) i= [ Tew @ ([T, — Tlg) (w) (mo )|
Iy () = (A ) = 1) [ Xeto MO (w) (mo ()]

"More precisely, see Estimate of Ay (there) in the proof of [3, Proof of Theorem 3.4]. In particular,
see [3, Lemma 3.16 and 3.19]
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First,

1,1y = B [((ei@,Tw(.)(wo(.))) _ 1)>q] g
< HBpg [ Toy (moC D[] 0l

< ]t\qZE 1Yﬁ{R>n}‘T K ] HwHLl(n

n>0

<Y~ py (R > 0) TN Tl o 0l 1y < 1t N0lls, (624

n>0

taking p’ > 1 and ¢’ > 1 such that % + 4 =1 and ¢p < 2, and using the fact that
py(R > n) decreases exponentially fast Second it follows from (6.23)) that

q

q T _ I .
sl gy < || (T = Tho) () (o) )

< |1y (T = Tho) (w) 14, < [#1%[Jaw][ - (6.25)

Third, by Sublemma [6.1there exists some @’ > 0 such that, for ¢ small enough,

~ _ 1812 log(1/]¢])
1>\ >e* 2 ", andso

q]
/ n\t|210g<1/|t\>

< (11081 [T )" 3 o > mee

~ /\tl log(1/]t])
ngythLq(%) < HlyHt(’lU)H A —1"E, [w(.)e B (w()-1)

< ([tP1og(1/[tD]wls)" (6.26)

provided [t| is small enough, using again that py (R > n) decays exponentially fast in

n. The conclusion follows from (6.24]), (6.25)) and (/6.26]).

It remains to complete

Proof of the claim (6.23). Recall b, satisfies and that ¢ has been fixed
in the text before (6.8)); in particular, i + %1 < 1. There exists p € (2,b,) so that
%+% < 1. In particular, 1 < q’%l and so 27’771 > % > 1. Let v € (1,’%). Let
h € B. Note that h = vw, with w := e **h € By and with v := ¥ € L% constant on
partition elements.

With these choices, h,v,p,b = b,,~ satisfy the assumptions of [29, Proposition
5.4, Lemma C.2] which still holds true with the same proof in when replacing II;
therein by the present II, (this is equivalent to replacing & in [29] by the present V).
Again, this adaptation is possible because U is constant on partition elements and ¥
has a similar tail to that of & (again, see equations (6.1)) and (6.2))). (The similar tail
ensures, in particular, that . is as integrable as 7. ) As a consequence, |29, Proof
of Lemma C.2] goes through with % replaced by W. Moreover, because of the same
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properties of ¥ the proof of [29, Proposition 5.4] can be easily modified to prove the
claim (6.23)).
The adaptation of [29, Proposition 5.4] implies that

1Ly (I = o) (h)lse << [l Ly Ty () sy + £ (I lls + lle™ = hlls, 11l oo ) -

By [29, Lemma C.2] with & replaced by ¥,

(I Ty () s < Al + lle=Rlls, eIl 20 )
We conclude that
1y (T = o) ()18, << [#] (Al + lle™Rls, e 152) < [¢1]1ls

since ||e”*“h|| g, = ||h||5- |

Sublemma 6.3 Ast — 0, 1 — X\, = log(1/]t]){t, Lar1t) + O(|t]*).

Proof We keep the notations of the proof of Sublemma [6.1 It follows from

BI18), ©19) and G20) that 1 — A, = log(1/[t]){t, Sanrt) + I(t) + O(t2). The

proof that |I5(t)| = O(|t|?) follows exactly as in the proof of [29, Lemma 6.1] (replac-
ing everywhere g, P, I1;, v, A; therein by T, P, II;, v;, A; and following the proof line
by line). This is due to the fact that T satisfies the following properties (that are also

satisfied by ®): T is constant on partition elements, equations (6.2)), (6.22]) and ([5.6])
hold, and the estimate on II; stated in Sublemma holds. |

7 Proofs of joint MLLT (Lemmas (3.2 and 3.4

Let d € {0,1,2}. Compared to CLT, a specific property required to prove the MLLT
is the non-arithmeticity (or minimality), which is treated in the next lemma.

Lemma 7.1 For every proper closed subgroup I of Z¢ x R and for every a € Z¢ x R,

,u(lfijg—goT%'a—i—F) > 0.

Proof We adapt the proof of [10, Lemma A.3] to d+1-dimensional observable \/I\f, with
a slightly different presentation. Assume there exists a proper subgroup I' of Z¢ x R,
a measurable function g = (g1, ..., gg11) : M — Z¢ xR and a = (ay, ..., aq41) € ZT xR
such that ¥ + g—goTl €a+T p-almost surely.
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e Let us prove that we can find a family (vq,...,v441) of generators of I' of the
form
v; = (e, ;) fori=1,....d, wvgy1 :=(0,4:1),

where e; is the i-th vector of the canonical basis of R? and where 0 is the null
element of Z?. Let ay,...,aq € R be such that v; := (e;,;) € ' fori = 1,...,d.
Such numbers exist since the projection of I' on the first d coordinates generates
Z% (since it has been proved in [33] that x : M — Z¢ is non-arithmetic).

Observe that I' N ({0} x R) is a discrete subgroup of {0} x R. Indeed it is a
closed subgroup, and it cannot be {0} x R otherwise I' would be Z? x R, since

then any element (i, ...,al,;) of Z% x R could be rewritten <Zf:1 ag.vZ) +
(a’d+1 -4 a;ai) (0,1). Hence, I' N ({0} x R) is discrete and has the form
{0} X (ag417Z) for a non-negative real number agyq. Set vgyq := (0, q41) € T

Let us prove that (vi,...,vq41) generates the group I'. Let a' = (ai,...,a),,) €
I CZ'xR. Setw=d— Zfil a;v; = (0, ). By definition of o441, there exists
m € Z such that = mag, ;. Thus o’ € Zfill Zv;.

e Let us prove that there exist b, @ € R and two measurable functions ¢ : M — Z
and G : M — R such that (0 < G < min7) > 0 and

T—uwr)=b+ad+G—-GoT.
It follows from the previous item that there exists a measurable function ¢ =
(c1, ..., car1) : M — Z41 such that

d+1
\I/+g—goT:a+Zci.vi W= a.s.,
i=1
by taking ¢; = k; +g; — gio T — a; for i € {1,...,d} and
d
Ciy1 = (T — (T) + gas1 — gar1 0T — agy1 — Z ai-ci> Jeai1lay, 20 (7.1)

i=1

Thus
d+1
T —u(7) + Gay1 — gay1 0T = agy1 + Z Q;.C; .
i—1
Now we observe that kK = —kofoT and 7 = 70§ oT with ¢ the involution

T. T

mapping (¢, ) € 0 x [=%; 5] to (¢, —¢), so the previous identity composed
with £ o T' becomes

d+1

T_“(T)+9d+1OfoT—gdHOTOfOT:adH—i—Zai.c,-ogoT.
=1
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Therefore, by taking the average of the two previous identities, we obtain

an ci+ciokoTl
T_”(7—)+gd+1ogoT_ngrloTogoT:adHJrzai%.
i=1

But fori =1, ...,d,
ci+colol =g, —qgiolT —g;oloT +goToloT

is a coboundary, and so, due to (7.1)), ad+1w —(7—p(7) —agy1) is also

a coboundary. Thus we have proved the existence of two measurable functions
d: M —7Z and G : M — R such that

ad2+1.c’+G—GoT,i.e.T:r—l—%.cl—%G—GoT,

T —pu(7) = agq1 +

with 7 := u(7) 4+ agy1. The condition p(0 < G < minT) > 0 is obtained
up to adding a constant to G. The above identity would contradict the non-
aritmeticity of 7.

We follow exactly the second part of the proof of [10, Lemma A.3].

Set o := 24, For 0 > 0, we consider the set Cs of points y = ¢;(x) with z € M,
0<t<7(x)and [t — G(z)] <.

It follows from the previous item that the first return time ¢ to Cy takes its
values in rN + oZ. Indeed if y = ¢(z) € Cy with t = G(z) € (0;7(x)) and
0s(y) = ou(1"(2)) € Co, with u =t + s — 7,(z) = G(T"(2)) € (0,7(1"(x))),
then s = G(T"(x)) —t + 1, (z) = G(T"(x)) — G(x) + Tp(x) = nr + ac,.

We choose € > 0 so that r + e € aQ. Let b be the smallest positive element of
aZ + (r+¢e)Z, so that aZ + (r +¢)Z = bZ. Indeed, if r + ¢ = ok with p,q € Z,

q # 0, then aZ + (r +¢)Z = ¢ (¢Z + pZ) = VZ, with b := MQT#.

The first return time to C) = {(z,G(z)),z € M,G(z) < 7(z) + ¢} for the
suspension flow ¢ over (M, T') with roof function 7 + ¢ is in aZ + (r +¢)N C
bZ. Indeed, if y = ¢ (2) € C) with t = G(z) € (0;7(z) + &) and ¢ (y) =
¢ (T (x)) € C), with u =t + s — 7,(x) — ne = G(T"(x)) € (0, 7(T"(x)) + <),
then s = G(T"(x))—t+7,(z)+ne = G(T"(2))—G(2)+71,(x)+ne = nr+ac,+ne.
Thus, if § € (0,b/2), the return time of ¢ to C} (defined as C° but for ¢())
occur only at time ¢ at distance at most 26 of bZ, which contradicts the mixing of
#®). As explained in [10, Lemma A.2], the proof of the mixing of the suspension
flow ¢®) follows the same line as the mixing of the billiard flow established in [9,
Sections 6.10-6.11] thanks to the temporal distance (which remains unchanged
if we replace T by 7+ ¢).
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Proof of Lemma Let p > 2, G, H, h as in the assumptions of Lemma [3.2] To
prove MLLT, we will use estimates established in Section [6] We keep the notations of
this section with the couple (g, p,) being chosen so that ¢ € [1,2) such that % + é =1
and b, > p (this will imply that é + % <1).

On A and A, we keep the convention u,, := > /_ uo fk and @, := Y p_ @o f
for any u: A - R¥ and @ : A — R?.

For simplicity, we keep the notation G, H, U for the functions defined on A (instead
of M) given corresponding to Gor, Hom, Tor respectively. Since the functions G and
H are bounded and dynamically Holder continuous on M, the functions G and H are
also bounded and dynamically Holder on A in the following sense: up to increasing
the value of 5 € (0,1) in the Young Banach space B introduced in Section @, G and
H satisfy the following property

s(v,y) > 2k = |G(fA(2) = GUFAW)| < LeB", [H(fA(2) = H(fA(y)] < Lup" .

(7.2)
Recall that ¢ in the definition of Young’s Banach space B (see text before (6.8)) is so
that B is continuously embedded in L% (ux). Also, by Sublemma ,

T, — HOHB%LQ(HZ) =0(1).
With the above notations, we are led to the study of the following quantity:
E,.[G.h(U, — L)H o f2].

It follows from the Fourier inversion theorem that

1 —i(t,L\T it Ty n
W/EdXRe { >h(t)EHA [G€< >HOfA dt,

(7.3)

E,.[G.h(¥, — L)H o f}] =

with E(t) = pezd th(& z)eitt6o) dg.

e Step 1: Transition to the quotient
— Approximation. R
Recall, from ((6.10)) that Wom = WoT + x o fa — X, with ¥ = (&, 7) with

values in Z? x R uniformly locally Holder on each partition element, with
X bounded and dynamically Holder in the sense of (6.11)). Thus

S T TFhn — n+n n
B, [GeT H o f3] = B, [G o frret T oot ™ol o e o ]
_ E/LA < —i(t, \I/know)(Ge X>) on‘ei(t,anof>' ((H6i<t,x)) o fZ"ei(t’mnOﬁ)> o fg) )
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We approximate @(kn)(t) = e H kO™ (G X)) o fRn By G (k) (t) o with
Gay () o T 1= B, [e 86Tk (Gem i 0X)) o fhn|s( ) > 2k,]

and analogously ¢/“Ve. ™) (HeitX)) o fkn by [ (ka)(—1) O T

— Control of the error in this approximation.
Since G and H and e**X) are uniformly bounded and dynamically Holder
in the sense of ([7.2)) and (6.11)), it follows that

|G ®) = G 07| < CUGILl+La) 8. (74)
Therefore
B [G.e ¥ H o f3] —E, (Guen)(?f)-e“t’@> H,,y (1) 0 f%) ‘
< C'(1+ ) (IGsol H oo + Lul|Glloe + Ll Hloo) 55 .

Therefore
E,u[G.h(¥, — L)H o f2] (7.5)
1 o o
__ - —Z<t,L> 1/<t,\Iln> . 'n
(2m)d+1 /deR ¢ h(t)Ey <G(kn)(t)'e Hg,)(—t) 0 fA) dt
+ O (B (||Gllo| Hlloo + Lir||Glloo + L || H]0)) (7.6)

since [, (1 + [t]).[2(t)| dt < oo.

e Step 2: Use of the transfer operator of fx.

Due to (7.5)), we are led to the study of the integral in ¢t € R? of ﬁ(t) multiplied
by:

E“Z (G(kn)(t).e“t@").H(kn)(—t) o f%) = E”Z (H(kn)(—t).Ptn(G(kn)(t))) (77)
= By (Hi (1) PP (P (G (1)) -
We already know that ||H,\(—t)||» < [|[H||». Let m > 2. Let us prove that

there exists Cy > 0 such that, for every n > 3, t € R! and z,§ € A such that
5(z,y) > 0, the following inequalities holds true

| P (G () (2) = B (G (0) (@)] < Co(1+[E]) [P (|G ry (8)]) ()] (B;(;y)-
Indeed, we observe that .
| P (G g (1) (2) — B (Gl n>(t))(’tj)|

< ) e Gomen) @D it Fonin G O (G 1y ()Gt (2))
D (mkn)

_ Imkn (D (8)) it Vi, (D(mkn) (8)) (G k) () (D) ()]
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where the sum is taken over the inverse branches ¢y, of f%"k" and where g
satisfies
9@ — 9@| < [,e9® 3@ if 5(F,7) > 1. (7.9)

We conclude by noticing that

G () () (D) (T)) = G i) () (D) (U)) 5

since m > 2 and that

mkn—1

6i<t7@mkn(¢(mkn)(j))> _ €i<t§mkn(¢(mkn)(ﬂ))>‘ < WL@ Z ﬁg(i,ﬂ)ﬂ-mkn—j

j=0

< [HLgB @ /(1= p),  (7.10)
and

eImkn (B(mkn) (Z)) _ cGmkn (S(min) (7)) < eImhn (Pmkn) (@) |€9mkn (D(mkon) (D)= Imkn (D(min) (Z) _ 1‘

mkn—1
< eImhn ((b(mkn)(i‘))Lg Z ﬁg(f@-*‘mkn—j-ﬁ-l
§=0
. BE(@,@)H
< eImikn (P(min) ( ))Lg e (7_11)
due to ((7.9). This ends the proof of ([7.8)). Therefore
1P (1G oy Dl < 1P (1G oy Dl = O (1Glo0)
and
P25 (G )5 = O (1 + [ENN PP (|G k) 15)
= O ((1+ [t))[|P* (P (G )])) 1 5)
< O((1+ [t)(EL[IG]] + O0*(|Glx))) , (7.12)

where we used at the last line.

Step 3: Restriction to a neighbourhood of 0.

Let K > 0 be such that the support of g is contained in T¢ x [~ K, K]. Using
Sublemmal6.3] we consider by € (0; min(1, 5,)) (see (6.13), (6.14)) small enough
so that there exists a’ > 0 such that, for all ¢ € [—bg, b]*™!, the following holds
true

Pl =ML+ 007), A = e Zanttlos/Ih+00%) (7.13)
I, = B, []1x = O(|¢t]) in L((B, || - 8) = L (px)) (7.14)
0 S 6—2Ed+1t~tlog(l/|t|) S ‘)\tl § e—a’\t|2log(l/|t|)’ (715>
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and that Vy > z > by', 3(2z/y)° < log(z)/log(y) < 2(y/z)° (using for example
Karamata’s representation of slowly varying functions). This last condition
will imply that, for every n large enough (so that a, > b;') and for every

u € [—boay, boa,]tt, the following inequalities hold true
1
5 min([ul*, [u|™%) < log(an/|u])/log a, < 2max(|ul*, [u|™). (7.16)

Lemmal(7.1|ensures that the spectral radius of P, is smaller than 1 for every ¢ # 0.
This implies that there exists 0y € (0, 1) such that sup, <k [|[F7']] = O(0F)
(by upper semi-continuity of the spectral radius). Thus

/ e‘“t’“ﬁ(t)EuK (H o) (—1). P35 (P (G 1) (1)) dt‘ (7.17)
b0<‘t|oo<K
<lgl[: KO <‘933kn”H”LP ljulg \IIDE’“"(G(kn)(t))!IB) : (7.18)
<bo

since L? is continuously included in the dual of the Young space B. Thus, we
can focus on [—by, bg]?. It follows from (7.13)) and (7.14)) that, in L9(ux),

PP (B (Gl (1)) = X7 (B[P (G (0)] + O P (G (1)) ]8))
+O (0" (1 + DI (G (D))

and so

[ R (B [ (-2 (B Gy )] (7.19)

[_b07bo]d+1
By [Hiey (—8)] X B, [P (G (1)) dt (7.20)
=0 <||H||Lpa;d‘2 sup IIPt?"“’L(G(kn)(t))IIs) 7
|[t|<bo
since
/ ([t A" 3En 4 g3 (1 4 1¢])) dt < / |t|e= "1/ gt - O (9%)
[—b()7b()]d+1 [—bo,bo]d+1

n

< g-d-2 / e /e s/ gy, 4 O (9%)
[—boan,boan]dJrl

a/|u|2

< a—d—2/ |u|e—mlog(\an|/\u|) du+ O (9%)
[*boﬂn,boun]“l

n

S a;d—2/ |u|6_%‘u|2—e du+O (9%)
[—boan,boan]dt?

=0 (a,7?) (7.21)
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where we used (7.16)). Furthermore, it follows from the definition of H, that
Byg [H(kn)(_t)} = Eus (ei@jk"oﬂ(Hei(t’X)) © f?) (7.22)
= B, [H] + Okt | H 1) (7.23)

since y is uniformly bounded and H\TfanLq(u) < an\f’HLq(”) since ¢ < 2. More-
over, due to (7.4)), for all t € [—bg; by]¢ T,

B, [P¥ (G (D)] = Epoa [P0 @) o fo] 4 O(8H)
—E, [G] + O (#Gl| + t1¥ar, Gl -

Combining this last two estimates with ([7.19)) via (7.21)), we infer that

/[_b i eI R (1) (B [Hipo) (=) PP (PP (G1oy(1)))] = Epn [H] Epuy [G]) Ap 0 dt

~ . —1 -~ o
By [Gh(T, — L)H o £3] — 0,50 B,y (H)E,u () [ e Rt a2 e

=0 (a;H [HHHm sup || B (G, () |5 + kul|Glla [ H o + [H |22 [ Wor, -Gl )

|t|<bo

It follows from this last estimate combined with ((7.5)) and ([7.7]) that

t/an
[_bOanybOan]dJrl
(7.24)
=0 (MHGHHOM.||H|yHolder +a, " [HHHM sup | P (G iy () |15
<bo
(7.25)
Fhall Gl [ H 2o + | E | B2k, Glng | ) (7.26)

Thus, due to (7.12), The above formula ([7.24)) is bounded by
O (mx(3. )" Gl ttaer-1H ot + 072 [ |G 1B -+ 1 | Gl )

It remains to estimate
/ o (LY (¢/ an)A?/;?”“" dt.
[—boan,boan|d+1 "

To this end, let us notice that, due to (7.16)), for t € [—a,bg, a,bo]?,

_ o a3 Faritt) (log(an/\tl))+0(n\tl2/ai)eo(%n max(|t|2€,|¢|2+<))

n—3kn _ \n—3kn \ —3kn
At/un - At/an t/an 3k,

(7.27)

o toneny (Sas1tt) (log o —log([t])+O(max(Jt2=<,¢[+)/ log )

_ 6_%<Ed+1t:t> (1_1125(\11) + O o a min(|t|22_ey\t\2+e) maX(’tP_s, ‘t’2+6) '
logn

o2



Therefore, since h is Lipschitz continuous and writing [ﬁ] Lip for its Lipschitz
constant, it follows that

—ian (6, L) n—3kn,
/[ K Rt fan) Ny dt

:/ e_ia;1<taL> </]:L(0) + O(t/an)> 6_%<Ed+1t’t>(1 1|t|<b0un log(a7l))> dt + O h(o)
Rd+1 logn

~ - 1 1
:h(O)/ e—zanl(t,L)e—%(Z‘d_‘_lt,t) <1 + \t|<2boan <E +1t t> 0g(| |)
Ra+1

(logn)?

N (7] Lz’p)
ap

logn an

log(|t 4 N R .
+O <1|t|<boan max <1 e2<2d+ 1604, (‘ |>> M)) dt + O <h<0) + [h]L1p> :

where we used €® = 1+ z + O(max(1, e”)x?). Thus

_ia;1<t7L>/],; t/a )\TL 3kn dt = (£) / B d\ + O h(O) +
/{_boamboan]dﬂe (/ n) t/an gd+1 o, . d+1 logn

(7.28)
") z,2)
ith — e 3Fapiz)
Wi 9d+1(2) [m) et Syry
This ends the proof of Lemma |

Proof of Lemma Let Ay, By C M be measurable sets such that pu(0A4g) =
w(@By) = 0. Let K C Z x R be a bounded set with Az11(0K) = 0 (boundary in
Z2xR) and let z € R4 and (2,), be a sequence of Z? x R such that lim,, ;o 2,/an =
z. Let us prove that

lim ai*p (Ao NT™"(Bo) N {Wn(x) € 2, + K}> = ga+1(2)(Ao)p(Bo) Ag+1(K) -

n—-+o0o

(7.29)
We will approximate Ay and By by A and B respectively, where A, (resp. A)
is the union of all connected components of M \ ka - T7*(8y) contained in (resp.

intersecting) Ao with m,, — +o0o, analogously with B with respect to By. Since the
diameter of these connected components is smaller than C'¥" for some C' > 0 and
some ¥ € (0,1) and since u(0Ag) = pu(9By) = 0, we conclude that pu(Af \ A,) and
(B \ B;,) vanishes as n — +o0o. Consider h as in Lemma [3.2] taking nonnegative
values. We set

M, (A, B) := "B, [14.h(V,, — 2,). 17n(p)]

and
M(A, B) = (A)(B)ganr (2) / hdhass

Z4 xR

23
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Since h > 0, these two quantities are increasing in A and in B. Thus

It then follows from Lemma applied to 1,+,15- since these observables are dy-
namically Holder and since a,, ~ a,, that, for all m > 1,

(A (By) — 1AL (BE) g (2) /

ZaxR

S hminf mn(Ao, Bo) - m(Ao, Bo) s
n——+0o0
from which we conclude that liminf,,_, . 9, (Aq, Bo) — M(Ag, By) > 0, we proceed
analogously with the lim sup exchanging exponents + and —, and we conclude that

hr_{l mn(Ao, BQ) == m(A(]’ BQ) == 0, (730)
n—-+0o

and extend this to the case of complex valued function g. Consider the function H
appearing in (2.10)). Let § = 1/L > 0, where L is an integer such that L > 2||Ho||o
and K C (=L + 2||Hol|oo, L — 2[[Hol|oo)* X (=2, 2F). Let us consider the family of
functions (gse : R¥! — C), given by

gs0(x) = " hs(x), (7.31)

1—cos(dzq41)

with hs @ (21, ..2441) — QL 1)misl. 13y, |g|<r (using the density of Polya’s distri-

iy kit
bution). The Fourier transform of gsp ist — >, o1 e(zu;if)t max(0, 1 —|(tg41+

)/d]). The above convergence result ((7.30) with h = gs for all # implies the conver-
gence in distribution of (m,,), to m (since it ensures the convergence of characteristic

functions), where m,, has density T, h“( G — with respect to the image

measure of ™11 AoNT—n Byt by \Tln — zp, and where m is the probability measure with
density hs/gar1(z) with respect to ggy1(2)Agq1. Thus, since K C (=L, L)?x (=2, 2F),

the previous distribution convergence implies that lim,_, o [, % dm, = [, h—lé dm, i.c.

altly (AO, U, — 2z, € K, T‘”(BO)>

lim = = Aat1(K),
norteo a#lEﬂ[leﬂT*"(Bo)hM\Ijn - Zn)]
and so, using again for the denominator,
ajll“,u (A(), \/I\]n — Zn € K, T—n(B()))
lim = Agp1(K).
T G A B o

This ends the proof of pointwise MLLT for W, (7.29).
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It remains to prove the uniformity in the convergence results. Assume that
does not converge to 0 uniformly in 2 € Z?xR : |z| < La,, as n — +o00. Then, there
would exist a sequence (z,), in Z¢ x R such that |2,| < La,, a sequence of integers
m(n) and a real number 1 > 0 such that

n = z
Vn 2 Ng, az+lu (AO NnT (Bo) N {\Ijn € zp, + K}) — gd+1 (a—) /’L(AO)/"L(BO))\d+1(K) > .
This ends the proof of Lemma |

A Proof of joint LLD (Lemma (3.5

In this appendix, we prove Lemma The proof is very similar to that of [21]
except that the function U is not constant on partition elements. For completness,
we explain in this appendix which adaptations have to be done to [21] to prove our
joint LLD estimate stated in Lemma [3.5]
We recall that optimal LLD for the cell change s (and so for the flight function V/,
due to (2.10])), have been obtained in [21]. More precisely, by [21, Theorem 1.1 and
Remark 1.2], for any h > 0, there exists C' > 0 so that u(V, € B(z,h))) < CJz i(f‘m,
for any n > 1 and z € R%. Here B(x,h) denotes an open ball in R? of radius h
centered at x. Similarly, u(k, = N) < C Z j‘f‘m for all N € Z% and all n > 1.

The proof of LLD for « in [21] relies strongly on the fact that k goes to the quotient
Young tower and that % is constant on partition elements of the partition P for the

Young tower A (as recalled in Section @ the statement on V follows 1mmed1ately

since, up to up a bounded coboundary, V is the same as k. Due to (6.10)), T o T
can be written as U o 7@ = (&,7) o 7@ plus a bounded coboundary. Thus, LLD for U
will follow from LLD for ¥. The function 7, and thus V¥, is not constant on partition
elements. However, as argued below, the argument in [21] goes through to provide
LLD as in Lemma [3.5/ for ¥ (and thus W).

Throughout this sectlon, let d € {0,1,2} and U C R*"! be an open ball, as in the
statement of Lemma To avoid a clash of notation below, the z in the statement
of Lemma will be replaced by x. More precisely, here we shall prove that, for any
bounded set U C R4,

n_(log]z)
a1 Jaf

w(, ez +U) < uniformly in n > 1, z € R | (A.1)

As recalled in [2I, Remark 1.3], the LLD in the range |z| < a,, follows from the
involved LLT, while the range |z| > a, requires serious work.
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1.1 The range |z| < a,

It follows from the LLT estimate given in Lemma that u(U, € B(z,h)) <
a7l < T lfigp'cT?H . where the first inequality holds true uniformly in n > 1,z € R%*!

and where the second one holds true for n > 1 and z € R? such that |z| < a,.

2 . . . . — .
Indeed t — |10th as limit +o0o0 as ¢ — +o00, has derivative ¢ — m‘)gt—tl and so is
. . 1 . 2
increasing on [ez, +o0o[. Thus, for n large enough, if |z| < a,, then |l(|)z|‘$” < |102a =
n
2nlogn
logn+loglogn *

1.2 The range n < log |z

In this range we proceed similarly to |21, Lemma 3.1] obtain

Lemma A.1 For any €, > 0 and any q¢ > 1, there exists Cy > 0 so that, for every
z € R™! and every n > 1 such that e;n < log ||, p(V, € x4+ U) < %

Proof There exists xy such that if |z| > x, then |z| > 2(d1am(U) + ¢ ' log |z)).
There exists a constant C; such that u(\ll cx+U) < q| T for all z,n such that
ein < log|x| < logxy. It remains to treat the case |x| > . One can observe that
the proof of [2I, Lemma 3.1] only uses the fact that |k|« takes integer values, that
1(|kloe = ) < p® as & — 400 and that ju(|k|e = p, [Kleo 0 T > cp3) < p3 3,
These properties are also satisfied by (k, |7|). Thus, for every ¢ > 1, there exists
Cy > 0 such that, for all y € R and all n > 1 such that en <log|y|, u((kn, (|T])n) =

C//
y) < WZ;IQ and so

cr e
: d+1
n‘l|;|2 < (n+1)(diam(U) + 1)“"' —L

p(V, ex+U) < Z

iz
YE(a-+U+{0} X[m0 NZA+!
since y in the first sum above satisfies

log |z|
€

ly| > |z| — diam(U) —n > |z| — diam(U) — > |z|/2.

We conclude by taking e.g. Cy := max (C7,8CY  (diam(U) +1)). n

1.3 The range a, < |z| < e“" for a particular ¢

This €; is to be fixed so that it matches with the choice of ¢; in [2I, Proposition
6.2]. As we shall explain below, it does not play a role in the current argument, but
see (A.4)) for a particular choice.
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Since U o 7 is equal to W o 7 plus a bounded coboundary, the desired LLD (A1)
for U will follow from LLD for 0. So, in this range, we focus on LLD estimates for .
As clarified in Appendix , ¥ is uniformly Lipschitz on Young’s partition elements.

We work in the set up of Section [6] As in Section [6, for simplicity, we assume
thatff the g.c.d. of R is 1.

Set § = by/4 with by € (0, min(1, 5y)) (with Sy introduced before (6.13))) and such
that there is a constant ¢ > 0 such thatf]

VEERY, [t <by = || <e Pl with L(t) = log([t| ") = |log |t||. (A.2)

Using (6.13) and (6.14)), we consider a function r : R*™™ — C is C? with suppr C
[—bo, bo]4*! such tha

p(V, €x+U) < / e ()PP dt = Ay + O(07), (A.3)
[—5,6)d+1

with
Apy = / e BT (AP dit .
[_676]d+1

The desired LLD (A.1)) in this range will follow from (A.3]) together with the following
estimates on \; and II;. The following result corresponds to the hardest estimate in
the set-up of [2I]. Let 9; = 9, for j =1,...,d+ 1. For t,h € R™! b > 0, set

My(t, 1) = [BILy {1+ L P L + B P00 L2 1112}

Lemma A.2 Analogue of [21, Lemma 4.1]. Let j € {1,...,d}. The mapst — N\
and t — 11, : By — L' are C* on [—by, by|***.
Furthermore, there exist C > 0 and b > 0 such that for all t,h € [—bg, bo]¢ T,

|0jAiqn — O M| < CMy(t, h), 1051045 — 0510t gysr < CMy(2, h).

In [21], we obtained the same formula for My (¢, h), while working with x € Z¢ instead
U € R, Given Lemma in the range a,, < |z| < 1" for

e1:=¢/b (A.4)

with b > 0 is as in Lemma and ¢ > 0 as in (A.2), the desired LLD for ¥
(as in (A.1) with ¥ instead of W) follows word for word as in [21, Section 6 via
Corollary 4.3] (written for k). Indeed, the proofs therein just use the statement of

Lemma , (A.2) and the fact that a,, = v/nlogn.

8This assumption is not essential. One could, as in [2I] work without, but in that case
becomes slightly more complicated as there exists no longer a simple isolated eigenvalue at 1, but
finitely many eigenvalues of finite multiplicity.

9The existence of such a couple (b, ¢) comes from Sublemma

0The existence of such an r is guarantied by a classical smoothing argument; see, for instance, [24}
Footnote 1])
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1.4 Proof of Lemma [A.2l

We follow the proofs of [21]. We focus on the changes that are needed since V¥ is not
constant on the atoms of the Young partition. We will indicate which part of proofs
of [21] can be followed line by line. Throughout this section let Q : L'(Y) — L'(Y)
be the transfer operator corresponding to the Gibbs-Markov map F : Y — Y (the
base map of the quotient tower (A, fx)). We recall that R is the return time of fx
to Y, so that F(-) = fKR(')(-). The proof of 21, Lemma 4.1] of which Lemma |A.2|is
an analogue (in the set up of Lemma starts from the following renewal equation

P(z,t) =" 2"PP = A(z, )T (2,0)B(2,t) + E(2,t), 2 € C,|2| < 1,t € [=dy, 6]
n>0
(A.5)
where the operators A, T, B, E and d§y > 0 are to be defined /specified in the subsec-
tions to follow. In particular T" will be given by

T(zt)=(I—Q(z,1)7",

with
@(z, t):=Q <zR(')ei<t§R>-) = Z 2"Q) (1{R:n}ei<t§">~> , (A.6)
n>1

where we write Wy for the function defined by

o R(y)—l_
Yy ey, Unyy) = Y, T(yk).

k=0

Following the approach in [2I], the proof of Lemma consists in using (A.5)) to
clarify that

M= (g0(t)™

where t — go(t) is continuous, satisfies go(0) = 1 and is such that 1 is the dominating
eigenvalue of Q(go(t),t) and that

-~ ~

I = A A(go(t), 1)70(t) B(go(), 1)

where 7o(t) is such that H(z,¢) := T(z,t) — (go(t) — z)"'7(t) is analytic in 2. As
in [?], the regularity (in terms of M,) of the derivatives of A (stated in Lemma
will follow, via the use of the implicit function theorem, from the study of @ (z,t) for
z close to 1, and from the properties satisfied by W. The analogous property for II
will follow from the properties satisfied by A = 1/go and also from the study of the
derivatives in t of /Al, f é, E for z close to 1.
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1.4.1 Renewal operators

Throughout, we write « for the partition corresponding the Gibbs Markov map
(F,Y,a, jiy). Also, let s'(y,y') be the usual separation time of points y,y’ € Y (see,
for instance, [21], Section 2] for definition) and for 3 € (0,1), let ds(y,y') := 35 @Y.
Let Bi(Y) be the Banach space of bounded observables v : Y — R Lipschitz with
respect to the metric dg. It follows from the fact that R has exponential tail prob-
ability that ps-(|¥|g > n) = O(n~2) as u(|¥] > n) (see e.g. [29, Section 2] for this
argument).

Proposition A.3 There exists Cg > 0 such that
R(a)—1
Vaca, Vyyea, Y [U(y,)=U(y 0] < Cyds(y.y).
=0

Proof Recall that U is-Lipschitz with respect to Young’s metric 5°(). Let us write
C/i for its Lipschitz constant. Thus, for a € « and vy, ' € a,

R(a)—1
Cry) — Cry) < > [W(y,0) — B, 0)
/=0
R(a)—1
< CL BR(G)*Z+§(ZJ Y) < (deg(y,y’)
=~ U — 1 _ /8 ?
=0
since §'(y,y') < 5(y,y') — R(a) + 1. u

Recall that

Q(u)(y) = &(ya)u(va) (A7)

acx

where y, is the preimage of y under F' that belongs to a, and with £ = e with
gr(y) == kRi%)fl g(y, k) where g satisfies ((7.9)). Thus

0 <&(ya) = ™) < Cpg(a),  [€(ya) — EWL)| < Crs(a)ds(y,y)),  (AR)

for all y,y' € Y, a € a, where we define gp as we have defined ¥y considering the
function ¢ instead of .

The next result extends [21, Proposition 5.1] which was stated, in the context therein,
for a function u constant on elements of a (for which the local Lipschitz constant K,
is null).

Proposition A.4 There exists C' > 0 such that

1@ g, 7y < Cllful + Kull 21 ugy) 5
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for every u € LY(Y) such that K, € L*(us-) with

K,(z) :== sup —|U(y;8/(—y1;§y ) .

y,y'€a

Ya € w1, Vx € a,

In particular, for allv € By(Y) (set of Lipschitz functions on'Y ),

1Q(wv)llg, 7y < Cllluv] + Kuoll i ug) < Clllul + Kullo o [0l 5, 7 - (A.9)

Proof of Proposition Let 4,4 € Y. For a € a, we write y,,7/, € a for the
respective preimages of y,y" under F. It follows from (A.7) and from the first part

of (A.8) that

Q)] <> pyla ) sup ful < Jllul + Kullpa ) -

acx

since, for all y,z € a € a, |u(y)| < |u(z)| + K. ().
Next, let a € a and y,y' € a, using the second part of (A.8)), we obtain

|Q(u)(y) — VI <D wv(a) [u(ya) — ulys)|

aco
< Z pis-(a a)p° "(Ya:ya)
aco
< Z py(a 58’(2; ')
acx
which ends the proof. |

For z € C with |z] <1 and ¢ € R, the operator @(z, t) formally defined in ({A.6])
defines an operator on L'(uy) and can be decomposed in Q(z,t) = > 07 2"Qyn,
where we set

Qt,n = Q (1{R:n}ei<t7aR>'> .

The next result replaces [21, Proposition 5.2]. The conclusion is the same, but, in
our context, we have to deal with K, so we include entirely its proof.

Proposition A.5 There exists o9 > 0 such that, regarded a functions with values in
the set of continuous linear operators on By(Y'),

(a) z— Q(z,1) is analytic on By.s,(0) for all t € RY;
(b) (z,t) — (05Q)(2,1) is C* on Byys,(0) x RY for k =0,1,2;

(d) z+— (@@)(z,t) is Ct on Byys,(0) uniformly int € B1(0) forj =1,....d.
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Proof It suffices to show that there exist a > 0, C' > 0 such that
1Qenllg, ) < CUt+De™,  [|0;Quallp, i) < C(Jt] + L)e ",

forall t € RY j = 1,...,d, n > 1. Since R is constant on partition elements, it
follows from Proposition [A.4|(a) that

||Qt,n||5(31(?)) < Hl{R:n}(l + Kei“@m)HLl(H?) )

and that

iQ (1{R:n} @R%ew’w) H

< Hl{R:n} <’ER‘ + K(ER)jei(t,ﬁR)) ’

10;Qx, ”c(Bl(Y)) LB1(Y))

L' (uy)

But it follows from Proposition that K .5, < Cglt| and that

@)oo < Cg(l+ [HTg]). (A.10)

Therefore
1Qenll s, 57y < (L + [ty (R =n),

and
Hant,an(Bl(?)) < (1 + |tD Hl{R:n}(l + |\I’RDHL1(#7) )

We complete the proof by noticing that, since ¥ € L"(Y) ) for all 7 < 2 and R has
exponential tails, there exists a > 0 such that ||1{p—n}(1 + Vp)||; < e™*". |

For z € C with |z| <1 and t € R?, define
Az t) 1 LNY) = L'D), Az, t)(v) =Y 2" Aga(v)

where Ay, (v)(y,0) = Ly=n) P/ (v)(y, £) = 1{g:n}ei<t’an(y’0)>v(y).

Proposition A.6 There exists d0g > 0 such that regarded as functions with values in
the set of continuous linear operators from L>=(Y) to L'(A),

(a) = A(z,t) is analytic on By, t € RY:

(b) (z,t) — (9.A)(z,t) is C* on Byys,(0) x RY.

Proof The proof goes word for word as |21, Proof of Proposition 5.3] since it just
uses the Holder inequality combined with the fact that [[1z>,Vr| 1157 decays expo-
nentially fast in n as n — +oo0. |
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For z € C with |z| < 1 and t € R?, define
B(z,t) : LN(A) — LMY, ZZNBM

where
Bin(v) = 1yP(1p,v),  Dn={(y,R(y) —n):y €Y, R(y) > n}.

Proposition A.7 There exists &g > 0 such that regarded a functions with values in
the set of continuous linear operators from By to Bi(Y),

(a) =+ B(z,t) is analytic on By,s,(0) for all t € RY;
(b) (z,t) — (8.B)(z,t) is C* on By 5(0) x R%,

The proof is analogous to the one of |21, Proposition 5.4], but, again, we have have
to deal with the presence of K, in Proposition [A.4l So we detail this proof.

Proof of Proposition We observe that By, v = Q(1{g>n}vs,) Where
Vin(y) i= I WEO Ty, R(y) —n).
Since R is constant on partition elements, it follows from Proposition that
1B,y < iRl + Kooy < (114 DLl (A1)

and
19, B (0)ll3, 5y < Loy (0500] + Koo 1o (A12)

But on {R > n},
Ky, < Q+[tCPvls, and Ko, < |V|rKy,, + Cgllvll, (A.13)

where Cy is the constant appearing in Proposition . Indeed, for any a € a and
any v,y € a, writing [v]g, for the Lipschitz constant of v and using the fact that

5((y, R(a) —n), (y', R(a) —n)) =35((F(y),0), (F(y),0)) +n > s'(F(y), F(y')) +n
s'(y,y) +n—12>5(y,y),

we observe that
e BT RW=) gy (g R(y) — n) — O RW)=)y(yf R(y) — n)
< (|t1CF V]l + [v]5,) B,
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which ends the proof of the first part of (A.13)). The second comes from the stan-
dard bound of the Lipschitz constant of a product. It follows from (A.11)), (A.12)

and (A.13]) that
| Bea()ll g, 57 < (L4 [ED L rony 22 s 10130

and
10; Bin ()|l g, 7 < (1 +[2]) Hl{R>n}|‘I’|RHL1(W) V][5 -

The result follows from the fact that ps-(R > n) decays exponentially fast in n as
n — +oo and from the fact that |U|p is L>~¢ for any € > 0. n

For z € C with |z| <1 and t € R¢, define
E(z,t): By —» L'(R),  E(zt)(v) =Y 2"Eya(v)
n=1

where Ey,(v)(y,0) = Lysny PP (V) (y, £).

Proposition A.8 There exists o9 > 0 such that regarded as operators from By to
L'(A),

(a) z+— E(z,t) is analytic on By,s,(0) for all t € Re;

(b) (z,t) — E(z,1) is C° on Byys,(0) x R

Proof The proof goes word for word as [?, Proof of Proposition 5.5] since it just uses
the Holder inequality combined with the fact that || R1gsy|| 1) decays exponentially
fast in n as n — +o0. n

1.4.2 Further estimates

The results contained in this subsection are the analogue of [21, Proposition 5.6-
5.9]. Since, we will have to deal with K, coming from , some modifications are
required in these proofs. We detail the parts corresponding to these modifications
and indicate which parts of the proofs of [21] remains the same.

Proposition A.9 There exist C >0, 9 > 0 and b > 0 such that
10;0-Q(z,t + h) = 9;0.Q(2,1) s, 7y < CIALE{1+ B2 Ly (2] = 1)},

for allt,h € Bs,(0), all z€ C with 1 < |z| <1+, and all j =1,...,d.
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Proof We observe that
9;0.Q(z,t + h)(v) — 9;0.Q(z,t)(v) = iQ (wen RZ"'0)) |

with wyy, = (Up);eltVr) <ei<h§R> — 1). It follows from Propositions |A.4] and |A.3
that

10;0.Q(z, )| 5,7

< in!z\”_l

n=1
oo

< Zn|z\”_1
n=1

Indeed, for all partition element a and for all y,y’ € a,

oy (Tale ™ = 1) + Ky, )|

LMy

acn) ([Ta(e ™ = 1|1+ (1+t)Cy) + Cylh] (Tal + Ca) )

)

L(py)

wen(y) — wen(y')]
< | @), T — (Tay))ye T

ei(h,@R(y» _ 1‘ + ‘@R(y/)’ ‘ei<h,ER(y)> _ ez’(h,@R(@/’))‘

< Cy(L+[t)[ Tl 8”0

e Vr(y)) _ 1‘ + |h) |@R(y/>‘ 0358’(1/,1/’) ’

due to (A.10)) and Proposition ; this gives the required domination of Ky, ,. Thus,
we have proved that

1030-QCz, )l g )y < || (TR0 = 1)) 4 |RI(1+ [Tal)) R

L (py)

< (|||@Rmm(|hy [Tl DR, )+ \h\) . (A14)
provided § is small enough since Uy € L*7¢ for all ¢ € (0,2) and since ps=(R > n)
decays exponentially fast in n as n — +oo. It remains to estimate the first term of

the right hand side of (A.14). For any x € Y, let us write 9 (z) for the supremum of
the upper integer part of |¥|z on the partition atom containing x. Then

| %]z min(|h| [¥|, 1)RzRHL1(u7) < ||v min(|h| 4, 1)RzRHL1(M?) (A.15)

provided ¢ is small enough. But

[ min([a] &, DRy, < Y T

m,n=1
where

Tmn = Py (¥ = m, R = n)mnmin{|h|m, 1}|z|". (A.16)
The rest of the proof then follows the same lines as [21, Proposition 5.6]. |
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Remark A.10 Similarly to [2I, Remark 5.7], a simplified version of the argument
used in the proof of Propostion (only for the derivative in j) gives

10,Q(z.t + 1) = ,Q(=. )|, 7y < CIAILa{1+ BT F Ly (1] = 1)}
Proposition A.11 There exist C' >0, § > 0 and b > 0 such that
||8jA\(Z,t+ h) — 0, A(z s, 7)o@ < Clh|Lp{1 + |h|” blogl2I T, (|2] — 1)},
for allt,h € Bs(0), all z € C with 1 < |z| <146, and all j=1,...,d.

Proof We have
(A(z, ZZ Ly’ nw0)y(y) = 2Lty (y),

for ¢ = 0,...,R(y) — 1. Hence we can proceed as in the proof of Proposition [A.9]
except that there is one less factor of n (and so one less factor of Ly). n

Proposition A.12 There exist C' >0, d > 0 and b > 0 such that
10;B(z,t + h) = 0;B(2. D)y, < CIAILI{L+ B F Ly (|2] = 1)},
for allt,h € Bs(0), all z € C with 1 < |z| <146, and all j=1,...,d,
Proof Let v € By. In the notation of Proposition [A.7]
0iB(z,t+ h)(v) = 9;B(2,t)(v) =i Y 2"Q(Lirsny (Ojnn — Ojvrn)) (A7)
n>1

with o
Vinly) = eI EO T (y R(y) —n).
Therefore

0yttsnn=0tn = (Tl ) = e O (0T LEO) 1) (e R()—).

(A.18)
It follows from Proposition that

HQ(]-{R>n}ajvt+h,n - ajvtn HB < H]-{R>n} (|a Vt+hn — ajvt,n)l + Kaij_h,n— jvt,n) HLl(,uv) .
(A.19)
We proceed as in the proof of Proposition [A.9] It follows from (A.18) that

0]l -
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Furthermore, due to Proposition [A.3] for all @ € 7 and all y,y’ € q,

|(Ojveshin = Oj0en) (y) — (OjVeshn — Ojen) (Y]
< FE) HlR”‘ (1+ [To(-, R(-) = n)]|) <€i<h,w~,R<~>—n)> _ 1>‘

+ |18 C 1o (T (- RC) = 1)) 10l

This combined with (A.19)) and (A.20]) ensures that

1+ Cy
oy (1 Ol

1Q(Lr>n0jVtinm — Ojvtn) | 5, (7

< Hl{R>"}(1 FT (L RE) =) (TR0 1) HL1< el + (Al
Hy

< |[Lmsnp min((] D] 1, T0lls, + 1AVl - (A.21)
But
>l psmy min(hl )| 1,y = Y #y(e =m, R = njmmin{|hlm, 1}|2[",
n>1 m,n>1

which can be estimated as in the proof of Proposition[A.9 We conclude by combining
this estimate with (A.17)) and (A.21]). |

The rest of the proofs of [21] (corresponding to Section 5.2 therein that provide
all the required spectral properties for Q(z,t)) go through unchanged.

B Smoothness of 7 and y

Recall that A C A, Using the fact that Tom = 7o fa on A, and that fx = 7o fa
on A, 7 and yq defined in Section @ can be rewritten as follows

?::?OW+Z(70T"OW—ToT”_loﬂoﬁofA) on A

n>1

and
XU::ZXO,TH WithX(]’n::<TOTTLO7T_TOT”O7TO%> OHA.

n>0

First, observe that, for every z € A, w(x) and 7(7(z)) are in the same stable manifold,

thus d(T™(w(z)), T™(w(7(x)))) < C1 87, and so
Ve € A, [xoa| < 20187 (B.1)

Analogously, for all z € A,

(T (n(2))) = 7(T" " (w(@(fa(2)))] = [7(T" (7 (fal2)) = (T (7 (7 ( fa(

< 200877
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This ensures that xo and 7 are well defined and we have proved the identity

7~_O7T—X0+XoofAZ?Oﬂoﬁ—i—z(ToT”'Howoﬁ—ToT”Oﬂ'oﬁofA):Toﬁ
n>0
since To fa = fxoT.
For any z,y € A such that 5(x,y) = N > 2k, then TV (7w(x)) and TV (7 (y))

are in a same unstable manifold and the same holds true for TV ~1(7(fa(z))) and
TN (7T (fa(y))). This implies that, for every n = 0,..., N, d(T"(w(x)), T"(7(y))) <

CLBY and d(T" (x(7(fa(9))), " (x(7 ([ (@)))) < CLY "L Therefore

7(z) = 7(y)| < F(r(z) = F(x@W)|+2 > |roTlor—70T" 'oroTo fal
n>[3(z,y)/2]+1
[3(%,y)/2]

+ Z ©))) = 7(T"(n(y)) = [r(T" (@ (fa(2))))) = 7(T" (7 (7(fa(y)))))]]

[5(z,y)/2]
<2(g a2 Y pre2 doger !
n>[5(zy)/2]+1 n=1

s@.y) ~1

Now, let us prove that xq satisfies

Xo(fA(2)) = xo(FA())

sup  sup - < 00.
k>1 x,y:s(z,y)>2k B

Observe that

XOOfKZZXO,nOfZa and xon 0 fh =T70T" ™ oqr —70T"omoTo fi. (B.4)

n>0
Let z,y € A be such that s(z,y) = N > 2k.

e for n > k/2, we observe that it follows from (B.1)) that

X0 (fA(2)) = X0 (FAW))] < 2lIX0mloc < 4C157 . (B.5)

e for n = 0,...,k/2, we observe that 7(z),7(7(x)) are in a same sta-
ble manifold, 7(y),n(7(y)) are also in a same stable manifold, and that
TN (r(7(x)), TN (7(7(y)))) are in a same unstable manifold. Therefore

(T (7w (2))) = 7(T"H(r (7 (2))))] < 20167,

(T (7 () — 7T (= (7 (y))] < 20157,
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(T (7 (@) — (T (n (7 ()] < 2018 < 201 B

Thus

|70 T" (1 (x)) — 7 0 T" (7 (y))| < 6C, 35" (B.6)
Furthermore 7, = 7(f%(2)),y, = 7(f(y)) € A and 3(a},y,) = N — k. Thus
TN *(r(7(fk(x)))) and TN *(7w(7(fX(y)))) are in the same unstable manifold
and so

(T (r(7(fA(2))) = T(T" (x(@F(fA(@)))))] < 2016777 < 201877 (B.T)
It follows from (B.4) combined with , and that

k)2

No(FE (@) = xolFe )| < 3 4By + 3 60185 < i
k=0

n>k/2 =
) 1
We conclude since g7 < .
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