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LOCAL TRANSFER FOR QUASI-SPLIT CLASSICAL GROUPS AND
CONGRUENCES MOD 7/

by

Alberto Minguez & Vincent Sécherre

Abstract. — Let G be the group of rational points of a quasi-split p-adic special orthogonal, sym-
plectic or unitary group for some odd prime number p. Following Arthur and Mok, there are an in-
teger N > 1, a p-adic field E and a local functorial transfer from isomorphism classes of irreducible
smooth complex representations of G to those of GLy (E). By fixing a prime number ¢ different from
p and an isomorphism between the field of complex numbers and an algebraic closure of the field of
l-adic numbers, we obtain a transfer map between representations with ¢-adic coefficients. Now con-
sider a cuspidal irreducible ¢-adic representation 7 of G: we can define its reduction mod ¢, which is
a semi-simple smooth representation of GG of finite length, with coefficients in a field of characteris-
tic £. Let 7’ be a cuspidal irreducible f-adic representation of G' whose reduction mod £ is isomor-
phic to that of m. We prove that the transfers of 7 and 7’ have reductions mod £ which may not be
isomorphic, but which have isomorphic supercuspidal supports. When G is not the split special or-
thogonal group SO2, we further prove that the reductions mod £ of the transfers of = and 7’ share a
unique common generic component.

2010 Mathematics Subject Classification: 22E50, 11F70
Keywords and Phrases: Automorphic representation, Classical group, Congruences mod ¥,
Cuspidal representation, Functorial transfer

1. Introduction

1.1.

Let F' be a p-adic field for some odd prime number p and G be the group of rational points
of a quasi-split special orthogonal, unitary or symplectic group defined over F'. In the case where
G is unitary, let E be the quadratic extension of F’ with respect to which G is defined ; otherwise,
let E be equal to F'. According to Arthur [2] for special orthogonal and symplectic groups, and
to Mok [47] for unitary groups, there is a positive integer N = N(G) and a map from isomor-
phism classes of irreducible (smooth) complex representations of G to those of the general linear
group GLy(F), called the local transfer or base change, which we will denote by t.



2 ALBERTO MINGUEZ & VINCENT SECHERRE

1.2.

Let us fix a prime number ¢ different from p and an isomorphism of fields ¢ between C and an
algebraic closure Q, of the field of /-adic numbers. Replacing formally C by Q, thanks to ¢, we
get a local transfer between isomorphism classes of irreducible smooth Q,-representations, deno-
ted ty. (We describe the dependency of ty in the choice of ¢ — or equivalently the behavior of t
with respect to automorphisms of C: see Paragraph 6.4 for unramified representations, and Pa-
ragraph 9.2 for discrete series representations, of G.)

We can now consider irreducible Q,-representations which are integral — that is, which carry a
stable Z-lattice, where Z; denotes the ring of integers of Q,. Given such a representation 7, one
can define its reduction mod ¢: this is the semi-simplification of the reduction of any of its stable
Zy-lattices modulo the maximal ideal of Z,. This is a smooth representation of finite length with
coefficients in Ty, the residue field of Z,, denoted ry(r). One then can ask whether the map t,
preserves the fact of being integral, and how it behaves with respect to congruences mod ¥.

Similar questions have already been answered for other local correspondences: see [66, 16, 12]
for the local Langlands correspondence for GL,,, as well as [17, 41] for the local Jacquet-Lang-
lands correspondence between inner forms of GL,,, for n > 1. (See also Paragraph 1.7 below and
Appendix A, where we discuss the case of the cyclic local base change for GL,.) In this paper,
we prove the following theorem.

Theorem 1.1. — Let w1, m be integral cuspidal irreducible Q,-representations of G, and assu-
me that
(1.1) re(m) < re(m)

that is, rg(m1) is contained in ry(ms) as semi-simple Fy-representations of G. Then

(1) The local transfer ty(m;) is an integral Q,-representation of GLy(E) for each i = 1,2.

(2) The irreducible components of the semi-simple Fy-representation ry(te(m)) @re(te(ms)) all
have the same supercuspidal support (see below for a definition).

(3) Assume that G is not isomorphic to the split special orthogonal group SOo(F) ~ F*. The
semi-simple Fy-representations ro(ty(m1)) and re(te(ms)) have a unique generic irreducible compo-
nent in common.

As in the case of complex coefficients, an irreducible representation of GLy (E) on an Fy-vector
space V is said to be generic if V' carries a non-zero Fy-linear form A such that A(m(u)v) = §(u)v
for all v € V and all upper triangular unipotent matrices u of GLy (E), where @ is the F-character

U — ¢(U1,2 +-+ unfl,n)

and v is a non-trivial Fy-character of F.

An irreducible Fy-representation of GLy (E) is supercuspidal if it does not occur as a subquo-
tient of any representation parabolically induced from a proper Levi subgroup. A supercuspidal
support of an irreducible Fy-representation 7 of GLy (E) is a pair (M, p) made of a Levi subgroup
of GLy(F) and a supercuspidal representation p of M such that 7 occurs as a subquotient of
the normalized parabolic induction of p. It is uniquely determined up to conjugacy ([67] V.4,
[39] Théoreme 8.16).



LOCAL TRANSFER FOR QUASI-SPLIT CLASSICAL GROUPS AND CONGRUENCES MOD /¢ 3

Note that, unless G is the split special orthogonal group SO2(F') ~ F* | the centre of G is com-
pact. When this is the case, any cuspidal irreducible Q-representation of G is integral. We will
discuss the case of the split SO2(F') in detail in Paragraph 9.3.

Also note that, if G is not isomorphic to SOy (F') ~ F'*, then (3) implies (2), since all irredu-
cible components of the reduction mod £ of an integral irreducible Q,-representation of GLy (F)
have the same supercuspidal support [66] §1.3.

Before discussing the other assumptions of Theorem 1.1 (in Paragraph 1.6), let us explain how
we prove it. The general strategy goes back to Khare [32] and Vignéras [66] who study the con-
gruence properties of the local Langlands correspondence for GL,,(F') with n > 1.

1.3.

The first step is to pass from our given local situation to the following global situation (which
is the purpose of Sections 2 to 4).

First, k is a totally real number field, [ is either k or a totally imaginary quadratic extension of
k and w is a finite place of k above p, inert in [, such that k, = F and l,, = E (see §2.4).

Next, G is a connected reductive group defined over k such that

(1) the group G(F') naturally identifies with G,

(2) the group G(k,) is compact for any real place v and quasi-split for any finite place v,

(3) the k-group G is an inner form of a quasi-split special orthogonal, unitary or symplectic
group G*.

The existence of such a group G is proved in Section 2 (see Theorem 2.1).

Finally, IT; and IIy are irreducible automorphic representations of G(Ay), where Ay denotes
the ring of adeles of k, such that

(1) My, ®c Qy is isomorphic to 7 and Iy, @c Qy is isomorphic to o,

(2) the representations II; ,, and Il , are trivial for any real place v,

(3) for a given finite place u # w of k, the representations II; ,, and Il ,, are both isomorphic
to some cuspidal irreducible unitary representation p of G(k,) which is compactly induced from
a compact mod centre, open subgroup of G(ky),

(4) there is a finite set S of places of k, containing all real places, such that for all v ¢ S :

(a) the group G is unramified over k,,
(b) the representations II; , ®c Qy and ITs , ®c Qy are unramified with respect to some
hyperspecial maximal compact subgroup of G(k,),
(c) their Satake parameters (in the sense of Paragraph 3.4) are integral and congruent
mod the maximal ideal of Zg,
where all tensor products are taken with respect to «. We construct such II; and Il in Sections
3 and 4.

1.4.

The next step — which is the purpose of Section 5 — is to associate to II; and Il; two cuspidal
irreducible automorphic representations IT; and Il of GLy(A;) such that, for any finite place v,
the local transfer of II; , is isomorphic to II; ., for ¢ = 1,2. For this, we use the results of Taibi
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[63] if G* is symplectic or special orthogonal, and Labesse [36] if G* is unitary. Namely, let IL;
be

— the Arthur parameter associated with II; if G* is symplectic or special othogonal ([63]),
— the stable base change of II; to GLy(4;) if G* is unitary ([36]).

In both cases, II; is algebraic regular and (63, 36] provide II; with certain local-global compati-
bilities at all finite places. In order to ensure that these local-global compatibilities are what we
want, namely, that the local transfer of II; ,, is isomorphic to ﬁz}v at all finite v, and in prevision
of the next step, we need ﬁz to be cuspidal.

In order to choose II;, Il so that ﬁl, ﬁg are cuspidal, we use the auxiliary cuspidal repre-
sentation p of Paragraph 1.3. More precisely, we prove the following result (see Lemma 9.1).

Proposition 1.2. — Given k, w and G as in Paragraph 1.3, the finite place u of k and the re-
presentation p of G(ky) can be chosen so that the local transfer of p is cuspidal.

If G* is unitary, it suffices to choose u so that G is split over k. In the symplectic and special
orthogonal cases, this is the purpose of Appendices B and C. (In particular, the place u has to
divide 2 in the symplectic case.)

1.5.

We now have two algebraic regular, cuspidal irreducible automorphic representations ﬁl and
ﬁg of GLy(A;) such that, for ¢ = 1,2 and all finite places v, the transfer of II; ,, is isomorphic to
Hl »- Besides, it follows from the > properties of the transfer from G(Ay) to GLy(4;) that the con-
jugate of the contragredient of I, by the generator ¢ of Gal(l/k) is isomorphic to I1,.

From the properties of II; and Il> at all places v ¢ S, and from the congruence properties of
the unramified local transfer that we establish in Section 6, it follows that, for all v ¢ S:

(1) the local components II; » and Il, «» are unramified,
(2) the Satake parameters of H1 v Qc Qy and H2 » Qc Qy are integral and congruent mod the
maximal ideal of Z.

We now apply the results of [5], which give us two continuous ¢-adic Galois representations
Ei : Gal(@/l) - GLN(@K), 1= 1,2,

such that, for any finite place v of [ not dividing ¢, the (¢-adic) Weil-Deligne representation asso-
ciated with II, | det \v /2 by the local Langlands correspondence is isomorphic to the Frobe-
nius-semisimplification of the Weil-Deligne representation associated with J; ,,, the restriction of
¥ to a decomposition subgroup of Gal(Q/I) at v. (Here |- |, denotes the absolute value of [, nor-
malized so that the absolute value of any uniformizer of [, is the inverse of the cardinality of
the residue field of [,.)

Thanks to our local conditions at all v ¢ S, the representations ¥4 ,, ¥, are congruent mod /.
A density argument then implies that ¥; and ¥ are congruent mod £. In particular, 21 4, 324
are congruent mod /.

Associated with ¥; ,,, there is a Frobenius-semisimple Weil-Deligne representation (p;, N;). We
show in Section 7 that the fact that ¥; ,, and X2 ,, are congruent mod ¢ implies that the smooth
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semi-simple representations p; and po are integral and congruent mod ¢. Since p; corresponds to
the cuspidal support of II; ,, | det |§3 —N)/2 ®c Q, (thanks to the local-global compatibility at w gi-

ven by [5]), it follows from the mod ¢ local Langlands correspondence of Vignéras [66] that
Ty | det [ @c Qp, o] det [V @c @y

are integral and have the same mod ¢ supercuspidal support (which is the supercuspidal support
of any irreducible component of the reduction mod ¢): it follows that the supercuspidal support
of the generic irreducible component of the reduction mod £ of ﬁlw] det |$ —N)/2 ®c Qy, denoted
§;, is independent of i € {1,2}. Since a generic irreducible Fy-representation is uniquely determi-
ned by its supercuspidal support, we deduce that §;, §o are isomorphic. The Main Theorem 1.1
now follows from the fact that ﬁzw] det \1(1,1 -
tions 8 and 9 for more details.

/2 ®c Qy is isomorphic to ty(m;). We refer to Sec-

1.6.

Now let us discuss the assumptions of the main theorem.

First, the construction of I1; does not require 71 to be cuspidal: it would be enough to assume
that m; ®@z C is a discrete series representation of G (for one, or equivalently any, choice of the
field isomorphism ¢: see Remark 9.3).

However, in order to construct the representation Ils satisfying our local conditions at all pla-
ces v ¢ S by the method of Khare—Vignéras, we need ms to be cuspidal — even more precisely, we
need s to be compactly induced from some open, compact mod centre subgroup of G, which is
true of any cuspidal representation of GG, thanks to the work of Stevens [60] since p is odd. Con-
sequently, both the cuspidality of w5 and (1.1) imply that 7, should be cuspidal, as the parabolic
restriction functors commute with reduction mod /.

For the same reason, we want the auxiliary representation p of G(k,) to be compactly induced
from an open, compact mod centre subgroup.

Moreover, as has been explained in Paragraph 1.4, we also need p to have a cuspidal transfer
to GLy(ky). This is why the symplectic group requires a special treatment (see Appendix C),
since no cuspidal representation of a p-adic symplectic group has a cuspidal transfer when p is
odd, and the work of Stevens [60] is not available when p = 2.

On the other hand, we show that part (3) of Theorem 1.1 does not hold in general for non-
cuspidal representations: Remark 6.4 gives an example of integral unramified irreducible Q,-re-
presentations 7 and m of SO5(F’) such that ry(m1) = re(m2) but re(ts(71)) and ry(te(m2)) have no
irreducible component in common.

Finally, our Assumption (1.1) is inspired from Vignéras [66] 3.5. It is tempting to conjectu-
rate that the conclusion of Theorem 1.1 still holds when (1.1) is replaced by the weaker condition
“ro(m1) and ry(m2) have a component in common”, but we have no evidence that such a conjec-
ture should be true.

1.7.

In Appendix A, we discuss the case of the local base change from GL,,(F') to GL, (K) for a cy-
clic extension K of F', denoted by /p.
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As in Paragraph 1.2, choosing a field isomorphism ¢ : C — Q gives an /-adic local base change
map by /r,. By using the properties of the local Langlands correspondence for GL,, with respect
to conjugacy by an automorphism of C, we prove that by, does not depend on the choice of ¢
(see Proposition A.1). We also use certain results of Zou [71] 1.10 to prove an analogue of Theo-
rem 1.1 for by, (see Paragraph A.4), and give an example of integral cuspidal Qy-representa-
tions 71, m2 of GLa(F') such that ry(m;) = rg(m2) but re(by(m1)) # re(bs(m2)) (Paragraph A.5).
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Notation

Throughout the paper, let p be a prime number, let @, be the field of p-adic numbers and let
@p be an algebraic closure of Q,. By a p-adic field, we mean a finite extension of Q, in @p.

2. Globalizing quadratic and Hermitian forms
The purpose of this section is to prove the following result.

Theorem 2.1. — Let F be a p-adic field and let G be a quasi-split special orthogonal, unitary
or symplectic group over F'. There exist a totally real number field k and a connected reductive
group G over k such that

(1) G is an inner form of a quasi-split special orthogonal, unitary or symplectic k-group,

(2) there is a finite place w of k above p such that ky, = F and G(F) is isomorphic to G,

(3) the group G(ky) is compact for any real place v, and quasi-split for any finite place v.

This theorem will be used in Section 4 where we prove the existence of automorphic represen-
tations of G(A) with prescribed conditions on their local components, where A denotes the ring
of adeles of k.

In Section 9, we will need a stronger version of Theorem 2.1: in order to transfer automorphic
representations of G(A) to a general linear group, we will need to realize G as a pure inner form
in the orthogonal and unitary cases, and a rigid inner form in the symplectic case. This is why,
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rather than Theorem 2.1, we will prove the stronger Theorems 2.8 and 2.11 below. For the sym-
plectic case, see Paragraph 2.8.
We emphasize that p may be equal to 2 in this section.

2.1. Quadratic forms

In this paragraph, k denotes either a p-adic field for some prime number p, or a real Archime-
dean local field, or a totally real number field, and ¢ denotes a (non-degenerate) quadratic form
on a k-vector space of dimension d > 2. There exists a choice of non-zero scalars Ay, ..., A\g € £~
such that ¢ is equivalent to the quadratic form A\ z§ + --- + )\d:c?l on k%. The quantity

§=10(q) = A1...\g mod k*? € k™ /k*?

does not depend on this choice. It is called the discriminant of ¢q. In the sequel, we assume that
the discriminant § is fixed. All quadratic forms are assumed to be non-degenerate.

If k£ is a p-adic field, then q is, up to equivalence, uniquely determined by its Hasse invariant

e(q) = [ [, A) e {-1,1}
1<jJ
where (-,-) is the Hilbert symbol over k (see [55] IV.2.3 Theorem 7 or [29] Theorem 9.24).

If k is isomorphic to the field of real numbers, g is, up to equivalence, entirely determined by
its signature (a,b) with @ + b = d and (—1)® = §. Its Hasse invariant is equal to (—1)(®—1/2_ If
d > 0, then b = 2¢ for some c € {0,...,|d/2]} and the Hasse invariant is (—1)°.

Now suppose that k is a totally real number field, and d,, > 0 for all real places v. The Hasse
principle (see [54] Theorem 6.6.6) ensures that ¢ is uniquely determined, up to equivalence, by
all its localizations ¢, = ¢ ®y k,, where v ranges over all places of k. In other words, it is deter-
mined by the Hasse invariants £(g,) for all finite v and the signatures (d — 2¢(gy), 2¢(gy)) for all
real v. Conversely, a family

((ev)v ﬁnitea(cv)v real)» &y € {_Ll}v Cy € {Oaald/2j}>
corresponds to a (unique) quadratic form of dimension d over k and discriminant ¢ if and only if
one has ¢, = 1 for almost all finite places v and

(2.1) [T e ] (-1 =1

v finite v real

(see [54] Theorem 6.6.10). We give more details in §2.2 and §2.3, depending on the parity of d.

2.2. The odd orthogonal case
If k£ is a p-adic field, there are two equivalence classes of quadratic forms of dimension 2n + 1

and discriminant ¢, in bijection with {—1, 1} through the Hasse invariant. The special orthogonal
groups associated with these quadratic forms are non-isomorphic. The one with Hasse invariant

(2.2) (=1, =1)"(+D2 (1 g)n

(that is 129 + - -+ + Top—_1Topn + (—1)”51:%”“) is split. The other one is non-quasi-split.
If k£ is isomorphic to the field of real numbers, there are n + 1 equivalence classes of quadra-
tic forms of dimension 2n + 1 and discriminant 6. The special orthogonal groups associated with
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these quadratic forms are non-isomorphic. Exactly one of them is compact: this is the one with
signature (2n + 1,0) if § > 0, and (0,2n + 1) if 6 < 0.

Proposition 2.2. — Let k be a totally real number field of degree v, and § € k* /k*2. Suppose
that 6, > 0 for all real places v. There is a quadratic form q of dimension 2n + 1 and discrimi-
nant § such that SO(q) is compact at all real places and quasi-split at all finite places if and only
if rn(n 4+ 1)/2 is even. When this is the case, q is unique up to equivalence.

Proof. — A quadratic form ¢ over k of dimension 2n + 1 and discriminant ¢ is entirely determi-
ned, up to equivalence, by the Hasse invariants €(q,) € {—1, 1} for all finite places v and the si-
gnatures (2n + 1 — 2¢(qy),2¢(qy)) for all real places v of k. Non-equivalent quadratic forms de-
fine non-isomorphic special orthogonal groups.

For SO(q) to be compact at all real places and quasi-split at all finite places, ¢ must have in-
variants ¢, = 0 for all real v and €, = (—1, —1)3(7”1)/2 - (—1,0,)y for all finite v, where (-,-), is

the Hilbert symbol with respect to k,. By (2.1), such a ¢ exists if and only if

H (_17 n(n+1 % H -1

v finite v finite

Thanks to the Hilbert reciprocity law ([49] VII), the left hand side is equal to

1_[ (_1?_ gn+1 « H (_1)rn(n+1)/2

v real v real
(since 0, > 0 for all real v), which gives the expected result. O
Remark 2.3. — Given any k, let ¢ be a quadratic form of dimension 2n + 1 and discriminant 1

over k. Then, for any ¢ € k*, the quadratic form dg has discriminant 6 and SO(dq) = SO(q).

2.3. The even orthogonal case

In this paragraph, we assume that the dimension of ¢ is 2n. It will be convenient to use the
normalized discriminant o = (—1)"4.
Suppose first that k is a p-adic field.

e If n = 1, there is only one equivalence class of quadratic forms of dimension 2 and norma-
lized discriminant o = 1. Its Hasse invariant is 1. The special orthogonal group associated with
it is isomorphic to GLj (k).

e Suppose that n = 2 or a # 1. There are two equivalence classes of quadratic forms of di-
mension 2n and discriminant J, characterized by their Hasse invariant. The special orthogonal
groups associated with them are non-isomorphic if and only if & = 1. When this is the case, the
one with Hasse invariant (—1, —1)”("*1)/2 (that is the quadratic form z1ze + - -+ 4+ Top—1%9,) 1S
split, and the other one is non-quasi-split. Otherwise, let [ be the quadratic extension of k gene-
rated by a square root of a: if ¢ is a quadratic form of dimension 2n and discriminant § over k,
then A¢g has same discriminant and opposite Hasse invariant for any scalar A € k* which is not
an [/k-norm, and SO(Aq) = SO(q).
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If k£ is isomorphic to the field of real numbers, there are n + 1 equivalence classes of quadra-
tic forms of dimension 2n and discriminant . Quadratic forms with signatures (a,b) and (da’, )
define isomorphic special orthogonal groups if and only if one has b’ € {a,b}. If 6 < 0, there is
no compact special orthogonal group. If § > 0, there is exactly one compact special orthogonal
group: this is the one with b € {0, 2n}.

Proposition 2.4. — Let k be a totally real number field of degree v, and § € k> /k*2. Suppose
that 6, > 0 for all real places v.

(1) There is a quadratic form q of dimension 2n and discriminant § such that SO(q) is compact
at all real places and quasi-split at all finite places if and only if either n is odd, or § # (—1)",
or rn(n —1)/2 is even.

(2) Assume that § # (—1)". For any finite place w such that §,, # (—1)" and any € € {—1,1},
there is a quadratic form q as in (1) satisfying the extra condition (q® k) = €.

Proof. — A quadratic form ¢ over k of dimension 2n and discriminant § is entirely determined,
up to equivalence, by the Hasse invariants €(q,) € {—1, 1} for all finite places v and the signatures
(2n — 2¢(qy),2¢(qy)) for all real places v. A quadratic form f with same dimension and discri-
minant as ¢ defines a special orthogonal group isomorphic to SO(q) if and only if they have the
same Hasse invariants for all finite v such that a,, = 1, and ¢(f,) € {n — ¢(qv), c(qy)} for all real
places v.

For SO(q) to be compact at all real places and quasi-split at all finite places, ¢ must have in-
variants ¢, € {0,n} for all real places v and ¢, = (—1, _1)2(71—1)/ ? for all finite places v such that
a, = 1. (Recall that a = (—1)"d.) By (2.1), such a ¢ exists if and only if

[T eox J] (-1 -0p D2 (1) =1

v finite v finite
ap#l ayp=1
where s is the number of real places such that ¢, = n. If n is odd, we may adjust s € {0,...,r}

so that this product is 1. If a # 1, we may adjust the signs ¢, for the finite v such that o, # 1
so that this product is 1. (Since the number of such v is at least 2, we may even assume that ,,
is equal to a given sign ¢ for a given w as in (2).) If n is even and « = 1, the condition is

[] (~1-1pe=n2 =1

v finite

and Hilbert’s reciprocity law says that the left hand side is equal to
1_[ (_1’ _1)2(n71)/2 _ (_1)rn(n71)/27

v real

which gives the expected result. O

2.4. Globalizing the base field

The following lemma will be useful in the remainder of this section.

Lemma 2.5. — Let F' be a p-adic field.
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(1) There exists a totally real number field k of even degree such that ky, = F for some finite
place w of k dividing p.
(2) If p # 2, we may further assume that there exists a finite place u of k such that k,, ~ Qs.

Proof. — We follow the proof of [2] Lemma 6.2.1. Let us write F' = Q,(3) for some root 3 € F
of a monic irreducible polynomial f of degree r = [F': Q,] with coefficients in Q,. Given a field
E, we identify the space of monic polynomials of degree r with coefficients in E with E".

By Krasner’s lemma (see [51] 3.1.5), there is an open neighborhood U, of f in Qj, such that
any g € Up has a root 3’ € @p such that Q,(5’) = F. Let Uy be the open subset of R"” made of
all monic polynomials with r distinct real roots. Since the diagonal image of Q" in R" x Q) is
dense, the intersection

Q" N (Uyp x Up)

is non-empty. We may replace f by a polynomial in this intersection, which we still denote by f.
The number field & = Q(f) is totally real, and k,, = F' for some finite place w of k dividing p. If
the degree of k is even, we are done. Otherwise, we choose a monic irreducible polynomial g of
degree 2 over Q which splits over R and Q,, whose existence can be proven in the same way as
above. Then replace k by k() where 7 is a root of g in Q.

Suppose now that p # 2, and let Uz be the open subset of Q5 made of all monic polynomials
with 7 distinct roots in Q2. We may replace f by a polynomial in Q" n (Uy x U, x Us), which
we still denote by f. The number field £ = Q(f) is totally real, k,, = F' for some finite place w
of k dividing p, and 2 is totally split in k. If the degree of k is even, we are done. Otherwise, we
choose a monic irreducible polynomial g of degree 2 over Q which splits over R, Q, and Q2, then
replace k by k() where 7 is a root of g in Q. O

Remark 2.6. — With a similar argument, one can prove in addition to part (1) of Lemma 2.5
that, if F is a quadratic extension of F' in @p, there is a totally imaginary quadratic extension
[ of k such that [, = F.

Remark 2.7. — Part (2) of Lemma 2.5 will be needed in Section 9, in the symplectic case, in
order to apply the results of Appendix C.

2.5. Proof of Theorem 2.1 in the special orthogonal case

We prove Theorem 2.1 in the case where G is special orthogonal, that is, there is a quadratic
form @ over F' such that G is isomorphic to SO(Q). We will prove the following stronger result.

Theorem 2.8. — Let Q be a quadratic form over F such that SO(Q) is quasi-split. There exist
a totally real number field k and a quadratic form q over k such that
(1) there is a finite place w of k dividing p such that
(a) the field ky, is equal to F,
(b) the quadratic forms q ® F and Q are equivalent,
(2) the group SO(q® ky) is compact for all real v, and quasi-split for all finite v.
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Proof. — By Lemma 2.5, there exists a totally real number field k of even degree such that k,,
and F' are equal for some finite place w of k dividing p. Fix a v € F* such that the discriminant
of Q is vF*2, and fix a § € k* such that v~ 15, € F*2 and §, > 0 for all real v.

By Proposition 2.2 when @) has odd dimension and Proposition 2.4 when @ has even dimen-
sion, there is a quadratic form ¢ of discriminant ¢ satisfying (2). Moreover, the quadratic forms
q ® F and () have the same discriminant and define quasi-split special orthogonal groups.

If @ has odd dimension, or if ) has dimension 2n and v = (—1)", they are thus equivalent.

Otherwise, use Proposition 2.4(2) with € = ¢(Q) to ensure that ¢ ® F' and ) have the same
Hasse invariant: they are thus equivalent. O

Remark 2.9. — In addition to Theorem 2.8, there is always a finite place u # w of k such that
the group SO(¢ ® k) is split: one can choose

(1) any finite place different from w in the odd orthogonal case,
(2) any finite place u # w such that (—1)"d, € k% in the even orthogonal case.

2.6. Hermitian forms

In this paragraph, [ is a separable quadratic k-algebra (where k is as in Paragraph 2.1) and h
is a (non-degenerate) [/k-Hermitian form on an [-vector space of dimension n = 1. There exists
a choice of non-zero scalars A1, ..., A, € £ such that h is equivalent to the [/k-Hermitian form
A Nyg(z1) + -+ ANy () on 1", The quantity

o= 5(h) = )\1 . )\n mod Nl/k(lx) € kX/Nl/k(lX)

does not depend on this choice. It is called the discriminant of h. Fix an « € k™ such that [ is
isomorphic to the k-algebra k[X]/(X? — ). The image of a in k* /k*? will still be denoted .

Up to equivalence, h is uniquely determined by its trace form ¢, that is, the quadratic form of
dimension 2n over k obtained by seeing [ as a k-vector space ([54] Theorem 10.1.1).

If [ is split, that is, if [ ~ k x k, then Ny, (1) = k* and we may choose o = 1. There is, up to
equivalence, a unique {/k-Hermitian form of dimension n. Its discriminant is trivial, and the uni-
tary group associated with it is (non-canonically) isomorphic to GLy, (k). More precisely, if one
fixes an isomorphism [ ~ k x k of k-algebras, h identifies with a non-degenerate bilinear form on
k™ x k™, the group GL, () identifies with GL,,(k) x GLy, (k) and there is an isomorphism

(2.3) GL.(k) ~ U(h)
g — (9,9%)

where ¢g* is the contragredient of g € GL,, (k) with respect to h. (Note that changing the isomor-
phism [ ~ k x k has the effect of exchanging g and ¢* in (2.3).) Also, the trace form ¢ of h is
maximally isotropic, that is, it is the sum of n hyperbolic planes.

If [ is a quadratic extension of k, a quadratic form of dimension 2n over k is the trace form of
an [/k-Hermitian form if and only if ¢ ® ! is maximally isotropic ([54] Theorem 10.1.2).

If [/k is a quadratic extension of p-adic fields, there are two equivalence classes of [/k-Hermi-
tian forms of dimension n, in bijection with &> /N;/, (1) through the discriminant.
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e If n is odd, the unitary groups associated with these Hermitian forms are isomorphic. More
precisely, if & # 1 and h is a Hermitian form of odd dimension over k, then §h is unequivalent to
h for any ¢ € k™ such that 0 ¢ N;/, (1), and the group U(6h) = U(h) is quasi-split.

/2 ig quasi-split, and

e If n is even, the unitary group corresponding to the discriminant (—1)
the other one is non-quasi-split. The trace form ¢ of h has discriminant (—«)™ and Hasse inva-

riant
(2.4) e(t) = (o, 0) - (—a, =)= D2,

If I/k is isomorphic to C/R, the Hermitian form h is uniquely determined, up to equivalence,
by its signature (a,b) with a + b = n. Its discriminant is (—1)°. Its trace form ¢ has discrimi-
nant 1 and signature (2a,2b). The unitary group U(h) is compact if and only if b € {0, n}.

If [ is a totally imaginary quadratic extension of a totally real number field & (thus «, < 0 for
all real places v of k), then h is uniquely determined, up to equivalence, by any one of the fol-
lowing data:

(1) the equivalence class of its trace form ¢,

(2) the Hasse invariants £(t,) for all finite v and the integers b(t,) for all real v,

(3) the equivalence classes of its localizations h, = h ®y k, for all v,

(4) the discriminants 0(h,) for all finite v and the integers b(h,) for all real v.

We have just seen that (3) and (4) are equivalent, and we have seen that (1) and (2) are equiva-
lent in Paragraph 2.1. Now the fact that (2) and (3) are equivalent follows form the formulas

e(ty) = (@, 8(hy))o - (—ary, —1)M™ D72 for finite v, b(t,) = 2b(hy) for real v,

the first one including the case where [, = [ ® k, splits over k, (as o, = 1 in this case) and the
fact that, when a, # 1, the map = — (aw, ), is a bijection from k' /N; /., (1) to {—1,1}. Con-
versely, a family

(25) ((511)1} finite> (bv)v real)a 0y € k;/va/kv (l;;), b, € {0, N n},

corresponds to an I/k-Hermitian form of dimension n if and only if there exists a § € k* /Ny, (1*)
such that 6 = 0, mod Ny, ., (1)) for all v (where we have put 6, = (—1) at all real places v), and
when it is the case such a Hermitian form is unique. Indeed, this is certainly a necessary condi-
tion and, when it is satisfied, the family

(26) ((511)1) finite (va)v real)7 Ey = (aw 51))1) : (—CVU, —1)Z(n_l)/2a

satisfies €, = 1 for almost all finite places v together with

[T eox [T = [ (6o x J] (mew, =15 02 TT (=)

v finite v real v real v real v real
= [[n-0w < [T
v real v real

which is equal to 1 (thanks to the fact that o, < 0 and &, = (—1)% for all real v). Thus there
is a unique quadratic form of dimension 2n over k and discriminant (—«a)™ with local invariants
(2.6). One can verify that it is maximally isotropic over [ (as it is maximally isotropic over [, for
all v). It is thus the trace form of an [/k-Hermitian form of dimension n, as expected.
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Proposition 2.10. — Let k be a totally real number field of degree r and l be a totally imaginary
quadratic extension of k.

(1) There is a Hermitian form h of dimension n such that U(h) is compact at all real places.

(2) There is a Hermitian form h of dimension n such that U(h) is compact at all real places
and quasi-split at all finite places if and only if either n is odd, or n and rn/2 are both even.

(3) Assume that n is odd. For any finite place w and any ¢ € kj /Ny . (L), there is a Her-
mitian form h as in (2) satisfying the extra condition §(h ® ky,) = €.

Proof. — Assertion (1) is verified by any Hermitian form A of dimension n over k such that we
have b(h,) € {0,n} at all real places v.

Assume now that n = 2m for some m > 1. A Hermitian form A of dimension n and discrimi-
nant ¢ satisfies (2) if and only if b(h,) € {0,n} and §, > 0 for all real v, and ¢, = (—1)" for all
finite v. Such a d € k* /Ny, (1) exists if and only if §, € Ny, (I,7) for almost all finite v, and

H(avadv)v =1
v
The first condition is satisfied since [, is either split over k, or an unramified extension of k, for
almost all finite v. The second condition follows from
H(O‘vaév)v = H (aw, —1)3" = H (ay, 1) = (=)™
v v finite v real
thanks to the Hilbert reciprocity law and the fact that a, < 0 for all real v.

Assume now that n is odd. A Hermitian form A of dimension n and discriminant 0 satisfies (2)
if and only if b(h,) € {0,n} at all real places v, and satisfies (3) if and only if b(h,) € {0,n} at all
real places v and e ! € Ny, /ko (L) Fix a finite place y # w and a s € ;7. We claim that such
an h exists, with the extra conditions

— b(hy) = 0 for all real places v,

— 6 € Ny g, (1)) for all places v ¢ {w,y} and Skl e Ny, /&, (L)

Arguing as in the case when n is even, it suffices to choose a r ¢ Ny, (l;), which is possible as
soon as y has been chosen such that o, # 1. O

2.7. Proof of Theorem 2.1 in the unitary case

We prove Theorem 2.1 in the case where G is unitary, that is, there are a quadratic extension
E of F and an E/F-Hermitian form H over F' such that G is isomorphic to U(H ). We will prove
the following more precise theorem.

Theorem 2.11. — Let H be an E/F-Hermitian form such that U(H) is quasi-split. There exist
a totally real number field k, a totally imaginary quadratic extension l of k and an l/k-Hermitian
form h such that:

(1) there is a finite place w of k above p such that
(a) one has ky = F and 1, = F,
(b) the Hermitian forms h® F and H are equivalent,
(2) the group U(h® ky) is compact for all real v, and quasi-split for all finite v.
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Proof. — By Lemma 2.5 and Remark 2.6, there are a totally real number field k of even degree
and a totally imaginary quadratic extension [ of k such that k,, = F' and [, = F for some finite
place w of k dividing p.

By Proposition 2.10, there exists an [/k-Hermitian form h satisfying (2). Moreover, the Her-
mitian forms h ® F and H define quasi-split unitary groups.

If H has even dimension, they are thus equivalent. If H has odd dimension, one uses Propo-
sition 2.10(3) with ¢ = 6(H) to ensure that h ® F' and H have the same discriminant: they are
thus equivalent. O

Remark 2.12. — In addition to Theorem 2.11, there is always a finite place u # w of k such
that U(h ® k) is split: it suffices to choose any finite place u # w such that l,, ~ k, x k.

2.8. The symplectic case

We now consider the case where G is a symplectic group, that is, there exists a non-degenerate
symplectic form A over F such that G = Sp(A). By Lemma 2.5, there exists a totally real number
field k of even degree such that k,, = F' for some finite place w of k dividing p. (Moreover, when
p is odd, we may further assume that there is a finite place u of k such that k, ~ Q.) In this
case, Theorem 2.1 is given by [62] 2.1.1. See also [63] Proposition 3.1.2, where the inner form
G is realized as a rigid inner form of Sp,,, over k.

3. Congruences of automorphic forms of definite groups

In this section, we fix a prime number ¢. Let Q, be an algebraic closure of the field of /-adic
integers, Zy be its ring of integers and F, be its residue field. We fix a field isomorphism

(3.1) 1:C—Qy

and a number field k. We denote by A = Ay x Ay the ring of adeles of k.
Given a locally compact, totally disconnected group GG, an open subgroup K of GG, a commuta-
tive ring R and a smooth R-representation p of K, we denote by

f}CR<G7 :0)

the endomorphism R-algebra of the compact induction of p to G, called the Hecke R-algebra of
G relative to p. When p is the trivial R-character of K, it naturally identifies with the convolution
R-algebra made of K-bi-invariant, compactly supported R-valued functions on GG, and we denote
it by Hr(G, K).

Let F' be a p-adic field for some p # ¢, G be the group of F-rational points of a reductive group
defined over F and 7 be an irreducible (smooth) representation of G' on a Q-vector space V. It
is said to be integral if V carries a G-stable Z,-lattice. Given such a lattice L, the representation
of G on the Fy-vector space L ® F; (where [y is the residue field of Z,) is smooth and has finite
length, and its semi-simplification does not depend on the choice of L ([68] Theorem 1). This
semi-simplification is denoted ry(7), and called the reduction mod ¢ of . One defines similarly
the reduction mod ¢ of an irreducible Q,-representation of a compact, open subgroup of G.
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3.1.
Let G be a connected reductive group defined over k. We assume that G is definite, that is,
the group G(Ay) is compact. We embed diagonally G(k) in G(Ay) and set
Y = G(k)\G(4y).

The quotient Y is compact ([50] §5) and hence Y/K is finite for any open subgroup K of G(Ay).

We denote by &7 (G) the space of functions G(k)\G(A) — C which are square integrable with
respect to a Haar measure on G(A). It is endowed with the natural unitary C-representation of
G(A).

3.2.

Given an open subgroup K of G(Ay), let Alg(G, K) be the free Z-module of finite rank made
of all functions Y — Z which are invariant under right translations by K ([66] 3.3). We consider
the Z-module

Alg(G) = €*(Y,Z) = | ] Alg(G,K)
K

(where K ranges over all open subgroups of G(Ay)) of locally constant functions Y — Z, called
trivial-at-infinity algebraic automorphic forms for G (see Paragraph 3.3 below). This module is
endowed with the natural Z-representation of G(Ay). Given any commutative ring R, we write
Algg(G) = Alg(G) ®z R, Algg(G,K) = Alg(G,K) ®z R.
The natural R-representation of G(A¢) on Algg(G) is admissible ([66] 3.3.2).
If R is the field Qy, the representation of G(Af) on Alg@e(G) is semi-simple and any of its ir-

reducible components has an Og-structure for some finite extension E of Q, in Q, ([66] 3.3.2).

3.3.
Let K be an open subgroup of G(A¢) and R be a commutative ring. The Hecke R-algebra of
G(Ay) relative to K is the convolution R-algebra
j_CR(C"'? K) = j-CR(C"(‘&JC)’ K)
made of K-bi-invariant, compactly supported functions G(Af) — R. It naturally acts on the R-
module Algg (G, K).
As G is definite, there is, by [21] Proposition 8.5, an explicit isomorphism
Alge (G, K) ~ o/ (G)FGho)
of Hc (G, K)-modules (see [21] (8.4) and Proposition 8.3). In particular, there is a bijection
(3.2) 0«1l
between

— the irreducible subrepresentations © of Algq(G) such that the space ©X of K-fixed vectors
in © is non-zero,

— the irreducible automorphic representations Il = II; @Il of G(A) = G(Af) x G(Ay), that
is, the irreducible subrepresentations of o7 (G) such that Iy, is trivial and HIf< is non-zero.
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3.4.

Let us fix an irreducible automorphic representation II of G(A) which is trivial on G(A). By
(3.2), we can see II as an irreducible subrepresentation of Algc(G), thus as an irreducible factor
of Algg,(G) via the isomorphism ¢ fixed in (3.1).

We fix two finite places w and u of k not dividing £ and a finite set S of finite places of k£ such
that:

(1) the set S contains w,u and all finite places above ¢,
(2) for any finite place v ¢ S, the group G is unramified over k,, and the local component II,
is unramified with respect to some hyperspecial maximal compact subgroup K, of G(k,).

Any finite place v ¢ S thus defines a character
(33) Xv * g{@e (G(kv)va) - @Z

which we call the Satake parameter of 1L,.

Recall that IT is admissible and has an Og-structure for some finite extension E of Qy in Q,. Let
us write II = Il QIO where 1) is the tensor product of all II, such that v divides £ and )
is the restricted tensor product of all IT, such that v is finite and does not divides ¢. By [66] A.3,
both IIy) and 1) have an Og-structure. By applying [66] A.4 to II), we get that each I, for
v ¢ S finite, has an Og-structure. Fixing such an Og-structure, the Og-algebra Ho, (G (ky), Ky)
acts on it through the character x,, which thus has values in Og. It follows that the restriction
of xv to Hz, (G(kv), Ky) has values in Zy.

3.5.

We now make the following assumptions on the representation II of Paragraph 3.4:

— the local component II,, is cuspidal, and is compactly induced from an irreducible represen-
tation of some compact open subgroup K,, of G(k),

— the local component II, is cuspidal, and is compactly induced from an irreducible represen-
tation 1 of some compact mod centre open subgroup K, of G(k,).

For any finite place v € S such that v ¢ {u, w}, we fix a compact open subgroup K, of G(k,) such
that II, has a non-zero K,-invariant vector. Recall that, for any finite place v ¢ S, we have fixed
a hyperspecial maximal compact open subgroup K, of G(k,) in Paragraph 3.4. We define

This is an open subgroup of G(Ay).
Given an irreducible representation  of K,,, we define an irreducible representation A = A(k)

of K by
A= @ Ay
v finite
with Ay, = k, Ay, = n and A, is the trivial character of K, for v ¢ {w,u}.
We denote by Alg@(Z (G, A) the subrepresentation of Alg@Z (G) generated by its A-isotypic com-
ponent, that is, the subrepresentation formed by the irreducible factors © such that

— the local component O,, contains k,
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— the local component ©,, contains 7,
— the local component ©, has a non-zero K,-invariant vector for all finite v ¢ {w, u}.

This amounts to considering the space
V = V(k) = Homg (A, Alg@é(G))

seen as a module over the endomorphism Q-algebra Hg, (G, A) = Hg,(G(Ay),A) of the com-
pact induction of A from K to G(Ay). We have an Hg, (G, A)-module decomposition

(3.4) V = (P Homk (A, ©)
©

where © ranges over the irreducible factors of Alg@(G, A), and each Homgk (A, ©) is of finite di-
mension as © is admissible. By admissibility again, the number of © contributing to the direct
sum of (3.4) is finite.

Denote by X the set of finite places of k. For any non-empty subset T of X and any irreducible
factor © contributing to the right hand side of (3.4), we write

Kr=]]Ky, Ar=QAy O1= )6,

veT veT veT
We thus have K = Kg x Kx\g, A = As ® Ax\g and © is isomorphic to Og ® Ox\s. Accordingly,
we have an isomorphism of Q-algebras

(3.5) Hg, (G, A) ~ Hg, (G(As), Ks) ® Hg, (G(Ax\s), Axs)
where Ag and Ax\g have their obvious meaning, and an isomorphism of %@[(A)—modules
Homy (A, ©) ~ Homy; (As, O5) ® (Ox5)" 'S

via (3.5). The factor (@X\S)Kx\s has dimension 1 over Q, and j{@e(G(AX\S)7 Kx\g) acts on this
line via a character denoted xs(©). Let dg(©) be the dimension of Homgg (Ag, ©g). Denoting by
Vs the restriction of V to Hg, (G(Ax\s), Kx\s), we therefore have an isomorphism

(3.6) Vs ~ P ds(0) - xs(0)
(C]
of Hg, (G(Ax\s), Kx\g)-modules.

3.6.

Assume now that 7 is integral. Fix a K,-stable Z-lattice L, of n with semi-simple reduction
(by [15] Lemma 6.11). Since Ky, is compact, & is integral. We also fix a K,-stable Z,-lattice L, of
k with semi-simple reduction. If v is a finite place different from u, w, let L, = Z; be the natural
lattice of A, = Q. Tensoring these A, altogether, we obtain a K-stable Z,-lattice L of A. Set

V° = Homy (La, Algz, (G)) -

It is a module over 37 (G(Ay),La). Set A =1Ly ®z, F,. By [66] Lemme 3.7.3 (which we can
apply since K satisfies [66] (3.5.1) by [66] Lemme 3.8) the Z;-module V° is a Z,-lattice of V and

V° @, Fy ~ Homg (X, AlgE(G)> .
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We denote the left hand side by V, and we continue to see it as a module over Hz,(G(Af), La).

Note that V is semi-simple and depends only on ry(x), the reduction mod ¢ of &.

3.7.

We now assume that G (k) is isomorphic to a special orthogonal, unitary or symplectic group.
We do not assume that it is quasi-split, but we assume that it is not isomorphic to the split spe-
cial orthogonal group SOs(ky) ~ k.. Equivalently, we assume that it has compact centre ([42]
§4.2). Consequently, any cuspidal irreducible Q,-representation of G(k,,) is integral. In the rest
of this section, we will prove the following theorem.

Theorem 3.1. — Assume that G(ky) is isomorphic to a special orthogonal, unitary or symplec-
tic group with compact centre, and that w does not divide 2. Let 11 be an irreducible automorphic
representation of G(A) such that

— Il is trivial,

— 11, is cuspidal (and integral),

— 11, is integral and compactly induced from a compact mod centre, open subgroup of G(ky).

Let 7' be an (integral) irreducible cuspidal Qg-representation of G(ky) such that
(37) l’g(Hw) < I’g(ﬂ'/).

There is an irreducible automorphic representation II' of G(A) such that

(1) the Archimedean component 11 is trivial,

(2) the local component 11, is isomorphic to 7',

(3) the local components 11, and II,, are isomorphic,

(4) for any finite placEv ¢ S, the local component 11, is K, -unramified, with Sajake parameter
Xo + Hz,(G(kv), Ky) — Zy, and x,,, X;, are congruent mod the mazimal ideal of Zy.
Remark 3.2. — Since I is integral, it automatically follows from [66] A.3, A.4 that the repre-
sentation II, is integral. However, for clarity, we added the integrality assumption in the hypo-
theses of Theorem 3.1.

Proof. — We follow the argument of Khare [32] and Vignéras [66]. We start with following lem-
ma, which we will prove in Paragraph 3.8.

Lemma 3.3. — Let p be a prime number different from 2, let F' be a p-adic field and G be a spe-
cial orthogonal, unitary or symplectic group over F. Suppose that G has compact centre, that is,
G is not isomorphic to the split special orthogonal group SO2(F) ~ F*. Let w and 7' be (integral)
cuspidal Qg-representations of G such that

re(m) < ro(n').

There are a compact open subgroup J of G and irreducible Q,-representations T and 7 of J such
that m is isomorphic to the compact induction of T to G and 7’ is isomorphic to the compact in-
duction of T to G' and ve(7) < ro(7').
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Remark 3.4. — It is known ([60]) that any cuspidal Q-representation of G is isomorphic to
the compact induction of an (irreducible) representation of some compact open subgroup of G.
The point here is that one can choose the same compact open subgroup for 7 and 7’.

Applying Lemma 3.3 to the group G(k,) and the cuspidal Q,-representations II,, and 7/, we
obtain a compact open subgroup K, of G(k,) and irreducible representations 7 and 7’ of K,
such that II,, is isomorphic to the compact induction of 7 to G(ky) and 7’ is isomorphic to the
compact induction of 7 to G(ky). Since K,, is compact, 7 and 7’ are integral.

Let 1 be an irreducible representation of a compact mod centre, open subgroup K, of G(k,,)
such that the compact induction of 7 to G(k,,) is isomorphic to II,. Since II, is integral, the re-
presentation 7 is integral. Thus II satisfies the conditions of Paragraphs 3.5 and 3.6.

As in Paragraph 3.5, we define A = A(7) and V = V(7). Associated with a choice of K,,-stable
Zy-lattice of k with semi-simple reduction, there are V° and V. Similarly, replacing 7 by 7/, we
define A/, V', V'° and V’. Recall that V and V' are semi-simple. The key point is that the space
V is non-zero and contained in V', since we have ry(7) < r,(7') by Lemma 3.3.

The character xs(II) of 3z (G(Ax\s), Kx\s) defined by II occurs in V. By reduction, we get
a character Yg of Hg, (G(Ax\s), Kx\s) occurring in Vs, and therefore in V.

By Deligne-Serre’s lemma ([19] Lemma 6.11), there is a character xg of 3z (G(Ax\s), Kx\s)
occurring in Vg such that its reduction equals Xg.

Therefore, there is an irreducible factor IT" of Algg, (G) contributing to Vg such that xq(IT')
and xg coincide on Hg, (G(Ax\s), Kx\s). Such a II' satisfies the conditions of the theorem. [

3.8.

In remains to prove Lemma 3.3.

Proof. — According to [60] Theorem 7.14 (and [42] Appendix A), there are a compact open sub-
group J of G and an irreducible Q,-representation 7 of .J such that 7 is isomorphic to the com-
pact induction of 7 to G. More precisely, the pair (J,7) can be chosen among cuspidal types of
G in the sense of [42] Appendix A. It then has the following properties:

— There is a normal pro-p-subgroup J! of .J such that .J/J! is isomorphic to the group of ra-
tional points of a reductive group ¢ (whose neutral component is denoted ¥°) defined over the
residue field of F.

— The representation 7 decomposes as k®& where k is a representation of J whose restriction
to J! is irreducible and ¢ is an irreducible representation of .J whose restriction to J! is trivial.

— More precisely, & is a beta-extension ([60] §4.1) of a skew semisimple character 6 ([60] §3.1)
defined with respect to a skew semisimple stratum [A, ] ([60] §2.1) and £ is the inflation of a re-
presentation of .J/J! whose restriction to the rational points of ¢° is cuspidal.

— The centre of the centralizer Gg of E = F[f] in G is compact, and the parahoric subgroup
P°(Ag) of Gg associated with [A, 3] (see [60] §2.1) is a maximal parahoric subgroup of Gg.

Lemma 3.5. — The character 0 occurs in 7.
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Proof. — By definition, @ is a character of an open pro-p-subgroup H' = H'(A, 3) of G. Since
occurs in the restriction of m to H', its reduction mod ¢ occurs in ry(7')| 1. Let V be an irredu-
cible summand of 7’| ;1 such that ry(V) contains ry(6). Since H' is a pro-p-group, V is isomorphic
to 6. O]

Now let € denote the set of pairs ([A’, 3],0') made of a skew semisimple stratum [A’, 5] and
a skew semisimple character 6’ € G(A’, 3) occurring in 7’ such that

P°(Ap) < P*(Ag)

and Cpin denote the subset of € made of all ([A’, 5],6’) such that P°(A’;) is minimal among all
parahoric subgroups of Gg occurring this way.

Let us prove that Cpin = C. Let ([A’, 5],6’) € Cpin. Then [60] §7.2 (in particular Lemma 7.4)
and [42] Appendix A imply that 7’ contains a cuspidal type (J', ' ®¢&’) where J = J(A/, 3) for
some skew semisimple stratum [A’, §] and £’ is any beta-extension of §’. By definition of a cuspi-
dal type, P°(A’;) is a maximal parahoric subgroup of Gg. It is thus equal to P°(Ap).

It follows that ([A, ],0) € Cmin. We thus may choose ([A', 5],0") = ([A, ],0) (hence J = J)
and ' = k in the paragraph above. Thus 7’ contains a cuspidal type (J,k®¢’). It follows from
[60] Corollary 6.19 that the compact induction of 7/ = Kk ® £’ from J to G is isomorphic to 7.

The representation « is integral (since the group J is compact) and its reduction mod ¢ is ir-
reducible (by [35] Remark 6.3). Applying the functor Hom ;i (k, —) from representations of G to
representations of J which are trivial on J!, which is compatible to reduction mod ¢, we deduce
from [35] Corollary 8.5 that ry(£) < ry(¢'), thus re(7) < re(7). O

4. Globalizing representations

In this section, we fix a p-adic field F’ and a quasi-split special orthogonal, unitary or symplec-
tic group G over F. Let k, w and G be as in Theorem 2.1, and j : G(F') ~ G be an isomorphism
of locally compact groups which we use to identify G(F') with G.

Let ¢ denote a prime number different from p, and fix a field isomorphism ¢ as in (3.1). Let
u be a finite place of k different from w, not dividing £.

In Paragraph 4.2 only, the prime number p will be assumed to be odd.

4.1.
The next proposition is the first step towards Theorem 4.4. (See also Paragraph 1.3.)

Proposition 4.1. — Let m be a unitary cuspidal irreducible complex representation of G, and
let p be a unitary cuspidal irreducible complez representation of G(ky). There is an irreducible
automorphic representation Il of G(A) such that

(1) the local component 11, is isomorphic to p,
(2) the local component 11, is isomorphic to ,
(3) the local component 11, is the trivial character of G(k,) for any real place v of k.
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Remark 4.2. — When the centre of G is compact, any cuspidal irreducible representation 7 of
G is unitarizable. The only case when G has a non-compact centre is when it is isomorphic to
the split special orthogonal group SOz (F') ~ F'* (see [42] 4.2).

Proof. — Let Z be the centre of G. We start the proof by the following lemma.

Lemma 4.3. — There is a unitary automorphic character Q : Z(A)/Z(k) — C* such that

(1) the local component S, is equal to the central character w, of p,
(2) the local component €, is equal to the central character w, of 7,
(3) the local component U, is the trivial character of Z(k,) for any real place v of k.

Proof. — Let U denote the subgroup Z(k,,) x Z(ky) x Z(Ay) of Z(A). The intersection U Z(k)
is trivial, thus U identifies with a locally compact subgroup of Z(A)/Z(k). By Pontryagin duality,
any unitary character of U extends to Z(A)/Z(k). (Note that w, and w, are unitary.) O

We now follow the proof of [24]. Let 2 : Z(A)/Z(k) — C* be a unitary automorphic character
as in Lemma 4.3. Let y be a finite place different from u and w.

Let us choose coefficients f,, and f,, of p and 7, respectively, which are non-zero at 1.

For all real places v of k, let f, be the constant function equal to 1 on G(k,). As this group
is compact, f, is smooth and compactly supported.

For all finite places v # y such that G is unramified over k, and €2, is unramified, let f, be
the complex function on G(k,) supported on Z(k,)K, such that f,(zg) = Q,(2) for all z € Z(k,)
and all g in a fixed hyperspecial maximal compact subgroup K, of G(k,).

For any other place x, we choose a smooth complex function f, on G(k,), non-zero at 1, com-
pactly supported modulo Z(k,) with restriction to this later group equal to €.

We let f be the product of all these f,. It is smooth and compactly supported on G(A). We
may and will assume that

— the support of f, is small enough so that
flgHf(vg) =0 for all ge G(A), v € G(k) such that v ¢ Z(k),
— and fy,(g) = fu(g~1) for all places v of k and all g € G(ky).

We construct as in [24] the Poincaré series

Pflg)= >, [f(rg),  forge G(A).

VEZ(k)\G (k)

We are in a particular case of the proof of [24] Appendice 1, so in particular this is well defined,
non-zero, square-integrable and even cuspidal. There is thus an irreducible automorphic repre-
sentation II of G(A), with central character 2, such that, for each place v of k, one has

j Folg™HTu(g) dg # 0
Z(ky)\G (ko)

where dg denotes a Haar measure on Z(k,)\G(k,). In particular, the local components IT,, and
11, are isomorphic to p and , respectively. At any real place v, the representation II, contains
a vector which is G(k,)-invariant, so II, is trivial. O
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4.2.
We now assume that p # 2.

Theorem 4.4. — Let my, o be integral cuspidal irreducible Q-representations of G such that

re(m) < re(ma).

Let p be a unitary cuspidal irreducible complex representation of G(k,) which is compactly indu-
ced from some compact mod centre, open subgroup of G (k). Assume that G is not the split spe-
cial orthogonal group SO2(F) ~ F*. There are irreducible automorphic representations I1; and

Iy of G(A) such that

(1) Iy 4, and Iz, are both isomorphic to p,

(2) Uy ®c Qq is isomorphic to m and 11y, ®c Q, is isomorphic to s,
(3) I, and Iy, are trivial for any real place v,
(4)

4) there is a finite set S of places of k, containing all real places, such that for allv ¢S :

(a) the local components 111, and Ilp,, are unramified with respect to some hyperspecial
mazimal compact subgroup K, of G(k,),

(b) the restrictions of the Satake parameters of Iy , ®c Q; and s, @c Qp to the Hecke
Zy-algebra Hz,(G(ky), Ky) are congruent mod the mazimal ideal m of Zy.

Remark 4.5. — The assumption on G implies that the centre of G is compact, thus any cus-
pidal irreducible Q,-representation of G is integral.

Proof. — First, let us apply Proposition 4.1 with 7 = m; ®g, C. (Since the centre of G is com-
pact, the central character of 7w has finite order, thus 7 is unitarizable.) We obtain an irreducible
automorphic representation IT; of G(A) such that

(1) the local component IT; ,, is isomorphic to p,
(2) the local component I ,, ®c Q; is isomorphic to i,
(3) the local component II; , is the trivial character of G(k,) for any real place v.

We then choose for S a set of finite places of k as in Paragraph 3.4, that is, S contains u, w and
all places dividing ¢, and, for any finite place v ¢ S, the local component II; , is unramified with
respect to some hyperspecial maximal compact subgroup K, of G(k,). For such v, this defines a
Zg-character X1, of Hz,(G(ky), Ky).

We now apply Theorem 3.1 with 7’ = 7. The conditions of Paragraph 3.5 are automatically
satisfied for II; ,, thanks to [60]. We get an irreducible automorphic representation Il of the
group G(A), trivial at infinity, such that

(1) the local component Il , ®c Qy is isomorphic to o,

(2) the local component ITy,, is isomorphic to p,

(3) for all finite places v ¢ S, the local component I3, ®@c Qy is K,-unramified with associated
Zg-character X2, : J-CZ(G(ICU),K@) — Zy, and Y1, and X2, are congruent mod m.

This proves Theorem 4.4. O
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5. Global transfer

5.1. Quasi-split classical groups

Let k be either a p-adic field for some prime number p, or a real Archimedean local field, or a
totally real number field. We will consider the following families of quasi-split reductive groups
over k:

(1) For n > 1, the (split) symplectic group Sps,, defined as Sp(f), where f is the alternating
form on k%" x k" defined by

(5.1) fl@i, .o Zon, Uiy oy Yon) = T1Y2n — TonY1 + -+ + TpYntl — Tnt1Yn-

(2) Forn > 1 and « € k*, the (split) special orthogonal group SOg,,+1 defined as SO(q), where

q is the quadratic form on k2"*! of discriminant (—1)"« defined by

(5.2) q(x1,.. . Topt1) = T1T2 + -+ + Top_1Topn + aaz%nﬂ.
(3) For n > 1 and a € k™, the special orthogonal group SO, defined as SO(q), where ¢ is the
quadratic form on k2" of discriminant (—1)"«a defined by

(5.3) q(x1, ..., x9p) = X1T2 + + -+ + Top_3Top—2 + x%n_l — ax%n.

(4) Forn > 1 and « € k™, the unitary group U defined as U(h), where h is the [/k-Hermitian
form on " of discriminant (—1)™"~1)/2 defined by

(5.4) h(x1,. .. 2n) = 5@, — 252, 1 + -+ (=1)" Tl

where [ is the k-algebra k[X]/(X? — ) and c is the non-trivial automorphism of I/k. If a € k2,
the k-group U¢ is thus isomorphic to GLy,.

In the even orthogonal and unitary cases, the image of a in k* /k*2 will still be denoted a.

5.2. The dual group

In this paragraph, k is either a p-adic field or a totally real number field and G* is one of the
quasi-split special orthogonal, unitary or symplectic k-groups of 5.1. We define its dual group

SO2n+1((C) if G* = Sp2n7
Spo, (C)  if G* = SOspy1,
SO0, (C) it G* = SOS. |
GL.(C) it G* = U2,

G =

In the even orthogonal case, the groups SOs,(C) < O2,(C) are defined with respect to the sym-
metric bilinear form {-,-) on C?" given by

0 ifi+j#2n+1,
1 otherwise,

(eirej) = {

where (e1,...,es,) is the canonical basis of C2".
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5.3. The local Langlands correspondence

In this paragraph, k is a p-adic field and G* is either the general linear k-group GL,, for some
n = 1 (whose dual group is GL,(C)) or one of the quasi-split classical k-groups of 5.1. We denote
by W; the Weil group of @p over k, and define the semi-direct product “G = G x W}, where

e the action of Wy on G is trivial when G* is split (that is, when G* is general linear, sym-
plectic, odd orthogonal, even orthogonal with o = 1 or unitary with a = 1),

e when G* is even orthogonal and « # 1, and if I denotes the quadratic extension of k in @p
generated by a square root of «, the action of Wy on G factors through Gal(l/k), the generator ¢
of which acts by conjugacy by the element w € Oy, (C) fixing e1,...,e,-1,€n+2,...,€2, and ex-
changing e, and e, (thus G x Gal(l/k) identifies with Os,(C)),

e when G* is unitary and o # 1, and if [ denotes the quadratic extension of k in @p generated
by a square root of «, the action of Wy, on G factors through the group Gal(l/k) whose generator
c acts by

g'_)g* :J_tg—l_J—l
where g denotes the transpose of g € GL,,(C) and J is the antidiagonal matrix in GL,,(C) defi-
ned by J;; =0ifi+j#n+1and J; 41— = (—=1)i-L

Let WDy, = Wy, x SLy(C) denote the Weil-Deligne group of k. A (local) Langlands parameter
for G(k) is a group homomorphism

@:WDkaéka

such that

— its restriction to Wy is smooth,

— its restriction to SLy(C) is algebraic,

— the projection of ¢(Wy) onto G is made of semi-simple elements, and
— the projection of ¢(w,x) onto Wy, is equal to w for all (w,z) € WDy.

When G* is split, this is the same as a morphism WDy — G satisfying the first three points. In
the even orthogonal case with a # 1, this is the same as a morphism WDy — Oq,(C) satisfying
the first three points and whose determinant is the quadratic character

x— (a, )

of k™, which can be seen as a character of Wy via the Artin reciprocity map of local class field
theory. We say a local Langlands parameter ¢ is bounded if ¢(Wy,) is relatively compact in G.
Let

— ®(G*, k) be the set of é—conjugacy classes of local Langlands parameters for G* over k,

— II(G*(k)) be the set of isomorphism classes of irreducible representations of G*(k).

When G* is the general linear group GL,,, the local Langlands correspondence (|23, 25]) is a
bijection from II(GL,(k)) to ®(GLy, k).

When G* is classical, the local Langlands correspondence ([2] Theorem 2.2.1, [47] Theorems
2.5.1, 3.2.1, see also [4] Theorems 3.2, 3.6 and Remarks 3.3, 3.7) defines
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(1) (symplectic, odd orthogonal and unitary cases) a partition
(5.5) MG*(k) = [] Te(G*(k)
pe@(G*,k)
into non-empty finite sets I1,(G*(k)) if G* is symplectic, odd special orthogonal or unitary,
(2) (even orthogonal case) a partition

(5.6) I1(503,,(k)) = I1 11, (SO3, (k)
pe®(503,,,k)/02,(C)
where each II,(SO%,(k)) is non-empty, finite and stable under O$, (k)-conjugacy.
In each case, we have the following properties:

o II,(G*(k)) contains a tempered representation if and only if ¢ is bounded. When this is the
case, all representations in IL,(G*(k)) are tempered. (See for instance [2] Theorem 1.5.1 for sym-
plectic and special orthogonal groups, and [31] Theorem 1.6.1 for unitary groups.)

o II,(G*(k)) contains a discrete series representation if and only if ¢ is bounded and the quo-
tient of the centralizer of the image of ¢ in G by Z((A?r)W’C is finite. When this is the case, all
representations in II,(G*(k)) are discrete series representations. (See for instance [70] Theorem
2.2 for symplectic and special orthogonal groups, and [31] Theorem 1.6.1 for unitary groups.)

5.4. The local transfer

In this paragraph, k is a p-adic field and G* is one of the quasi-split classical k-groups of 5.1.
If G* is symplectic or special orthogonal, there is a morphism Std : G — GLy(C) with
2n it G* = SOgp41 or G* = SO%,,,

5.7 N = N(G*) =
(5:.7) (G") { 2n+1 if G* = Spy,,
given by the natural inclusion. We extend it to a morphism Std : G x W), > GLy (C) as follows:

e Std is trivial on Wj, when G* is split,
e when G* is even orthogonal and « # 1, Std is trivial on W; and Std(c) = w € O2,(C), thus
Std factors through

SO2,(C) x Wi, — SO9,(C) x Gal(l/k) ~ Og,(C) < GLgy,(C)

(see also [4] 3.2).

In the unitary case (G* = UY), we need to introduce the k-group GL;, the restriction of GL,,
with respect to [/k. Its dual group is GL,,(C) x GL,(C), and we define the semi-direct product

LGLe = (GL,(C) x GL,(C)) x W,
where

e the action of Wy, is trivial when {/k is split,
e otherwise, the action of Wy, factors through Gal(l/k) and ¢ acts by (g, h) — (h, g).

It will be convenient to set
(5.8) N = N(U%) = n.
Let Std be the morphism G x W), — (GLx(C) x GLy(C)) x Wy, defined by g xw — (g, g*) x w.



26 ALBERTO MINGUEZ & VINCENT SECHERRE

Given an irreducible representation 7 € II(G*(k)), let ¢ € ®(G*, k) be a Langlands parameter
such that m € II,(G*(k)). (In the even orthogonal case, ¢ is determined up to Og,(C)-conjugacy
only.)

If G* is symplectic or special orthogonal, then, composing with Std, we get a local Langlands
parameter ¢ = Std o ¢ € ®(GLy, k), uniquely determined up to GL(C)-conjugacy.

If G* is unitary, then, composing with Std, we obtain a Langlands parameter

Std o  : WDj, — (GLy(C) x GLy(C)) x W.

e If [ is non-split, its restriction to WD; has the form (w, z) — (¢(w, z), p(w, z)*) x w for a lo-
cal Langlands parameter ¢ € ®(GLy,[), uniquely determined up to GLy(C)-conjugacy.

e If [ is split, it is of the form (w,x) — (¢(w, z), d(w, z)*) xw for a local Langlands parameter
¢ € ®(GLy, k), uniquely determined up to GLy(C)-conjugacy.

Definition 5.1. — The local transfer of m, denoted t(r), is the isomorphism class of irreduci-

ble representations associated with ¢ through the local Langlands correspondence. It is

(1) a class of representations of GLy (k) if G* is symplectic or special orthogonal,
(2) a class of representations of GLy (1) if G* is unitary,

which is uniquely determined by the isomorphism class of .

Remark 5.2. — If G* is unitary and [ is split over k, and if we fix an isomorphism of k-algebras
[ ~ k x k, which we use to identify U% (k) with GL, (k) and GLy(I) with GLy (k) x GLy(k), then

(5.9) tir) =r®n"

(where 7V is the contragredient of 7). This does not depend on the choice of [ ~ k x k. Indeed,
making the other choice twists the isomorphism U%(k) ~ GL, (k) by g — ¢* (see (2.3) and the
explanation thereafter) and the isomorphism GLy(I) ~ GLy(k) x GLy (k) by (g,h) — (h,g),
which gives (5.9) again since g — m(g*) is isomorphic to 7V.

In Section 6, we will describe explicitly the local transfer for unramified representations when

G* is unramified over k, and will describe its congruence properties.

5.5. Arthur parameters in the symplectic and orthogonal cases

In this paragraph, k is a totally real number field and G* is symplectic or quasi-split special
orthogonal. We write A for the ring of adeles of k and N = N(G¥) (see (5.7)).

Definition 5.3. — A discrete global Arthur parameter (for G*) is a formal sum
(5.10) Y =Ihd]&®- - oll[d]
for some integer r > 1, where, for each i € {1,...,r}, d; is a positive integer and II; is a self-dual

cuspidal automorphic irreducible representation of GLy,(A) for some N; > 1, such that

(1) one has Nidy + ---+ N,d, = N,
(2) if r > 2 and II; ~ II; for some i # j in {1,...,r}, then d; # d;,
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(3) the self-dual representation II; has the same parity as G if d; is odd, and has the opposi-
te parity if d; is even, where the parity of II; is defined to be orthogonal if L(s,II;, Sme) has a
pole at s = 1, and symplectic if L(s,II;, A?) has a pole at s = 1,

(4) the character wf-l[ll . .wld{r is trivial if G* = Sp,,, or G* = SOg,,+1, and is equal to the qua-
dratic character

Xao @ T — H(av,xv)v e{-1,1}
v
of A*/k* if G* = SO%,,, where wry, is the central character of II;.

A discrete global Arthur parameter ¥1[e1]@®- - -@®X;[es] is said to be equivalent to (5.10) if we
have s = r and there is a permutation € € &, such that e; = d.(;) and ¥; ~ Il (;) for each i. Let

Ty (G*)

be the set of equivalence classes of discrete global Arthur parameters for G*.

Associated with a discrete global Arthur parameter ¢ € Uy(G*) given by (5.10), there are a lo-
cal Arthur parameter 1, and a local Arthur packet IL,, (G*(k,)) for each finite place v of k: see
(5.11) and (5.12) below.

Let v be a finite place of k, and consider the local component II; , for some ¢. It is a unitarisa-
ble irreducible representation of GLy, (k,). Associated with it through the local Langlands cor-
respondence for GLy; (k,), there is a local Langlands parameter

¢i,v : WDkv — GLNz ((C),

uniquely determined up to GLy, (C)-conjugacy. Since one does not know whether II; ,, is tempe-
red, the parameter ¢;, might not be bounded.
We define a morphism

(5'11) % = (¢1,v Sdl) @ e @ (¢r,v Sdr) : WDkU X SLQ((C) — GLN((C)

where Sy = Sym?~! denotes the unique irreducible algebraic representation of SLy(C) of dimen-
sion d > 1. Recall that we have defined a morphism Std in 5.3. By [2] Theorem 1.4.2, there is
a local Arthur parameter £ : WDy, x SLy(C) — G Wy, such that 1, is GLy(C)-conjugate to
Std o . The parameter £ is uniquely determined up to é—conjugacy, except if G* = SO5,, and
all Nidy, ..., N,d, are even, in which case there are two é—conjugacy classes of such &.

Associated with v, there is a multiset II,, (G*(k,)) of irreducible smooth representations of
G*(ky), that is, a map

(5.12) II(G*(ky)) — Z=o

with finite support, where II(G*(k,)) is the set of isomorphism classes of irreducible smooth re-
presentations of G*(ky). If 1, (Wy, ) is relatively compact in GLy (C), this comes from [2] Theo-
rems 1.5.1, 2.2.1, 2.2.4 and (5.12) is supported in the subset IT,it(G*(k,)) of unitarisable repre-
sentations. Thanks to Moeglin ([44], see also [69] Theorem 8.12), it does not take any value > 1,
that is, Iy, (G*(ky)) can be regarded as a finite subset of ILni (G*(ky)).
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When 1, (Wy, ) is not relatively compact, II,, (G*(k,)) is obtained from the relatively compact
case by a parabolic induction process: see [2] 1.5 in the symplectic and orthogonal cases and [4]
6.5 in the even orthogonal case. For our purpose, it will be enough to make the following remark.

Remark 5.4. — Let v be a finite place of k, and assume that I, (G*(k,)) contains a cuspidal
representation. Then ), (Wy, ) is relatively compact in GLy(C).

When 1, is trivial on the SLo(C)-factor, that is, 1, is a local Langlands parameter for G*(k,),
the local Arthur packet IL,, (G*(k,)) coincides with the L-packet associated with v, by the local
Langlands correspondence in (5.5) and (5.6). (See [4] top of Paragraph 6.3.)

5.6. Transfer

In this paragraph, k is a totally real number field, G* is one of the quasi-split special orthogo-
nal, unitary or symplectic k-groups of 5.1 and G is an inner form of G* over k such that G(k,)
is compact for any real place v and quasi-split for any finite place v.

In order to state the following theorem, we need more than the group G. Following [63] and
[31], we realize G as

e a rigid inner twist of G* in the symplectic case (see Paragraph 2.8),

e a pure inner twist of G* in the special orthogonal and unitary cases, that is, we fix a qua-
dratic form ¢ such that G = SO(q) or a Hermitian form h such that G = U(h). (See for instance
[33] Sections 29.D, 29.E.)

If G* is special orthogonal, let ¢* be the quadratic form (5.2) or (5.3) such that G* = SO(q¢*),
and let a = (—1)""=1/2§(¢*) be its normalized discriminant. Let v be a finite place of k:

e if g®k, is equivalent to ¢* ® k,,, any choice of k,-isomorphism f such that ¢ = ¢* o f defines
a group isomorphism 7 : G(k,) ~ G*(k,), and changing f changes 7 by an inner automorphism,
which does not affect isomorphism classes of representations of these groups;

e if ¢®k, is not equivalent to ¢* ® k,,, which can only happen when G* = SO%,, with a # 1,
there is a A € k0 such that ¢ ® k, is equivalent to A - (¢* ® k,). We thus have (canonically upto
an inner automorphism) G(k,) ~ SO\ - (¢* ® ky)) = G*(ky).

If G* is unitary, let h* be the [/k-Hermitian form (5.4) such that G* = U(h*). Let v be a fi-
nite place of k:

o if h® k, is equivalent to h* ® k,, any choice of isomorphism f such that h = h* o f defines
a group isomorphism j : G(k,) ~ G*(k,), and changing f changes 7 by an inner automorphism,
which does not affect isomorphism classes of representations of these groups;

e if h®kE, is not equivalent to h* @k,, which can only happen when G* = Ug, | with a # 1,
there is a ¢ € kS such that h ® k, is equivalent to ¢ - (h* ® k,). We thus have (canonically up
to an inner automorphism) G(k,) ~ U(d - (h* ® ky)) = G*(ky).

If G* is the symplectic group Sp,,, then G(k) is the group made of all g € M,,(D) such that
g*g = 1, where D is a quaternion k-algebra which is split at each finite place and definite at each
real place, and ¢g* in the matrix whose (i, j)-entry is the conjugate of gj;. (See 2.8 and [62] 2.1.1.)
Let v be a finite place of k, and fix an isomorphism of k,-algebras u : D®yk, ~ Ma(k,). Through
u, the group G(k,) identifies with Sp(f,) for some alternating form f,, on k2" x k2". Changing u
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changes this identification by an inner automorphism. We thus have (canonically up to an inner
automorphism) a group isomorphism G(k,) ~ G*(ky).

In all cases, we have explained how to canonically identify representations of G(k,) with those
of G*(ky). This thus defines a local transfer for irreducible representations of G (k).

Theorem 5.5. — Assume that the group G* is symplectic or special orthogonal. Let w be an ir-
reducible automorphic representation of G(A) and suppose that there is a finite place u of k such
that both the local component m, and its local transfer to GLy (ky,) are cuspidal. There is a unique
self-dual cuspidal automorphic representation I1 of GLy(A) such that

(1) for all finite places v of k, the local transfer of m, to GLy(ky) is II,,
(2) for all real places v of k, the infinitesimal character of I1,, is algebraic regular.

Proof. — First note that, associated with any discrete global Arthur parameter ¢ € Uo(G*) and
any finite place v of k, there is a local Arthur packet I, (G*(k,)). We explained how to cano-
nically identify representations of G(k,) with those of G*(k,). This thus defines a local Arthur
packet Iy (G(ky)).

Now, as G is compact at all real places and quasi-split at all finite places, [63] Theorem 4.0.1
and Remark 4.0.2 apply. We thus get a global Arthur parameter ¢ for G* such that

(1) m, € Iy, (G(ky)) for all finite places v of k,

(2) the infinitesimal character of v, is algebraic regular for all real places v of k.

In the remainder of the proof, we follow an argument which has been suggested to us by A. Mous-
saoui, whom we thank for this. First, at v = u, we have

Tu € My, (G(ky))

and it follows from Remark 5.4 that 1, (Wy,, ) is relatively compact in GLx(C). Associated with
¥y, in [43] 4.1, there is its extended cuspidal support (or infinitesimal character), denoted \,. It
is the N-dimensional representation of Wy, defined by

|w‘1/2 0

)\u(w) = ¢u(w7dwadw)7 dw = < 0 |w|_1/2> € SLQ((C), w e Wku7

where w — |w| is the character Wy, — R defined by |w| = ¢~**), where ¢ is the cardinality
of the residue field of k, and v(w) € Z is the valuation of w, normalized so that any geometric

Frobenius element has valuation 1. If we write explicitly

Yy = P 0i K Sa, ® S,

i=1

for some m > 1, with a;,b; = 1 and where o; is an irreducible representation of Wy, , then

(513) Ay = é . é Uz" . |(bi_1)/2+(ai_1)/2_j_k"

On the other hand, by [43] 4.1 again, the extended cuspidal support (or infinitesimal character) of
7y is the representation A of Wy, defined by A(w) = ¢(w,dy,) for all w € Wy, , where ¢ = Stdogp
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and ¢ is the Langlands parameter associated with 7, (up to Og,(C)-conjugacy in the even ortho-
gonal case). Given the assumption that we made on 7, the extended cuspidal support A is irre-
ducible. By [43] Proposition 4.1, the extended cuspidal supports of 1, and 7, coincide. It follows
that (5.13) is irreducible, which implies that m = 1 and a; = by = 1. Thus ¢ satisfies r = 1 and
dy = 1.

We thus have ¢ = II[1] for a uniquely determined self-dual cuspidal automorphic irreducible
representation IT of GLy(A). Given a finite place v of k, the local component 7, is in the Arthur
packet IL,, (G(ky)). Since 1, is a Langlands parameter (as d; = 1), this Arthur packet is an
L-packet, thus II, is the local transfer of m, to GLy (k). O

We now consider the case of unitary groups.

Theorem 5.6. — Assume that the group G* is unitary. Let w be an irreducible automorphic re-
presentation of G(A), and suppose that there is a finite place u of k such that G(ky,) is split and
my 18 cuspidal. There exists a unique conjugate-self-dual cuspidal automorphic representation 11

of GLN(A;) such that

(1) for all finite places v of k, the local transfer of m, to GLy(l,) is I1,,
(2) for all real places v of k, the infinitesimal character of 1L, is algebraic regular.

Proof. — Since G is compact at all real places, the assumptions of [36] Corollaire 5.3 are satis-
fied (see the paragraph following [36] Remarque 5.2 regarding Property (x)). By [36] Corollaire
5.3, there is an integer r > 1 and, for each ¢ € {1,...,r}, there is a conjugate-self-dual discrete
automorphic representation II; of GLy, (4;) for some N; > 1, such that

—one has Ny +---+ N, = N,

— if IT is the irreducible automorphic representation of GLy(4;) obtained by parabolic induc-
tion from Il; ® - - - ®II,., then II, is the local transfer of m, for all finite places v which are either
unramified or split. (The local base change of [36] is the same as the local transfer of Paragraph
5.4: see [36] 4.10.)

In particular, for v = u, the group G(k,) is split, thus II,, is isomorphic to 7, @,/ via the choice
of a ky-algebra isomorphism l,, ~ k, x k,, (see Remark 5.2). Since 7, is cuspidal, II,, is cuspidal as
well. It follows that » = 1 and 4 is cuspidal. By [36] Théoreme 5.9, we get that

e I, is the base change of the trivial character of G(k,), thus its infinitesimal character is al-
gebraic regular, for all real places v of k,
e and the local transfer of m, to GLx(l,) is II, for all finite places v of k.

This finishes the proof of Theorem 5.6. O

6. Unramified local transfer

In this section, we examine the congruence properties of the local transfer (as defined in Pa-
ragraph 5.4) for unramified representations of unramified classical groups.
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6.1.

Let F' be a non-Archimedean locally compact field of residue characteristic p, and G be the
group of rational points of an unramified reductive group G defined over F'. Let S be a maximal
F-split torus in G, T be the centralizer of S in G and K be a hyperspecial maximal compact
subgroup of G corresponding to a hyperspecial point in the apartment associated with S in the
reduced Bruhat-Tits building of (G, F'). Let W be the Weyl group associated with T' = T(F’) and
A be the Z-lattice T/(T n K). We have the Satake isomorphism ([53]) of C-algebras

CI[K\G/K] — cC[A]"
f o | t—6Y20) | f(tuw) du
)

where U is the group of rational points of the unipotent radical of a Borel subgroup B = TU of
G, du is the Haar measure on U giving measure 1 to U n K and 62 is the square root of the
modulus character § of B = B(F) defined with respect to the positive square root /g € R=q of
q, the cardinality of the residue field of F.

The same formula applies when one replaces C by Q,. We then get a Satake isomorphism of
Qy-algebras Q [K\G/K] — Q,[A]" depending on the choice of a square root ¢*/? of ¢ in Q,. By
[28] §7.10-15, as this square root and its inverse are contained in Zg, this isomorphism induces
by restriction an isomorphism

(6.1) Zy[K\G/K] — Zg[A]Y

of Z-algebras.

6.2.

Let 7 be a K-unramified irreducible Q-representation of G, that is, 7 has a non-zero K-fi-
xed vector. Recall that its Satake parameter is the character x of Q,[K\G/K] through which
this algebra acts on the 1-dimensional space 7 of K-invariant vectors of 7. Through the Satake
isomorphism, it defines a character of @Z[A]W. Such a character is of the form

(6.2) fe ff(t)w(t) dt
T

for some unramified Q-character w of T — which we may consider as a character of A — uniquely
determined up to W-conjugacy. (Here dt¢ is the Haar measure giving measure 1 to 7' n K.) By
[53], the W-conjugacy class of w is the cuspidal support of 7, that is, m occurs as an irreducible
component of the representation obtained by parabolically inducing w to G along B, where pa-
rabolic induction is normalized by the same square root of the Qp-modulus § as the one used to
define the Satake Q,-isomorphism.

Now assume that the restriction of x to Zy[K\G/K] has values in Z,. Thanks to (6.1), it defi-
nes a Zy-character of Z@[A]W, still denoted x. Let us prove that w has values in ZZX. For this, let
p be the Qg-character of Q[ 4] defined by (6.2). Tts restriction to Zg[A]" is equal to x. According
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to [8] Chapter 5, §1, n°9, Proposition 22, the ring Z,[A] is integral over Z,[A]". As x takes va-
lues in Z; on Zy[A]Y, and as Z, is integrally closed, it follows that u takes values in Zy on Z,[A].
By evaluating u at the characteristic function of any A € A, we get w(\) € Zy. So far, we proved
the following result.

Proposition 6.1. — Let G be the group of rational points of an unramified group defined over
F, let K be a hyperspecial mazimal compact subgroup of G and 7 be a K-unramified Q,-repre-
sentation of G with Satake parameter x. Then w is integral if and only if x is integral (that is,
it takes integral values on Z; K\G/K]).

Proof. — Indeed, using the notation above, the cuspidal support of 7 is the W-conjugacy class
of the unramified character w of T', and = is integral if and only if w is. (For this latter fact, see
[18] Corollary 1.6.) O

Finally, assume that x1 and 3 are congruent Z,-characters of Zy[K\G/K]. One can see them
via (6.1) as congruent Zg-characters of Zy[A]", still denoted x1 and x2. For i = 1,2, let p; be a
character of Z[A] extending ;. It takes the form (6.2) for a uniquely determined unramified cha-
racter w; of T, which is integral thanks to the previous paragraph. Reducing mod the maximal
ideal of Zy, the characters p; and usg define Fy-characters fi; and iy of Fy[A] which, by assump-
tion, coincide on F;[4]". Applying the corollary of [8] Chapter 5, §2, n°2, Theorem 2, it follows
that the characters ry(w1) and ry(w2) are W-conjugate. We thus proved:

Proposition 6.2. — Let G be the group of rational points of an unramified group defined over
F, let K be a hyperspecial mazimal compact subgroup of G, let m1 and wo be K -unramified irredu-
cible Qg-representations of G whose Satake parameters x1 and x2 define congruent Zy-characters
of Zy[K\G/K] and let wy and wo be unramified Q,-characters of T such that w; occurs in the pa-
rabolic induction of w; to G along B, for i =1,2. Then ry(w1) and r¢(w2) are W-conjugate.

6.3.

From now on and until the end of this section, we assume that G is an unramified special or-
thogonal, unitary or symplectic group among the groups of Paragraph 5.1. The associated dual
group G has been defined in Paragraph 5.2. Recall that G = G(F).

Let 7 be an integral K-unramified Q,-representation of G. Its cuspidal support is the W-orbit
of an unramified Z-character w of T'. Its Satake parameter is a character x : Z,[K\G/K]| — Zy.
They are related through the Satake isomorphism by the formula (6.2).

Restriction from T" to S = S(F) induces an isomorphism A ~ S/(S n K), thus between un-
ramified characters of 7" and unramified characters of S. The later is the dual group §(7 )

Let ® be a Frobenius element in the Weil group Wg. By [6] 6.4, 6.5, the surjection of T(@Z)
onto §(@g) induces a bijection between

— N-conjugacy classes in T(@g) x &, and

— W-conjugacy classes in §(@5),
where N is the inverse image of W in the normalizer of 'i‘(@g) in é(@g), and the embedding of
of ’i‘(@g) in é(@g) induces a bijection between
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— N-conjugacy classes in ’i‘(@g) x @, and

— G(Qy)-conjugacy classes of semi-simple elements in G(Q;) x ®.
The W-orbit of w thus determines the W-conjugacy class of a point s € S(Zy), then the G(Q,)-
conjugacy class of a semi-simple element ¢ x ¢ € é’(@e) x ®. We are going to prove that £ x ®
may be chosen in T(Z;) x ® = G(Z) x ®. Let us fix a uniformizer @ of F.

When G is split, we have T = S, thus ¢ = s is in T(Zg) c CA}(Zg) Explicitly, if we identify T
with (F*)™ for some integer m > 1, then w identifies with the tensor product of m unramified
characters wi,...,wm, of F* and t x @ is G(QZ)—conJugate to

e diag(wi(w),...,wn(w), 1,wm(w)_1, ... ,wl(w)_l) € GL2n11(Zy) if G = Sps,,,
o diag(wi(@),...,wm(w),wn(@) ™. .., wi (@)™ € GLon(Zy) if G = SO9,41 or G = SO,

with m = n in all cases.
Now assume that G is non-split, thus either G = SO3,, or G = U%, with a # 1.

e In the even orthogonal case, we have S ~ (F'*)™ and T ~ S xSOS(F) withm =n—1 (see
(7] §23.4), thus T(Q,) ~ Q;**" surjects onto S(Q;) ~ Q}* through

(ti,toy e tmst) = (H1at2s- e tm)
and T(Q,) x W embeds into G(Q,) x Wy through
(t1,ta, ... ty) X w > diag(ty, ..., ty, 6yt 1) 3w
thus the image of t x ® in é(@z) x P is (A}(@g)—conjugate to
diag(wi (@), ... ,wm(®@), 1,1, wn(@) 7L, ..., wi(@) ") x ® € GLy,(Zy) x ®.

e In the unitary case, we have S ~ (F*)™ and T ~ (E*)™ where E is the quadratic extension
of F generated by a square root of o (note that it is unramified since G is assumed to be unra-
mified), and m = |n/2] is the Witt index of G (see [7] §23.9), thus T(Q,) ~ Q7™ surjects onto

S(Qy) ~ Qp* through
(ti,t2, ..., tam) = (titam, tatom—1, - - s tmtm+1)

and '/I\‘(@g) x Wr embeds into é(@g) x W through

. 1 —1 I e
(b1 tas o) 10 { d?ag(tl, o ,tm,tmtl, . ,t2m21>4 w ¥f n = 2m is even,
diag(ty,. .., m,l,tm+1,...,t2m) xw ifn=2m+1is odd,

thus the image of ¢t x ® in G(@ ) x @ is G(@g) conjugate to
diag(wy ()2, ... wm(@) 2, wm(w) V2, Jwi (@) Y2) x ®  if n = 2m is even,
diag (w1 (w)Y2, ... wn(w )1/2, 17 W (@) ™2, . wi(@) V)« @ if n=2m + 1 is odd,
which is in GL,(Z¢) x ® in both cases.

We now define an unramified local Langlands parameter ¢ : WDp — (A}(Zg) x Wr by

— @(®) =t x P, and
—  is trivial on the inertia subgroup Ir of Wr and on SLo(C).
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It is uniquely determined by the K-unramified representation 7, or equivalently by its Satake pa-
rameter x. Composing with Std (or just restricting to WDg in the unitary case), we get an un-
ramified Langlands parameter ¢ € ®(GLy, F), where E = F in the symplectic and orthogonal
cases and F is the quadratic extension of F' generated by a square root of « in the unitary case.
This ¢ uniquely determines an unramified Q-representation of GLy (E), denoted ty(r).

In the symplectic and special orthogonal cases, ty(7) is the unique unramified irreducible com-

ponent of
Wy X e X Wy X Wyl ) X wp if G = SOg,41 or G = SO},
—1 -1 e
Wy X e Xw, X1 Xw, ><~--1><(,u1 X if G = Spgy,,
_ 1. a -
Wy X xXw, X IxIxw =y x---xw if G=2S80%, with a # 1,

where x denotes the parabolic induction to GLy (F') normalized with respect to qY2.
In the unitary case, the Weil group Wg is generated by ®2 and Ir (since E/F is unramified),
thus ¢ is uniquely determined by ¢(®?) = tt* x ®2, with

o { diag(w1 (@), ...,wm(@),wn(@) L, ... wi(w)™!)  if n = 2m is even,

diag(wi (@), ... ,wm (@), L,wn(w) ™!, ..., wi(w)™t) if n=2m+ 1 is odd,

which gives ty(m) explicitly. Namely, ty(7) is the unique unramified irreducible component of

{wlx---xwmxwmlx---xwl_l it G =U9,
-1 -1 _ 1T
Wy X Xwy, X Ixw s x - xw ifG=U§, 4,

where x denotes the parabolic induction to GL,(F) normalized with respect to (¢%/?)? = ¢ (as
E is quadratic and unramified over F'). (See also [38].) We have:

Proposition 6.3. — Let G be the group of rational points of an unramified special orthogonal,
unitary or symplectic F'-group among the groups of Paragraph 5.1. Let K be a hyperspecial ma-
zimal compact subgroup of G and let 71, T3 be K-unramified irreducible Q,-representations of G
whose Satake parameters x1, x2 define congruent Z¢-characters of Zy[K\G/K]. Then

(1) the representations ty(m1) and ty(me) of GLy(E) are integral,
(2) their Langlands parameters are integral and congruent.

Remark 6.4. — Note that the reductions mod ¢ of ty(71) and ty(7m2) may not have any irreduci-
ble component in common. However, if 7; denotes the unique unramified irreducible component
of ry(ty(m;)) for i = 1,2, then 71 and 75 have the same cuspidal support.

For instance, assume that G = SOj5 and £ divides ¢> — 1. Let 71 (resp. m2) be the unramified
representation of G = SO5(F') with respect to some hyperspecial maximal compact group, with
cuspidal support the W-conjugacy class of | - |72 ® |- |V2 (resp. |- 2 ® |- ['/?), where | - | is
the absolute value of F*. By assumption, these cuspidal supports are congruent (for | - |3/ 2
|-|~/2 have the same reduction mod ¢). Then t;(m;) is the unique unramified irreducible compo-

and

nent of
|‘|71/2 « "|1/2 % |“71/2 « |'|1/2

that is, tg(m) = 1o x 1o (where 19 is the trivial character of GLy(F')). Similarly, ty(m2) is equal
to |det | x |det | (where det is the determinant of GLy(F")). Now assume further that ¢ # 2 and
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¢ divides g + 1, thus ¢ does not divide ¢ — 1. Then ry(ty(m1)) and ry(ty(m2)) are both irreducible
and twists of each other by the non-trivial character |- |, thus non-isomorphic.

Remark 6.5. — Let 1 be an isomorphism of fields C — Q, taking the positive square root of ¢
in R to the square root ¢'/? € Q, of Paragraph 6.1. According to Arthur [2] 6.1 (see p. 304) and
Mok [47] 7.1 (see also Labesse [36] p. 38-39), which describe the local transfer map t of Defini-
tion 5.1 for unramified representations of unramified groups, we have

t(m) ®c Qp = to(7 ®c Q)

for any K-unramified complex representation 7 of GG, where tensor products are taken with res-
pect to ¢. Proposition 6.7 and Remark 6.8 will describe the dependency of t; in ¢'/2.

6.4.

In this paragraph, G is an unramified classical group and K is a hyperspecial maximal compact
subgroup of G as in Paragraph 6.3.

Unlike Paragraph 6.3 however, we will consider complex representations rather than Q,-repre-
sentations. We examine the dependency of the unramified transfer from G to GLy (F) with res-
pect to the choice of a square root of ¢, and to the action of Aut(C). This will be useful in Para-
graph 9.2.

Let m be a K-unramified irreducible complex representation of G. Associated with 7, there is
the W-conjugacy class of an unramified character w of T', such that 7 is the unique K-unramified
irreducible component of the normalized parabolic induction of w to G along B. Writing Indg
for unnormalized parabolic induction from 7" to G along B and ig for normalized parabolic in-
duction, we have

i%(w) = IndG (6" %w).
Let us write T' >~ E*™ x Ty, where
o Ty is trivial if G is split or G ~ Ug, (F') with a # 1,
e Ty = SOS(F) if G ~ SOS, (F) with o # 1,
o Ty =UNF)if G~USg,  (F) with o # 1.
The character w can thus be written wi; ® - - - Q wy, ® 1, where each w; is an unramified character

of E* and 1 is the trivial character of Ty. By [46] IV.4 p. 69, the modulus character of the pa-
rabolic subgroup P 2 B with Levi component GL,,(E) x Tj is equal to

v @1

where v, is the unramified character “absolute value of the determinant” of GL,,(E) and

e d=2nand e = —1if G = Spy,(F),
d=2n+1and e=1if G = SOg,41(F),
e d=2nande=1if G =505, (F),

e d=mnande=0if G=US(F) with o # 1.



36 ALBERTO MINGUEZ & VINCENT SECHERRE

By using the transivity property of parabolic induction, we deduce that

51/2 _ ’ . |gl—m—e)/2+(m—l)/2 R ® | ) ’(Ed—m—e)/2—(m—1)/2 Q1
_ | . |gl7671)/2 ® . ®| . |(E(17€71)/27m+1 ® 1

(where | - |g is the absolute value of E). Replacing /g by the opposite square root changes |- |g
to |- |, where 7 is the unramified character of E* of order 2. It thus changes w; to wyn(*—¢=D7,
where f is the residual degree of E over F' (which is 1 or 2 depending whether E = F' or not).
Similarly, replacing /g by its opposite square root has the effect of twisting normalized para-
bolic induction from E*¥ to GLy(FE) (along the Borel subgroup made of upper triangular ma-
trices) by n(=N/,
Consequently, considering the explicit formulas of Paragraph 6.3, replacing ,/q by the opposite
square root has the effect of twisting t(7) by the character n(¢=¢=N)/ We have
ed—e—N=2n+1—-(2n+1)=0if G = Spy, (F),
ed—e—N=2n+1)—1-2n=01if G = SOgy,4+1(F),
ed—e—N=2n—1-2n=—1if G=S0%,(F),
and f = 2 if G is unitary. The integer (d —e — N)f is thus even, except if G is even orthogonal.

Exzample 6.6. — If G = SO}(F) ~ F*, the transfer of any unramified character w of F* is
the unique unramified irreducible component of w x w™!. If G is the compact group SOJ(F)
with o # 1, the transfer of the trivial character of G is 1 x 1. In both cases, the transfer depends
on the choice of a square root of q.

Now consider an automorphism 7 € Aut(C). Given a representation 7 of a group H on a com-
plex vector space V', we write 77 for the representation of H on V ®c C,, where C, is the field C
considered as a C-algebra via . Consider the map 7 — t(7r7_1)7 from K-unramified irreducible
representations of G to irreducible representations of GLx (E). It is the unramified local transfer
map from G to GLy(E) with respect to the square root v(/q). We thus have:

Proposition 6.7. — Let G and K be as above, and let m be a K-unramified irreducible repre-
sentation of G. Let v € Aut(C).

(1) If G is not even orthogonal, then t(n7) = t(m)".
(2) If G is even orthogonal, then t(m") = t(m)" - €4, where ., is the unramified character

- <7(\\//aa)>valp(m)

of F*.

Remark 6.8. — We now go back to Q,-representations. We deduce that the map
(6.3) ™= ty(m)

from (isomorphism classes of ) unramified Q-representations of G to those of GLy (E) is insen-
sitive to the choice of a square root of ¢ in Qy, except when G is even orthogonal, in which case
changing this square root to its opposite has the effect of twisting (6.3) by 7.
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7. Representations of local Galois and Weil groups

In this section, F' is a p-adic field. We write I' for the Galois group Gal(@p/ F) and W for the
associated Weil group, considered as a subgroup of I'. It is endowed with a smooth character
w — |w| with kernel I, the inertia subgroup of W, taking any geometric Frobenius element to
g~ !, where ¢ is the cardinality of the residue field of F.

All representations of I' and W considered in this section will be finite-dimensional.

Let ¢ be a prime number different from p.

7.1.

For this paragraph, the reader may refer to [10] Chapter 7 and [61] 4.2.

If o is a smooth representation of T', then its restriction o|w to W is smooth.

Restriction from I' to W induces an injection from isomorphism classes of irreducible smooth
representations of I' to isomorphism classes of irreducible smooth representations of W. The ima-
ge is made of those representations of W whose determinant has finite order (see [10] 28.6 Pro-
position).

If p is a smooth f-adic representation (that is, Q,-representation) of W on a vector space V,
and if ® € W is a Frobenius element, the following assertions are equivalent:

(1) p is semi-simple,

(2) p(®) is a semi-simple element in GL(V),

(3) p(w) is a semi-simple element in GL(V) for any w e W

(see [10] 28.7 Proposition).

If o is a continuous f-adic representation of I', its restriction to W is a continuous /-adic re-
presentation of W, which is irreducible if and only if ¢ is irreducible.

Fix a continuous surjective group homomorphism

(7.1) £ 1 — 7y
For the following proposition, see [10] 32.5 Theorem and [56] Appendix.

Proposition 7.1. — Let o be a finite-dimensional continuous £-adic representation of W on a
Qq-vector space V.

(1) There is a unique nilpotent endomorphism N € End(V) such that there is an open subgroup
U of the inertia subgroup I such that

(2) We have o(w)No(w)™' = |w|- N for allwe W.

Note that NV = 0 if and only if ¢ is smooth.

The subspaces Ker(N?), i = 0 of V are stable by o. Thus, if ¢ is irreducible, then N = 0 and
o is smooth. More generally, a semi-simple representation of I' is smooth, and its restriction to
W is smooth semi-simple (see also [61] 4.2.3).
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Fix a Frobenius element ® € W. Associated with o, there is a smooth ¢-adic representation p
of W defined by

p(®%) = o(®%)e ' @N  qezZ, wzel.

The pair (p, N) is called the Deligne representation of W associated with o. Up to isomorphism,
it does not depend on the choices of ¢ and ® (see [10] 32.6 Theorem).

The element p(®) = o(P) decomposes uniquely in GL(V) as su = us, with s semi-simple and u
unipotent. Define a smooth ¢-adic representation p* of W by

p* (%) = s%(x), a€Z, wel.

This defines a Deligne representation (p*, N), called the Frobenius-semi-simplification of (p, N).
By Paragraph 7.1, the representation p* is a semi-simple smooth representation of W.

7.2.

In this paragraph, if s is a continuous ¢-adic representation of W or I'; we will write x* for
its semisimplification.

Lemma 7.2. — If p is a (finite-dimensional) smooth (-adic representation of W such that p™ is
integral, then p is integral.

Proof. — We prove it by induction on the dimension n of p. If p is irreducible, there is nothing
to prove. Otherwise, let 7 be an irreducible subrepresentation of p, of dimension k > 1, and let
A be the quotient of p by 7, which is of dimension | = n — k. Since p** = 7 D A*°, we may apply
the inductive hypothesis to A, from which we deduce that X is integral. We therefore fix a basis
of the vector space of p such that

pw) = (707 ) L@, W)€ GLE)., Alw) e CLEd). wewW.
and o : W — My (Qy) satisfies a(zy) = 7(z)a(y) + a(x)A(y) for all z,y € W.

Since p is smooth, we may consider it as a representation of the discrete group W/U for some
open subgroup U of W. Since this quotient is a finitely generated group, we may consider p as a
representation of the free group F with r generators fy,...,f. for some » > 1. Assume « is not
identically zero, and let —v denote the minimum of the f-adic valuations of all the entries of all
the a(f;). Conjugating p by diag(¢” - ids,id;), we may and will assume that v = 0.

We are going to prove that a takes values in Mt’l(Zg). We prove it by induction on the length
of the words in F. Given z € F, write it yf with f = f; for some i € {1,...,r} and the length of
y is smaller than that of . Then

a(z) = 7(y)a(f) + ay)A(f) € My (Zy)

thanks to the inductive hypothesis. O

Lemma 7.3. — Let o be a (finite-dimensional) continuous (-adic representation of T', with as-
sociated Deligne representation (p, N). The restriction of 0% to W is equal to p*.
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Proof. — Note that semi-simplification and restriction from I' to W commute, that is
O'SS‘W _ (O’|W)SS.

If N is zero, then o is smooth and p is the restriction of o to W, thus ¢ is smooth semi-simple,
and its restriction to W is smooth semi-simple as well. Otherwise, if n = dim(o), there is a basis
of @Z‘ such that

olg) = <O‘E)g) Wg)) € GL,(@,), gel, and N = (8 E)

where

— «a is a smooth f-adic representation of I' of dimension k = dim(Ker N),
— [ is a continuous f-adic representation of I' of dimension [ = n — k,

— 7y is a continuous map from I to M k,l(@g),

— M is nilpotent in M;(Q,) and C is a matrix in Mg ;(Q,).

We have

e 1
0 i1 !

Writing (p1, N1) for the Deligne representation associated with 3, we get N1 = M and

_ (o) 5w) _
p(w) - < 0 p1<w)> € GLn(QZ)? € W,

for some smooth map § from W to Mg ;(Q,) which can be explicitly described by
S(w) = (y(w) — a(w)e(w))e @M = &%, acZ, zel.
By the inductive hypothesis, we get
o”lw = (alw) @ (B%|w) = (a|lw) @ p° = p™.
This proves the lemma. ]

Corollary 7.4. — Let o be a (finite-dimensional) continuous £-adic representation of T', with
associated Deligne representation (p, N). Then p is (smooth) integral and r¢(p) = r¢(o)|w.

Proof. — Since o is integral (for ' is compact), 0|y is integral. We deduce from Lemma 7.3
that p® is integral, then from Lemma 7.2 that p is integral. Now write

re(p) = re(p™) = re(0™w) = re(0™)|w = re(o)|w.

This proves the corollary. O
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8. Galois representations associated with automorphic representations

Recall that we have fixed an isomorphism of fields ¢ : C — Q,. Fix a positive integer N.

Let k be a totally real number field, and [ be either k or a quadratic totally imaginary exten-
sion of k in an algebraic closure Q of Q. For any place v of [, let I, denote the completion of
at v.

For any finite place v, fix a decomposition subgroup I', of Gal(Q/l) at v and write W, for the
associated Weil group. For any finite place v not dividing ¢, write

— WD(o) for the Deligne representation of W, associated with a continuous ¢-adic represen-
tation o of T, and WD* (o) for its Frobenius-semi-simplification,

— rec, for the local Langlands correspondence ([23] Theorem A) between irreducible smooth
complex representations of GLy () and N-dimensional Frobenius-semi-simple complex Deligne
representations of W,,.

8.1.
A cuspidal irreducible automorphic representation II of GLy(4;) is said to be

— polarized if its contragredient IIV is isomorphic to II¢, where c is the generator of Gal(l/k)
(thus I1¢ = II when [ = k),
— algebraic reqular if the Harish-Chandra module Il associated with II has the same infini-

tesimal character as some irreducible algebraic representation of the restriction of scalars from [
to Q of GLy.

Recall the following result of Barnet-Lamb—Geraghty—Harris-Taylor ([5] Theorems 1.1, 1.2).

Theorem 8.1. — Let 11 be an algebraic reqular, polarized, cuspidal irreducible automorphic re-
presentation of GLy(A;). There is a continuous semi-simple (-adic representation

¥ : Gal(Q/I) — GLN(Qy)
such that, for any finite place v of | not dividing £, we have
WD*(2|r,) =~ rec, (I, ® | det |{'V)/2) @c Q.

Note that the representation ¥ depends on the choice of «.

8.2.

The main result of this section is the following. Let m denote the maximal ideal of Z,.

Theorem 8.2. — Let 111 and Ils be algebraic regular, polarized, cuspidal irreducible automor-
phic representations of GLy,(A;). Suppose that there is a finite set S of places of I, containing all
infinite places, such that for allv ¢S :

(1) the local components 11, ,, and Il ,, are unramified,
(2) the characteristic polynomials of the conjugacy classes of semisimple elements in GL,,(Q,)
associated with 111 , @c Qy and IIs , ®c Qy have coefficients in Z; and are congruent mod m.
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Then, for any finite place v of I not dividing ¢, the representations I1y , @c Q, and Mz, ®c Q, are
integral, their reductions mod m share a common generic irreducible component, and such a ge-
neric component is unique.

Proof. — Applying Theorem 8.1 to II; and Ils, we get continuous ¢-adic representations
¥ : Gal(Q/l) — GLy(Q), =12,
such that, for any finite place v of [ not dividing ¢, we have
WD*(S;0) =~ recy (I, ® | det | 7N/2) @¢ Q,

where YJ; , denotes the restriction of ¥; to I', and the tensor product over C is taken with respect
to ¢. For all v ¢ S, the f-adic representation 1I; , ®c Qg is unramified, generic and integral, thus

rec,(Il;., ® | det |(1™M/2) @c Q; ~ (4.0, 0)

where ¢; ,, is an integral semi-simple /-adic representation of W, trivial on I,. It is thus entirely
determined by the semi-simple matrix

¢i,v(q)v) € GLN(@Z)

where ®, is a Frobenius element in W,,. By assumption, its characteristic polynomial has coeffi-
cients in Zy, hence, as ¢; ,(®,) is semi-simple, its eigenvalues are in Z;. That the nilpotent ope-
rator is 0 implies that J; ,, is smooth, thus

d)i,'u = (Ei,v|Wv)ss-
Thus 3; ,, is trivial on the inertia subgroup I, that is, ¥; , is unramified.

Given v ¢ S and i € {1,2}, let P, ,(T) be the characteristic polynomial of ¥; ,,(®,) ® Fy, that
is, the characteristic polynomial of ¢; ,(®,) ® F,. By assumption, P ,(T) = Py,(T) at all v ¢ S.
Applying Deligne-Serre [19] Lemma 3.2 to the semi-simple F-representations (X1 ® Fy)* and
(X2 ®Fy)*s, which at v ¢ S give ¢1., @ F; and ¢2, @ Fy respectively, we deduce that (X1 @ Fy)™
and (X9 ® Fy)* are isomorphic. In particular, we deduce that

(1 ®F)*Ir, ~ (32 @F)%|n,

thus the continuous /-adic representations ¥ ,, and ¥9,, of I'y, are congruent mod /.
Now write WD*(X; ) = (pi, N;) for i = 1,2. Thanks to Corollary 7.4, we know that p; and
p2 are integral and have same reduction mod ¢. By [66] Theorem 1.6, we deduce that

p1 = (I, ® | det 3= @c Qp, 2 = (ITy,, ® | det |0=N)72) @c Qy,

are integral and have the same mod { supercuspidal support, that is, the supercuspidal support
of any irreducible component v of ry(y;) is independent of i (and of the choice of v).

Since p; is generic (as II; , is a local component of a cuspidal automorphic representation of
GL,(A;)), the Fy-representation ry(j;) contains a generic irreducible component d;. It occurs in
re(p;) with multiplicity 1, and any generic irreducible representation occurring in ry(u;) is iso-
morphic to d;. Since d; only depends on the mod ¢ supercuspidal support of p; ([66] II1.5.10),
we deduce that d; and do are isomorphic. O

Remark 8.3. — We expect Theorem 8.2 to hold without assuming that II;, IIs are polarized.
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9. Proof of the main theorem

9.1.

We prove our main theorem 1.1.

Let p be a prime number different from 2, let F' be a p-adic field and G be a quasi-split special
orthogonal, unitary or symplectic group over F. We thus have

e cither G = SO(Q) for some non-degenerate quadratic form @ over F,

e or G = U(H) for some non-degenerate F/F-Hermitian form H,

e or G = Sp(A) for some non-degenerate symplectic form A over F.
As usual, we write £ = F in the symplectic and orthogonal cases.

In this paragraph and the next one, we assume that the group G is not the split special ortho-
gonal group SO2(F) ~ F*. The case of split SOy(F') will be treated in Paragraph 9.3.

Let 7, m be integral cuspidal irreducible Q,-representations of G such that

re(m) < re(m2).
First, let k, w, G be as in Theorem 2.1. More precisely, we have
e cither G = SO(q) for a quadratic form ¢ as in Theorem 2.8 if G is special orthogonal,

e or G = U(h) for an [/k-Hermitian form h as in Theorem 2.11 if G is unitary,
e or G is as in Paragraph 2.8 if G is symplectic (see also Paragraph 5.6).

In particular, we have k,, = F' and [, = F, and the group G(F') naturally identifies with G. As
usual, we write [ = k in the symplectic and orthogonal cases.

Let G* be the quasi-split inner form of G over k, and write N = N(G™*). We thus have:

e cither G* = SO(¢*) where ¢* is a quadratic form over k as in (5.2) or (5.3),

e or G* = U(h*) where h* is an [/k-Hermitian form as in (5.4),

e or G* = Sp(f*) where f* is a symplectic form over k as in (5.1).

Let t be the local transfer from G*(F') to GLy(E) given by Definition 5.1. We explained how
to canonically identify representations of G(F') with those of G*(F') in Paragraph 5.6. (In the
symplectic case, we identified G(F') with Sp(fy) for some symplectic form f,, over k,, = F.)
This gives us a local transfer from G(F) = G to GLy(FE), still denoted t.

Lemma 9.1. — There is a finite place u of k different from w, not dividing £, such that there is
a unitary cuspidal irreducible complex representation p of G(ky,) with the following properties:

(1) p is compactly induced from some compact mod centre, open subgroup of G(ky,),
(2) the local transfer of p to GLy(ly,) is cuspidal.

Proof. — 1f G is special orthogonal, it suffices to choose u # w such that G(k,) is split (Remark
2.9), and then apply Proposition B.1.

If G is unitary, it suffices to choose u # w such that G(k,) is split (Remark 2.12).

If G is symplectic, it suffices to choose a place u such that &, is isomorphic to Q2 (see Lemma
2.5) and then apply Theorem C.1. O

Now fix an isomorphism of fields ¢ : C — Q. As in Paragraph 1.2, let t; denote the f-adic lo-
cal transfer from G to GLy(E) obtained from t thanks to ¢, that is, t,(V ®c Q) = t(V) ®c Q,
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for any complex representation V of G, where tensor products are taken with respect to ¢. Let u
and p be as in Lemma 9.1. By Theorem 4.4, there are irreducible automorphic representations
IT; and IIy of G(A) such that

(1) II; ,, and Il , are both isomorphic to p,

(2) My, ®c Qy is isomorphic to 7 and I, ®c Qy is isomorphic to o,

(3) II; , and Iy, are trivial for any real place v,

(4) there is a finite set S of places of k, containing all real places, such that for all v ¢ S :

(a) the group G is unramified over k,, and the local components II; ,, and II5, are un-
ramified with respect to some hyperspecial maximal compact subgroup K, of G(k,),
(b) the restrictions of the Satake parameters of II; , ®c @@ and Iz, ®c @g to the Hecke
Zy-algebra %ZZ(G(kU)’ K,) are congruent mod the maximal ideal m of Zj.
Applying Theorems 5.5 and 5.6 to I1y, I, we get algebraic regular, polarized, cuspidal irreduci-
ble automorphic representations ﬁl, II, of GL ~ (1) such that, for i = 1,2 and all finite places v of
k, the local transfer of II, ,, to GLy (1) is ﬁw Writing t, for the local transfer over k,, we thus
have ﬁi,v = t,(IL; ), or equivalently ﬁz’,v ®cQ; = t, o(IL; , ®c Q) where t, ¢ is obtained from t,
thanks to ¢.

In particular, for all v ¢ S, it follows from Proposition 6.3 that ﬁl,v and ﬁQ,v are unramified and
that the characteristic polynomials of the conjugacy classes of semisimple elements in GL,,(Qy)
associated with ﬁl,v ®c Q and ﬁz,v ®c Qy have coefficients in Z; and are congruent mod m.

Now apply Theorem 8.2 at w: the representations ﬁ:[’w@(c@g and ﬁlw@c@g are integral, their
reductions mod ¢ share a common generic irreducible component, and such a generic component
is unique. The result now follows from the fact that II; ., ®c Qp~m; fori=1,2.

9.2.

We now describe how the map t; depends on the choice of ¢. Equivalently, since any two iso-
Loy of C, we will describe
the behavior of t under the action of Aut(C). More precisely, we prove the following result.

morphisms ¢, /' between C and Q, give rise to a field automorphism ¢~

Proposition 9.2. — Let 7 be a cuspidal complex representation of G. Let v € Aut(C).
(1) If G is not even orthogonal, then t(n7) = t(m)".
(2) If G is even orthogonal, then t(m") = t(m)" - €4, where e, is the unramified character

(9.1) . <f>/(\[\/q§)>vahw(m)

of F*, where q is the cardinality of the residue field of F'.

Let 7 be a cuspidal complex representation of G. As in Lemma 9.1, let u be a finite place of k
different from w, not dividing ¢, and p be a unitary cuspidal irreducible complex representation of
G (k,) with cuspidal transfer. By Proposition 4.1, we have an irreducible automorphic represen-
tation IT of G(A) such that

(1) the local component IT,, is isomorphic to p,
(2) the local component II,, is isomorphic to m,
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(3) the local component II, is the trivial character of G(k,) for any real place v of k.

Associated with IT by Theorems 5.5 and 5.6, there is an algebraic regular, polarized, cuspidal ir-
reducible automorphic representation IT of GLy (4;) such that II, = t,(II,) for all finite places
v of k, where t, is as in Paragraph 9.1. Now let v € Aut(C). Then II7 satisfies

(1) the local component IT}, is isomorphic to p7,
(2) the local component ITj, is isomorphic to 77,
(3) the local component IT} is the trivial character of G(k,) for any real place v of k.

Associated with it by Theorems 5.5 and 5.6, there is an algebraic regular, polarized, cuspidal ir-
reducible automorphic representation II' of GLy(4A;) such that II, = t, (II}) for all finite .

Let S be a finite set of places of k, containing all real places, such that for all v ¢ S the group G
is unramified over k, and the local component II, is unramified with respect to some hyperspecial
maximal compact subgroup of G(k,).

Assume first that G is not an even special orthogonal group. For v ¢ S, Proposition 6.7 gives
us t,(I17) = t,(I1,,)7, thus I’ and II” coincide at almost all finite places. By strong multiplicity
1, we deduce that II' = II7. It follows that tw(Il,) = ty,(I0,)7, that is, t(77) = t(m)7.

Assume now that G is even special orthogonal (thus [ = k). For all finite places v of k, let t
be the map 7 — t,(7)| det WQ, where |- |, is the absolute value of k0 and |- \71/2 is its square root
with respect to qi/ 2, where ¢, is the cardinality of the residue field of k,. An argument similar
to that of the non even orthogonal case gives us II'| det |/2 = (II| det |'/2)7 where | - | is the ab-
solute value of A*. Looking at the local component at w, we deduce that t(77) = t(7) - &,
where ¢, is defined as in (9.1). We have proved Proposition 9.2.

Remark 9.3. — The same argument shows that Proposition 9.2 holds for all discrete series re-
presentations m of G (it suffices to replace Proposition 4.1 by [58] Theorem 5.13). Let us explain
how this implies that the set of isomorphism classes of discrete series representations of GG is sta-
ble under Aut(C). Let ¢ be the local Langlands parameter of a discrete series representation m
(up to Og,(C)-conjugacy in the even orthogonal case) and let ¢ = Std o ¢ be the Langlands pa-
rameter of t(7). On the one hand, the fact that 7 is a discrete series representation implies that
the quotient of the centralizer of the image of ¢ in G by Z(G)Wr is finite (see the end of Pa-
ragraph 5.3). On the other hand, the Langlands parameter of t(n7) is ¢’ = ¢7 - nx (where 7 is
the unramified character of F'* of order 2 and y is either the character e, defined by (9.1) if G
is even orthogonal, or the trivial character otherwise), which has the same finiteness property.
Thus the L-packet of 7 is discrete. Thus 77 is a discrete series representation.

Remark 9.4. — Let us examine how the local transfer map behaves under automorphisms of
the base field F', for discrete series representations. Let m be a discrete series representation of
G, and let ¢ be the Langlands parameter of its transfer t(m). By Moeglin [45], an irreducible
Langlands parameter o [X]S,, where o is an irreducible representation of dimension k£ > 1 of Wg
and a is a positive integer, occurs in ¢ if and only if:

(1) the cuspidal representation p of GLy(E) associated with o by the Langlands correspon-
dence is c-selfdual,
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(2) if s is the unique non-negative real number such that the normalized parabolically indu-
ced representation pr® x 7 is reducible, then 2s — 1 is a positive integer and 2s — 1 — a is a non-
negative even integer.

Now let s € Aut(F'), which extends to an automorphism of E still denoted ». Then

Lese-selfdual,

— the irreducible representation of W g associated with it by the Langlands correspondence is
o” (see [26] Propriété 1),

— the normalized parabolically induced representation p*v® x m* is reducible,

— the representation o [x] S, occurs in ¢ if and only if 0% [X] S, occurs in ¢*.

— the cuspidal representation p* is »~

It follows that the Langlands parameter of t(7*) is ¢*. Applying [26] Propriété 1 again, ¢* is
the Langlands parameter of t(7)*. Thus t(7*) is equal to t(m)*.

9.3.

In this paragraph, we discuss the case of the split special orthogonal group SO(F) ~ F*.
Let x be a Q-character of this group. Its transfer to GLo(F) is

! when the character x?

— either the normalized parabolically induced representation y x x~
is different from the absolute value | - | and its inverse | - |71,

— or the unique character occurring as a component of x x x~* when x2 € {|-|,|-|7'}.
Properties (1) and (2) of Theorem 1.1 thus hold, since

— an irreducible Q,-representation of GLy(F) is integral if and only if its cuspidal support is
integral (see [65] 11.4.14 and [15] Proposition 6.7),

— if x is integral, the supercuspidal support of any irreducible component of ry(y x x 1) is
the GLo(F)-conjugacy class of the cuspidal pair (F* x F*, x® x71).

However, if € is any non-trivial character of F* with values in 1+ m (where m is the maximal

ideal of Zy) such that &2 ¢ {1,]- |72}, the characters | - |'/2 and €| - |'/? are congruent, but the
transfer of the first one is the trivial character of GLa(F'), which is not generic. Property (3) thus
does not hold. Also, the transfer of the second one is &| - [/2 x €71 - |~1/2, whose reduction mod

¢ contains the trivial character with multiplicity 1 (if £ # 2) or 2 (if £ = 2) by [64] Théoreme 3.

Assume further that ¢ has order 2 mod ¢, that is, ¢ divides ¢> — 1 but not ¢ — 1, and let 7 be
the unique unramified Q,-character of order 2 of F*. Then the transfer of 5| - |~'/2 (which is
congruent to | - |'/2) is 5 o det, whose reduction mod £ is a character of order 2. We thus have
two congruent characters of F* whose transfers to GLa(F') have reductions mod ¢ with no com-
ponent in common.

A
Cyclic base change

Let F' be a p-adic field, and let K be a cyclic finite extension of F' of degree d. Fix an integer
n > 1 and write G = GL,(F') and H = GL,(K). By [3], there exists a map from isomorphism
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classes of irreducible (smooth) complex representations of G to those of H called the local base
change, denoted b = by /.

Now let us fix a prime number ¢ different from p and an isomorphism of fields ¢ between C and
Q. Replacing C by Q, thanks to ¢, one obtains a local base change by /F for irreducible smooth
Q-representations.

In this appendix, we investigate the dependency of by, in the choice of ¢, or equivalently
the behavior of bg/r with respect to automorphisms of C.

A.l.

Let ar denote the local Langlands correspondence from the set of isomorphism classes of irre-
ducible complex representations of G to the set ®(G) of GL,,(C)-conjugacy classes of local Lang-
lands parameters for G ([23, 25]).

Replacing C by Q, thanks to ¢, one obtains a local Langlands correspondence ag ¢ for irreduci-
ble Q,-representations. The dependency of a Fe in ¢, or equivalently the behavior of ar with res-
pect to automorphisms of C, has been studied in [26, 14]: the map 7 — ap(r|det |1=)/2) is
insensitive to automorphisms of C. It follows that

(A1) ap(r”) =ap(m)" )"

for all v € Aut(C) and all irreducible complex representations 7 of G, where

(A2) () = (%@)W)

for all w e W, where vp is the valuation map taking any Frobenius element to 1.

A.2.

Let resg /p be the map from ®(G) to ®(H) defined by restricting local Langlands parameters
from WDp to WDg. The local base change by /p is characterized by the identity

ag obg/p =resg/poap.
Now let us prove that b = by p is insensitive to the action of Aut(C).

Proposition A.1. — For ally € Aut(C) and all irreducible complex representations m of G, we
have bK/F(W'Y) = bK/F(W)’Y.

Proof. — Let 7 be an irreducible complex representation of G. We have
aK(bK/F(Tﬂ)) = resK/F(aF(Tﬂ))
= resg p(ap(m)” - 7711:}”)
= ag(br/r(m)" (pylwe) ™"

()
()

= ar(bg/p(m)7) - MKy MEANWK)
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We are thus reduced to compare ng |w, with nx . Using the explicit formula (A.2), we get

_ (w(@)w'wk e <7(\/?))“K
Y K \/a ’ Y \/? )
where ¢/ is the cardinality of the residue field of K. Since ¢’ = ¢/%/F and vrlwyg = fr/pvK, we
deduce that np|wy = 1k, thus bg/p(77) = by /p()7. O
A.3.

The map b, preserves the fact of being integral: this follows from the fact that an irredu-
cible Q/-representation 7 of G is integral if and only if the restriction of ap(m) to W is integral
([66] 1.4) and that the restriction to Wy of an integral Q-representation of W is integral.

A 4.

We now review the congruence properties of by py, after J. Zou’s PhD thesis [71] 1.10.
Associated with an irreducible representation 7 of GL,, (K), with coefficients in Q, or [y, there
is a partition
/\(T) = (kl > ko > )

of n defined inductively as follows. Let k1 denote the largest integer k € {1,...,n} such that the
kth derivative 7(*) is non-zero. If k; = n, then \(7) = (n). Otherwise, (ks > ...) is the partition
of n — k; associated with the representation 7(1) of GL,,_, (K).

By [66] V.9.2, if T is an integral irreducible Q,-representation of GL,,(K), its reduction mod £
has a unique irreducible component 7 such that A(7) = A(7). This component is denoted j,(7).

Theorem A.2 ([71] Theorem 1.10.17). — Let my and 7o be integral irreducible Q,-represen-
tations of GLn(F). If ji(m1) = j(m2), then jy(brc/pe(m1)) = jo(bx/re(m2)).

In particular, if 71, w2 are cuspidal, which implies that A(m1) = A(m2) = (n), their base chan-
ges by /py(m1) and by (ma) are generic. This theorem thus says that, if re(m1) = re(m2), then
re(bg/re(m1)) and ry(bg/pe(m2)) have a unique generic irreducible component in common. This
can be seen as an analogue of Theorem 1.1 for the cyclic base change from G to H.

A.5.

In this paragraph, we give an example of congruent integral cuspidal Q,-representations 71, T2
of G such that by /p(m1) and bg /g e(m2) are not congruent.

First, assume that 7 is an integral cuspidal irreducible Q-representation of G. Let m denote
the cardinality of the set of isomorphism classes of mx, where x runs over the characters of F'*
trivial on Ng /(K ™), and set e = d/m. Then there exists a cuspidal irreducible representation p
of GL,,/.(K) such that

brc/p(m) = p x p* x o x p
where « is a generator of Gal(K/F') and x denotes normalized parabolic induction with respect
to a choice of square root of ¢, the cardinality of the residue field of F' (see [3] Chapter 1, §6.4).
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Now assume that n = 2 and that K is a ramified quadratic extension of F, and let wg/r be
the character of F* with kernel Ny /(K ™*). Let m1 be an integral cuspidal Qy-representation of
G = GLy(F) of level 0. By [13], it is compactly induced from a representation A; of F'*GL2(OF)
whose restriction to GL2(Op) is the inflation of a cuspidal irreducible representation o of the
group GLa(k), where k is the residue field of F'. Associated with o1, there is ([20]) a character

(A.3) 15 Iy

such that £} # &1, where U is a quadratic extension of k and ¢ is the cardinality of k.

The representation mjwg p is isomorphic to 7 if and only if Ajwg/p is isomorphic to A;. As
these representations all have the same central character, this is equivalent to o011 ~ o1, where 7
is the unique character of order 2 of k* (note that the restriction of wy /F to O is the inflation of
1), which is equivalent to &;(n o Nyj) = &7, that is, €77 has order 2. Assume that this is the
case. Thus e; = 2 and we may write bg/p(m1) = p; x pf for some (tamely ramified, integral)
character p; of K*.

Assume further that ¢ is a prime divisor of ¢> — 1 not dividing ¢ — 1, that is, £ is an odd pri-
me divisor of ¢ + 1. Let u be a character of I of order ¢ and set & = & p. Since &1 # &9, there
is a cuspidal Q,-representation oy of GLy(k) associated with &». Since & and &) are congruent,
o9 and o7 are congruent (see for instance [40] 2.6). Let us inflate and extend o5 to a representa-
tion Ay of F*GL2(Op) which is congruent to A1, then compactly induce As to a representation
79 of GLa(F'). This is an integral cuspidal representation of level 0 which is congruent to ;.

Since p? # p, we have ez = 1, thus b /p(m1) is a cuspidal representation pa of GLo(K). Its
reduction mod / is an irreducible cuspidal Fy-representation of GLo(K). It is the unique generic
component of ry(p; x pf').

B
Cuspidal representations of split p-adic orthogonal groups with irreducible Galois

parameter

B.1.

Let F be a p-adic field with p # 2, and let G be a split special orthogonal group over F', that
is, G = SO(Q) where @ is a maximally isotropic quadratic form over F'. Let n be the dimension
of @. In this section, we assume that n # 2. Let m = |n/2] be the Witt index of Q. With the
notation of Paragraph 5.1, we have G = SOgy,11(F) if n is odd, G = SO}, (F) if n is even. We
will prove the following result.

Proposition B.1. — There exists a cuspidal representation of level 0 of G whose transfer to

GLN(F) is cuspidal.

B.2.

In this paragraph, we refer to [37] §2 (see p. 1090 in particular). Let V' be the n-dimensional
F-vector space on which @ is defined. Write

V = Van @ Viso
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where V2 is anisotropic (thus dim(V?") < 1) and V° is a sum of m hyperbolic planes.

Let ¢ denote the cardinality of the residue field of F'. The anisotropic group G** = SO(V?")
has a unique (up to conjugacy) maximal parahoric subgroup. Its finite reductive quotient G"
has neutral component the finite special orthogonal group

SOq(q)

with a = dim(V?").
For any choice of integers my, mo = 0 such that m; + ms = m, there is a maximal paraho-
ric subgroup J = Jp, m, Whose finite reductive quotient § = Gy, yn, has neutral component

SOatmy,mi1 (@) X SOmyms(q)

where SO, ,(g) is the special orthogonal group over F, associated with a quadratic space of di-
mension u + v and Witt index v. Choose my = 0, so that § has neutral component SOy, .,,(q) if
n = 2m, and SOp,41,m(q) if n = 2m + 1. In other words, §° is split.

B.3.

Let o be a self-dual cuspidal irreducible representation of GLg,(¢) and s € F qxgr be a parameter

corresponding to o. In particular, s has degree 2r over F, and s™1 = 57" Its characteristic po-
lynomial P(X) is thus irreducible, of degree 2r, and self-dual (that is, reciprocal).
The parameter s can be seen in the dual group §°* < GLoa,(g). It then defines a Lusztig series

(6%, s).
Lemma B.2. — The Lusztig series £(G°, s) contains a cuspidal representation.

Proof. — If m is odd, see [37] §7.2 (p. 1098). Assume now that m is even. We follow [37] §7.3.
Consider the group with connected centre G = GSOZ of which §° is a subgroup. The scalars 1
and —1 are not eigenvalues of s. The centralizer of s is thus connected and the two Lusztig series
associated with s are the same. A cuspidal representation of §° associated with s is an irreduci-
ble component of the restriction to §° of a cuspidal representation of G associated with a semi-
simple element s € §* lifting s. To prove the lemma, it thus suffices to prove that the Lusztig se-
ries 8(5, ) contains a cuspidal representation.

The two groups § and G° act naturally on the same space, thus s anNd s have the same cha-

racteristic polynomial P(X). It follows from [37] §7.2 (p. 1098) that £(9, §) contains a cuspidal
representation. O

B .4.

Let 7 be a cuspidal representation in the Lusztig series £(G°, s). Let A be an irreducible repre-
sentation of J whose restriction to J° (the preimage of G° in J) is a direct sum of conjugates
(under J) of the inflation of 7. Let 7 be the representation obtained by compactly inducing A
to G. It is a cuspidal irreducible representation of level 0 of G.

As G is split, it follows from Moeglin [45] that the Langlands parameter ¢ associated with
is described by the reducibility set Red(7) and the Jordan set Jord(rw) (see for instance the in-
troduction of [37] for a definition).
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In our situation, it follows from [37] §8 that the sets Red(w) and Jord(w) are equal and both
reduced to a single element (p, 1), where p is a selfdual cuspidal representation of GLy (F') (with
N =n—1ifnisodd and N = n if n is even), which proves Proposition B.1.

Remark B.3. — More precisely, p has level 0, and is obtained by compactly inducing a repre-
sentation of F'’*GLy(Op) which is trivial on 1 + My (pr) and whose restriction to GLy(OF) is
the inflation of o.

C

Cuspidal representations of Sp,, (Q2) with irreducible Galois parameter

(by Guy HENNTART at ORSAY)

C.1.

Let p be a prime number and F' a finite extension of Q,. Let F' be an algebraic closure of F
and W the Weil group of F/F. Let n be a positive integer, and 7 a cuspidal (complex) repre-
sentation of Spy, (F'). Let o be the Galois parameter attached to 7 by Arthur [2], which one
sees as an orthogonal representation of W x SLa(C), of dimension 2n + 1. The following result
is used in the main text, in Section 9.

Theorem C.1. — Assume that F = Qq, and take for 7 the (unique) simple supercuspidal re-
presentation of Spy,,(F'). Then o is an irreducible representation of Wp.

Here simple is in the sense of Gross and Reeder [22]. The point of the result is that 7 is com-
pactly induced from a compact open subgroup of Sp,,,(F'), as we describe below. Indeed when
p = 2 there is at least one irreducible orthogonal representation o of Wg of dimension 2n + 1
[11], only one if F' = Q9, and by [2] it is the parameter of a cuspidal representation 7 of Sp,,, (F),
but it is not clear a priori that 7 is compactly induced.

Our method is inspired by work of Oi [48]. When p is odd, Oi determines the parameter o of
a simple cuspidal representation m of Spy, (F'). In his case o is always reducible, but a number
of techniques and results remain valid when p = 2, and, with extra information given by Adrian
and Kaplan [1] when F' = Qq, that is enough for us. It is quite likely that one can describe o
explicitly whenever 7 is simple cuspidal, not only when p is odd or F' = Q2. Indeed many of our
arguments work more generally, and until C.6 we make no special assumption on F', except that
in C.3 we start assuming that® p = 2.

C.2.

We now proceed. We use customary notation, Op for the ring of integers of F', pr for the
maximal ideal of Op. We fix a uniformizer w of F', and write k for the residue field Or/pr and
q for its cardinality. We also fix a non-trivial character ¢ of k. If H is an algebraic group over
F, we usually put H = H(F).

MWOi and the author ([27]) can now extend Theorem C.1 to any 2-adic field F.
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We use the usual explicit model of G = Sp,,,, see [48] §2.4, so elements of G = Sp,,, (F') are
symplectic 2n x 2n matrices. By cuspidal representation of G we mean an irreducible smooth
complex cuspidal representation. We are interested in simple cuspidal representations of G, in
the sense of Gross and Reeder [22]. Let us describe them.

The choice in [22] of a root basis and an affine root basis determines an Iwahori subgroup I of
G, with its first two congruence subgroups I™ and I*t*. The Iwahori subgroup I is the sub-
group of Spy, (OF) made out of the matrices which are upper triangular modulo pp, I is made
out of the matrices which are further upper unipotent modulo pr, and I™" is made out of the
matrices (z;;) in I'T with z; ;11 € pp fori =1,...,2n—1, and x2, € p%. The quotient I /It
is isomorphic to a product of n + 1 copies of k, via the surjective homomorphism

(xi;) — (x12 mod pp, ..., Tnnt1 mod P, Top1/w mod pr)

from It to k"1,

A character of It is simple if it is trivial on I**, and is the inflation of a character of k"*1
which is non-trivial on each factor k. The normalizer in G of a simple character 6 of I is ZIT,
where Z is the centre of G, and ZI™" is also the intertwining of 6 in G, so that any extension of
0 to ZIt gives by compact induction to G a cuspidal representation of G: see [48] §2.4, Propo-
sition 2.6. Note that when p is 2, the centre Z of G is actually contained in ™. The cuspidal
representations of G thus obtained are the simple cuspidal representations of [22].

The normalizer of I in G is ZI, and I acts on I /I wvia I/I; identifying /1" with k*"
via

(xi,j) — (1'1,1 mod Pr,..., Tnn mod pF);

the conjugation action of (x1,...,xn) € kX" on I*/I** (identified with k"*!) sends the family
(U1, .. upt1) € KL to

-1 —1 -1 2 —2
(u1X1X2 ,U2X2X3 yoo s U1 Xn—1Xn > UnXn> un-‘rle ) .

In particular, when p = 2, a given simple character 6 of I can always be conjugated in I to the
character

0(a) : (u1, ..., upy1) = P(ur + -+ + Up + aUp 1)

for some a in £, uniquely determined by 6. More precisely if 6 sends (u1, ..., up+1) to Y (aiu; +
coo 4 Aply + Gpy1Une1) for some a;’s in kX, then a is equal to (ay -+~ an_1)% - apn - Gne1. Thus®
when p = 2 there are only ¢ — 1 isomorphism classes of simple cuspidal representations of G,
whereas, by a similar analysis ([48] §2.4), there are 4(¢ — 1) such classes when p is odd. Note
that when ¢ = 2 all that is obvious since k£ has only one non-trivial character.

(@ The referee remarks that one needs to know the “intertwining implies conjugacy” result that says that if two
simple characters # and @’ of I intertwine in G, then they are actually conjugate. The arguments are the same as
for proving that the construction of simple cuspidals does give irreducible representations. The reader can consult
[52] for the more general cases of epipelagic representations.
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C.3.

The group Sp,,, is split, and its dual group is SO2,+1(C). To a cuspidal representation 7 of G,
Arthur attaches the conjugacy class of a discrete parameter, that is (the conjugacy class of) a
continuous homomorphism from Wg x SLa(C) into SOg,41(C) which, as a representation of di-
mension 2n + 1, is a direct sum of inequivalent irreducible orthogonal representations o1, ..., 0y,
with the product det oy - - - det o, trivial. What our theorem says is that when F' = Q2 and 7 is
simple cuspidal, then r = 1 and o7 is trivial on SLs(C), i.e. is in fact a representation of Wp.
Note that [11] shows that when p is odd, there is no irreducible orthogonal representation of
Wr of odd dimension > 1, contrary to the case p = 2, where [11] gives a complete classification.

From now on we assume p = 2. For a in k* let us denote by 7(a) the isomorphism class of
the representation of G compactly induced from the character 6(a) of I. We let ¢(a) be the
parameter of 7(a), r(a) the number of irreducible components of ¢(a), and II(a) the L-packet of
m(a), that is the set of isomorphism classes of tempered (in fact, discrete series) representations
of G with parameter ¢(a); it is known that II(a) has 2"(®)~1 elements, so one of our goals is to
show that r(a) = 1. Let G,q be the adjoint group of G, and ¢ the quotient map from G to G,gq.

Lemma C.2. — w(a) is stable under the action of Gaq.

Proof. — We follow the proof of [48] Proposition 5.2. As there, one gets a description of the
quotient Goq/t(G). It is isomorphic to Hom(F*, ugy), itself isomorphic, by Kummer theory, to
F*/F*2. More concretely if T is the diagonal torus of G’ made out of elements

t(b) = (b,b,...,b,b7 1 ... b7

(with n times b and n times b~1), then for any b in F with b in F'* the image of t(b) in G,q(F)
is actually in G,q, and the set of such t(b)’s covers G,q/t(G).

If b2 is a unit in F then #(b) actually normalizes I and its congruence subgroups, and sends
0(a) to the character given by

(uts - Ung1) = YUy + -+ upe1 + D*un + (a/0% ) uny1),

conjugate in I to 6(a). If b? is the uniformizer w, t(b) conjugates I to another Iwahori subgroup,
but if s is the matrix in G with four blocks of size n, first line (0, I,,) and second line (—1I,,,0),
then st(b) normalizes I and its congruence subgroups, and sends 6(a) to the character given by

(ul’ cee 7un+l) = 1/’(“1 + -+ up—1 +auy, + un+1)
(recall that p = 2, so —1 = 1 in k), which is conjugate to 6(a). Since the stabilizer in G,q of
m(a) is a subgroup containing all of ¢(G), it follows that it is all of G.q. O

An important point is the genericity of simple cuspidal representations. We fix the same Whit-
taker datum as Oi [48] §6.3(2) to define genericity. By [30] Proposition 5.1, the Gaq-orbit of 7 (a)
contains a single generic representation, so by the previous lemma the representation 7(a) is ge-
neric. Reasoning as in [48] Corollary 4.9 and Corollary 5.7, we get:

Proposition C.3. — The parameter ¢(a) is trivial on SLa(C), every element of II(a) is cuspi-
dal, and among them only w(a) is a simple cuspidal representation.
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It only remains to prove that r(a) = 1.

C.4.
Still following [48] we prove:

Proposition C.4. — Il(a) does not contain any level O cuspidal representation.

Proof. — By [57] Corollary 9.10, all elements of II(a) have the same formal degree. If dg is a
Haar measure on G/Z, then the formal degree of 7(a) is dg/vol(I*/Z,dg) (by [48] Lemma 5.10),
whereas the formal degree of a level 0 cuspidal representation of G is strictly smaller, by the fol-
lowing reasoning inspired by loc. cit., Proposition 5.11. A level 0 cuspidal representation 7’ of G
is compactly induced from an irreducible representation p of a maximal parahoric subgroup P of
G, trivial on the pro-p radical Pt of P, and coming via inflation from a cuspidal representation
of the finite (connected here) reductive group P = P/P*. The formal degree of 7’ is

dim(p)
vol(P/Z,dg)
One can assume that P contains I and I™ contains P*. Since p = 2, the group P contains Z,
so what we have to prove is that dim(p) < card(P/I"). But I*/PT is the unipotent radical U
of the Borel subgroup B = I/P* of P, and obviously dim(p)? is at most card(P), so it is enough
to check card(P) < card(P/U)? or card(U)? < card(P), which is a consequence of the existence
of the big cell BwU in the Bruhat decomposition for P. O

dg.

Remark C.5. — It is highly plausible that for a cuspidal representation 7’ of G which is not
of level 0 and is not a simple cuspidal either, the formal degree of 7’ is bigger than the formal
degree of 7(a). But nothing explicit is known about such 7’.

C.5.

Now we compute the character £(a) of w(a) at an affine generic element g of I, where g gene-
ric means that modulo I+, g gives an (n + 1)-tuple (uy,...,u,+1) in k"' with all coordinates
non-zero. As in [48] Lemma 2.5, we see that an element y conjugating ¢ into I belongs to I,
so that by the usual formula for the character of compactly induced representations (see e. g.
loc. cit. Theorem 3.2), the character £(a) of w(a) at g is the sum

-1 -1 -1 2 2
Z (0 (U1X1X2 T UgXoXg Tt Up_ 1 Xp—1Xn T UpXn T AUni1Xy ) )
(Xlz"~7Xn)€k><n

which is a kind of Kloosterman sum, the sum

Z (0 (u1771 + Ul + -+ Un— 171 + Unlfp + aunnn+1)
(M15-emm )ERX™

with 7,11 given by (1...7,-1)?7n0ns1 = 1. Noting that 1) takes only the values 1 and —1, we
conclude:

Proposition C.6. — The value of £(a) at a generic element g of I'T is an odd integer depending

only on g modulo I,
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C.6.
Still following [48] 5.3, we now show:

Proposition C.7. — r(a) =1 or 2, and, seen as a representation of Wr of dimension 2n+ 1,
é(a) is either irreducible or the direct sum of a character w with w? = 1 and an irreducible (or-
thogonal) representation with determinant w.

Proof. — Put s = 27(@)=1 and enumerate the elements of m(a) as m = 7(a),...,ms, and let &
be the character of m;. Let g be a generic element of I*. Choose (i) = 1 or —1 fori =1,...,s.
Exactly as in the proof of Claim in loc. cit., we get that (1)1 + -+ + &(s)&s does not vanish
at g. Using that the characteristic polynomial of g is irreducible of degree 2n (loc. cit., Lemma
7.5, still valid when p = 2), the proofs of Theorem 5.1 and Corollary 5.13 in loc. cit. give the
result. O

C.7.

To get the remaining assertion that r(a) is in fact 1, we use new information given by Adrian
and Kaplan [1]. Unfortunately that information is only available presently when F' = Qq, hence
the restriction in our main result, but we expect that the computation in loc. cit. can be carried
over to the general case. When F' = Q9 there is only a = 1, so we put m = 7(1). In [1] Theorem
3.13, the authors compute the Rankin-Selberg ~v-factor v(m x 7,%’) (a rational function in 2° for
a complex parameter s) for any tame character 7 of Q5 with 72 = 1 and a character ¢’ of Qs
trivial on 2Zs but not on Zy. They find

(C.1) y(m x 1, = 7(2)21/275,

On the other hand if ¢ is the parameter of 7, seen as a representation of W g of dimension 2n+1,
and A the character of Wg corresponding to 7 via class field theory, then

(C2) Y x 7,9") = (o @ N Y)

where the right-hand side is the Deligne-Langlands factor®).
That gives new information on ¢ which, we recall, is by Proposition C.7 either irreducible or
the direct sum of a character w with w? = 1 and an irreducible representation, say «, with

wdeta = 1.

But the factor (7 x 7,4’) has no zero nor pole, so is equal to the factor (7 x 7,9") = e(d®N, ')
which has the form
u - 2ATE(A®N)—dim(¢@A))(1/2—5)

for some non-zero complex number u: the exact value of the exponent comes from the fact that
1’ is trivial on 2Z9 but not on Zs. This implies that Art(¢ ® \) = 2n + 2, and taking A trivial
yields Art(¢) = 2n + 2.

Assume we are in the case where ¢ = w@® . Taking A = w gives a pole to (¢ ® w, 1)) which
contradicts (C.1) if w is tame (that is, since F' = Q9, unramified). Thus w is wildly ramified, so

®)That is to say, Arthur’s correspondence is compatible with Rankin-Selberg ~-factors. It can be proved by a
local-global argument. Detail will appear in joint work with Oi [27].
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its Artin exponent is at least 2, and the Artin exponent of « is at most 2n. That implies that «
is tamely ramified, and in fact Art(a) = 2n, Art(w) = 2. But then det « is also tamely ramified,
which contradicts wdet @ = 1. That contradiction shows that ¢ is irreducible, as desired.

C.8.

One can describe ¢ explicitly. By the main result of [11] an orthogonal irreducible represen-
tation of Wq, is induced from an order 2 wildly ramified character 3 of Wy, where K is a total-
ly ramified extension of Q2 degree 2n+ 1. Such an extension is unique up to isomorphism, gene-
rated by a uniformizer z with 22"+ = 2. Let E be the character of K* corresponding to 8 via
class field theory. Since Art(¢) = 2n + 2, we have Art(3) = 2, and moreover det(¢) = 1 is the
restriction of E to Q5 times the determinant of the representation of Wq, induced from the tri-
vial character of Wy . That determinant is an unramified quadratic character of W g, computed
in [9] as the unramified character taking value at Frobenius elements the Jacobi symbol of 2 mo-
dulo 2n + 1. That imposes 3(z), and with Art(3) = 2 and B(1 + z) = —1 it determines § hence

B.
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