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génie civil, 72 route du Rhin B.P. 315, F67411 Illkirch cedex

Abstract

The equivalent inclusion method allows to solve analytically and exactly
problems for one inhomogeneity in an elastic domain in generally infinite
spaces. It also allows to solve semi-analytically and approximately problems
for several inhomogeneities in elastic domains. Knowing the additional elas-
tic energy due to the presence of one or more inclusions / inhomogeneities is
essential to estimate the elastic properties of the homogenized medium. The
usual demonstrations proposed to calculate this energy supplement often
make the assumption of stress free boundary condition. These demonstra-
tions given in the literature are rigorous for solutions obtained under these
conditions in finite domains. But analytical solutions in finite domains are
extremely rare. Unfortunately, the assumption of stress free boundary con-
dition is no longer valid when one uses analytical solutions established in
infinite domains. For the latter solutions, which are mostly used, the stresses
do actually tend towards zero when one moves away from the inclusion but
it is shown here that the rate of decrease, compared to the rate of growth of
the boundary surface, is not sufficient for one to consider them as zero. This
is particularly apparent when calculating the work of external forces. Indeed,
a correction - even a very small one - is essential to quantify precisely the
strain energy when implementing numerically these calculation methods. I
provide here a rigorous demonstration that does not make the usual stress-
free boundary assumption by considering mixed boundary conditions when
isolating a large finite domain in an infinite domain. This demonstration
legitimizes the small correction to apply on the prescribed boundary condi-
tions, enabling us to recover the correct result for calculating the work of
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external forces, i. e. the elastic strain energy in the herein considered cases.
This allows credit for suitable numerical estimates of the strain energy in fi-
nite and infinite domains. Numerical illustrations are added to provide orders
of magnitude and finish convincing the readers.

Keywords: micromechanics, inhomogeneities, heterogeneities, inclusions,
elasticity, equivalent inclusion method, homogenization

1. Introduction

The aim is to solve linear elasticity problems for heterogeneous media
although plastic deformations can also be considered (Doghri et al., 2011).
The estimation of the average elastic properties (Benveniste, 1987), (Bris-
ard et al., 2014) is not the only objective since we are also interested in
the local damage phenomena (Berthaud et al., 1994), (Fond et al., 1995),
(Fond and Berthaud, 1995), (Fond et al., 1996), (Fond, 2001), (Shodja et al.,
2003),(Benedikt et al., 2006), (Xu et al., 2023). We thus seek to know the
localization tensors in the presence of mechanical interaction. In practice for
our numerical applications, the elasticity is isotropic and the domains con-
taining the inclusions or inhomogeneities are spherical. The calculation of
elastic the strain energy is not immediate for the infinite domains considered.
In particular, the remark often made in the literature concerning stresses that
cancel at very distant boundaries1 leads to the assumption of a null work of
these stresses in the boundary displacements. A closer look at this point
shows that this is not generally the case for known analytic solutions since
boundary conditions are mixed (Brisard et al., 2013). It is then necessary
to reconsider this argument in the demonstration frequently provided in the
literature - inexact when using analytical solutions calculated for an infinite
domain - to analyze in which conditions one retrieves that this small energy
supplement is indeed ∆Wp = ±1

2
Vpσ

∞ βp, ± according to displacement or

stress boundary condition, where σ∞ denotes the boundary condition at in-
finity, βp the eigenstrain (Eshelby, 1957), (Eshelby, 1959), (Mura, 1993) and

Vp the volume of the inclusion or inhomogeneity. For the latter solutions,
which are the majority of those used, these stresses do actually tend to-
wards zero as one moves away from the inclusion. But their rate of decrease,

1I. e. at infinity.
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compared to the rate of growth of the boundary surface, is not sufficient to
considered them equal to zero. Indeed, the calculation of the work of external
forces shows the product of a term that tends to zero by a term that tends
to infinity with inverse growth and decay rates so that this product tends
asymptotically to a constant and non-zero value which does not correspond
to the the value of ∆Wp given above. The numerical implementation of this
computational method clearly shows that a numerical correction based on
the values at the far boundaries is essential to properly quantify the strain
energy. Even though this numerical correction tends to zero2 for larger and
larger domains, it remains numerically indispensable and forms the basis of
the rigorous demonstration provided in this paper.

2. Foreword

We will place ourselves under the small perturbations assumptions (S. P. A.),
i. e. linear elasticity at small strains and small displacements3. The consid-
ered elasticity is linear so that it is possible to superimpose kinematically and
statically admissible fields. Moreover, we find ourselves in a system where
deformations, stresses and displacements are proportional to the sollicitation
so that:

- even if we assume, for the sake of simplicity, a strain close to the unit, we
do not leave the framework of S. P. A. and it is enough to apply to the results
a coefficient small in front of unity to obtain a realistic result corresponding
to the small strains and displacements assumptions,

- since one deals with linear systems, a single calculation is sufficient, it
is then enough to apply a coefficient of proportionality to adjust the result
as one wants.

3. Illustration in a simple case

3.1. A sphere under pressure

Let’s consider a sphere of external radius Rext made of a material which,
for the sake of simplicity, Young’s modulus E is equal to 1 and Poisson’s
rations ν equal to 0.3 so that its bulk modulus K is equal to 1

1.2
. This sphere

is submitted to a uniform equitriaxial tension equal to 1, i. e. the external

2As well as ∆Wp which is of the same order of magnitude.
3One can assimilate the initial geometry to the deformed geometry.
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pressure Pext is equal to −1. The strain energy W0 over the total volume V0

of this sphere is then equal to
V0P

2
ext

2K
=

2πR3
extP

2
ext

3K
.

3.2. A hollow sphere under pressure

In very rare cases, the analytical solution is known for a domain of finite
size containing an inhomogeneity such as a hollow sphere under pressure. In
the latter case, the problem is somehow uniaxial. The analytical solution
is given in Appendix A. On the other hand, the analytical solution for a
spherical cavity in a infinite domain under pressure is available (Eshelby,
1957), (Eshelby, 1959). In this case the eigenstrains βii are non-zero and
βij, i 6= j, are equal to zero.

3.3. Numerical results

Let’s now consider, for the numerical values given in 3.1, a sphere of
relatively large size compared to the size of a internal and centered spherical
cavity, for instance typically Rext = 100Rint. For the sake of simplicity, let’s
choose Rint = 1m so that Rext = 100m. The strain energy W calculated
from eq. A.3 is W = 2.513280720× 106J which leads to W −W0 = 6.597J
since W0 = 2.513274123 × 106J in this case. Note that this corresponds to
exact boundary condition prescribed in stress. The displacement at Rext =
100m is equal to Ur(Rext) ≈ 40.000105m. Imposing Pext = −1 × 40.0

40.000105
in

order to obtain exact prescribed boundary conditions in displacements, i. e.
Ur(Rext) = 40.0m leads to W −W0 = −6.597J .

For a domain of infinite size, with same material characteristics, contain-
ing a spherical cavity, the eigenstrains βii are equal to 1.05 for Pext = −1Pa
(Eshelby, 1957). This leads to ∆Wp = 6.597J for a spherical cavity of radius
Rint = 1m. This shows that considering that Rext = 100Rint almost simulates
an infinite domain and that ∆Wp = ±1

2
Vpσ

∞ βp is valid for exact boundary

conditions. This also shows, as obviously expected, that ∆Wp

W0

<< 1.
For homogenization problem, the strains or stresses are defined at infinity.

In our case this would lead to ǫ∞ii = 0.4 and σ∞
ii = 14. It is commonly assumed

that for infinite domains containing a finite number of inhomogeneities that
the mean value of strain < ǫ > is equal to ǫ∞ and that the mean value of
stress < σ > is equal to σ∞. In the case of Eshelby’s solution for which βii =
1.05, at Rext = 100m Ur(100m) = 40.000065m and σrr(100m) = 0.9999990.

4If i 6= j, ǫ∞ij = 0 and σ∞

ij = 0.
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Hence, calculating the strain energy from the work of external forces5 gives
W = 2.513275694× 106J such that W −W0 ≈ 1.571J at R = 100m. Even
if they tend to, whatever the ratio R

Rint
is, neither the mean value of strain

nor the mean value of stress corresponds to the exact desired mean state
of strain or stress. Even for larger ratios of R

Rint
, one always observe that

< ǫii > > 0.4 and < σii > < 1 and that the work of external forces
reaches rapidly an asymptotic value equal to W − W0 ≈ 1.571J , as shown
in Table 1. This value does not corresponds to ∆Wp even for infinitely
large domains. Actually, if the "external forces"6 tend to zero for larger and
larger domains, their work in the displacement converge to a non-zero finite
value. The further use of variational principles instead of using the classical
Equivalent Inclusion Method (E. I. M.), (Eshelby, 1957), (Eshelby, 1959), to
numerically solve inhomogeneities problems, (Moschovidis and Mura, 1975),
(Fond et al., 2002), must then manage properly the work of external forces.
Indeed, the infinitesimal supplementary stress at infinity/very far from the
inhomogeneity can never been considered as exactly null.

Rint(m) R(m) Ur(R)−Ur0(R)
Ur0(R)

(-) σrr(R)−σrr0(R)
σrr(R)

(-) W −W0(J)

1 10 +1.625× 10−3 −1.0× 10−3 1.56671
1 100 +1.625× 10−6 −1.0× 10−6 1.57079
1 1000 +1.625× 10−9 −1.0× 10−9 1.57081

Table 1: Supplementary energy corresponding to the parameters given in 3.1 for an in-

creasing radius R of the integration contour, which surface is 4πR2, in an infinite domain

in the case of the E. I. M. calculation. Ur0 = ǫ∞ii ×R and σrr0 = σ∞

ii denote the situation

without any cavity.

4. Equivalent inclusion method (E. I. M.)

4.1. Notations

The E. I. M., see Appendix B, was initially proposed by (Eshelby, 1957).
For several inclusions/inhomogeneities (Moschovidis and Mura, 1975), (Yu

5By isolating a spherical domain centered on the cavity in the infinite domain, the

external forces being the action of the external matter on the imaginary surface of this

sphere.
6On the imaginary contour of integration.
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et al., 2021), (Yan et al., 2021), it uses as a functional basis eigenstrains7 gen-
erally distributed according to Taylor series in inclusions/inhomogeneities8

and is situated between a Galerkin method and a collocation method (Bris-
ard et al., 2014). The additional elastic energy associated with the presence
of an inclusion, compared to the elastic strain energy of the same elastic
medium which would not contain an inclusion, was calculated by this same
author. This calculation has been taken up by many authors (Mura, 1993).
Let us therefore consider an exact solution for an eigenstrain βp in a matrix

domain designated by Dp of volume Vp, see Fig. 1. This matrix domain Dp

having undergone this eigenstrain is called inclusion. Let us denote by
−→
U Upβp

and ǫA
pβp

= Ap βp respectively the displacement and strain fields associated

with the eigenstrain βp. Ap, 4th-order tensor, denotes the strain localization

tensor associated with the eigenstrain βp. Up, 3th-order tensor, denotes the

displacement localization tensor associated with the eigenstrain βp9. The

stress field inside the inclusion p is given by σApβp

= C0 (ǫA
pβp

− βp) and

outside the inclusion by σApβp

= C0 ǫA
pβp

since βp = 0 outside the inclusion.

7I. e. a stress free strain.
8Ellipsoidal in order to have analytical solutions.
9Note that Ap = 1

2
(grad[Up] + gradT [Up]).
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Figure 1: A p domain of a homogeneous matrix undergoes an eigenstrain βp. An imaginary

external action τ∗p.−→n on its contour would restore it to the shape it had before undergoing

this eigenstrain.

4.2. Evolution of the fields away from inclusion

The exact solutions Ap, in infinite domain, or semi-infinite spaces (Yang

et al., 2021), are known for ellipsoidal inclusions subjected to eigenstrains
generally distributed according to Taylor series (Ferrers, 1877), (Dyson et al.,
1891), (Eshelby, 1957), (Moschovidis and Mura, 1975), Fond et al. (2001),
Fond et al. (2002). For various shapes, it is necessary to use numerical tools
(Nakasone et al., 2000) to have a solution to this type of problem. In prac-
tice the domains are very large compared to the size of the inclusions but
not infinite. Most of the demonstrations concerning the calculation of the
energy supplement associated with inclusions/inhomogeneities assume that
the stress field associated with these solutions is self-equilibrated, i.e. that
there is no external force associated with this field. There would thus be
no work of external forces at external boundaries. But the solutions given
for infinite domains correspond to mixed boundary conditions for which nei-
ther the displacements nor the stresses ever exactly cancel out as one moves
away from the inclusion, although they tend to zero. Note therefore that,
for solution of eigenstrains in an infinite domain, displacements vary in 1

L2

and stresses and strains vary in 1
L3 , where L denotes the distance to the
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center of the inclusion. Under the S. P. A., it is relevant to superimpose on
these fields uniform fields of strain or stress to, among other things, estimate
the homogenized elastic properties10. Denoting by ǫ∞ any finite uniform

imposed strain, the displacements at the boundaries
−→
UL are proportional

to the size L of the considered domain. The surface integral, the latter
being of size proportional to L2, tends to a finite value ∆Wp when consid-
ering a medium of large size L in front of the size a of the inclusion, i. e.∫∫

Sext.
[σApβp

.−→n ].
−→
UL dS ∝ 1

L3 L× L2 6= 0.

4.3. Satisfaction of boundary conditions on average

This explains that by superimposing the analytical solution - which we
will call perturbation field, see Figs. C.3 and C.4 - to a uniform strain ǫ∞,
one does not directly obtain the desired conditions nor those that cancel the
work of the perturbation fields at the distant boundaries. In order to recover
the desired boundary conditions from the superposition, it is necessary to
subtract from ǫ∞ the average of the strains associated with the perturbation
field, which we will denote by ǫ<> =< Ap.βp >D, <>D designating the

average over the domain D. For a cubic domain, the result will not provide a
flat deformed surface but an almost flat one, as shown in Fig .C.3, and all the
more flat as the cube will be large compared to the size of the inclusion. Let’s
resume the calculations of Appendix B by imposing on the second member
of the eq. B.2 (ǫ∞ − ǫ<>) so that we solve the equation ([C0 − Cp]−1.[C0]−

Ap).βp = (ǫ∞ − ǫ<>). It should be noted that ǫ<> → 0 with L → ∞.

5. Demonstration

If one imposes (ǫ∞ − ǫ<>), the strain energy W is:

W =
1

2

∫∫∫
D

(ǫ∞ − ǫ<> + ǫA
pβp

) : C0.(ǫ∞ − ǫ<> + ǫA
pβp

− βp) dv (1)

where ǫA
pβp

= Ap.βp. By developing we obtain:

10Since physically eigenstrains do not modify the elasticity of the inclusions.
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W =
1

2

∫∫∫
D

ǫ∞ : C0.ǫ∞dv −
1

2

∫∫∫
D

ǫ∞ : C0.βpdv

+
1

2

∫∫∫
D

ǫ∞ : C0.ǫA
pβp

dv −
1

2

∫∫∫
D

ǫ∞ : C0.ǫ<>dv

−
1

2

∫∫∫
D

ǫ<> : C0.ǫ∞dv +
1

2

∫∫∫
D

ǫ<> : C0.ǫ<>dv

−
1

2

∫∫∫
D

ǫ<> : C0.ǫA
pβp

dv +
1

2

∫∫∫
D

ǫ<> : C0.βpdv

+
1

2

∫∫∫
D

ǫA
pβp

: C0.ǫ∞dv −
1

2

∫∫∫
D

ǫA
pβp

: C0.ǫ<>dv

+
1

2

∫∫∫
D

ǫA
pβp

: C0.ǫA
pβp

dv −
1

2

∫∫∫
D

ǫA
pβp

: C0.βpdv

(2)

The first line gives W0 −∆Wp since the eigenstrain is zero outside the inclu-
sion, i. e.

∫∫∫
D
βpdv =

∫∫∫
Dp

βpdv. Then we notice that the uniform fields

can be taken out of the integral so that:

∫∫∫
D

ǫ<> : C0.ǫA
pβp

dv = ǫ<> : C0.

∫∫∫
D

ǫA
pβp

dv = V0ǫ
<> : C0.ǫ<>dv (3)

since 1
V0

∫∫∫
D
ǫA

pβp

dv = ǫ<>. In the same way:

∫∫∫
D

ǫ∞ : C0.ǫA
pβp

dv = V0ǫ
∞ : C0.ǫ<>dv (4)

Due to tensor symmetries11, eq. 1 becomes:

W = W0 −∆Wp

+
1

2

∫∫∫
D

ǫ<> : C0.βpdv −
1

2

∫∫∫
D

ǫA
pβp

: C0.βpdv

+
1

2

∫∫∫
D

ǫA
pβp

: C0.ǫA
pβp

dv −
1

2

∫∫∫
D

ǫA
pβp

: C0.ǫ<>dv

(5)

11ǫ1 : C.ǫ2 = ǫ2 : C.ǫ1
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Recalling that τ ∗p = −C0.βp, since the work of external forces is equal to the

work of internal efforts, it comes:

−

∫∫∫
D

ǫA
pβp

: C0.βpdv =

∫∫∫
Dp

ǫA
pβp

: τ ∗pdv =

∫∫
∂Dp

−−−→
UCpβp

.(τ ∗p.−→n )ds

(6)

where ∂Dp denote the surface of the domain Dp. Also by virtue of the equality
of the work of internal and external efforts, see Fig. 1, it comes:

∫∫∫
D

ǫA
pβp

: C0.ǫA
pβp

dv

=

∫∫
∂Dp

−−−→
UCpβp

.(−τ ∗p.−→n )ds+

∫∫
∂D

−−−→
UCpβp

.(C0.ǫA
pβp

.−→n )ds

=

∫∫
∂Dp

−−−→
UCpβp

.(−τ ∗p.−→n )ds+

∫∫
∂D

−−−→
UCpβp

.(σApβp

.−→n )ds

(7)

Since βp = 0 outside of Dp :

∫∫∫
D

ǫ<> : C0.βpdv = ǫ<> :

∫∫∫
Dp

C0.βpdv (8)

then finally:

∫∫∫
D

ǫA
pβp

: C0.ǫ<>dv = V0ǫ
<> : C0.ǫ<> (9)

This leads to:

W = W0 −∆Wp

+
1

2
ǫ<> :

∫∫∫
Dp

C0.βpdv

−
1

2
V0ǫ

<> : C0.ǫ<>

+
1

2

∫∫
∂D

−−−→
UCpβp

.(σApβp

.−→n )ds

(10)
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For a finite domain of large size L in front of the size of the inclusion, given

that far from the inclusion
−−−→
UCpβp

∝ 1
L2 , ǫ

<> ∝ 1
L3 , σApβp

∝ 1
L3 , V0 ∝ L3,

∂D ∝ L2 and that
∫∫∫

Dp
βpdv is a constant value, it can be said that:

V0ǫ
<> : C0.ǫ<> → 0 with L → ∞

ǫ<> :

∫∫∫
Dp

C0.βpdv → 0 with L → ∞

∫∫
∂D

−−−→
UCpβp

.(σApβp

.−→n )ds → 0 with L → ∞

(11)

From which we can finally deduce that:

W ≈ W0 −∆Wp with L → ∞ (12)

taking the precaution for numerical computations concerning finite domains
of large size in front of that of the inclusion, to consider that the superposed
fields are ǫA

pβp

and (ǫ∞ − ǫ<>) and not only ǫ∞.

6. Numerical illustration

6.1. Classical calculation

Let us consider for simplicity a cube of dimension 2L× 2L× 2L centered
on a spherical inclusion of radius a as illustrated in Fig. 2. Let us consider any
case of isotropic linear elasticity under the S. P. A. For example E0 = 1 a. u.12

and ν0 = 0.3 for the matrix and Ep = 0.5×E0 and νp = 0.1 for the inhomo-
geneity p. Let us calculate the work of the external forces for a uniaxial trac-
tion of axis −→z ǫ∞33 = 1 centered on the cube13. The eigenstrain corresponding
to the solution of the equivalent inclusion method is β11 = β22 = 0.0335
and β33 = 0.62687, the other terms being zero. Strains and stresses in the
equivalent inclusion are uniform and are respectively ǫAβ

11 = ǫA
pβp

22 = 0.0107,

12a. u. for arbitrary unit.
13All the results are proportional to ǫ∞ so that for a small strain it is enough to apply

a low value coefficient small in front of the unit.
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ǫA
pβp

33 = 0.325, σApβp

11 = σApβp

22 = 0.0208 a. u., σApβp

33 = 0.4498 a. u.. For the
inhomogeneity we obtain σApβp

11 = σApβp

22 = 0.024 a. u., σApβp

33 = 0.1675 a. u.,
the strains being the same as for the equivalent inclusion. The strain energy
is given in Table 2 as a function of L. It is computed from the analytical
solution in infinite domain and by numerical integration of 500× 500 points
per face of the cube. We denote by W0 = 1

2
V0ǫ

∞ : σ∞ = 1
2
V0ǫ

∞ : C0.ǫ∞,

where V0 denotes the total volume of the domain, the elastic strain energy
of the same domain that would not contain an inclusion. Let us now cal-

L/a (−) W (a. u.) W −W0 (a. u.)
3 108.216328100416 0.216328100416
10 4000.24628599888 0.24628599888
100 4000000.24851483 0.24851483
1000 4000000000.25054 0.25054

Table 2: Deformation energy and energy supplement as a function of the dimension of the

cube containing the inhomogeneity.

culate the additional energy with the classical formula ∆Wp = ±1
2
Vpσ

∞ βp

(Eshelby, 1957). Vp = ±4
3
πa3 and σ∞

33 = 1, the other stresses being zero in
uniaxial tension. We obtain ∆Wp = −1.3213 a. u. for boundary conditions
defined in displacements and ∆Wp = +1.3213 a. u. for boundary conditions
defined in forces. This does not correspond to the values in Table 2 which
estimates the value at +0.25 a. u. instead of −1.32 a. u..

12



49103 noeuds &262191 el ement s
L

L

L

a
aa

x1

x3

x2

Figure 2: Left: spatial discretization of the finite element model used for a cube of di-

mensions 20 times the radius of a spherical inclusion, centered on this inclusion. All

symmetries are exploited so that only 1/8th of the volume constitutes the geometrical

model for a unixial traction. Right: schematic representation of a section of a cube of

dimensions L centered on a spherical inclusion of radius a and oriented along the axes of

the reference frame.

6.2. Adjustment of boundary conditions

Given that ǫ<>
33 ≈ 2.0−4, let us impose ǫ∞33 = 0.9998 instead of unity, the

strain energy calculated as in the previous calculation gives W = 3998.7 a. u..
The additional energy is ∆Wp = ±1

2
Vp(C

0.ǫ∞) βp = −1.3 a. u.. In this

case, we find the theoretical prediction for a finite domain of large size in
front of that of the inclusion, although the constraints are not zero at the
boundaries and they work in the imposed displacements. It is therefore
appropriate to try to estimate the accuracy that can be expected in finite
domains by using exact analytical solutions valid for infinite domains. The
term 1

2

∫∫∫
Dp

ǫA
pβp

: C0.βpdv is not negligible and is worth 0.554 a. u.. Simi-

larly, the term 1
2

∫∫∫
Dp

ǫ<> : σ∞ds which is equal to 0.08 a. u. and the term
1
2

∫∫∫
Dp

ǫ∞ : σ<>ds which is equal to −0.14 a. u. may mar the accuracy of

results.

6.3. Finite element model

The finite element method allows easy comparisons of numerical results
(Novák et al., 2012). In order to complete the numerical verifications, a finite
element model with CAST3M software (CAST3M, 2022) is implemented for
the same geometric dimensions and elastic characteristics of the matrix and
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inhomogeneity. The spatial discretization is shown in Fig. 2. It uses 262191
4-nodes tetrahedra for 147309 degrees of freedom. The boundary conditions
are imposed in displacement so that the faces of the cube remain flat. The
strain energy W is equal to 3998.69 a. u.. The term 1

2

∫∫∫
Dp

βp : C0.ǫ∞dv is

1.30904 a. u. and the term 1
2

∫∫∫
D
ǫA

pβp

: C0.ǫA
pβp

dv is 0.5546 a. u.. These re-

sults are as expected and validate the previous theoretical calculations. Other
finite element results are compared in Appendix C to the exact solution in
infinite domains.

7. Case of elastic inhomogeneities and mechanical interactions be-
tween inclusions/inhomogeneities

The equivalence equation is given in appendix Appendix B. In the case
of N elastic inhomogeneities, there is interaction between inhomogeneities.
Indeed, for general cases each inhomogeneity "feels" the presence of a softer
or stiffer part of the surrounding medium. The exact solutions used are
established for a homogeneous elastic matrix14. The simple superposition of
their fields can no longer provide an exact solution. Indeed, the strain field
induced by the presence of an inhomogeneity outside this inhomogeneity
generates stress discontinuities at the interfaces of other inhomogeneities.

∆∂Dq
σq = (Cq − C0).ǫA

pβp

∂Dq
(13)

where ∂Dq denotes the qth-inhomogeneity/matrix interface, i. e. the bound-
ary of the Dq domain. These "parasitic" forces t∗q are given by :

−→
t∗q = ∆∂Dq

σq.−→nq (14)

These "parasitic" forces can be seen as external forces acting on the contours
of the inhomogeneities (Benedikt et al., 2006), , (Brisard et al., 2014). It has
been proposed in Fond et al. (2002) to evaluate the quality of the solution
provided by the equivalent inclusion method proposed by (Moschovidis and

14Linked to the Green’s functions.
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Mura, 1975) by making these forces work in the displacements of the inho-
mogeneities contours. This estimator provides an additional strain energy
W ∗ which we wish to be as small as possible in front of the total additional
strain energy.

W ∗ =

N∑
q=1

=

N∑
q=1

W ∗

q =

∫∫
∂Dq

−→
t∗q
−→
U ds (15)

where
−→
U denotes the total displacement field, i.e.

−→
U =

−→
U∞ +

∑N

p=1

−−−→
UApβp

for N inhomogeneities. The solution will be considered globally suitable if
W ∗ << |W − W0| and locally suitable if |W ∗

q | << |∆W q|15. On distant
boundaries, i. e. on ∂D, there is no problem of static admissibility but sim-

ply imperfect boundary conditions ((
∑N

p=1 σ
Apβp

).−−→n∂D and
∑N

p=1

−−−→
UUpβp

) with
respect to what one wishes to impose.

The solution provided for several interacting inhomogeneities is there-
fore, except in special cases, not statically admissible. However, one
can consider the provided solution as exact and fully admissible with
imperfect boundary conditions, the ∂Dp contours of the inhomo-
geneities being considered as boundaries as well as the contours ∂D
of the D domain which contains them.

8. Discussion

I have shown here that it is necessary to cancel the average stress supple-
ment at the distant boundaries to recover the results of the classical demon-
stration which assumes them to be zero. An analogous demonstration can
be made to try to satisfy on average the conditions in stress at the distant
boundaries by trying to cancel the average displacement supplement. In-
deed, for a cube of volume V0 = 80000(L

a
)3 embedded in an infinite domain,

thus an elastic energy of strain of this cube worth W0 = 40000 a. u. and by
resuming the values of the case previously studied, one obtains, by imposing
ǫ33 = 1 in B.1, on the faces perpendicular to the tensile axis for the mean

15The absolute values are necessary because, depending on the boundary conditions and

stiffness, the energy supplements can be positive or negative.
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displacements 1.00001952 ∗ L and the mean stress σ33 0.99998463 a. u.. In
order to adjust the boundary conditions on average to obtain < ǫ33 >= 1 it is
necessary to multiply ǫ∞ by a coefficient worth 0.9999805. Similarly, in order
to obtain < σ33 >= 1 a. u. it is necessary to multiply ǫ∞ by a coefficient
worth 1.00001537. The Table 3 shows that indeed we tend to the theoretical
values in infinite domain by adjusting properly the boundary conditions.

L/a (−) coefficient W (a. u.) W −W0 (a. u.)
21.5443469 0.9999805 39998.69 -1.31
21.5443469 1.0000154 40001.48 +1.48

Table 3: Deformation energy and energy supplement as a function of multiplier coefficient

for a cube containing inhomogeneity.

9. Conclusion

It is therefore clear that the numerical implementation of solutions adapted
to infinite domains must be treated with vigilance when considering problems
in very large - but finite - domains in front of the size of the inhomogeneities.
Indeed, the very slight correction proposed here to be performed on the load-
ing, even if it may seem negligible, is essential to obtain the desired results.
It is shown here that the ∆Wp/W0 terms are of the same order of magni-
tude as the corrective terms of ǫ<>/ǫ∞ whatever the size of a finite domain.
Moreover, once these aspects are well mastered, it is possible to consider the
development of an alternative variational method to the E. I. M. proposed by
(Moschovidis and Mura, 1975), (Hashin and Shtrikman, 1962), (Hill, 1963).
Indeed, while using the same functional basis from exact analytical solutions,
one can hope to obtain better numerical results by trying to minimize the
strain energy in order to minimize the stress discontinuities at the interfaces
of the inhomogeneities.

Appendix A. An hollow sphere under pressure

Considering small strains and displacements and linear elasticity, the an-
alytical solution for an hollow sphere of internal radius Rint and external
radius Rext under an internal pressure pint and an external pressure pext is

16



given by:

σrr(r) =
pintR

3
int − pextR

3
ext

R3
ext −R3

int

−
(pint − pext)R

3
intR

3
ext

(R3
ext −R3

int)r
3

(A.1)

where r is the distance from the centre of the sphere and σrr is the radial
stress. The displacement Ur at a distance r is given by:

Ur(r) =
r

2µ+ 3λ

pintR
3
int − pextR

3
ext

R3
ext −R3

int

+
1

4µ

(pint − pext)R
3
intR

3
ext

(R3
ext − R3

int)r
2

(A.2)

where λ and µ are the Lamé coefficients. The strain energy calculated from
the work of external forces is given by:

W =
1

2
pintUr(Rint) +

1

2
pextUr(Rext) (A.3)

Appendix B. Equivalence equation

Recall the equation of equivalence (Eshelby, 1957) :

C0(ǫ∞ +Ap.βp − βp) = Cp(ǫ∞ +Ap.βp) (B.1)

which can be rewritten as:

([C0 − Cp]−1.[C0]−Ap).βp = ǫ∞ (B.2)

Appendix C. Example of fields far from the inclusion: mixed bound-
ary conditions

For the case of the example cited in section 6, Fig. C.3 and Fig. C.4
provide respectively the perturbations, on the face of the cube corresponding
to x3 = 10 a, of the displacement fields U3 and of the σ33 component stress
field, related to the presence of an elastic inhomogeneity. These perturbations
correspond to the analytical solution calculated for infinite domains.
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Figure C.3: Perturbations at x3 = 10a of the displacement field U3 due to the presence of

an elastic inhomogeneity of radius a.
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Figure C.4: Perturbations at x3 = 10a of the displacement field σ33 due to the presence

of an elastic inhomogeneity of radius a.
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Figs. C.5 and C.6 compare the analytical solution obtained for an infinite
domain with that of the finite element model. The results of the analyti-
cal solution are calculated to satisfy average strain conditions on the finite
domain D, i. e. < ǫ >D= ǫ∞ or to satisfy these conditions on an infinite
domain, i. e. < ǫ >infinite domain= ǫ∞.
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Figure C.5: Comparison of the results concerning the displacements U3 along the x3

axis, for x1 = x2 = 0, of the analytical solution and that of the finite element model.

∆U3 = U3− < ǫ33 > x3.
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