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Let G be the group of rational points of a quasi-split p-adic special orthogonal, symplectic or unitary group for some odd prime number p. Following Arthur and Mok, there are an integer N ě 1, a p-adic field E and a local functorial transfer from isomorphism classes of irreducible smooth complex representations of G to those of GLN pEq. By fixing a prime number ℓ different from p and an isomorphism between the field of complex numbers and an algebraic closure of the field of ℓ-adic numbers, we obtain a transfer map between representations with ℓ-adic coefficients. Now consider a cuspidal irreducible ℓ-adic representation π of G: we can define its reduction mod ℓ, which is a semi-simple smooth representation of G of finite length, with coefficients in a field of characteristic ℓ. Let π 1 be a cuspidal irreducible ℓ-adic representation of G whose reduction mod ℓ is isomorphic to that of π. We prove that the transfers of π and π 1 have reductions mod ℓ which may not be isomorphic, but which have isomorphic supercuspidal supports. When G is not the split special orthogonal group SO2, we further prove that the reductions mod ℓ of the transfers of π and π 1 share a unique common generic component.

Let F be a p-adic field for some odd prime number p and G be the group of rational points of a quasi-split special orthogonal, unitary or symplectic group defined over F . In the case where G is unitary, let E be the quadratic extension of F with respect to which G is defined ; otherwise, let E be equal to F . According to Arthur [START_REF] Arthur | The endoscopic classification of representations. Orthogonal and symplectic groups[END_REF] for special orthogonal and symplectic groups, and to Mok [START_REF] Mok | Endoscopic classification of representations of quasi-split unitary groups[END_REF] for unitary groups, there is a positive integer N " N pGq and a map from isomorphism classes of irreducible (smooth) complex representations of G to those of the general linear group GL N pEq, called the local transfer or base change, which we will denote by t.

1.2.

Let us fix a prime number ℓ different from p and an isomorphism of fields ι between C and an algebraic closure Q ℓ of the field of ℓ-adic numbers. Replacing formally C by Q ℓ thanks to ι, we get a local transfer between isomorphism classes of irreducible smooth Q ℓ -representations, denoted t ℓ . (We describe the dependency of t ℓ in the choice of ι -or equivalently the behavior of t with respect to automorphisms of C: see Paragraph 6.4 for unramified representations, and Paragraph 9.2 for discrete series representations, of G.)

We can now consider irreducible Q ℓ -representations which are integral -that is, which carry a stable Z ℓ -lattice, where Z ℓ denotes the ring of integers of Q ℓ . Given such a representation π, one can define its reduction mod ℓ: this is the semi-simplification of the reduction of any of its stable Z ℓ -lattices modulo the maximal ideal of Z ℓ . This is a smooth representation of finite length with coefficients in F ℓ , the residue field of Z ℓ , denoted r ℓ pπq. One then can ask whether the map t ℓ preserves the fact of being integral, and how it behaves with respect to congruences mod ℓ.

Similar questions have already been answered for other local correspondences: see [START_REF]Correspondance de Langlands semi-simple pour GL n pF q modulo ℓ ‰ p[END_REF][START_REF]Théorie de Lubin-Tate non-abélienne ℓ-entière[END_REF][START_REF]Modular local Langlands correspondence for GL n[END_REF] for the local Langlands correspondence for GL n , as well as [START_REF]Un cas simple de correspondance de Jacquet-Langlands modulo ℓ[END_REF][START_REF]Correspondance de Jacquet-Langlands locale et congruences modulo ℓ[END_REF] for the local Jacquet-Langlands correspondence between inner forms of GL n , for n ě 1. (See also Paragraph 1.7 below and Appendix A, where we discuss the case of the cyclic local base change for GL n .) In this paper, we prove the following theorem.

Theorem 1.1. -Let π 1 , π 2 be integral cuspidal irreducible Q ℓ -representations of G, and assume that (1.1) r ℓ pπ 1 q ď r ℓ pπ 2 q that is, r ℓ pπ 1 q is contained in r ℓ pπ 2 q as semi-simple F ℓ -representations of G. Then

(1) The local transfer t ℓ pπ i q is an integral Q ℓ -representation of GL N pEq for each i " 1, 2.

(2) The irreducible components of the semi-simple F ℓ -representation r ℓ pt ℓ pπ 1 qq ' r ℓ pt ℓ pπ 2 qq all have the same supercuspidal support (see below for a definition).

(3) Assume that G is not isomorphic to the split special orthogonal group SO 2 pF q » F ˆ. The semi-simple F ℓ -representations r ℓ pt ℓ pπ 1 qq and r ℓ pt ℓ pπ 2 qq have a unique generic irreducible component in common.

As in the case of complex coefficients, an irreducible representation of GL N pEq on an F ℓ -vector space V is said to be generic if V carries a non-zero F ℓ -linear form Λ such that Λpπpuqvq " θpuqv for all v P V and all upper triangular matrices u of GL N pEq, where θ is the F ℓ -character u Þ Ñ ψpu 1,2 `¨¨¨`u n´1,n q and ψ is a non-zero F ℓ -character of F .

An irreducible F ℓ -representation of GL N pEq is supercuspidal if it does not occur as a subquotient of any representation parabolically induced from a proper Levi subgroup. The supercuspidal support of an irreducible F ℓ -representation π of GL N pEq is a pair pM, ρq made of a Levi subgroup of GL N pEq and a supercuspidal representation ρ of M such that π occurs as a subquotient of the normalized parabolic induction of ρ. It is uniquely determined up to conjugacy ( [START_REF]Induced R-representations of p-adic reductive group[END_REF] V.4, [START_REF] Mínguez | Représentations lisses modulo ℓ de GL m pDq[END_REF] Théorème 8. [START_REF]Théorie de Lubin-Tate non-abélienne ℓ-entière[END_REF]).

Note that, unless G is the split special orthogonal group SO 2 pF q » F ˆ, the centre of G is compact. When this is the case, any cuspidal irreducible Q ℓ -representation of G is integral. We will discuss the case of the split SO 2 pF q in detail in Paragraph 9. [START_REF] Arthur | Simple algebras, base change, and the advanced theory of the trace formula[END_REF].

Also note that, if G is not isomorphic to SO 2 pF q » F ˆ, then (3) implies [START_REF] Arthur | The endoscopic classification of representations. Orthogonal and symplectic groups[END_REF], since all irreducible components of the reduction mod ℓ of an integral irreducible Q ℓ -representation of GL N pEq have the same supercuspidal support.

Before discussing the other assumptions of Theorem 1.1 (in Paragraph 1.6), let us explain how we prove it. The general strategy goes back to Khare [START_REF] Khare | On the local Langlands correspondence mod l[END_REF] and Vignéras [START_REF]Correspondance de Langlands semi-simple pour GL n pF q modulo ℓ ‰ p[END_REF] who study the congruence properties of the local Langlands correspondence for GL n pF q with n ě 1.

1.3.

The first step is to pass from our given local situation to the following global situation (which is the purpose of Sections 2 to 4).

First, k is a totally real number field, l is either k or a totally imaginary quadratic extension of k and w is a finite place of k above p, inert in l, such that k w " F and l w " E.

Next, G is a connected reductive group defined over k such that

(1) the group GpF q naturally identifies with G, (2) the group Gpk v q is compact for any real place v and quasi-split for any finite place v,

the k-group G is an inner form of a quasi-split special orthogonal, unitary or symplectic group G ˚.

Finally, Π 1 and Π 2 are irreducible automorphic representations of GpA k q, where A k denotes the ring of adèles of k, such that (1) Π 1,w b C Q ℓ is isomorphic to π 1 and Π 1,w b C Q ℓ is isomorphic to π 2 , (2) the representations Π 1,v and Π 2,v are trivial for any real place v, (3) there is a finite place u ‰ w of k such that Π 1,u and Π 2,u are both isomorphic to some cuspidal irreducible unitary representation ρ of Gpk u q which is compactly induced from a compact mod centre, open subgroup of Gpk u q, (4) there is a finite set S of places of k, containing all real places, such that for all v R S :

(a) the group G is unramified over k v , (b) the representations Π 1,v b C Q ℓ and Π 2,v b C Q ℓ are unramified with respect to some hyperspecial maximal special compact subgroup of Gpk v q, (c) their Satake parameters (in the sense of Paragraph 3.4) are integral and congruent mod the maximal ideal of Z ℓ , where all tensor products are taken with respect to ι.

1.4.

The next step -which is the purpose of Section 5 -is to associate to Π 1 and Π 2 two cuspidal irreducible automorphic representations r Π 1 and r Π 2 of GL N pA l q such that, for any finite place v, the local transfer of Π i,v is isomorphic to r Π i,v , for i " 1, 2. For this, we use the results of Taïbi [START_REF]Arthur's multiplicity formula for certain inner forms of special orthogonal and symplectic groups[END_REF] if G ˚is symplectic or special orthogonal, and Labesse [START_REF] Labesse | Changement de base CM et séries discrètes[END_REF] if G ˚is unitary. Namely, let r Π i be -the Arthur parameter associated with Π i if G ˚is symplectic or special othogonal ( [START_REF]Arthur's multiplicity formula for certain inner forms of special orthogonal and symplectic groups[END_REF]), -the stable base change of Π i to GL N pA l q if G ˚is unitary ( [START_REF] Labesse | Changement de base CM et séries discrètes[END_REF]).

In both cases, r Π i is algebraic regular and [START_REF]Arthur's multiplicity formula for certain inner forms of special orthogonal and symplectic groups[END_REF][START_REF] Labesse | Changement de base CM et séries discrètes[END_REF] provide r Π i with certain local-global compatibilities at all finite places. In order to ensure that these local-global compatibilities are what we want, namely, that the local transfer of Π i,v is isomorphic to r Π i,v at all finite v, and in prevision of the next step, we need r Π i to be cuspidal. In order to choose Π 1 , Π 2 so that r Π 1 , r Π 2 are cuspidal, we use the auxiliary cuspidal representation ρ of Paragraph 1.3. More precisely, we prove the following result (see Lemma 9.1).

Proposition 1.2. -Given k, w and G as in Paragraph 1.3, the finite place u of k and the representation ρ of Gpk u q can be chosen so that the local transfer of ρ is cuspidal.

If G ˚is unitary, it suffices to choose u so that G is split over k u . In the symplectic and special orthogonal cases, this is the purpose of Appendices B and C. (In particular, the place u has to divide 2 in the symplectic case.)

1.5.

We now have two algebraic regular, cuspidal irreducible automorphic representations r Π 1 and r Π 2 of GL N pA l q such that, for i " 1, 2 and all finite places v, the transfer of Π i,v is isomorphic to r Π i,v . Besides, it follows from the properties of the transfer from GpA k q to GL N pA l q that the conjugate of the contragredient of r Π i by the generator c of Galpl{kq is isomorphic to r Π i . From the properties of Π 1 and Π 2 at all places v R S, and from the congruence properties of the unramified local transfer that we establish in Section 6, it follows that, for all v R S:

(1) the local components r Π 1,v and r Π 2,v are unramified, (2) the Satake parameters of r Π 1,v b C Q ℓ and r Π 2,v b C Q ℓ are integral and congruent mod the maximal ideal of Z ℓ .

We now apply the results of [START_REF] Barnet-Lamb | A family of Calabi-Yau varieties and potential automorphy II[END_REF], which give us two continuous ℓ-adic Galois representations Σ i : GalpQ{lq Ñ GL N pQ ℓ q, i " 1, 2, such that, for any finite place v of l not dividing ℓ, the (ℓ-adic) Weil-Deligne representation associated with r

Π i,v | det | p1´N q{2 v
by the local Langlands correspondence is isomorphic to the Frobenius-semisimplification of the Weil-Deligne representation associated with Σ i,v , the restriction of Σ i to a decomposition subgroup of GalpQ{lq at v. (Here |¨| v denotes the absolute value of l v normalized so that the absolute value of any uniformizer of l v is the inverse of the cardinality of the residue field of l v .) Thanks to our local conditions at all v R S, the representations Σ 1,v , Σ 2,v are congruent mod ℓ. A density argument then implies that Σ 1 and Σ 2 are congruent mod ℓ. In particular, Σ 1,w , Σ 2,w are congruent mod ℓ.

Associated with Σ i,w , there is a Frobenius-semisimple Weil-Deligne representation pρ i , N i q. We show in Section 7 that the fact that Σ 1,w and Σ 2,w are congruent mod ℓ implies that the smooth semi-simple representations ρ 1 and ρ 2 are integral and congruent mod ℓ. Since ρ i corresponds to the cuspidal support of r Π i,w | det | p1´N q{2 w b C Q ℓ (thanks to the local-global compatibility at w given by [START_REF] Barnet-Lamb | A family of Calabi-Yau varieties and potential automorphy II[END_REF]), it follows from the mod ℓ local Langlands correspondence of Vignéras [START_REF]Correspondance de Langlands semi-simple pour GL n pF q modulo ℓ ‰ p[END_REF] that b C Q ℓ , denoted δ i , is independent of i P t1, 2u. Since a generic irreducible F ℓ -representation is uniquely determined by its supercuspidal support, we deduce that δ 1 , δ 2 are isomorphic. The Main Theorem 1.1 now follows from the fact that r

r Π 1,w | det | p1´N q{2 w b C Q ℓ , r Π 2,w | det | p1´N q{2
Π i,w | det | p1´N q{2 w b C Q ℓ is isomorphic to t ℓ pπ i q.
We refer to Sections 8 and 9 for more details.

1.6. Now let us discuss the assumptions of the main theorem. First, the construction of Π 1 does not require π 1 to be cuspidal: it would be enough to assume that π 1 b Q ℓ C is a discrete series representation of G (for one, or equivalently any, choice of the field isomorphism ι: see Remark 9.3).

However, in order to construct the representation Π 2 satisfying our local conditions at all places v R S by the method of Khare-Vignéras, we need π 2 to be cuspidal -even more precisely, we need π 2 to be compactly induced from some open, compact mod centre subgroup of G, which is true of any cuspidal representation of G, thanks to the work of Stevens [START_REF] Stevens | The supercuspidal representations of p-adic classical groups[END_REF] and since p is odd. Consequently, both the cuspidality of π 2 and (1.1) imply that π 1 should be cuspidal, as the parabolic restriction functors commute with reduction mod ℓ.

For the same reason, we want the auxiliary representation ρ of Gpk u q to be compactly induced from an open, compact mod centre subgroup.

Moreover, as has been explained in Paragraph 1.4, we also need ρ to have a cuspidal transfer to GL N pk u q. This is why the symplectic group requires a special treatment (see Appendix C), since no cuspidal representation of a p-adic symplectic group has a cuspidal transfer when p is odd, and the work of Stevens [START_REF] Stevens | The supercuspidal representations of p-adic classical groups[END_REF] is not available when p " 2.

On the other hand, we show that part (3) of Theorem 1.1 does not hold in general for noncuspidal representations: Remark 6.4 gives an example of integral unramified irreducible Q ℓ -representations π 1 and π 2 of SO 5 pF q such that r ℓ pπ 1 q " r ℓ pπ 2 q but r ℓ pt ℓ pπ 1 qq and r ℓ pt ℓ pπ 2 qq have no irreducible component in common.

Finally, our Assumption (1.1) is inspired from Vignéras [START_REF]Correspondance de Langlands semi-simple pour GL n pF q modulo ℓ ‰ p[END_REF] 3.5. It is tempting to conjecturate that the conclusion of Theorem 1.1 still holds when (1.1) is replaced by the weaker condition "r ℓ pπ 1 q and r ℓ pπ 2 q have a component in common", but we have no evidence that such a conjecture should be true.

1.7.

In Appendix A, we discuss the case of the local base change from GL n pF q to GL n pKq for a cyclic extension K of F , denoted b K{F .

As in Paragraph 1.2, choosing a field isomorphism ι : C Ñ Q ℓ gives an ℓ-adic local base change map b K{F,ℓ . By using the properties of the local Langlands correspondence for GL n with respect to conjugacy by an automorphism of C, we prove that b K{F,ℓ does not depend on the choice of ι (see Proposition A.1). We also use certain results of Zou [START_REF] Zou | Représentations supercuspidales de GLpnq sur un corps local non archimédien : distinction par un sous-groupe unitaire ou orthogonal, changement de base et induction automorphe[END_REF] 1.10 to prove an analogue of Theorem 1.1 for b K{F,ℓ (see Paragraph A.4), and give an example of integral cuspidal Q ℓ -representations π 1 , π 2 of GL 2 pF q such that r ℓ pπ 1 q " r ℓ pπ 2 q but r ℓ pb ℓ pπ 1 qq ‰ r ℓ pb ℓ pπ 2 qq (Paragraph A.5).
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Notation

Throughout the paper, let p be a prime number, let Q p be the field of p-adic numbers and let Q p be an algebraic closure of Q p . By a p-adic field, we mean a finite extension of Q p in Q p .

Globalizing quadratic and Hermitian forms

The purpose of this section is to prove the following result.

Theorem 2.1. -Let F be a p-adic field and let G be a quasi-split special orthogonal, unitary or symplectic group over F . There exist a totally real number field k and a connected reductive group G over k such that (1) G is an inner form of a quasi-split special orthogonal, unitary or symplectic k-group, (2) there is a finite place w of k above p such that k w " F and GpF q is isomorphic to G, (3) the group Gpk v q is compact for any real place v, and quasi-split for any finite place v. This theorem will be used in Section 4 where we prove the existence of automorphic representations of GpAq with prescribed conditions on their local components, where A denotes the ring of adèles of k.

In Section 9, we will need a stronger version of Theorem 2.1: in order to transfer automorphic representations of GpAq to a general linear group, we will need to realize G as a pure inner form in the orthogonal and unitary cases, and a rigid inner form in the symplectic case. This is why, rather than Theorem 2.1, we will prove the stronger Theorems 2.8 and 2.11 below. For the symplectic case, see Paragraph 2.8.

We emphasize that p may be equal to 2 in this section.

Quadratic forms

In this paragraph, k denotes either a p-adic field for some prime number p, or a real Archimedean local field, or a totally real number field, and q is a (non-degenerate) quadratic form of dimension d ě 2 over k. There exist non-zero scalars λ 1 , . . . , λ d P k ˆsuch that q is equivalent to

λ 1 x 2 1 `¨¨¨`λ d x 2 d . The quantity δ " δpqq " λ 1 . . . λ d mod k ˆ2 P k ˆ{k ˆ2
does not depend on this choice. It is called the discriminant of q. In the sequel, we assume that the discriminant δ is fixed. All quadratic forms are assumed to be non-degenerate.

If k is a p-adic field, then q is, up to equivalence, uniquely determined by its Hasse invariant εpqq " ź iăj pλ i , λ j q P t´1, 1u

where p¨, ¨q is the Hilbert symbol over k (see [START_REF] Serre | Cours d'arithmétique[END_REF] IV.2.3 Theorem 7 or [START_REF] Jacobson | Basic algebra II[END_REF] Theorem 9.24). If k is isomorphic to the field of real numbers, q is, up to equivalence, entirely determined by its signature pa, bq with a `b " d and p´1q b " δ. Its Hasse invariant is equal to p´1q bpb´1q{2 . If δ ą 0, then b " 2c for some c P t0, . . . , td{2uu and the Hasse invariant is p´1q c . Now suppose that k is a totally real number field, and δ v ą 0 for all real places v. The Hasse principle (see [START_REF] Scharlau | Quadratic and Hermitian forms[END_REF] Theorem 6.6.6) ensures that q is uniquely determined, up to equivalence, by all its localizations q v " q b k k v , where v ranges over all places of k. In other words, it is determined by the Hasse invariants εpq v q for all finite v and the signatures pd ´2cpq v q, 2cpq v qq for all real v. Conversely, a family ppε v q v finite , pc v q v real q, ε v P t´1, 1u, c v P t0, . . . , td{2uu, corresponds to a (unique) quadratic form of dimension d over k and discriminant δ if and only if one has ε v " 1 for almost all finite places v and (2.1)

ź v finite ε v ¨ź v real p´1q cv " 1
(see [START_REF] Scharlau | Quadratic and Hermitian forms[END_REF] Theorem 6.6.10). We give more details in §2.2 and §2.3, depending on the parity of d.

The odd orthogonal case

If k is a p-adic field, there are two equivalence classes of quadratic forms of dimension 2n `1 and discriminant δ, in bijection with t´1, 1u through the Hasse invariant. The special orthogonal groups associated with these quadratic forms are non-isomorphic. The one with Hasse invariant

(2.2) p´1, ´1q npn`1q{2 ¨p´1, δq n (that is x 1 x 2 `¨¨¨`x 2n´1 x 2n `p´1q n δx 2 2n`1
) is split. The other one is non-quasi-split. If k is isomorphic to the field of real numbers, there are n `1 equivalence classes of quadratic forms of dimension 2n `1 and discriminant δ. The special orthogonal groups associated with these quadratic forms are non-isomorphic. Exactly one of them is compact: this is the one with signature p2n `1, 0q if δ ą 0, and p0, 2n `1q if δ ă 0. Proposition 2.2. -Let k be a totally real number field of degree r, and δ P k ˆ{k ˆ2. Suppose that δ v ą 0 for all real places v. There is a quadratic form q of dimension 2n `1 and discriminant δ such that SOpqq is compact at all real places and quasi-split at all finite places if and only if rnpn `1q{2 is even. When this is the case, q is unique up to equivalence.

Proof. -A quadratic form q over k of dimension 2n `1 and discriminant δ is entirely determined, up to equivalence, by the Hasse invariants εpq v q P t´1, 1u for all finite places v and the signatures p2n `1 ´2cpq v q, 2cpq v qq for all real places v of k. Non-equivalent quadratic forms define non-isomorphic special orthogonal groups.

For SOpqq to be compact at all real places and quasi-split at all finite places, q must have invariants c v " 0 for all real v and ε v " p´1, ´1q npn`1q{2 v ¨p´1, δ v q n v for all finite v, where p¨, ¨qv is the Hilbert symbol with respect to k v . By (2.1), such a q exists if and only if

ź v finite p´1, ´1q npn`1q{2 v ˆź v finite p´1, δ v q n v " 1.
Thanks to the Hilbert reciprocity law ([48] VII), the left hand side is equal to

ź v real p´1, ´1q npn`1q{2 v ˆź v real p´1, δ v q n v " p´1q rnpn`1q{2
(since δ v ą 0 for all real v), which gives the expected result.

Remark 2.3. -Given any k, let q be a quadratic form of dimension 2n `1 and discriminant 1 over k. Then, for any δ P k ˆ, the quadratic form δq has discriminant δ and SOpδqq " SOpqq.

The even orthogonal case

In this paragraph, we assume that the dimension of q is 2n. It will be convenient to use the normalized discriminant α " p´1q n δ.

Suppose first that k is a p-adic field.

' If n " 1, there is only one equivalence class of quadratic forms of dimension 2 and normalized discriminant α " 1. Its Hasse invariant is 1. The special orthogonal group associated with it is isomorphic to GL 1 pkq.

' Suppose that n ě 2 or α ‰ 1. There are two equivalence classes of quadratic forms of dimension 2n and discriminant δ, characterized by their Hasse invariant. The special orthogonal groups associated with them are non-isomorphic if and only if α " 1. When this is the case, the one with Hasse invariant p´1, ´1q npn´1q{2 (that is the quadratic form x 1 x 2 `¨¨¨`x 2n´1 x 2n ) is split, and the other one is non-quasi-split. Otherwise, let l be the quadratic extension of k generated by a square root of α: if q is a quadratic form of dimension 2n and discriminant δ over k, then λq has same discriminant and opposite Hasse invariant for any scalar λ P k ˆwhich is not an l{k-norm, and SOpλqq " SOpqq.

If k is isomorphic to the field of real numbers, there are n `1 equivalence classes of quadratic forms of dimension 2n and discriminant δ. Quadratic forms with signatures pa, bq and pa 1 , b 1 q define isomorphic special orthogonal groups if and only if one has b 1 P ta, bu. If δ ă 0, there is no compact special orthogonal group. If δ ą 0, there is exactly one compact special orthogonal group: this is the one with b P t0, 2nu.

Proposition 2.4. -Let k be a totally real number field of degree r, and δ P k ˆ{k ˆ2. Suppose that δ v ą 0 for all real places v.

(1) There is a quadratic form q of dimension 2n and discriminant δ such that SOpqq is compact at all real places and quasi-split at all finite places if and only if either n is odd, or δ ‰ p´1q n , or rnpn ´1q{2 is even.

(2) Assume that δ ‰ p´1q n . For any finite place w such that δ w ‰ p´1q n and any ε P t´1, 1u, there is a quadratic form q as in (1) satisfying the extra condition εpq b k w q " ε.

Proof. -A quadratic form q over k of dimension 2n and discriminant δ is entirely determined, up to equivalence, by the Hasse invariants εpq v q P t´1, 1u for all finite places v and the signatures p2n ´2cpq v q, 2cpq v qq for all real places v. A quadratic form f with same dimension and discriminant as q defines a special orthogonal group isomorphic to SOpqq if and only if they have the same Hasse invariants for all finite v such that α v " 1, and cpf v q P tn ´cpq v q, cpq v qu for all real places v.

For SOpqq to be compact at all real places and quasi-split at all finite places, q must have invariants c v P t0, nu for all real places v and ε v " p´1, ´1q npn´1q{2 v for all finite places v such that α υ " 1. (Recall that α " p´1q n δ.) By (2.1), such a q exists if and only if ź

v finite αυ ‰1 ε v ˆź v finite αυ "1 p´1, ´1q npn´1q{2 v ˆp´1q ns " 1
where s is the number of real places such that c v " n. If n is odd, we may adjust s P t0, . . . , ru so that this product is 1. If α ‰ 1, we may adjust the signs ε v for the finite v such that α υ ‰ 1 so that this product is 1. (Since the number of such v is at least 2, we may even assume that ε w is equal to a given sign ε for a given w as in (2).) If n is even and α " 1, the condition is

ź v finite p´1, ´1q npn´1q{2 v " 1 
and Hilbert's reciprocity law says that the left hand side is equal to

ź v real p´1, ´1q npn´1q{2 v " p´1q rnpn´1q{2 ,
which gives the expected result.

Globalizing the base field

The following lemma will be useful in the remainder of this section.

Lemma 2.5. -Let F be a p-adic field.

(1) There exists a totally real number field k of even degree such that k w " F for some finite place w of k dividing p.

(2) If p ‰ 2, we may further assume that there exists a finite place u of k such that k u » Q 2 .

Proof. -We follow the proof of [2] Lemma 6.2.1. Let us write F " Q p pβq for some root β P F of a monic irreducible polynomial f of degree r " rF : Q p s with coefficients in Q p . Given a field E, we identify the space of monic polynomials of degree r with coefficients in E with E r . By Krasner's lemma (see [START_REF] Robert | A course in p-adic analysis[END_REF] 3.1.5), there is an open neighborhood U p of f in Q r p such that any g P U p has a root β 1 P Q p such that Q p pβ 1 q " F . Let U 8 be the open subset of R r made of all monic polynomials with r distinct real roots. Since the diagonal image of Q r in R r ˆQr p is dense, the intersection Q r X pU 8 ˆUp q is non-empty. We may replace f by a polynomial in this intersection, which we still denote by f . The number field k " Qpβq is totally real, and k w " F for some finite place w of k dividing p. If the degree of k is even, we are done. Otherwise, we choose a monic irreducible polynomial g of degree 2 over Q which splits over R and Q p , whose existence can be proven in the same way as above. Then replace k by kpγq where γ is a root of g in Q p .

Suppose now that p ‰ 2, and let U 2 be the open subset of Q r 2 made of all monic polynomials with r distinct roots in Q 2 . We may replace f by a polynomial in Q r X pU 8 ˆUp ˆU2 q, which we still denote by f . The number field k " Qpβq is totally real, k w " F for some finite place w of k dividing p, and 2 is totally split in k. If the degree of k is even, we are done. Otherwise, we choose a monic irreducible polynomial g of degree 2 over Q which splits over R, Q p and Q 2 , then replace k by kpγq where γ is a root of g in Q p .

Remark 2.6. -With a similar argument, one can prove in addition to part (1) of Lemma 2.5 that, if E is a quadratic extension of F in Q p , there is a totally imaginary quadratic extension l of k such that l w " E.

Remark 2.7. -Part (2) of Lemma 2.5 will be needed in Section 9, in the symplectic case, in order to apply the results of Appendix C.

Proof of Theorem 2.1 in the special orthogonal case

We prove Theorem 2.1 in the case where G is special orthogonal, that is, there is a quadratic form Q over F such that G is isomorphic to SOpQq. We will prove the following stronger result.

Theorem 2.8. -Let Q be a quadratic form over F such that SOpQq is quasi-split. There exist a totally real number field k and a quadratic form q over k such that (1) there is a finite place w of k dividing p such that (a) the field k w is equal to F , (b) the quadratic forms q b F and Q are equivalent,

(2) the group SOpq b k v q is compact for all real v, and quasi-split for all finite v.

Proof. -By Lemma 2.5, there exists a totally real number field k of even degree such that k w and F are equal for some finite place w of k dividing p. Fix a γ P F ˆsuch that the discriminant of Q is γF ˆ2, and fix a δ P k ˆsuch that γ ´1δ w P F ˆ2 and δ v ą 0 for all real v. By Proposition 2.2 when Q has odd dimension and Proposition 2.4 when Q has even dimension, there is a quadratic form q of discriminant δ satisfying [START_REF] Arthur | The endoscopic classification of representations. Orthogonal and symplectic groups[END_REF]. Moreover, the quadratic forms q b F and Q have the same discriminant and define quasi-split special orthogonal groups.

If Q has odd dimension, or if Q has dimension 2n and γ " p´1q n , they are thus equivalent. Otherwise, use Proposition 2.4(2) with ε " εpQq to ensure that q b F and Q have the same Hasse invariant: they are thus equivalent.

Remark 2.9. -In addition to Theorem 2.8, there is always a finite place u ‰ w of k such that the group SOpq b k u q is split: one can choose (1) any finite place different from w in the odd orthogonal case, (2) any finite place u ‰ w such that p´1q n δ u P k ˆ2 u in the even orthogonal case.

Hermitian forms

In this paragraph, l is a separable quadratic k-algebra (where k is as in Paragraph 2.1) and h is a (non-degenerate) l{k-Hermitian form of dimension n ě 1. There is a choice of non-zero scalars λ 1 , . . . , λ n P k ˆsuch that h is equivalent to λ 1 N l{k px 1 q `¨¨¨`λ n N l{k px n q. The quantity δ " δphq " λ 1 . . . λ n mod N l{k pl ˆq P k ˆ{N l{k pl ˆq does not depend on this choice. It is called the discriminant of h. Fix an α P k ˆsuch that l is isomorphic to the k-algebra krXs{pX 2 ´αq. The image of α in k ˆ{k ˆ2 will still be denoted α.

Up to equivalence, h is uniquely determined by its trace form t, that is, the quadratic form of dimension 2n over k obtained by seeing l n as a k-vector space ([52] Theorem 10.1.1).

If l is split, that is, if l » k ˆk, then N l{k pl ˆq " k ˆand we may choose α " 1. There is, up to equivalence, a unique l{k-Hermitian form of dimension n. Its discriminant is trivial, and the unitary group associated with it is (non-canonically) isomorphic to GL n pkq. More precisely, if one fixes an isomorphism l » k ˆk of k-algebras, h identifies with a non-degenerate bilinear form on k n ˆkn , the group GL n plq identifies with GL n pkq ˆGL n pkq and there is an isomorphism

GL n pkq » Uphq (2.3) g Þ Ñ pg, g
˚q where g ˚is the contragredient of g P GL n pkq with respect to h. (Note that changing the isomorphism l » k ˆk has the effect of exchanging g and g ˚in (2.3).) Also, the trace form t of h is maximally isotropic, that is, it is the sum of n hyperbolic planes.

If l is a quadratic extension of k, a quadratic form of dimension 2n over k is the trace form of an l{k-Hermitian form if and only if q b k l is maximally isotropic ([52] Theorem 10.1.2).

If l{k is a quadratic extension of p-adic fields, there are two equivalence classes of l{k-Hermitian forms of dimension n, in bijection with k ˆ{N l{k pl ˆq through the discriminant.

' If n is odd, the unitary groups associated with these Hermitian forms are isomorphic. More precisely, if α ‰ 1 and h is a Hermitian form of odd dimension over k, then δh is unequivalent to h for any δ P k ˆsuch that δ R N l{k pl ˆq, and the group Upδhq " Uphq is quasi-split.

' If n is even, the unitary group corresponding to the discriminant p´1q n{2 is quasi-split, and the other one is non-quasi-split. The trace form t of h has discriminant p´αq n and Hasse invariant (2.4) εptq " pα, δq ¨p´α, ´1q npn´1q{2 .

If l{k is isomorphic to C{R, the Hermitian form h is uniquely determined, up to equivalence, by its signature pa, bq with a `b " n. Its discriminant is p´1q b . Its trace form t has discriminant 1 and signature p2a, 2bq. The unitary group Uphq is compact if and only if b P t0, nu.

If l is a totally imaginary quadratic extension of a totally real number field k (thus α v ă 0 for all real places v of k), then h is uniquely determined, up to equivalence, by any one of the following data:

(1) the equivalence class of its trace form t, (2) the Hasse invariants εpt v q for all finite v and the integers bpt v q for all real v, (3) the equivalence classes of its localizations h v " h b k k v for all v, (4) the discriminants δph v q for all finite v and the integers bph v q for all real v.

We have just seen that ( 3) and ( 4) are equivalent, and we have seen that ( 1) and ( 2) are equivalent in Paragraph 2.1. Now the fact that (2) and (3) are equivalent follows form the formulas εpt v q " pα v , δph v qq v ¨p´α v , ´1q npn´1q{2 v for finite v, bpt v q " 2bph v q for real v, the first one including the case where l v " l b k k v splits over k v (as α v " 1 in this case) and the fact that, when α v ‰ 1, the map x Þ Ñ pα v , xq v is a bijection from k v {N lv{kv pl v q to t´1, 1u. Conversely, a family (2.5) ppδ v q v finite , pb v q v real q, δ v P k v {N lv {kv pl v q, b v P t0, . . . , nu, corresponds to an l{k-Hermitian form of dimension n if and only if there exists a δ P k ˆ{N l{k pl ˆq such that δ " δ v mod N lv{kv pl v q for all v (where we have put δ v " p´1q bv at all real places v), and when it is the case such a Hermitian form is unique. Indeed, this is certainly a necessary condition and, when it is satisfied, the family

(2.6) ppε v q v finite , p2b v q v real q, ε v " pα v , δ v q v ¨p´α v , ´1q npn´1q{2 v , satisfies ε v " 1 for almost all finite places v together with ź v finite ε v ˆź v real p´1q bv " ź v real pα v , δ v q v ˆź v real p´α v , ´1q npn´1q{2 v ˆź v real p´1q bv " ź v real p´1, ´1q bv v ˆź v real p´1q bv
which is equal to 1 (thanks to the fact that α v ă 0 and δ v " p´1q bv for all real v). Thus there is a unique quadratic form of dimension 2n over k and discriminant p´αq n with local invariants (2.6). One can verify that it is maximally isotropic over l (as it is maximally isotropic over l v for all v). It is thus the trace form of an l{k-Hermitian form of dimension n, as expected.

Proposition 2.10. -Let k be a totally real number field of degree r and l be a totally imaginary quadratic extension of k.

(1) There is a Hermitian form h of dimension n such that Uphq is compact at all real places.

(2) There is a Hermitian form h of dimension n such that Uphq is compact at all real places and quasi-split at all finite places if and only if either n is odd, or n and rn{2 are both even.

(3) Assume that n is odd. For any finite place w and any ε P k ŵ {N lw{kw pl ŵ q, there is a Hermitian form h as in [START_REF] Arthur | The endoscopic classification of representations. Orthogonal and symplectic groups[END_REF] satisfying the extra condition δph b k w q " ε.

Proof. -Assertion (1) is verified by any Hermitian form h of dimension n over k such that we have bph v q P t0, nu at all real places v.

Assume now that n " 2m for some m ě 1. A Hermitian form h of dimension n and discriminant δ satisfies (2) if and only if bph v q P t0, nu and δ v ą 0 for all real v, and δ v " p´1q m for all finite v. Such a δ P k ˆ{N l{k pl ˆq exists if and only if δ v P N lv {kv pl v q for almost all finite v, and

ź v pα v , δ v q v " 1.
The first condition is satisfied since l v is either split over k v or an unramified extension of k v for almost all finite v. The second condition follows from

ź v pα v , δ v q v " ź v finite pα v , ´1q m v " ź v real pα v , ´1q m v " p´1q rm
thanks to the Hilbert reciprocity law and the fact that α v ă 0 for all real v. Assume now that n is odd. A Hermitian form h of dimension n and discriminant δ satisfies (2) if and only if bph v q P t0, nu at all real places v, and satisfies (3) if and only if bph v q P t0, nu at all real places v and δε ´1 P N lw{kw pl ŵ q. Fix a finite place y ‰ w and a κ P l ŷ . We claim that such an h exists, with the extra conditions bph v q " 0 for all real places v, δ P N lv{kv pl v q for all places v R tw, yu and δκ ´1 P N ly{ky pl ŷ q.

Arguing as in the case when n is even, it suffices to choose a κ R N ly{ky pl ŷ q, which is possible as soon as y has been chosen such that α y ‰ 1.

Proof of Theorem 2.1 in the unitary case

We prove Theorem 2.1 in the case where G is unitary, that is, there are a quadratic extension E of F and an E{F -Hermitian form H over F such that G is isomorphic to UpHq. We will prove the following more precise theorem.

Theorem 2.11. -Let H be an E{F -Hermitian form such that UpHq is quasi-split. There exist a totally real number field k, a totally imaginary quadratic extension l of k and an l{k-Hermitian form h such that:

(1) there is a finite place w of k above p such that (a) one has k w " F and l w " E, (b) the Hermitian forms h b F and H are equivalent,

(2) the group Uph b k v q is compact for all real v, and quasi-split for all finite v.

Proof. -By Lemma 2.5 and Remark 2.6, there are a totally real number field k of even degree and a totally imaginary quadratic extension l of k such that k w " F and l w " E for some finite place w of k dividing p.

By Proposition 2.10, there exists an l{k-Hermitian form h satisfying (2). Moreover, the Hermitian forms h b F and H define quasi-split unitary groups.

If H has even dimension, they are thus equivalent. If H has odd dimension, one uses Proposition 2.10(3) with ε " δpHq to ensure that h b F and H have the same discriminant: they are thus equivalent.

Remark 2.12. -In addition to Theorem 2.11, there is always a finite place u ‰ w of k such that Uph b k u q is split: it suffices to choose any finite place u ‰ w such that l u » k u ˆku .

The symplectic case

We now consider the case where G is a symplectic group, that is, there exists a non-degenerate symplectic form A over F such that G " SppAq. By Lemma 2.5, there exists a totally real number field k of even degree such that k w " F for some finite place w of k dividing p. (Moreover, when p is odd, we may further assume that there is a finite place u of k such that k u » Q 2 .) In this case, Theorem 2.1 is given by [60] 2.1.1. See also [START_REF]Arthur's multiplicity formula for certain inner forms of special orthogonal and symplectic groups[END_REF] Proposition 3.1.2, where the inner form G is realized as a rigid inner form of Sp 2n over k.

Congruences of automorphic forms of definite groups

In this section, we fix a prime number ℓ. Let Q ℓ be an algebraic closure of the field of ℓ-adic integers, Z ℓ be its ring of integers and F ℓ be its residue field. We fix a field isomorphism (3.1) ι : C Ñ Q ℓ and a number field k. We denote by A " A f ˆA8 the ring of adèles of k. Given a locally compact, totally disconnected group G, a compact open subgroup K of G, a commutative ring R and a smooth R-representation ρ of K, we denote by H R pG, ρq the endomorphism R-algebra of the compact induction of ρ to G, called the Hecke R-algebra of G relative to ρ. When ρ is the trivial R-character of K, it naturally identifies with the convolution R-algebra made of K-bi-invariant, compactly supported R-valued functions on G, and we denote it by H R pG, Kq.

Let F be a p-adic field for some p ‰ ℓ, G be the group of rational points of a reductive group defined over F and π be an irreducible (smooth) representation of G on a Q ℓ -vector space V . It is said to be integral if V carries a G-stable Z ℓ -lattice. Given such a lattice L, the representation of G on the F ℓ -vector space L b F ℓ (where F ℓ is the residue field of Z ℓ ) is smooth and has finite length, and its semi-simplification does not depend on the choice of L ([66] Theorem 1). This semi-simplification is denoted r ℓ pπq, and called the reduction mod ℓ of π. One defines similarly the reduction mod ℓ of an irreducible Q ℓ -representation of a compact, open subgroup of G.

3.1.

Let G be a connected reductive group defined over k. We assume that G is definite, that is, the group GpA 8 q is compact. We embed diagonally Gpkq in GpA f q and set

Y " GpkqzGpA f q.
The quotient Y is compact ([49] §5) and hence Y{K is finite for every open compact subgroup K of GpA f q.

We denote by A pGq the space of functions GpkqzGpAq Ñ C which are square integrable with respect to a Haar measure on GpAq. It is endowed with the natural unitary C-representation of GpAq.

3.2.

Let Ω be the set of open compact subgroups of GpA f q. For K P Ω, let AlgpG, Kq denote the free Z-module of finite rank made of all functions Y Ñ Z which are invariant under right translations by K ([64] 3.3). We consider the Z-module

AlgpGq " C 8 pY, Zq " ď KPΩ AlgpG, Kq
of locally constant functions Y Ñ Z, called trivial-at-infinity algebraic automorphic forms for the group G (see Paragraph 3.3 below). It is endowed with the natural Z-representation of GpA f q.

Given any commutative ring R, we write

Alg R pGq " AlgpGq b Z R, Alg R pG, Kq " AlgpG, Kq b Z R. The natural R-representation of GpA f q on Alg R pGq is admissible ([64] 3.3.2).
If R is the field Q ℓ , the representation of GpA f q on Alg Q ℓ pGq is semi-simple and any of its irreducible components has an O E -structure for some finite extension E of Q ℓ in Q ℓ ([64] 3.3.2).

3.3.

Let K P Ω, and R be a commutative ring. The Hecke R-algebra of GpA f q relative to K is the convolution R-algebra

H R pG, Kq " H R pGpA f q, Kq made of K-bi-invariant, compactly supported functions GpA f q Ñ R. It naturally acts on the R- module Alg R pG, Kq.
As G is definite, there is, by [START_REF] Gross | Algebraic modular forms[END_REF] Proposition 8.5, an explicit isomorphism

Alg C pG, Kq » A pGq KˆGpA8q
of H C pG, Kq-modules (see [START_REF] Gross | Algebraic modular forms[END_REF] (8.4) and Proposition 8.3). In particular, there is a bijection

(3.2) Θ Ø Π between -the irreducible subrepresentations Θ of Alg C pGq such that the space Θ K of K-fixed vectors in Θ is non-zero,
-the irreducible automorphic representations Π " Π f b Π 8 of GpAq " GpA f q ˆGpA 8 q, that is, the irreducible subrepresentations of A pGq such that Π 8 is trivial and Π K f is non-zero.

3.4.

Let us fix an irreducible automorphic representation Π of GpAq which is trivial on GpA 8 q. By (3.2), we can see Π as an irreducible subrepresentation of Alg C pGq, thus as an irreducible factor of Alg Q ℓ pGq via the isomorphism ι fixed in (3.1).

We fix two finite places w and u of k not dividing ℓ and a finite set S of finite places of k such that:

(1) the set S contains w, u and all finite places above ℓ, (2) for any finite place v R S, the group G is unramified over k v , and the local component Π v is unramified with respect to some hyperspecial maximal compact subgroup K v of Gpk v q.

Any finite place v R S thus defines a character

(3.3) χ v : H Q ℓ pGpk v q, K v q Ñ Q ℓ which we call the Satake parameter of Π v .
Recall that Π is admissible and has an O E -structure for some finite extension E of Q ℓ in Q ℓ . Let us write Π " Π pℓq b Π pℓq , where Π pℓq is the tensor product of all Π v such that v divides ℓ and Π pℓq is the restricted tensor product of all Π v such that v is finite and does not divides ℓ. By [START_REF]Correspondance de Langlands semi-simple pour GL n pF q modulo ℓ ‰ p[END_REF] A.3, both Π pℓq and Π pℓq have an O E -structure. By applying [START_REF]Correspondance de Langlands semi-simple pour GL n pF q modulo ℓ ‰ p[END_REF] A.4 to Π pℓq , we get that each Π v , for v R S finite, has an O E -structure. Fixing such an O E -structure, the O E -algebra H O E pGpk v q, K v q acts on it through the character χ v , which thus has values in O E . It follows that the restriction of χ v to H Z ℓ pGpk v q, K v q has values in Z ℓ .

3.5.

We now make the following assumptions on the representation Π of Paragraph 3.4:

-the local component Π w is cuspidal, and is compactly induced from an irreducible representation of some compact open subgroup K w of Gpk w q, -the local component Π u is cuspidal, and is compactly induced from an irreducible representation η of some compact open subgroup K u of Gpk u q.

For any finite v P S such that v R tu, wu, we fix a compact open subgroup K v of Gpk v q such that Π v has a non-zero K v -invariant vector. Recall that, for any finite place v R S, we have fixed a hyperspecial maximal compact open subgroup K v of Gpk v q in Paragraph 3.4. We define

K " ź v finite K v .
This is a compact open subgroup of GpA f q.

Given an irreducible representation κ of K w , we define an irreducible representation Λ " Λpκq of K by Λ "

â v finite Λ v with Λ w " κ, Λ u " η and Λ v is the trivial character of K v for v R tw, uu.
We denote by Alg Q ℓ pG, Λq the subrepresentation of Alg Q ℓ pGq generated by its Λ-isotypic component, that is, the subrepresentation formed by the irreducible factors Θ such that -the local component Θ w contains κ, -the local component Θ u contains η, -the local component Θ v has a non-zero K v -invariant vector for all finite v R tw, uu.

This amounts to considering the space

V " Vpκq " Hom K ´Λ, Alg Q ℓ pGq seen as a module over the endomorphism Q ℓ -algebra H Q ℓ pG, Λq " H Q ℓ pGpA f q, Λq of the com- pact induction of Λ from K to GpA f q. We have an H Q ℓ pG, Λq-module decomposition (3.4) V " à Θ Hom K pΛ, Θq
where Θ ranges over the irreducible factors of Alg Q ℓ pG, Λq, and each Hom K pΛ, Θq is of finite dimension as Θ is admissible. By admissibility again, the number of Θ contributing to the direct sum of (3.4) is finite. Denote by X the set of finite places of k. For any non-empty subset T of X and any irreducible factor Θ contributing to the right hand side of (3.4), we write

K T " ź vPT K v , Λ T " â vPT Λ v , Θ T " â vPT Θ v .
We thus have K " K S ˆKXzS , Λ " Λ S b Λ XzS and Θ is isomorphic to Θ S b Θ XzS . Accordingly, we have an isomorphism of Q ℓ -algebras

(3.5) H Q ℓ pG, Λq » H Q ℓ pGpA S q, K S q b H Q ℓ `GpA XzS q, Λ XzS where
A S and A XzS have their obvious meaning, and an isomorphism of H Q ℓ pΛq-modules

Hom K pΛ, Θq » Hom K S pΛ S , Θ S q b pΘ XzS q K XzS via (3.5
). The factor pΘ XzS q K XzS has dimension 1 over Q ℓ and H Q ℓ pGpA XzS q, K XzS q acts on this line via a character denoted χ S pΘq. Let d S pΘq be the dimension of Hom K S pΛ S , Θ S q. Denoting by V S the restriction of V to H Q ℓ pGpA XzS q, K XzS q, we therefore have an isomorphism

(3.6) V S » à Θ d S pΘq ¨χS pΘq of H Q ℓ pGpA XzS q, K XzS q-modules.

3.6.

Assume now that κ and η are integral. Fix a K w -stable Z ℓ -lattice L κ of κ and a K u -stable Z ℓlattice L η of η, both with semi-simple reduction (by [START_REF] Dat | ν-tempered representations of p-adic groups. I. l-adic case[END_REF] Lemma 6.11). We deduce a K-stable Z ℓlattice of Λ, denoted by L Λ . We define a Z ℓ -module

V ˝" Hom K ´LΛ , Alg Z ℓ pGq ¯. It is a module over H Z ℓ pGpA f q, L Λ q. Set Λ " L Λ b Z ℓ F ℓ . By [64] Lemma 3.7.3, the Z ℓ -module V ˝is a Z ℓ -lattice of V and we have V ˝bZ ℓ F ℓ » Hom K ´Λ, Alg F ℓ pGq ¯.
We denote the left hand side by V, and we continue to see it as a module over H Z ℓ pGpA f q, L Λ q. Note that V is semi-simple and depends only on r ℓ pκq.

3.7.

We now assume that Gpk w q is isomorphic to a special orthogonal, unitary or symplectic group, not necessarily quasi-split. In the rest of this section, we will prove the following theorem.

Theorem 3.1. -Assume that Gpk w q is isomorphic to a special orthogonal, unitary or symplectic group, and w does not divide 2. Let Π be an irreducible automorphic representation of GpAq such that

-Π 8 is trivial, -Π w is cuspidal and integral, -Π u is compactly induced from a compact mod centre, open subgroup of Gpk u q. Let π 1 be an integral irreducible cuspidal Q ℓ -representation of Gpk w q such that (3.7)
r ℓ pΠ w q ď r ℓ pπ 1 q.

There is an irreducible automorphic representation Π 1 of GpAq such that

(1) the Archimedean component Π 1 8 is trivial, (2) the local component Π 1 w is isomorphic to π 1 , (3) the local components Π 1
u and Π u are isomorphic, (4) for any finite place v R S, the local component

Π 1 v is K v -unramified, with Satake parameter χ 1 v : H Z ℓ pGpk v q, K v q Ñ Z ℓ , and χ v , χ 1 v are congruent mod the maximal ideal of Z ℓ .
Proof. -We follow the argument of Khare [START_REF] Khare | On the local Langlands correspondence mod l[END_REF] and Vignéras [START_REF]Correspondance de Langlands semi-simple pour GL n pF q modulo ℓ ‰ p[END_REF]. We start with following lemma, which we will prove in Paragraph 3.8.

Lemma 3.2. -Let p be a prime number different from 2, let F be a p-adic field and G be a special orthogonal, unitary or symplectic group over F . Let π and π 1 be integral cuspidal Q ℓ -representations of G such that r ℓ pπq ď r ℓ pπ 1 q.

There are a compact open subgroup J of G and irreducible Q ℓ -representations τ and τ 1 of J such that π is isomorphic to the compact induction of τ to G and π 1 is isomorphic to the compact induction of τ to G 1 .

Remark 3.3. -It is known ( [START_REF] Stevens | The supercuspidal representations of p-adic classical groups[END_REF]) that any cuspidal Q ℓ -representation of G is isomorphic to the compact induction of an (irreducible) representation of some compact open subgroup of G.

The point here is that one can choose the same compact open subgroup for π and π 1 .

As Gpk w q is isomorphic to a special orthogonal, unitary or symplectic group and w does not divide 2, it follows from Lemma 3.2 that there are a compact open subgroup K w of Gpk w q and irreducible representations τ and τ 1 of K w such that Π w is isomorphic to the compact induction of τ to Gpk w q and π 1 is isomorphic to the compact induction of τ 1 to Gpk w q. In particular, Π satisfies the conditions of Paragraph 3.5.

Let η be an irreducible representation of some compact open subgroup K u of Gpk u q such that the compact induction of η to Gpk u q is isomorphic to Π u . By [START_REF]Correspondance de Langlands semi-simple pour GL n pF q modulo ℓ ‰ p[END_REF] A.3, A.4, the representation Π u is integral. Thus η is integral. Similarly, since Π w and Π 1 w are integral, τ and τ 1 are integral as well.

As in Paragraph 3.5, we define Λ " Λpτ q and V " Vpτ q. Associated with a choice of K w -stable Z ℓ -lattice of κ with semi-simple reduction, there are V ˝and V. Similarly, replacing τ by τ 1 , we define

Λ 1 , V 1 , V 1˝a nd V 1 . Recall that V and V 1 are semi-simple. The key point is that V is non-zero and contained in V 1 thanks to (3.7).
The character χ S pΠq of H Z ℓ pGpA XzS q, K XzS q defined by Π occurs in V S. By reduction, we get a character χ S of H F ℓ pGpA XzS q, K XzS q occurring in V S , and therefore in V 1 S . By Deligne-Serre's lemma ([18] Lemma 6.11), there is a character χ 1 S of H Z ℓ pGpA XzS q, K XzS q occurring in V 1S such that its reduction equals χ S .

Therefore, there is an irreducible factor Π 1 of Alg Q ℓ pGq contributing to V 1 S such that χ S pΠ 1 q and χ 1 S coincide on H Q ℓ pGpA XzS q, K XzS q. Such a Π 1 satisfies the conditions of the theorem.

3.8.

In remains to prove Lemma 3.2.

Proof. -According to [START_REF] Stevens | The supercuspidal representations of p-adic classical groups[END_REF] Theorem 7.14 (and [START_REF] Miyauchi | Semisimple types for p-adic classical groups[END_REF] Appendix A), there are a compact open subgroup J of G and an irreducible Q ℓ -representation τ of J such that π is isomorphic to the compact induction of τ to G. More precisely, the pair pJ, τ q can be chosen among cuspidal types of G in the sense of [START_REF] Miyauchi | Semisimple types for p-adic classical groups[END_REF] Appendix A. It then has the following properties:

-There is a normal pro-p-subgroup J 1 of J such that J{J 1 is isomorphic to the group of rational points of a reductive group G defined over the residue field of F .

-The representation τ decomposes as κ b ξ where κ is a representation of J whose restriction to J 1 is irreducible and ξ is an irreducible representation of J whose restriction to J 1 is trivial.

-The representation ξ is the inflation of a representation of J{J 1 whose restriction to the rational points of the neutral component of G is cuspidal.

-The representation κ is a standard beta-extension ([58] §4.2) of a skew semisimple character θ ([58] §3.1) defined with respect to a skew semisimple stratum rΛ, βs ([58] §2.1).

-The centre of the centralizer G E of E " F rβs in G is compact, and the parahoric subgroup P ˝pΛ E q of G E associated with rΛ, βs (see [START_REF] Stevens | The supercuspidal representations of p-adic classical groups[END_REF] Proof. -By definition, θ is a character of an open pro-p-subgroup H 1 " H 1 pΛ, βq of G. Since θ occurs in the restriction of π to H 1 , its reduction mod ℓ occurs in r ℓ pπ 1 q| H 1 . Let V be an irreducible summand of π 1 | H 1 such that r ℓ pV q contains r ℓ pθq. Since H 1 is a pro-p-group, V is isomorphic to θ. Now let C be the set of skew semisimple characters θ 1 P CpΛ 1 , βq occurring in π 1 such that

P ˝pΛ 1
E q Ď P ˝pΛ E q and C min be the subset of C made of all θ 1 P C such that P ˝pΛ 1 E q is minimal among all parahoric subgroups of G E occurring this way.

Let us prove that C min " C. Let θ 1 P C min . Then [START_REF] Stevens | The supercuspidal representations of p-adic classical groups[END_REF] §7.2 (in particular Lemma 7.4) and [START_REF] Miyauchi | Semisimple types for p-adic classical groups[END_REF] Appendix A imply that π 1 contains a cuspidal type pJ 1 , κ 1 bξ 1 q where J 1 " JpΛ 1 , βq for some skew semisimple stratum rΛ 1 , βs, κ 1 is any standard beta-extension of θ 1 and P ˝pΛ 1 E q is a maximal parahoric subgroup of G E . This implies that P ˝pΛ 1 E q is equal to P ˝pΛ E q. It follows that θ P C min . We thus may choose θ 1 " θ (and κ 1 " κ). Thus π 1 contains a cuspidal type pJ, κ b ξ 1 q. It follows from [START_REF] Stevens | The supercuspidal representations of p-adic classical groups[END_REF] Corollary 6.19 that the compact induction of the representation τ 1 " κ b ξ 1 from J to G is isomorphic to π 1 . Remark 3.5. -Applying the functor Hom J 1 pκ, ´q from representations of G to representations of J which are trivial on J 1 , which is compatible to reduction mod ℓ if we assume moreover that κ is integral, we deduce from [START_REF] Kurinczuk | Cuspidal ℓ-modular representations of p-adic classical groups[END_REF] Corollary 8.5 that r ℓ pξq ď r ℓ pξ 1 q.

Globalizing representations

In this section, we fix a p-adic field F and a quasi-split special orthogonal, unitary or symplectic group G over F . Let k, w and G be as in Theorem 2.1, and  : GpF q » G be an isomorphism of locally compact groups which we use to identify GpF q with G.

Let ℓ denote a prime number different from p, and fix a field isomorphism ι as in (3.1). Let u be a finite place of k different from w, not dividing ℓ.

In Paragraph 4.2 only, the prime number p will be assumed to be odd. -Let π be a unitary cuspidal irreducible complex representation of G, and let ρ be a unitary cuspidal irreducible complex representation of Gpk u q. There is an irreducible automorphic representation Π of GpAq such that

(1) the local component Π u is isomorphic to ρ, (2) the local component Π w is isomorphic to π, (3) 
the local component Π v is the trivial character of Gpk v q for any real place v of k.

Remark 4.2. -When the centre of G is compact, any cuspidal irreducible representation π of G is unitarizable. The only case where a quasi-split classical group G has a non-compact centre is when G is isomorphic to the split special orthogonal group SO 2 pF q » F ˆ(see [START_REF] Miyauchi | Semisimple types for p-adic classical groups[END_REF] 4.2).

Proof. -Let Z be the centre of G. We start the proof by the following lemma. Proof. -Let U denote the subgroup Zpk u qˆZpk w qˆZpA 8 q of ZpAq. The intersection UX Zpkq is trivial, thus U identifies with a locally compact subgroup of ZpAq{Zpkq. By Pontryagin duality, any unitary character of U extends to ZpAq{Zpkq. (Note that ω ρ and ω π are unitary.)

We now follow the proof of [START_REF] Henniart | La conjecture de Langlands locale pour GLp3q[END_REF]. Let Ω : ZpAq{Zpkq Ñ C ˆbe a unitary automorphic character as in Lemma 4.3. Let y be a finite place different from u and w.

Let us choose coefficients f u and f w of ρ and π, respectively, which are non-zero at 1. For all real places v of k, let f v be the constant function equal to 1 on Gpk v q. As this group is compact, f v is smooth and compactly supported.

For all finite places v ‰ y such that G is unramified over k v and Ω v is unramified, let f v be the complex function on Gpk v q supported on Zpk v qK v such that f v pzgq " Ω v pzq for all z P Zpk v q and all g in a fixed hyperspecial maximal compact subgroup K v of Gpk v q.

For any other place x, we choose a smooth complex function f x on Gpk x q, non-zero at 1, compactly supported modulo Zpk x q with restriction to this later group equal to Ω x .

We let f be the product of all these f v . It is smooth and compactly supported on GpAq. We may and will assume that -the support of f y is small enough so that f pg ´1qf pγgq " 0 for all g P GpAq, γ P Gpkq such that γ R Zpkq, -and f v pgq " f v pg ´1q for all places v of k and all g P Gpk v q.

We construct as in [START_REF] Henniart | La conjecture de Langlands locale pour GLp3q[END_REF] the Poincaré series P f pgq " ÿ γPZpkqzGpkq f pγgq, for g P GpAq.

We are in a particular case of the proof of [START_REF] Henniart | La conjecture de Langlands locale pour GLp3q[END_REF] Appendice 1, so in particular this is well defined, non-zero, square-integrable and even cuspidal. There is thus an irreducible automorphic representation Π of GpAq such that f v acts non-trivially on Π v for each place v of k. In particular, the local components Π u and Π w are isomorphic to ρ and π, respectively. At any real place v, Π v contains a vector which is Gpk v q-invariant, so Π v is trivial.

4.2.

We now assume that p ‰ 2.

Theorem 4.4. -Let π 1 , π 2 be integral cuspidal irreducible Q ℓ -representations of G such that r ℓ pπ 1 q ď r ℓ pπ 2 q.
Let ρ be a unitary cuspidal irreducible complex representation of Gpk u q which is compactly induced from some compact mod centre, open subgroup of Gpk u q. Assume that G is not the split special orthogonal group SO 2 pF q » F ˆ. There are irreducible automorphic representations Π 1 and Π 2 of GpAq such that

(1) Π 1,u and Π 2,u are both isomorphic to ρ,

(2) Π 1,w b C Q ℓ is isomorphic to π 1 and Π 1,w b C Q ℓ is isomorphic to π 2 , (3) 
Π 1,v and Π 2,v are trivial for any real place v, (4) there is a finite set S of places of k, containing all real places, such that for all v R S :

(a) the local components Π 1,v and Π 2,v are unramified with respect to some hyperspecial maximal compact subgroup K v of Gpk v q, (b) the restrictions of the Satake parameters of

Π 1,v b C Q ℓ and Π 2,v b C Q ℓ to the Hecke Z ℓ -algebra H Z ℓ pGpk v q, K v q are congruent mod the maximal ideal m of Z ℓ . Remark 4.5. -The assumption on G implies that the centre of G is compact, thus any cus- pidal irreducible Q ℓ -representation of G is integral. Proof. -First, let us apply Proposition 4.1 with π " π 1 b Q ℓ C. (Since the centre of G is com- pact, the central character of π has finite order, thus π is unitarizable.) We obtain an irreducible automorphic representation Π 1 of GpAq such that (1) the local component Π 1,u is isomorphic to ρ, (2) the local component Π 1,w b C Q ℓ is isomorphic to π 1 , (3) the local component Π 1,v
is the trivial character of Gpk v q for any real place v.

We then choose for S a set of finite places of k as in Paragraph 3.4, that is, S contains u, w and all places dividing ℓ, and, for any finite place v R S, the local component Π 1,v is unramified with respect to some hyperspecial maximal compact subgroup K v of Gpk v q. For such v, this defines a

Z ℓ -character χ 1,v of H Z ℓ pGpk v q, K v q.
We now apply Theorem 3.1 with π 1 " π 2 . The conditions of Paragraph 3.5 are automatically satisfied for Π 1,w thanks to [START_REF] Stevens | The supercuspidal representations of p-adic classical groups[END_REF]. We get an irreducible automorphic representation Π 2 of the group GpAq, trivial at infinity, such that 

(1) the local component Π 2,w b C Q ℓ is isomorphic to π 2 , (2) the local component Π 2,u is isomorphic to ρ, (3) for all finite places v R S, the local component Π 2,v b C Q ℓ is K v -unramified with associated Z ℓ -character χ 2,v : H Z ℓ pGpk v q, K v q Ñ Z ℓ ,

Global transfer

Quasi-split classical groups

Let k be either a p-adic field for some prime number p, or a real Archimedean local field, or a totally real number field. We will consider the following families of quasi-split reductive groups over k:

(1) For n ě 1, the (split) symplectic group Sp 2n defined as Sppf q, where f is the alternating form on k 2n ˆk2n defined by (5.1) f px 1 , . . . , x 2n , y 1 , . . . , y 2n q " x 1 y 2n ´x2n y 1 `¨¨¨`x n y n`1 ´xn`1 y n .

(2) For n ě 1 and α P k ˆ, the (split) special orthogonal group SO 2n`1 defined as SOpqq, where q is the quadratic form on k 2n`1 of discriminant p´1q n α defined by (5.2) qpx 1 , . . . , x 2n`1 q " x 1 x 2 `¨¨¨`x 2n´1 x 2n `αx 2 2n`1 .

(3) For n ě 1 and α P k ˆ, the special orthogonal group SO α 2n defined as SOpqq, where q is the quadratic form on k 2n of discriminant p´1q n α defined by

(5.3) qpx 1 , . . . , x 2n q " x 1 x 2 `¨¨¨`x 2n´3 x 2n´2 `x2 2n´1 ´αx 2 2n . (4 
) For n ě 1 and α P k ˆ, the unitary group U α n defined as Uphq, where h is the l{k-Hermitian form on l n of discriminant p´1q npn´1q{2 defined by

(5.4) hpx 1 , . . . , x n q " x c 1 x n ´xc 2 x n´1 `¨¨¨`p´1q n´1 x c n x 1
where l is the k-algebra krXs{pX 2 ´αq and c is the non-trivial automorphism of l{k. If α P k ˆ2, the k-group U α n is thus isomorphic to GL n . In the even orthogonal and unitary cases, the image of α in k ˆ{k ˆ2 will still be denoted α.

The dual group

In this paragraph, k is either a p-adic field or a totally real number field and G ˚is one of the quasi-split special orthogonal, unitary or symplectic k-groups of 5.1. We define its dual group

p G " $ ' ' & ' ' % SO 2n`1 pCq if G ˚" Sp 2n , Sp 2n pCq if G ˚" SO 2n`1 , SO 2n pCq if G ˚" SO α 2n , GL n pCq if G ˚" U α n .
In the even orthogonal case, the groups SO 2n pCq Ď O 2n pCq are defined with respect to the symmetric bilinear form x¨, ¨y on C 2n given by xe i , e j y "

" 0 if i `j ‰ 2n `1, 1 otherwise, 
where pe 1 , . . . , e 2n q is the canonical basis of C 2n .

The local Langlands correspondence

In this paragraph, k is a p-adic field and G ˚is either the general linear k-group GL n for some n ě 1 (whose dual group is GL n pCq) or one of the quasi-split classical k-groups of 5.1. We denote by W k the Weil group of Q p over k, and define the semi-direct product L G " p G ¸Wk , where ' the action of W k on p G is trivial when G ˚is split (that is, when G ˚is general linear, symplectic, odd orthogonal, even orthogonal with α " 1 or unitary with α " 1), ' when G ˚is even orthogonal and α ‰ 1, and if l denotes the quadratic extension of k in Q p generated by a square root of α, the action of W k on p G factors through Galpl{kq, the generator c of which acts by conjugacy by the element w P O 2n pCq fixing e 1 , . . . , e n´1 , e n`2 , . . . , e 2n and exchanging e n and e n`1 (thus p G ¸Galpl{kq identifies with O 2n pCq), ' when G ˚is unitary and α ‰ 1, and if l denotes the quadratic extension of k in Q p generated by a square root of α, the action of W k on p G factors through the group Galpl{kq whose generator c acts by

g Þ Ñ g ˚" J ¨tg ´1 ¨J´1
where t g denotes the transpose of g P GL n pCq and J is the antidiagonal matrix in GL n pCq defined by J i,j " 0 if i `j ‰ n `1 and J i,n`1´i " p´1q i´1 .

Let WD k " W k ˆSL 2 pCq denote the Weil-Deligne group of k. A (local) Langlands parameter for Gpkq is a group homomorphism

ϕ : WD k Ñ p G ¸Wk such that
-its restriction to W k is smooth, -its restriction to SL 2 pCq is algebraic, -the projection of ϕpW k q onto p G is made of semi-simple elements, and -the projection of ϕpw, xq onto W k is equal to w for all pw, xq P WD k .

When G ˚is split, this is the same as a morphism WD k Ñ p G satisfying the first three points. In the even orthogonal case with α ‰ 1, this is the same as a morphism WD k Ñ O 2n pCq satisfying the first three points and whose determinant is the quadratic character x Þ Ñ pα, xq of k ˆ, which can be seen as a character of W k via the Artin reciprocity map of local class field theory. We say a local Langlands parameter ϕ is bounded if ϕpW k q is relatively compact in p G. Let -ΦpG ˚, kq be the set of p G-conjugacy classes of local Langlands parameters for G ˚over k, -ΠpG ˚pkqq be the set of isomorphism classes of irreducible representations of G ˚pkq.

When G ˚is the general linear group GL n , the local Langlands correspondence ( [START_REF] Harris | The geometry and cohomology of some simple Shimura varieties, with an appendix by[END_REF][START_REF]Une preuve simple des conjectures de Langlands pour GLpnq sur un corps p-adique[END_REF]) is a bijection from ΠpGL n pkqq to ΦpGL n , kq.

When [START_REF]On the cuspidal support of discrete series for p-adic quasisplit SppN q and SOpN q[END_REF] Theorem 2.2 for symplectic and special orthogonal groups, and [START_REF] Kaletha | Endoscopic Classification of Representations: Inner Forms of Unitary Groups[END_REF] Theorem 1.6.1 for unitary groups.)

G

The local transfer

In this paragraph, k is a p-adic field and G ˚is one of the quasi-split classical k-groups of 5.1. If G ˚is symplectic or special orthogonal, there is a morphism Std : p G Ñ GL N pCq with (5.7)

N " N pG ˚q " " 2n if G ˚" SO 2n`1 or G ˚" SO α 2n , 2n `1 if G ˚" Sp 2n ,
given by the natural inclusion. We extend it to a morphism Std : p G ¸Wk Ñ GL N pCq as follows:

' Std is trivial on W k when G ˚is split, ' when G ˚is even orthogonal and α ‰ 1, Std is trivial on W l and Stdpcq " w P O 2n pCq, thus Std factors through SO 2n pCq ¸Wk ։ SO 2n pCq ¸Galpl{kq » O 2n pCq Ď GL 2n pCq (see also [START_REF] Atobe | On the local Langlands correspondence and Arthur conjecture for even orthogonal groups[END_REF] 3.2).

In the unitary case (G ˚" U α n ), we need to introduce the k-group GL α n , the restriction of GL n with respect to l{k. Its dual group is GL n pCq ˆGL n pCq, and we define the semi-direct product L GL α n " pGL n pCq ˆGL n pCqq ¸Wk where ' the action of W k is trivial when l{k is split, ' otherwise, the action of W k factors through Galpl{kq and c acts by pg, hq Þ Ñ ph, gq.

It will be convenient to set (5.8) N " N pU α n q " n. Let Std be the morphism p G ¸Wk Ñ pGL N pCq ˆGL N pCqq ¸Wk defined by g ¸w Þ Ñ pg, g ˚q ¸w. Given an irreducible representation π P ΠpG ˚pkqq, let ϕ P ΦpG ˚, kq be a Langlands parameter such that π P Π ϕ pG ˚pkqq. (In the even orthogonal case, ϕ is determined up to O 2n pCq-conjugacy only.)

If G ˚is symplectic or special orthogonal, then, composing with Std, we get a local Langlands parameter φ " Std ˝ϕ P ΦpGL N , kq, uniquely determined up to GL N pCq-conjugacy.

If (where π _ is the contragredient of π). This does not depend on the choice of l » k ˆk. Indeed, making the other choice twists the isomorphism U α n pkq » GL n pkq by g Þ Ñ g ˚(see (2.3) and the explanation thereafter) and the isomorphism GL N plq » GL N pkq ˆGL N pkq by pg, hq Þ Ñ ph, gq, which gives (5.9) again since g Þ Ñ πpg ˚q is isomorphic to π _ .

In Section 6, we will describe explicitly the local transfer for unramified representations when G ˚is unramified over k, and will describe its congruence properties.

Arthur parameters in the symplectic and orthogonal cases

In this paragraph, k is a totally real number field and G ˚is symplectic or quasi-split special orthogonal. We write A for the ring of adèles of k and N " N pG ˚q (see (5.7)). ψ " Π 1 rd 1 s ' ¨¨¨' Π r rd r s for some integer r ě 1, where, for each i P t1, . . . , ru, d i is a positive integer and Π i is a self-dual cuspidal automorphic irreducible representation of GL N i pAq for some

N i ě 1, such that (1) one has N 1 d 1 `¨¨¨`N r d r " N , ( 2 
) if r ě 2 and Π i » Π j for some i ‰ j in t1, . . . , ru, then d i ‰ d j , (3) 
the self-dual representation Π i has the same parity as p G if d i is odd, and has the opposite parity if d i is even, where the parity of Π i is defined to be orthogonal if Lps, Π i , Sym 2 q has a pole at s " 1, and symplectic if Lps, Π i , ^2q has a pole at s " 1, (4) the character

ω d 1 Π 1 . . . ω dr Πr is trivial if G ˚" Sp 2n or G ˚" SO 2n`1
, and is equal to the quadratic character

χ α : x Þ Ñ ź v pα v , x v q v P t´1, 1u of A ˆ{k ˆif G ˚" SO α 2n ,
where ω Π i is the central character of Π i .

A discrete global Arthur parameter Σ 1 re 1 s ' ¨¨¨' Σ s re s s is said to be equivalent to (5.10) if we have s " r and there is a permutation ε P S r such that e i " d εpiq and Σ i » Π εpiq for each i. Let Associated with a discrete global Arthur parameter ψ P Ψ 2 pG ˚q given by (5.10), there are a local Arthur parameter ψ v and a local Arthur packet Π ψv pG ˚pk v qq for each finite place v of k: see (5.11) and (5.12) below.

Let v be a finite place of k, and consider the local component Π i,v for some i. It is a unitarisable irreducible representation of GL N i pk v q. Associated with it through the local Langlands correspondence for GL N i pk v q, there is a local Langlands parameter

φ i,v : WD kv Ñ GL N i pCq,
uniquely determined up to GL N i pCq-conjugacy. Since one does not know whether Π i,v is tempered, the parameter φ i,v might not be bounded.

We define a morphism (5.11)

ψ v " pφ 1,v b S d 1 q ' ¨¨¨' pφ r,v b S dr q : WD kv ˆSL 2 pCq Ñ GL N pCq
where S d " Sym d´1 denotes the unique irreducible algebraic representation of SL 2 pCq of dimension d ě 1. Recall that we have defined a morphism Std in 5.3. By [START_REF] Arthur | The endoscopic classification of representations. Orthogonal and symplectic groups[END_REF] Theorem 1.4.2, there is a local Arthur parameter ξ : WD kv ˆSL 2 pCq Ñ p G ¸Wkv such that ψ v is GL N pCq-conjugate to Std ˝ξ. The parameter ξ is uniquely determined up to p G-conjugacy, except if G ˚" SO α 2n and all N 1 d 1 , . . . , N r d r are even, in which case there are two p G-conjugacy classes of such ξ. Associated with ψ v , there is a multiset Π ψv pG ˚pk v qq of irreducible smooth representations of G ˚pk v q, that is, a map (5.12)

ΠpG ˚pk v qq Ñ Z ě0 with finite support, where ΠpG ˚pk v qq is the set of isomorphism classes of irreducible smooth representations of G ˚pk v q. If ψ v pW kv q is relatively compact in GL N pCq, this comes from [START_REF] Arthur | The endoscopic classification of representations. Orthogonal and symplectic groups[END_REF] Theorems 1.5.1, 2.2.1, 2.2.4 and (5.12) is supported in the subset Π unit pG ˚pk v qq of unitarisable representations. Thanks to Moeglin ( [START_REF]Multiplicité 1 dans les paquets d'Arthur aux places p-adiques[END_REF], see also [START_REF] Xu | On Moeglin's parametrization of Arthur packets for p-adic quasisplit SppN q and SOpN q[END_REF] Theorem 8.12), it does not take any value ą 1, that is, Π ψv pG ˚pk v qq can be regarded as a finite subset of Π unit pG ˚pk v qq. When ψ v pW kv q is not relatively compact, Π ψv pG ˚pk v qq is obtained from the relatively compact case by a parabolic induction process: see [START_REF] Arthur | The endoscopic classification of representations. Orthogonal and symplectic groups[END_REF] 1.5 in the symplectic and orthogonal cases and [4] 6.5 in the even orthogonal case. For our purpose, it will be enough to make the following remark.

Remark 5.4. -Let v be a finite place of k, and assume that Π ψv pG ˚pk v qq contains a cuspidal representation. Then ψ v pW kv q is relatively compact in GL N pCq.

When ψ v is trivial on the SL 2 pCq-factor, that is, ψ v is a local Langlands parameter for G ˚pk v q, the local Arthur packet Π ψv pG ˚pk v qq coincides with the L-packet associated with ψ v by the local Langlands correspondence in (5.5) and (5.6). (See [START_REF] Atobe | On the local Langlands correspondence and Arthur conjecture for even orthogonal groups[END_REF] top of Paragraph 6.3.)

Transfer

In this paragraph, k is a totally real number field, G ˚is one of the quasi-split special orthogonal, unitary or symplectic k-groups of 5.1 and G is an inner form of G ˚over k such that Gpk v q is compact for any real place v and quasi-split for any finite place v.

In order to state the following theorem, we need more than the group G. Following [START_REF]Arthur's multiplicity formula for certain inner forms of special orthogonal and symplectic groups[END_REF] and [START_REF] Kaletha | Endoscopic Classification of Representations: Inner Forms of Unitary Groups[END_REF], we realize G as ' a rigid inner twist of G ˚in the symplectic case (see Paragraph 2.8), ' a pure inner twist of G ˚in the special orthogonal and unitary cases, that is, we fix a quadratic form q such that G " SOpqq or a Hermitian form h such that G " Uphq. (See for instance [START_REF] Knus | The book of involutions[END_REF] Sections 29.D, 29.E.)

If G ˚is special orthogonal, let q ˚be the quadratic form (5.2) or (5.3) such that G ˚" SOpq ˚q, and let α " p´1q npn´1q{2 δpq ˚q be its normalized discriminant. Let v be a finite place of k:

' if q b k v is equivalent to q ˚b k v ,
any choice of k v -isomorphism f such that q " q ˚˝f defines a group isomorphism  : Gpk v q » G ˚pk v q, and changing f changes  by an inner automorphism, which does not affect isomorphism classes of representations of these groups;

' if q b k v is not equivalent to q ˚b k v , which can only happen when G ˚" SO α 2n with α ‰ 1, there is a λ P k v such that q b k v is equivalent to λ ¨pq ˚b k v q. We thus have (canonically upto an inner automorphism) Gpk v q » SOpλ ¨pq ˚b k v qq " G ˚pk v q.

If G ˚is unitary, let h ˚be the l{k-Hermitian form (5.4) such that G ˚" Uph ˚q. Let v be a finite place of k:

' if h b k v is equivalent to h ˚b k v ,
any choice of isomorphism f such that h " h ˚˝f defines a group isomorphism  : Gpk v q » G ˚pk v q, and changing f changes  by an inner automorphism, which does not affect isomorphism classes of representations of these groups;

' if h b k v is not equivalent to h ˚b k v , which can only happen when G ˚" U α 2n`1 with α ‰ 1, there is a δ P k v such that h b k v is equivalent to δ ¨ph ˚b k v q. We thus have (canonically up to an inner automorphism) Gpk v q » Upδ ¨ph ˚b k v qq " G ˚pk v q.

If G ˚is the symplectic group Sp 2n , then Gpkq is the group made of all g P M n pDq such that g ˚g " 1, where D is a quaternion k-algebra which is split at each finite place and definite at each real place, and g ˚in the matrix whose pi, jq-entry is the conjugate of g ji . (See 2.8 and [60] 2.1.1.) Let v be a finite place of k, and fix an isomorphism of k v -algebras u : Db k k v » M 2 pk v q. Through u, the group Gpk v q identifies with Sppf v q for some alternating form f v on k 2n v ˆk2n

v . Changing u changes this identification by an inner automorphism. We thus have (canonically up to an inner automorphism) a group isomorphism Gpk v q » G ˚pk v q.

In all cases, we have explained how to canonically identify representations of Gpk v q with those of G ˚pk v q. This thus defines a local transfer for irreducible representations of Gpk v q.

Theorem 5.5. -Assume that the group G ˚is symplectic or special orthogonal. Let π be an irreducible automorphic representation of GpAq and suppose that there is a finite place u of k such that both the local component π u and its local transfer to GL N pk u q are cuspidal. There is a unique self-dual cuspidal automorphic representation Π of GL N pAq such that (1) for all finite places v of k, the local transfer of π v to GL N pk v q is Π v ,

(2) for all real places v of k, the infinitesimal character of Π v is algebraic regular.

Proof. -First note that, associated with any discrete global Arthur parameter ψ P Ψ 2 pG ˚q and any finite place v of k, there is a local Arthur packet Π ψv pG ˚pk v qq. We explained how to canonically identify representations of Gpk v q with those of G ˚pk v q. This thus defines a local Arthur packet Π ψv pGpk v qq. Now, as G is compact at all real places and quasi-split at all finite places, [61] Theorem 4.0.1 and Remark 4.0.2 apply. We thus get a global Arthur parameter ψ for G ˚such that (1) π v P Π ψv pGpk v qq for all finite places v of k, (2) the infinitesimal character of ψ v is algebraic regular for all real places v of k.

In the remainder of the proof, we follow an argument which has been suggested to us by A. Moussaoui, whom we thank for this. First, at v " u, we have π u P Π ψu pGpk u qq and it follows from Remark 5.4 that ψ u pW ku q is relatively compact in GL N pCq. Associated with ψ u in [START_REF] Moeglin | Comparaison des paramètres de Langlands et des exposants à l'intérieur d'un paquet d'Arthur[END_REF] 4.1, there is its extended cuspidal support (or infinitesimal character ), denoted λ u . It is the N -dimensional representation of W ku defined by

λ u pwq " ψ u pw, d w , d w q, d w " ˆ|w| 1{2 0 0 |w| ´1{2 ˙P SL 2 pCq, w P W ku ,
where w Þ Ñ |w| is the character W ku Ñ R ˆdefined by |w| " q ´vpwq , where q is the cardinality of the residue field of k u and vpwq P Z is the valuation of w, normalized so that any geometric Frobenius element has valuation 1. If we write explicitly

ψ u " m à i"1 σ i b S a i b S b i
for some m ě 1, with a i , b i ě 1 and where σ i is an irreducible representation of W ku , then

(5.13) λ u " m à i"1 b i ´1 à j"0 a i ´1 à k"0 σ i | ¨|pb i ´1q{2`pa i ´1q{2´j´k .
On the other hand, by [START_REF] Moeglin | Comparaison des paramètres de Langlands et des exposants à l'intérieur d'un paquet d'Arthur[END_REF] 4.1 again, the extended cuspidal support (or infinitesimal character ) of π u is the representation λ of W ku defined by λpwq " φpw, d w q for all w P W ku , where φ " Std ˝ϕ and ϕ is the Langlands parameter associated with π u (up to O 2n pCq-conjugacy in the even orthogonal case). Given the assumption that we made on π u , the extended cuspidal support λ is irreducible. By [START_REF] Moeglin | Comparaison des paramètres de Langlands et des exposants à l'intérieur d'un paquet d'Arthur[END_REF] Proposition 4.1, the extended cuspidal supports of ψ u and π u coincide. It follows that (5.13) is irreducible, which implies that m " 1 and a 1 " b 1 " 1. Thus ψ satisfies r " 1 and d 1 " 1.

We thus have ψ " Πr1s for a uniquely determined self-dual cuspidal automorphic irreducible representation Π of GL N pAq. Given a finite place v of k, the local component π v is in the Arthur packet Π ψv pGpk v qq. Since ψ v is a Langlands parameter (as d 1 " 1), this Arthur packet is an L-packet, thus Π v is the local transfer of π v to GL N pk v q.

We now consider the case of unitary groups.

Theorem 5.6. -Assume that the group G ˚is unitary. Let π be an irreducible automorphic representation of GpAq, and suppose that there is a finite place u of k such that Gpk u q is split and π u is cuspidal. There exists a unique conjugate-self-dual cuspidal automorphic representation Π of GL N pA l q such that (1) for all finite places v of k, the local transfer of π v to GL N pl v q is Π v , (2) for all real places v of k, the infinitesimal character of Π v is algebraic regular.

Proof. -Since G is compact at all real places, the assumptions of [START_REF] Labesse | Changement de base CM et séries discrètes[END_REF] Corollaire 5.3 are satisfied (see the paragraph following [START_REF] Labesse | Changement de base CM et séries discrètes[END_REF] Remarque 5.2 regarding Property p˚q). By [START_REF] Labesse | Changement de base CM et séries discrètes[END_REF] Corollaire 5.3, there is an integer r ě 1 and, for each i P t1, . . . , ru, there is a conjugate-self-dual discrete automorphic representation Π i of GL N i pA l q for some N i ě 1, such that -one has N 1 `¨¨¨`N r " N , -if Π is the irreducible automorphic representation of GL N pA l q obtained by parabolic induction from Π 1 b ¨¨¨b Π r , then Π v is the local transfer of π v for all finite places v which are either unramified or split. (The local base change of [START_REF] Labesse | Changement de base CM et séries discrètes[END_REF] is the same as the local transfer of Paragraph 5.4: see [START_REF] Labesse | Changement de base CM et séries discrètes[END_REF] 4.10.)

In particular, for v " u, the group Gpk u q is split, thus Π u is isomorphic to π u b π _ u via the choice of a k u -algebra isomorphism l u » k u ˆku (see Remark 5.2). Since π u is cuspidal, Π u is cuspidal as well. It follows that r " 1 and ψ is cuspidal. By [START_REF] Labesse | Changement de base CM et séries discrètes[END_REF] Théorème 5.9, we get that ' Π v is the base change of the trivial character of Gpk v q, thus its infinitesimal character is algebraic regular, for all real places v of k, ' and the local transfer of π v to GL N pl v q is Π v for all finite places v of k.

This finishes the proof of Theorem 5.6.

Unramified local transfer

In this section, we examine the congruence properties of the local transfer (as defined in Paragraph 5.4) for unramified representations of unramified classical groups.

6.1.

Let F be a non-Archimedean locally compact field of residue characteristic p, and G be the group of rational points of an unramified reductive group G defined over F . Let S be a maximal F -split torus in G, T be the centralizer of S in G and K be a hyperspecial maximal compact subgroup of G corresponding to a hyperspecial point in the apartment associated with S in the reduced Bruhat-Tits building of pG, F q. Let W be the Weyl group associated with T " TpF q and Λ be the Z-lattice T {pT X Kq. We have the Satake isomorphism ( [START_REF] Satake | Theory of spherical functions on reductive algebraic groups over p-adic fields[END_REF]) of C-algebras

CrKzG{Ks Ñ CrΛs W f Þ Ñ ¨t Þ Ñ δ 1{2 ptq ż U f ptuq du '
where U is the group of rational points of the unipotent radical of a Borel subgroup B " TU of G, du is the Haar measure on U giving measure 1 to U X K and δ 1{2 is the square root of the modulus character δ of B " BpF q defined with respect to the positive square root ? q P R ą0 of q, the cardinality of the residue field of F .

The same formula applies when one replaces C by Q ℓ . We then get a Satake isomorphism of Q ℓ -algebras Q ℓ rKzG{Ks Ñ Q ℓ rΛs W depending on the choice of a square root q 1{2 of q in Q ℓ . By [START_REF] Henniart | A Satake isomorphism for representations modulo p of reductive groups over local fields[END_REF] §7.10-15, as this square root and its inverse are contained in Z ℓ , this isomorphism induces by restriction an isomorphism (6.1)

Z ℓ rKzG{Ks Ñ Z ℓ rΛs W
of Z ℓ -algebras.

6.2.

Let π be a K-unramified irreducible Q ℓ -representation of G, that is, π has a non-zero K-fixed vector. Recall that its Satake parameter is the character χ of Q ℓ rKzG{Ks through which this algebra acts on the 1-dimensional space π K of K-invariant vectors of π. Through the Satake isomorphism, it defines a character of Q ℓ rΛs W . Such a character is of the form

(6.2) f Þ Ñ ż T f ptqωptq dt
for some unramified Q ℓ -character ω of T -which we may consider as a character of Λ -uniquely determined up to W -conjugacy. (Here dt is the Haar measure giving measure 1 to T X K.) By [START_REF] Satake | Theory of spherical functions on reductive algebraic groups over p-adic fields[END_REF], the W -conjugacy class of ω is the cuspidal support of π, that is, π occurs as an irreducible component of the representation obtained by parabolically inducing ω to G along B, where parabolic induction is normalized by the same square root of the Q ℓ -modulus δ as the one used to define the Satake Q ℓ -isomorphism. Now assume that the restriction of χ to Z ℓ rKzG{Ks has values in Z ℓ . Thanks to (6.1), it defines a Z ℓ -character of Z ℓ rΛs W , still denoted χ. Let us prove that ω has values in Z l . For this, let µ be the Q ℓ -character of Q ℓ rΛs defined by (6.2). Its restriction to Z ℓ rΛs W is equal to χ. According to [START_REF] Bourbaki | Éléments de mathématique, Algèbre commutative[END_REF] Chapter 5, §1, n°9, Proposition 22, the ring Z ℓ rΛs is integral over Z ℓ rΛs W . As χ takes values in Z ℓ on Z ℓ rΛs W , and as Z ℓ is integrally closed, it follows that µ takes values in Z ℓ on Z ℓ rΛs. By evaluating µ at the characteristic function of any λ P Λ, we get ωpλq P Z ℓ . So far, we proved the following result. Proposition 6.1. -Let G be the group of rational points of an unramified group defined over F , let K be a hyperspecial maximal compact subgroup of G and π be a K-unramified Q ℓ -representation of G with Satake parameter χ. Then π is integral if and only if χ is integral (that is, it takes integral values on Z ℓ rKzG{Ks).

Proof. -Indeed, using the notation above, the cuspidal support of π is the W -conjugacy class of the unramified character ω of T , and π is integral if and only if ω is.

Finally, assume that χ 1 and χ 2 are congruent Z ℓ -characters of Z ℓ rKzG{Ks. One can see them via (6.1) as congruent Z ℓ -characters of Z ℓ rΛs W , still denoted χ 1 and χ 2 . For i " 1, 2, let µ i be a character of Z ℓ rΛs extending χ i . It takes the form (6.2) for a uniquely determined unramified character ω i of T , which is integral thanks to the previous paragraph. Reducing mod the maximal ideal of Z ℓ , the characters µ 1 and µ 2 define F ℓ -characters µ 1 and µ 2 of F ℓ rΛs which, by assumption, coincide on F ℓ rΛs W . Applying the corollary of [START_REF] Bourbaki | Éléments de mathématique, Algèbre commutative[END_REF] Chapter 5, §2, n°2, Theorem 2, it follows that the characters r ℓ pω 1 q and r ℓ pω 2 q are W -conjugate. We thus proved: Proposition 6.2. -Let G be the group of rational points of an unramified group defined over F , let K be a hyperspecial maximal compact subgroup of G, let π 1 and π 2 be K-unramified irreducible Q ℓ -representations of G whose Satake parameters χ 1 and χ 2 define congruent Z ℓ -characters of Z ℓ rKzG{Ks and let ω 1 and ω 2 be unramified Q ℓ -characters of T such that π i occurs in the parabolic induction of ω i to G along B, for i " 1, 2. Then r ℓ pω 1 q and r ℓ pω 2 q are W -conjugate.

6.3.

From now on and until the end of this section, we assume that G is an unramified special orthogonal, unitary or symplectic group among the groups of Paragraph 5.1. The associated dual group p G has been defined in Paragraph 5.2. Recall that G " GpF q. Let π be an integral K-unramified Q ℓ -representation of G. Its cuspidal support is the W -orbit of an unramified Z ℓ -character ω of T . Its Satake parameter is a character χ : Z ℓ rKzG{Ks Ñ Z ℓ . They are related through the Satake isomorphism by the formula (6.2).

Restriction from T to S " SpF q induces an isomorphism Λ » S{pS X Kq, thus between unramified characters of T and unramified characters of S. The later is the dual group p SpQ ℓ q. Let Φ be a Frobenius element in the Weil group W F . By [START_REF] Borel | Automorphic forms, representations and L-functions[END_REF] 6.4, 6.5, the surjection of p TpQ ℓ q onto p SpQ ℓ q induces a bijection between -N -conjugacy classes in p TpQ ℓ q ¸Φ, and -W -conjugacy classes in p SpQ ℓ q,

where N is the inverse image of W in the normalizer of p TpQ ℓ q in p GpQ ℓ q, and the embedding of of p TpQ ℓ q in p GpQ ℓ q induces a bijection between -N -conjugacy classes in p TpQ ℓ q ¸Φ, and p GpQ ℓ q-conjugacy classes of semi-simple elements in p GpQ ℓ q ¸Φ.

The W -orbit of ω thus determines the W -conjugacy class of a point s P p SpZ ℓ q, then the p GpQ ℓ qconjugacy class of a semi-simple element t ¸Φ P p GpQ ℓ q ¸Φ. We are going to prove that t ¸Φ may be chosen in p TpZ ℓ q ¸Φ Ď p GpZ ℓ q ¸Φ. Let us fix a uniformizer ̟ of F . When G is split, we have T " S, thus t " s is in p TpZ ℓ q Ď p GpZ ℓ q. Explicitly, if we identify T with pF ˆqm for some integer m ě 1, then ω identifies with the tensor product of m unramified characters ω 1 , . . . , ω m of F ˆand t ¸Φ is p GpQ ℓ q-conjugate to ' diagpω 1 p̟q, . . . , ω m p̟q, 1, ω m p̟q ´1, . . . , ω 1 p̟q ´1q P GL 2n`1 pZ ℓ q if G " Sp 2n , ' diagpω 1 p̟q, . . . , ω m p̟q, ω m p̟q ´1, . . . , ω 1 p̟q ´1q P GL 2n pZ ℓ q if G " SO 2n`1 or G " SO 1 2n , with m " n in all cases. Now assume that G is non-split, thus either G " SO α 2n or G " U α n , with α ‰ 1.

' In the even orthogonal case, we have S » pF ˆqm and T » S ˆSO α 2 pF q with m " n ´1 (see [START_REF]Linear algebraic groups[END_REF] §23.4), thus p TpQ ℓ q » Q m`1 ℓ surjects onto p SpQ ℓ q » Q m ℓ through pt 1 , t 2 , . . . , t m`1 q Þ Ñ pt 1 , t 2 , . . . , t m q and p TpQ ℓ q ¸WF embeds into p GpQ ℓ q ¸WF through pt 1 , t 2 , . . . , t n q ¸w Þ Ñ diagpt 1 , . . . , t n , t ´1 n , . . . , t ´1 1 q ¸w thus the image of t ¸Φ in p GpQ ℓ q ¸Φ is p GpQ ℓ q-conjugate to diagpω 1 p̟q, . . . , ω m p̟q, 1, 1, ω m p̟q ´1, . . . , ω 1 p̟q ´1q ¸Φ P GL 2n pZ ℓ q ¸Φ. ' In the unitary case, we have S » pF ˆqm and T » pE ˆqm where E is the quadratic extension of F generated by a square root of α (note that it is unramified since G is assumed to be unramified), and m " tn{2u is the Witt index of G (see [START_REF]Linear algebraic groups[END_REF] §23.9), thus p

TpQ ℓ q » Q 2m ℓ surjects onto p SpQ ℓ q » Q m ℓ through pt 1 , t 2 , . . . , t 2m q Þ Ñ pt 1 t 2m , t 2 t 2m´1 , . . . , t m t m`1 q and p TpQ ℓ q ¸WF embeds into p GpQ ℓ q ¸WF through pt 1 , t 2 , . . . , t 2m q ¸w Þ Ñ " diagpt 1 , . . . , t m , t ´1 m`1 , . . . , t ´1 2m q ¸w if n " 2m is even, diagpt 1 , . . . , t m , 1, t ´1 m`1 , . . . , t ´1 2m q ¸w if n " 2m `1 is odd, thus the image of t ¸Φ in p
GpQ ℓ q ¸Φ is p GpQ ℓ q-conjugate to " diagpω 1 p̟q 1{2 , . . . , ω m p̟q 1{2 , ω m p̟q ´1{2 , . . . , ω 1 p̟q ´1{2 q ¸Φ if n " 2m is even, diagpω 1 p̟q 1{2 , . . . , ω m p̟q 1{2 , 1, ω m p̟q ´1{2 , . . . , ω 1 p̟q ´1{2 q ¸Φ if n " 2m `1 is odd, which is in GL n pZ ℓ q ¸Φ in both cases.

We now define an unramified local Langlands parameter ϕ : WD F Ñ p GpZ ℓ q ¸WF by -ϕpΦq " t ¸Φ, and ϕ is trivial on the inertia subgroup I F of W F and on SL 2 pCq.

It is uniquely determined by the K-unramified representation π, or equivalently by its Satake parameter χ. Composing with Std (or just restricting to WD E in the unitary case), we get an unramified Langlands parameter φ P ΦpGL N , Eq, where E " F in the symplectic and orthogonal cases and E is the quadratic extension of F generated by a square root of α in the unitary case. This φ uniquely determines an unramified Q ℓ -representation of GL N pEq, denoted t ℓ pπq.

In the symplectic and special orthogonal cases, t ℓ pπq is the unique unramified irreducible component of

$ & % ω 1 ˆ¨¨¨ˆω n ˆω´1 n ˆ¨¨¨ˆω ´1 1 if G " SO 2n`1 or G " SO 1 2n , ω 1 ˆ¨¨¨ˆω n ˆ1 ˆω´1 n ˆ¨¨¨ˆω ´1 1 if G " Sp 2n , ω 1 ˆ¨¨¨ˆω n´1 ˆ1 ˆ1 ˆω´1 n´1 ˆ¨¨¨ˆω ´1 1 if G " SO α 2n with α ‰ 1,
where ˆdenotes the parabolic induction to GL N pF q normalized with respect to q 1{2 . In the unitary case, the Weil group W E is generated by Φ 2 and I F (since E{F is unramified), thus φ is uniquely determined by φpΦ 2 q " tt ˚¸Φ 2 , with tt ˚" " diagpω 1 p̟q, . . . , ω m p̟q, ω m p̟q ´1, . . . , ω 1 p̟q ´1q if n " 2m is even, diagpω 1 p̟q, . . . , ω m p̟q, 1, ω m p̟q ´1, . . . , ω 1 p̟q ´1q if n " 2m `1 is odd, which gives t ℓ pπq explicitly. Namely, t ℓ pπq is the unique unramified irreducible component of "

ω 1 ˆ¨¨¨ˆω m ˆω´1 m ˆ¨¨¨ˆω ´1 1 if G " U α 2m , ω 1 ˆ¨¨¨ˆω m ˆ1 ˆω´1 m ˆ¨¨¨ˆω ´1 1 if G " U α 2m`1 ,
where ˆdenotes the parabolic induction to GL n pEq normalized with respect to pq 1{2 q 2 " q (as E is quadratic and unramified over F ). (See also [START_REF] Mínguez | Unramified representations of unitary groups[END_REF].) We have:

Proposition 6.3.
-Let G be the group of rational points of an unramified special orthogonal, unitary or symplectic F -group among the groups of Paragraph 5.1. Let K be a hyperspecial maximal compact subgroup of G and let π 1 , π 2 be K-unramified irreducible Q ℓ -representations of G whose Satake parameters χ 1 , χ 2 define congruent Z ℓ -characters of Z ℓ rKzG{Ks. Then

(1) the representations t ℓ pπ 1 q and t ℓ pπ 2 q of GL N pEq are integral, (2) their Langlands parameters are integral and congruent.

Remark 6.4. -Note that the reductions mod ℓ of t ℓ pπ 1 q and t ℓ pπ 2 q may not have any irreducible component in common. However, if τ i denotes the unique unramified irreducible component of r ℓ pt ℓ pπ i qq for i " 1, 2, then τ 1 and τ 2 have the same cuspidal support.

For instance, assume that G " SO 5 and ℓ divides q 2 ´1. Let π 1 (resp. π 2 ) be the unramified representation of G " SO 5 pF q with respect to some hyperspecial maximal compact group, with cuspidal support the W -conjugacy class of | ¨|´1{2 b | ¨|1{2 (resp. | ¨|3{2 b | ¨|1{2 ), where | ¨| is the absolute value of F ˆ. By assumption, these cuspidal supports are congruent (for | ¨|3{2 and |¨| ´1{2 have the same reduction mod ℓ). Then t ℓ pπ 1 q is the unique unramified irreducible component of

| ¨|´1{2 ˆ| ¨|1{2 ˆ| ¨|´1{2 ˆ| ¨|1{2
that is, t ℓ pπ 1 q " 1 2 ˆ12 (where 1 2 is the trivial character of GL 2 pF q). Similarly, t ℓ pπ 2 q is equal to | det | ˆ| det | (where det is the determinant of GL 2 pF q). Now assume further that ℓ ‰ 2 and ℓ divides q `1, thus ℓ does not divide q ´1. Then r ℓ pt ℓ pπ 1 qq and r ℓ pt ℓ pπ 2 qq are both irreducible and twists of each other by the non-trivial character | ¨|, thus non-isomorphic. Remark 6.5. -Let ι be an isomorphism of fields C Ñ Q ℓ taking the positive square root of q in R to the square root q 1{2 P Q ℓ of Paragraph 6.1. According to Arthur [2] 6.1 (see p. 304) and Mok [START_REF] Mok | Endoscopic classification of representations of quasi-split unitary groups[END_REF] 7.1 (see also Labesse [35] p. [START_REF] Mínguez | Représentations lisses modulo ℓ de GL m pDq[END_REF][START_REF]Classification des représentations modulaires de GL n pqq en caractéristique non naturelle[END_REF], which describe the local transfer map t of Definition 5.1 for unramified representations of unramified groups, we have

tpπq b C Q ℓ " t ℓ pπ b C Q ℓ q
for any K-unramified complex representation π of G, where tensor products are taken with respect to ι. Proposition 6.7 and Remark 6.8 will describe the dependency of t ℓ in q 1{2 .

6.4.

In this paragraph, G is an unramified classical group and K is a hyperspecial maximal compact subgroup of G as in Paragraph 6.3.

Unlike Paragraph 6.3 however, we will consider complex representations rather than Q ℓ -representations. We examine the dependency of the unramified transfer from G to GL N pEq with respect to the choice of a square root of q, and to the action of AutpCq. This will be useful in Paragraph 9.2.

Let π be a K-unramified irreducible complex representation of G. Associated with π, there is the W -conjugacy class of an unramified character ω of T , such that π is the unique K-unramified irreducible component of the normalized parabolic induction of ω to G along B. Writing Ind G B for unnormalized parabolic induction from T to G along B and i G B for normalized parabolic induction, we have i G B pωq " Ind G B pδ 1{2 ωq. Let us write T » E ˆm ˆT0 , where

' T 0 is trivial if G is split or G » U α 2m pF q with α ‰ 1, ' T 0 " SO α 2 pF q if G » SO α 2n pF q with α ‰ 1, ' T 0 " U α 1 pF q if G » U α 2m`1 pF q with α ‰ 1.
The character ω can thus be written ω 1 b ¨¨¨b ω m b 1, where each ω i is an unramified character of E ˆand 1 is the trivial character of T 0 . By [START_REF] Moeglin | Correspondances de Howe sur un corps p-adique[END_REF] IV.4 p. 69, the modulus character of the parabolic subgroup P Ě B with Levi component GL m pEq ˆT0 is equal to

ν d´m´e m b 1
where ν m is the unramified character "absolute value of the determinant" of GL m pEq and ' d " 2n and e " ´1 if G " Sp 2n pF q, ' d " 2n `1 and e " 1 if G " SO 2n`1 pF q, ' d " 2n and e " 1 if G " SO α 2n pF q, ' d " n and e " 0 if G " U α n pF q with α ‰ 1. By using the transivity property of parabolic induction, we deduce that

δ 1{2 " | ¨|pd´m´eq{2`pm´1q{2 E b ¨¨¨b | ¨|pd´m´eq{2´pm´1q{2 E b 1 " | ¨|pd´e´1q{2 E b ¨¨¨b | ¨|pd´e´1q{2´m`1 E b 1
(where | ¨|E is the absolute value of E). Replacing ? q by the opposite square root changes | ¨|E to η| ¨|E , where η is the unramified character of E ˆof order 2. It thus changes ω i to ω i η pd´e´1qf , where f is the residual degree of E over F (which is 1 or 2 depending whether E " F or not). Similarly, replacing ? q by its opposite square root has the effect of twisting normalized parabolic induction from E ˆN to GL N pEq (along the Borel subgroup made of upper triangular matrices) by η p1´N qf . Consequently, considering the explicit formulas of Paragraph 6.3, replacing ? q by the opposite square root has the effect of twisting tpπq by the character η pd´e´N qf . We have

' d ´e ´N " 2n `1 ´p2n `1q " 0 if G " Sp 2n pF q,
' d ´e ´N " p2n `1q ´1 ´2n " 0 if G " SO 2n`1 pF q, ' d ´e ´N " 2n ´1 ´2n " ´1 if G " SO α 2n pF q, and f " 2 if G is unitary. The integer pd ´e ´N qf is thus even, except if G is even orthogonal. Example 6.6. -If G " SO 1 2 pF q » F ˆ, the transfer of any unramified character ω of F ˆis the unique unramified irreducible component of ω ˆω´1 . If G is the compact group SO α 2 pF q with α ‰ 1, the transfer of the trivial character of G is 1 ˆ1. In both cases, the transfer depends on the choice of a square root of q. Now consider an automorphism γ P AutpCq. Given a representation π of a group H on a complex vector space V , we write π γ for the representation of H on V b C C γ , where C γ is the field C considered as a C-algebra via γ. Consider the map π Þ Ñ tpπ γ ´1 q γ from K-unramified irreducible representations of G to irreducible representations of GL N pEq. It is the unramified local transfer map from G to GL N pEq with respect to the square root γp ? qq. We thus have: Proposition 6.7. -Let G and K be as above, and let π be a K-unramified irreducible representation of G. Let γ P AutpCq.

(1) If G is not even orthogonal, then tpπ γ q " tpπq γ .

(2) If G is even orthogonal, then tpπ γ q " tpπq γ ¨εγ , where ε γ is the unramified character

x Þ Ñ ˆγp ? qq ? q ˙val F pxq of F ˆ.
Remark 6.8. -We now go back to Q ℓ -representations. We deduce that the map

(6.3) π Þ Ñ t ℓ pπq
from (isomorphism classes of) unramified Q ℓ -representations of G to those of GL N pEq is insensitive to the choice of a square root of q in Q ℓ , except when G is even orthogonal, in which case changing this square root to its opposite has the effect of twisting (6.3) by η.

Representations of local Galois and Weil groups

In this section, F is a p-adic field. We write Γ for the Galois group GalpQ p {F q and W for the associated Weil group, considered as a subgroup of Γ. It is endowed with a smooth character w Þ Ñ |w| with kernel I, the inertia subgroup of W, taking any geometric Frobenius element to q ´1, where q is the cardinality of the residue field of F .

All representations of Γ and W considered in this section will be finite-dimensional. Let ℓ be a prime number different from p.

7.1.

For this paragraph, the reader may refer to [START_REF] Bushnell | The local Langlands conjecture for GLp2q, Grundlehren der mathematischen Wissenschaften[END_REF] Chapter 7 and [59] 4.2.

If σ is a smooth representation of Γ, then its restriction σ| W to W is smooth.

Restriction from Γ to W induces an injection from isomorphism classes of irreducible smooth representations of Γ to isomorphism classes of irreducible smooth representations of W. The image is made of those representations of W whose determinant has finite order (see [START_REF] Bushnell | The local Langlands conjecture for GLp2q, Grundlehren der mathematischen Wissenschaften[END_REF] 28.6 Proposition).

If ρ is a smooth ℓ-adic representation (that is, Q ℓ -representation) of W on a vector space V, and if Φ P W is a Frobenius element, the following assertions are equivalent:

(1) ρ is semi-simple, (2) ρpΦq is a semi-simple element in GLpVq, (3) ρpwq is a semi-simple element in GLpVq for any w P W (see [START_REF] Bushnell | The local Langlands conjecture for GLp2q, Grundlehren der mathematischen Wissenschaften[END_REF] 28.7 Proposition).

If σ is a continuous ℓ-adic representation of Γ, its restriction to W is a continuous ℓ-adic representation of W, which is irreducible if and only if σ is irreducible.

Fix a continuous surjective group homomorphism (7.1)

t : I Ñ Z ℓ .
For the following proposition, see [START_REF] Bushnell | The local Langlands conjecture for GLp2q, Grundlehren der mathematischen Wissenschaften[END_REF] 32.5 Theorem and [START_REF] Serre | Good reduction of abelian varieties[END_REF] Appendix.

Proposition 7.1. -Let σ be a continuous ℓ-adic representation of W on a Q ℓ -vector space V.

(1) There is a unique nilpotent endomorphism N P EndpVq such that there is an open subgroup U of the inertia subgroup I such that σpxq " e tpxqN , x P U.

(2) We have σpwqN σpwq ´1 " |w| ¨N for all w P W.

Note that N " 0 if and only if σ is smooth. The subspaces KerpN i q, i ě 0 of V are stable by σ. Thus, if σ is irreducible, then N " 0 and σ is smooth. More generally, a semi-simple representation of Γ is smooth, and its restriction to W is smooth semi-simple (see also [START_REF] Tate | Number theoretic background, in Automorphic forms, representations and L-functions[END_REF] 4.2.3).

Fix a Frobenius element Φ P W. Associated with σ, there is a smooth ℓ-adic representation ρ of W defined by ρpΦ a xq " σpΦ a xqe ´tpxqN , a P Z, x P I.

The pair pρ, N q is called the Deligne representation of W associated with σ. Up to isomorphism, it does not depend on the choices of t and Φ (see [START_REF] Bushnell | The local Langlands conjecture for GLp2q, Grundlehren der mathematischen Wissenschaften[END_REF] 32.6 Theorem). The element ρpΦq " σpΦq decomposes uniquely in GLpVq as su " us, with s semi-simple and u unipotent. Define a smooth ℓ-adic representation ρ ˚of W by ρ ˚pΦ a xq " s a ρpxq, a P Z, x P I. This defines a Deligne representation pρ ˚, N q, called the Frobenius-semi-simplification of pρ, N q. By Paragraph 7.1, the representation ρ ˚is a semi-simple smooth representation of W.

7.2.

In this paragraph, if κ is a continuous ℓ-adic representation of W or Γ, we will write κ ss for its semisimplification. Lemma 7.2. -If ρ is a smooth ℓ-adic representation of W such that ρ ss is integral, then ρ is integral.

Proof. -We prove it by induction on the dimension n of ρ. If ρ is irreducible, there is nothing to prove. Otherwise, let τ be an irreducible subrepresentation of ρ, of dimension k ě 1, and let λ be the quotient of ρ by τ , which is of dimension l " n ´k. Since ρ ss " τ ' λ ss , we may apply the inductive hypothesis to λ, from which we deduce that λ is integral. We therefore fix a basis of the vector space of ρ such that ρpwq " ˆτ pwq αpwq 0 λpwq ˙P GL n pQ ℓ q, τ pwq P GL k pZ ℓ q, λpwq P GL l pZ ℓ q, w P W, and α : W Ñ M k,l pQ ℓ q satisfies αpxyq " τ pxqαpyq `αpxqλpyq for all x, y P W. Since ρ is smooth, we may consider it as a representation of the discrete group W{U for some open subgroup U of W. Since this quotient is a finitely generated group, we may consider ρ as a representation of the free group F with r generators f 1 , . . . , f r for some r ě 1. Assume α is not identically zero, and let ´v denote the minimum of the ℓ-adic valuations of all the entries of all the αpf i q. Conjugating ρ by diagpℓ v ¨id t , id l q, we may and will assume that v " 0.

We are going to prove that α takes values in M t,l pZ ℓ q. We prove it by induction on the length of the words in F. Given x P F, write it yf with f " f i for some i P t1, . . . , ru and the length of y is smaller than that of x. Then αpxq " τ pyqαpf q `αpyqλpf q P M k,l pZ ℓ q thanks to the inductive hypothesis.

Lemma 7.3. -Let σ be a continuous ℓ-adic representation of Γ, with associated Deligne representation pρ, N q. The restriction of σ ss to W is equal to ρ ss .

Proof. -Note that semi-simplification and restriction from Γ to W commute, that is

σ ss | W " pσ| W q ss .
If N is zero, then σ is smooth and ρ is the restriction of σ to W, thus σ ss is smooth semi-simple, and its restriction to W is smooth semi-simple as well. Otherwise, if n " dimpσq, there is a basis of Q n ℓ such that σpgq " ˆαpgq γpgq 0 βpgq ˙P GL n pQ ℓ q, g P Γ, and

N " ˆ0 C 0 M ˙,
where α is a smooth ℓ-adic representation of Γ of dimension k " dimpKer N q, β is a continuous ℓ-adic representation of Γ of dimension l " n ´k, γ is a continuous map from Γ to M k,l pQ ℓ q, -M is nilpotent in M l pQ ℓ q and C is a matrix in M k,l pQ ℓ q.

We have e tpxqN " ˆid εpxq 0 e tpxqM ˙with εpxq "

ÿ iě1 tpxq i i! CM i´1 , x P I.
Writing pρ 1 , N 1 q for the Deligne representation associated with β, we get N 1 " M and ρpwq " ˆαpwq δpwq

0 ρ 1 pwq ˙P GL n pQ ℓ q, w P W,
for some smooth map δ from W to M k,l pQ ℓ q which can be explicitly described by δpwq " pγpwq ´αpwqεpwqqe ´tpxqM , w " Φ a x, a P Z, x P I.

By the inductive hypothesis, we get

σ ss | W " pα| W q ' pβ ss | W q " pα| W q ' ρ ss 1 " ρ ss .
This proves the lemma.

Corollary 7.4. -Let σ be a continuous ℓ-adic representation of Γ, with associated Deligne representation pρ, N q. Then ρ is (smooth) integral and r ℓ pρq " r ℓ pσq| W .

Proof. -Since σ is integral (for Γ is compact), σ ss | W is integral. We deduce from Lemma 7.3 that ρ ss is integral, then from Lemma 7.2 that ρ is integral. Now write r ℓ pρq " r ℓ pρ ss q " r ℓ pσ ss | W q " r ℓ pσ ss q| W " r ℓ pσq| W .

This proves the corollary.

Galois representations associated with automorphic representations

Recall that we have fixed an isomorphism of fields ι : C Ñ Q ℓ . Fix a positive integer N .

Let k be a totally real number field, and l be either k or a quadratic totally imaginary extension of k in an algebraic closure Q of Q. For any place v of l, let l v denote the completion of l at v.

For any finite place v, fix a decomposition subgroup Γ v of GalpQ{lq at v and write W v for the associated Weil group. For any finite place v not dividing ℓ, write -WDpσq for the Deligne representation of W v associated with a continuous ℓ-adic representation σ of Γ v and WD ˚pσq for its Frobenius-semi-simplification, -rec v for the local Langlands correspondence ( [START_REF] Harris | The geometry and cohomology of some simple Shimura varieties, with an appendix by[END_REF] Theorem A) between irreducible smooth complex representations of GL N pl v q and N -dimensional Frobenius-semi-simple complex Deligne representations of W v .

8.1.

A cuspidal irreducible automorphic representation Π of GL N pA l q is said to be -polarized if its contragredient Π _ is isomorphic to Π c , where c is the generator of Galpl{kq (thus Π c " Π when l " k),

-algebraic regular if the Harish-Chandra module Π 8 associated with Π has the same infinitesimal character as some irreducible algebraic representation of the restriction of scalars from l to Q of GL N .

Recall the following result of Barnet-Lamb-Geraghty-Harris-Taylor ([5] Theorems 1.1, 1.2).

Theorem 8.1. -Let Π be an algebraic regular, polarized, cuspidal irreducible automorphic representation of GL N pA l q. There is a continuous semi-simple ℓ-adic representation Σ : GalpQ{lq Ñ GL N pQ ℓ q such that, for any finite place v of l not dividing ℓ, we have

WD ˚pΣ| Γv q » rec v pΠ v b | det | p1´N q{2 v q b C Q ℓ .
Note that the representation Σ depends on the choice of ι.

8.2.

The main result of this section is the following. Let m denote the maximal ideal of Z ℓ . Theorem 8.2. -Let Π 1 and Π 2 be algebraic regular, polarized, cuspidal irreducible automorphic representations of GL n pA l q. Suppose that there is a finite set S of places of l, containing all infinite places, such that for all v R S :

(1) the local components Π 1,v and Π 2,v are unramified, (2) the characteristic polynomials of the conjugacy classes of semisimple elements in GL n pQ ℓ q associated with Π 1,v b C Q ℓ and Π 2,v b C Q ℓ have coefficients in Z ℓ and are congruent mod m.

Then, for any finite place v of l not dividing ℓ, the representations Π 1,v b C Q ℓ and Π 2,v b C Q ℓ are integral, their reductions mod m share a common generic irreducible component, and such a generic component is unique.

Proof. -Applying Theorem 8.1 to Π 1 and Π 2 , we get continuous ℓ-adic representations Σ i : GalpQ{lq Ñ GL N pQ ℓ q, i " 1, 2, such that, for any finite place v of l not dividing ℓ, we have

WD ˚pΣ i,v q » rec v pΠ i,v b | det | p1´N q{2 v q b C Q ℓ
where Σ i,v denotes the restriction of Σ i to Γ v and the tensor product over C is taken with respect to ι. For all v R S, the ℓ-adic representation Π i,v b C Q ℓ is unramified, generic and integral, thus

rec v pΠ i,v b | det | p1´N q{2 v q b C Q ℓ » pφ i,v , 0q
where φ i,v is an integral semi-simple ℓ-adic representation of W v trivial on I v . It is thus entirely determined by the semi-simple matrix φ i,v pΦ v q P GL N pQ ℓ q where Φ v is a Frobenius element in W v . By assumption, its characteristic polynomial has coefficients in Z ℓ , that is, its eigenvalues are in Z l . That the nilpotent operator is 0 implies that Σ i,v is smooth, thus

φ i,v " pΣ i,v | Wv q ss .
Thus Σ i,v is trivial on the inertia subgroup I v , that is, Σ i,v is unramified.

Given v R S and i P t1, 2u, let P i,v pTq be the characteristic polynomial of Σ i,v pΦ v q b F ℓ , that is, the characteristic polynomial of φ i,v pΦ v q b F ℓ . By assumption, P 1,v pTq " P 2,v pTq at all v R S. Applying Deligne-Serre [START_REF] Deligne | Formes modulaires de poids 1[END_REF] Lemma 3.2 to the semi-simple F ℓ -representations pΣ 1 b F ℓ q ss and pΣ 2 b F ℓ q ss , which at v R S give φ 1,v b F ℓ and φ 2,v b F ℓ respectively, we deduce that pΣ 1 b F ℓ q ss and pΣ 2 b F ℓ q ss are isomorphic. In particular, we deduce that

pΣ 1 b F ℓ q ss | Γw » pΣ 2 b F ℓ q ss | Γw
thus the continuous ℓ-adic representations Σ 1,w and Σ 2,w of Γ w are congruent mod ℓ. Now write WD ˚pΣ i,w q " pρ i , N i q for i " 1, 2. Thanks to Corollary 7.4, we know that ρ 1 and ρ 2 are integral and have same reduction mod ℓ. By [START_REF]Correspondance de Langlands semi-simple pour GL n pF q modulo ℓ ‰ p[END_REF] Theorem 1.6, we deduce that

µ 1 " pΠ 1,w b | det | p1´N q{2 w q b C Q ℓ , µ 2 " pΠ 2,w b | det | p1´N q{2 w q b C Q ℓ ,
are integral and have the same mod ℓ supercuspidal support, that is, the supercuspidal support of any irreducible component υ of r ℓ pµ i q is independent of i (and of the choice of υ).

Since µ i is generic (as Π i,w is a local component of a cuspidal automorphic representation of GL n pA l q), the F ℓ -representation r ℓ pµ i q contains a generic irreducible component δ i . It occurs in r ℓ pµ i q with multiplicity 1, and any generic irreducible representation occurring in r ℓ pµ i q is isomorphic to δ i . Since δ i only depends on the mod ℓ supercuspidal support of µ i ([64] III.5.10), we deduce that δ 1 and δ 2 are isomorphic. We prove our main theorem 1.1. Let p be a prime number different from 2, let F be a p-adic field and G be a quasi-split special orthogonal, unitary or symplectic group over F . We thus have ' either G " SOpQq for some non-degenerate quadratic form Q over F , ' or G " UpHq for some non-degenerate E{F -Hermitian form H, ' or G " SppAq for some non-degenerate symplectic form A over F .

As usual, we write E " F in the symplectic and orthogonal cases.

In this paragraph and the next one, we assume that the group G is not the split special orthogonal group SO 2 pF q » F ˆ. The case of split SO 2 pF q will be treated in Paragraph 9.3.

Let π 1 , π 2 be integral cuspidal irreducible Q ℓ -representations of G such that r ℓ pπ 1 q ď r ℓ pπ 2 q.

First, let k, w, G be as in Theorem 2. In particular, we have k w " F and l w " E, and the group GpF q naturally identifies with G. As usual, we write l " k in the symplectic and orthogonal cases.

Let G ˚be the quasi-split inner form of G over k, and write N " N pG ˚q. We thus have:

' either G ˚" SOpq ˚q where q ˚is a quadratic form over k as in (5.2) or (5.3), ' or G ˚" Uph ˚q where h ˚is an l{k-Hermitian form as in (5.4), ' or G ˚" Sppf ˚q where f ˚is a symplectic form over k as in (5.1).

Let t be the local transfer from G ˚pF q to GL N pEq given by Definition 5.1. We explained how to canonically identify representations of GpF q with those of G ˚pF q in Paragraph 5.6. (In the symplectic case, we identified GpF q with Sppf w q for some symplectic form f w over k w " F .) This gives us a local transfer from GpF q " G to GL N pEq, still denoted t. Lemma 9.1. -There is a finite place u of k different from w, not dividing ℓ, such that there is a unitary cuspidal irreducible complex representation ρ of Gpk u q with the following properties:

(1) ρ is compactly induced from some compact mod centre, open subgroup of Gpk u q, (2) the local transfer of ρ to GL N pl u q is cuspidal.

Proof. -If G is special orthogonal, it suffices to choose u ‰ w such that Gpk u q is split (Remark 2.9), and then apply Proposition B.1.

If G is unitary, it suffices to choose u ‰ w such that Gpk u q is split (Remark 2.12). If G is symplectic, it suffices to choose a place u such that k u is isomorphic to Q 2 (see Lemma 2.5) and then apply Theorem C.1. Now fix an isomorphism of fields ι : C Ñ Q ℓ . As in Paragraph 1.2, let t ℓ denote the ℓ-adic local transfer from G to GL N pEq obtained from t thanks to ι, that is, t ℓ pV b C Q ℓ q " tpV q b C Q ℓ for any complex representation V of G, where tensor products are taken with respect to ι. Let u and ρ be as in Lemma 9.1. By Theorem 4.4, there are irreducible automorphic representations Π 1 and Π 2 of GpAq such that (1) Π 1,u and Π 2,u are both isomorphic to ρ,

(2) Π 1,w b C Q ℓ is isomorphic to π 1 and Π 1,w b C Q ℓ is isomorphic to π 2 , (3) 
Π 1,v and Π 2,v are trivial for any real place v, (4) there is a finite set S of places of k, containing all real places, such that for all v R S :

(a) the group G is unramified over k v , and the local components Π 1,v and Π 2,v are unramified with respect to some hyperspecial maximal compact subgroup K v of Gpk v q, (b) the restrictions of the Satake parameters of Π 1,v b C Q ℓ and Π 2,v b C Q ℓ to the Hecke Z ℓ -algebra H Z ℓ pGpk v q, K v q are congruent mod the maximal ideal m of Z ℓ . Applying Theorems 5.5 and 5.6 to Π 1 , Π 2 , we get algebraic regular, polarized, cuspidal irreducible automorphic representations r Π 1 , r Π 2 of GL N plq such that, for i " 1, 2 and all finite places v of k, the local transfer of Π i,v to GL N pl v q is r Π i,v . Writing t v for the local transfer over k v , we thus have r

Π i,v " t v pΠ i,v q, or equivalently r Π i,v b C Q ℓ " t v,ℓ pΠ i,v b C Q ℓ q where t v,ℓ is obtained from t v thanks to ι.
In particular, for all v R S, it follows from Proposition 6.3 that r Π 1,v and r Π 2,v are unramified and that the characteristic polynomials of the conjugacy classes of semisimple elements in GL n pQ ℓ q associated with r 

Π 1,v b C Q ℓ and r Π 2,v b C Q ℓ have

9.2.

We now describe how the map t ℓ depends on the choice of ι. Equivalently, since any two isomorphisms ι, ι 1 between C and Q ℓ give rise to a field automorphism ι ´1 ˝ι1 of C, we will describe the behavior of t under the action of AutpCq. More precisely, we prove the following result. Proposition 9.2. -Let π be a cuspidal complex representation of G. Let γ P AutpCq.

(1) If G is not even orthogonal, then tpπ γ q " tpπq γ .

(2) If G is even orthogonal, then tpπ γ q " tpπq γ ¨εγ , where ε γ is the unramified character (9.1)

x Þ Ñ ˆγp ? qq ? q ˙val F pxq of F ˆ, where q is the cardinality of the residue field of F .

Let π be a cuspidal complex representation of G. As in Lemma 9.1, let u be a finite place of k different from w, not dividing ℓ, and ρ be a unitary cuspidal irreducible complex representation of Gpk u q with cuspidal transfer. By Proposition 4.1, we have an irreducible automorphic representation Π of GpAq such that (1) the local component Π u is isomorphic to ρ, (2) the local component Π w is isomorphic to π, (3) the local component Π v is the trivial character of Gpk v q for any real place v of k.

Associated with Π by Theorems 5.5 and 5.6, there is an algebraic regular, polarized, cuspidal irreducible automorphic representation r Π of GL N pA l q such that r Π v " t v pΠ v q for all finite places v of k, where t v is as in Paragraph 9.1. Now let γ P AutpCq. Then Π γ satisfies (1) the local component Π γ u is isomorphic to ρ γ , (2) the local component Π γ w is isomorphic to π γ , (3) the local component Π γ v is the trivial character of Gpk v q for any real place v of k.

Associated with it by Theorems 5.5 and 5.6, there is an algebraic regular, polarized, cuspidal irreducible automorphic representation r Π 1 of GL N pA l q such that r Π 1 v " t v pΠ γ v q for all finite v. Let S be a finite set of places of k, containing all real places, such that for all v R S the group G is unramified over k v and the local component Π v is unramified with respect to some hyperspecial maximal compact subgroup of Gpk v q.

Assume first that G is not an even special orthogonal group. For v R S, Proposition 6.7 gives us t v pΠ γ v q " t v pΠ v q γ , thus r Π 1 and r Π γ coincide at almost all finite places. By strong multiplicity 1, we deduce that r Π 1 " r Π γ . It follows that t w pΠ γ w q " t w pΠ w q γ , that is, tpπ γ q " tpπq γ . Assume now that G is even special orthogonal (thus l " k). For all finite places v of k, let t

v be the map π Þ Ñ t v pπq| det | 1{2 v
, where | ¨|v is the absolute value of k v and | ¨|1{2 v is its square root with respect to q 1{2 v , where q v is the cardinality of the residue field of k v . An argument similar to that of the non even orthogonal case gives us r Π 1 | det | 1{2 " p r Π| det | 1{2 q γ where | ¨| is the absolute value of A ˆ. Looking at the local component at w, we deduce that tpπ γ q " tpπq γ ¨εγ , where ε γ is defined as in (9.1). We have proved Proposition 9.2.

Remark 9.3. -The same argument shows that Proposition 9.2 holds for all discrete series representations π of G (it suffices to replace Proposition 4.1 by [56] Theorem 5.13). Let us explain how this implies that the set of isomorphism classes of discrete series representations of G is stable under AutpCq. Let ϕ be the local Langlands parameter of a discrete series representation π (up to O 2n pCq-conjugacy in the even orthogonal case) and let φ " Std ˝ϕ be the Langlands parameter of tpπq. On the one hand, the fact that π is a discrete series representation implies that the quotient of the centralizer of the image of φ in p G by Zp p Gq W k is finite (see the end of Paragraph 5.3). On the other hand, the Langlands parameter of tpπ γ q is φ 1 " φ γ ¨ηχ (where η is the unramified character of F ˆof order 2 and χ is either the character ε γ defined by (9.1) if G is even orthogonal, or the trivial character otherwise), which has the same finiteness property. Thus the L-packet of π γ is discrete. Thus π γ is a discrete series representation.

Remark 9.4. -Let us examine how the local transfer map behaves under automorphisms of the base field F , for discrete series representations. Let π be a discrete series representation of G, and let φ be the Langlands parameter of its transfer tpπq. By Moeglin [START_REF]Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands, in Automorphic forms and related geometry: assessing the legacy of I[END_REF], an irreducible Langlands parameter σ b S a , where σ is an irreducible representation of dimension k ě 1 of W F and a is a positive integer, occurs in φ if and only if:

(1) the cuspidal representation ρ of GL k pEq associated with σ by the Langlands correspondence is c-selfdual,

(2) if s is the unique non-negative real number such that the normalized parabolically induced representation ρν s ¸π is reducible, then 2s ´1 is a positive integer and 2s ´1 ´a is a nonnegative even integer. Now let κ P AutpF q, which extends to an automorphism of E still denoted κ. Then -the cuspidal representation ρ κ is κ ´1cκ-selfdual, -the irreducible representation of W E associated with it by the Langlands correspondence is σ κ (see [START_REF]Sur la conjecture de Langlands locale pour GLpnq[END_REF] Propriété 1), -the normalized parabolically induced representation ρ κ ν s ¸πκ is reducible, -the representation σ b S a occurs in φ if and only if σ κ b S a occurs in φ κ .

It follows that the Langlands parameter of tpπ κ q is φ κ . Applying [START_REF]Sur la conjecture de Langlands locale pour GLpnq[END_REF] Propriété 1 again, φ κ is the Langlands parameter of tpπq κ . Thus tpπ κ q is equal to tpπq κ .

9.3.

In this paragraph, we discuss the case of the split special orthogonal group SO 2 pF q » F ˆ.

Let χ be a Q ℓ -character of this group. Its transfer to GL 2 pF q is -either the normalized parabolically induced representation χ ˆχ´1 when the character χ 2 is different from the absolute value | ¨| and its inverse | ¨|´1 , -or the unique character occurring as a component of χ ˆχ´1 when χ 2 P t| ¨|, | ¨|´1 u.

Properties ( 1) and ( 2) of Theorem 1.1 thus hold, since -an irreducible Q ℓ -representation of GL 2 pF q is integral if and only if its cuspidal support is integral (see [START_REF]Représentations l-modulaires d'un groupe réductif p-adique avec l ‰ p[END_REF] II.4.14 and [15] Proposition 6.7), -if χ is integral, the supercuspidal support of any irreducible component of r ℓ pχ ˆχ´1 q is the GL 2 pF q-conjugacy class of the cuspidal pair pF ˆˆF ˆ, χ b χ ´1q.

However, if ξ is any non-trivial character of F ˆwith values in 1 `m (where m is the maximal ideal of Z ℓ ) such that ξ 2 R t1, | ¨|´2 u, the characters | ¨|1{2 and ξ| ¨|1{2 are congruent, but the transfer of the first one is the trivial character of GL 2 pF q, which is not generic. Property (3) thus does not hold. Also, the transfer of the second one is ξ| ¨|1{2 ˆξ´1 | ¨|´1{2 , whose reduction mod ℓ contains the trivial character with multiplicity 1 (if ℓ ‰ 2) or 2 (if ℓ " 2) by [START_REF] Vignéras | Représentations modulaires de GLp2, F q en caractéristique l, F corps p-adique, p ‰ l[END_REF] Théorème 3.

Assume further that q has order 2 mod ℓ, that is, ℓ divides q 2 ´1 but not q ´1, and let η be the unique unramified Q ℓ -character of order 2 of F ˆ. Then the transfer of η| ¨|´1{2 (which is congruent to | ¨|1{2 ) is η ˝det, whose reduction mod ℓ is a character of order 2. We thus have two congruent characters of F ˆwhose transfers to GL 2 pF q have reductions mod ℓ with no component in common.

A Cyclic base change

Let F be a p-adic field, and let K be a cyclic finite extension of F of degree d. Fix an integer n ě 1 and write G " GL n pF q and H " GL n pKq. By [START_REF] Arthur | Simple algebras, base change, and the advanced theory of the trace formula[END_REF], there exists a map from isomorphism classes of irreducible (smooth In this appendix, we investigate the dependency of b K{F,ℓ in the choice of ι, or equivalently the behavior of b K{F with respect to automorphisms of C.

A.1.

Let a F denote the local Langlands correspondence from the set of isomorphism classes of irreducible complex representations of G to the set ΦpGq of GL n pCq-conjugacy classes of local Langlands parameters for G ( [START_REF] Harris | The geometry and cohomology of some simple Shimura varieties, with an appendix by[END_REF][START_REF]Une preuve simple des conjectures de Langlands pour GLpnq sur un corps p-adique[END_REF]).

Replacing C by Q ℓ thanks to ι, one obtains a local Langlands correspondence a F,ℓ for irreducible Q ℓ -representations. The dependency of a F,ℓ in ι, or equivalently the behavior of a F with respect to automorphisms of C, has been studied in [START_REF]Sur la conjecture de Langlands locale pour GLpnq[END_REF][START_REF] Clozel | Motifs et formes automorphes: applications du principe de fonctorialité[END_REF]:

the map π Þ Ñ a F pπ| det | p1´nq{2 q is insensitive to automorphisms of C. It follows that (A.1) a F pπ γ q " a F pπq γ ¨η1´n F,γ
for all γ P AutpCq and all irreducible complex representations π of G, where (A.2) η F,γ pwq " ˆγp ? qq ? q ˙υF pwq for all w P W F , where υ F is the valuation map taking any Frobenius element to 1.

A.2.

Let res K{F be the map from ΦpGq to ΦpHq defined by restricting local Langlands parameters from WD F to WD K . The local base change b K{F is characterized by the identity a K ˝bK{F " res K{F ˝aF . Now let us prove that b " b K{F is insensitive to the action of AutpCq.

Proposition A.1. -For all γ P AutpCq and all irreducible complex representations π of G, we have b K{F pπ γ q " b K{F pπq γ .

Proof. -Let π be an irreducible complex representation of G. We have

a K pb K{F pπ γ qq " res K{F pa F pπ γ qq " res K{F pa F pπq γ ¨η1´n F,γ q " a K pb K{F pπqq γ ¨pη F,γ | W K q 1´n " a K pb K{F pπq γ q ¨pη K,γ ¨ηF,γ | W K q 1´n .
We are thus reduced to compare η F,γ | W K with η K,γ . Using the explicit formula (A.2), we get

η F,γ | W K " ˆγp ? qq ? q ˙υF | W K , η K,γ " ˆγp ? q 1 q ? q 1 ˙υK ,
where q 1 is the cardinality of the residue field of K. Since q 1 " q f K{F and υ

F | W K " f K{F υ K , we deduce that η F,γ | W K " η K,γ , thus b K{F pπ γ q " b K{F pπq γ . A.3.
Let us prove that the map b K{F,ℓ preserves the fact of being integral. Let π be an integral irreducible Q ℓ -representation of G. By [START_REF] Dat | ν-tempered representations of p-adic groups. I. l-adic case[END_REF] Proposition 6.7, its cuspidal support is integral, or equivalently, the central character of its cuspidal support is integral. The semisimple representation of W F corresponding to this cuspidal support is thus integral, because the determinant of each of its irreducible components is integral, and the same holds for its restriction to W K . Since this restriction corresponds to the cuspidal support of b K{F,ℓ pπq, it follows from [START_REF]Représentations l-modulaires d'un groupe réductif p-adique avec l ‰ p[END_REF] II.4.14 that the base change b K{F,ℓ pπq is integral.

A.4.

We now review the congruence properties of b K{F,ℓ , after J. Zou's PhD thesis [START_REF] Zou | Représentations supercuspidales de GLpnq sur un corps local non archimédien : distinction par un sous-groupe unitaire ou orthogonal, changement de base et induction automorphe[END_REF] 1.10. Associated with an irreducible representation τ of GL n pKq, with coefficients in Q ℓ or F ℓ , there is a partition λpτ q " pk 1 ě k 2 ě . . . q of n defined inductively as follows. Let k 1 denote the largest integer k P t1, . . . , nu such that the kth derivative τ pkq is non-zero. If k 1 " n, then λpτ q " pnq. Otherwise, pk 2 ě . . . q is the partition of n ´k1 associated with the representation τ pk 1 q of GL n´k 1 pKq.

By [START_REF]Correspondance de Langlands semi-simple pour GL n pF q modulo ℓ ‰ p[END_REF] V.9.2, if τ is an integral irreducible Q ℓ -representation of GL n pKq, its reduction mod ℓ has a unique irreducible component π such that λpπq " λpτ q. This component is denoted j ℓ pτ q.

Theorem A.2 ([69] Theorem 1.10.17). -Let π 1 and π 2 be integral irreducible Q ℓ -representations of GL n pF q. If j ℓ pπ 1 q " j ℓ pπ 2 q, then j ℓ pb K{F,ℓ pπ 1 qq " j ℓ pb K{F,ℓ pπ 2 qq.

In particular, if π 1 , π 2 are cuspidal, which implies that λpπ 1 q " λpπ 2 q " pnq, their base changes b K{F,ℓ pπ 1 q and b K{F,ℓ pπ 2 q are generic. This theorem thus says that, if r ℓ pπ 1 q " r ℓ pπ 2 q, then r ℓ pb K{F,ℓ pπ 1 qq and r ℓ pb K{F,ℓ pπ 2 qq have a unique generic irreducible component in common. This can be seen as an analogue of Theorem 1.1 for the cyclic base change from G to H.

A.5.

In this paragraph, we give an example of congruent integral cuspidal Q ℓ -representations π 1 , π 2 of G such that b K{F,ℓ pπ 1 q and b K{F,ℓ pπ 2 q are not congruent.

First, assume that π is an integral cuspidal irreducible Q ℓ -representation of G. Let m denote the cardinality of the set of isomorphism classes of πχ, where χ runs over the characters of F trivial on N K{F pK ˆq, and set e " d{m. Then there exists a cuspidal irreducible representation ρ of GL n{e pKq such that b K{F pπq " ρ ˆρα ˆ¨¨¨ˆρ α e´1 where α is a generator of GalpK{F q and ˆdenotes normalized parabolic induction with respect to a choice of square root of q, the cardinality of the residue field of F (see [START_REF] Arthur | Simple algebras, base change, and the advanced theory of the trace formula[END_REF] Chapter 1, §6.4). Now assume that n " 2 and that K is a ramified quadratic extension of F , and let ω K{F be the character of F ˆwith kernel N K{F pK ˆq. Let π 1 be an integral cuspidal Q ℓ -representation of G " GL 2 pF q of level 0. By [START_REF] Bushnell | The admissible dual of GLpN q via compact open subgroups[END_REF], it is compactly induced from a representation λ 1 of F ˆGL 2 pO F q

In our situation, it follows from [START_REF] Lust | On depth zero L-packets for classical groups[END_REF] §8 that the sets Redpπq and Jordpπq are equal and both reduced to a single element pρ, 1q, where ρ is a selfdual cuspidal representation of GL N pF q (with N " n ´1 if n is odd and N " n if n is even), which proves Proposition B.1.

Remark B.3. -More precisely, ρ has level 0, and is obtained by compactly inducing a representation of F ˆGL N pO F q which is trivial on 1 `MN pp F q and whose restriction to GL N pO F q is the inflation of σ.

C

Cuspidal representations of Sp 2n pQ 2 q with irreducible Galois parameter (by Guy HENNIART at ORSAY) C.1.

Let p be a prime number and F a finite extension of Q p . Let F be an algebraic closure of F and W F the Weil group of F {F . Let n be a positive integer, and π a cuspidal (complex) representation of Sp 2n pF q. Let σ be the Galois parameter attached to π by Arthur [START_REF] Arthur | The endoscopic classification of representations. Orthogonal and symplectic groups[END_REF], which one sees as an orthogonal representation of W F ˆSL 2 pCq, of dimension 2n `1. The following result is used in the main text, in Section 9.

Theorem C.1. -Assume that F " Q 2 , and take for π the (unique) simple supercuspidal representation of Sp 2n pF q. Then σ is an irreducible representation of W F .

Here simple is in the sense of Gross and Reeder [START_REF] Gross | Arithmetic invariants of discrete Langlands parameters[END_REF]. The point of the result is that π is compactly induced from a compact open subgroup of Sp 2n pF q, as we describe below. Indeed when p " 2 there is at least one irreducible orthogonal representation σ of W F of dimension 2n

`1 [START_REF]Self-dual representations of some dyadic groups[END_REF], only one if F " Q 2 , and by [START_REF] Arthur | The endoscopic classification of representations. Orthogonal and symplectic groups[END_REF] it is the parameter of a cuspidal representation π of Sp 2n pF q, but it is not clear a priori that π is compactly induced.

Our method is inspired by work of Oi [START_REF] Oi | Simple supercuspidal L-packets of quasi-split classical groups[END_REF]. When p is odd, Oi determines the parameter σ of a simple cuspidal representation π of Sp 2n pF q. In his case σ is always reducible, but a number of techniques and results remain valid when p " 2, and, with extra information given by Adrian and Kaplan [START_REF] Adrian | The Langlands parameter of a simple supercuspidal representation: symplectic groups[END_REF] when F " Q 2 , that is enough for us. It is quite likely that one can describe σ explicitly whenever π is simple cuspidal, not only when p is odd or F " Q 2 . Indeed many of our arguments work more generally, and until C.6 we make no special assumption on F , except that in C.3 we start assuming that p1q p " 2.

C.2.

We now proceed. We use customary notation, O F for the ring of integers of F , p F for the maximal ideal of O F . We fix a uniformizer ̟ of F , and write k for the residue field O F {p F and q for its cardinality. We also fix a non-trivial character ψ of k. If H is an algebraic group over F , we usually put H " HpF q.

p1q Oi and the author ( [START_REF] Henniart | Simple supercuspidal L-packets of symplectic groups over dyadic fields[END_REF]) can now extend Theorem C.1 to any 2-adic field F .

We use the usual explicit model of G " Sp 2n , see [START_REF] Oi | Simple supercuspidal L-packets of quasi-split classical groups[END_REF] §2.4, so elements of G " Sp 2n pF q are symplectic 2n ˆ2n matrices. By cuspidal representation of G we mean an irreducible smooth complex cuspidal representation. We are interested in simple cuspidal representations of G, in the sense of Gross and Reeder [START_REF] Gross | Arithmetic invariants of discrete Langlands parameters[END_REF]. Let us describe them.

The choice in [START_REF] Gross | Arithmetic invariants of discrete Langlands parameters[END_REF] of a root basis and an affine root basis determines an Iwahori subgroup I of G, with its first two congruence subgroups I `and I ``. The Iwahori subgroup I is the subgroup of Sp 2n pO F q made out of the matrices which are upper triangular modulo p F , I `is made out of the matrices which are further upper unipotent modulo p F , and I ``is made out of the matrices px i,j q in I `with x i,i`1 P p F for i " 1, . . . , 2n ´1, and x 2n,1 P p 2 F . The quotient I `{I `ìs isomorphic to a product of n `1 copies of k, via the surjective homomorphism px i,j q Þ Ñ px 1,2 mod p F , . . . , x n,n`1 mod p F , x 2n,1 {̟ mod p F q from I `to k n`1 . A character of I `is simple if it is trivial on I ``, and is the inflation of a character of k n`1 which is non-trivial on each factor k. The normalizer in G of a simple character θ of I `is ZI `, where Z is the centre of G, and ZI `is also the intertwining of θ in G, so that any extension of θ to ZI `gives by compact induction to G a cuspidal representation of G: see [START_REF] Oi | Simple supercuspidal L-packets of quasi-split classical groups[END_REF] §2.4, Proposition 2.6. Note that when p is 2, the centre Z of G is actually contained in I ``. The cuspidal representations of G thus obtained are the simple cuspidal representations of [START_REF] Gross | Arithmetic invariants of discrete Langlands parameters[END_REF].

The normalizer of I `in G is ZI, and I acts on I `{I ``via I{I `; identifying I{I `with k ˆn via px i,j q Þ Ñ px 1,1 mod p F , . . . , x n,n mod p F q, the conjugation action of pχ 1 , . . . , χ n q P k ˆn on I `{I ``(identified with k n`1 ) sends the family pu 1 , . . . , u n`1 q P k n`1 to `u1 χ 1 χ ´1 2 , u 2 χ 2 χ ´1 3 , . . . , u n´1 χ n´1 χ ´1 n , u n χ 2 n , u n`1 χ ´2 1 ˘.

In particular, when p " 2, a given simple character θ of I `can always be conjugated in I to the character θpaq : pu 1 , . . . , u n`1 q Þ Ñ ψpu 1 `¨¨¨`u n `au n`1 q for some a in k ˆ, uniquely determined by θ. More precisely if θ sends pu 1 , . . . , u n`1 q to ψpa 1 u 1 àn u n `an`1 u n`1 q for some a i 's in k ˆ, then a " pa 1 ¨¨¨a n´1 q 2 ¨an ¨an`1 . Thus when p " 2 there are only q ´1 isomorphism classes of simple cuspidal representations of G, whereas by a similar analysis ([47] §2.4), there are 4pq ´1q such classes when p is odd. Note that when q " 2 all that is obvious since k has only one non-trivial character.

C.3.

The group Sp 2n is split, and its dual group is SO 2n`1 pCq. To a cuspidal representation π of G, Arthur attaches the conjugacy class of a discrete parameter, that is (the conjugacy class of) a continuous homomorphism from W F ˆSL 2 pCq into SO 2n`1 pCq which, as a representation of dimension 2n `1, is a direct sum of inequivalent irreducible orthogonal representations σ 1 , . . . , σ r with the product det σ 1 ¨¨¨det σ r trivial. What our theorem says is that when F " Q 2 and π is simple cuspidal, then r " 1 and σ 1 is trivial on SL 2 pCq, i.e. is in fact a representation of W F .

Note that [START_REF]Self-dual representations of some dyadic groups[END_REF] shows that when p is odd, there is no irreducible orthogonal representation of W F of odd dimension ą 1, contrary to the case p " 2, where [START_REF]Self-dual representations of some dyadic groups[END_REF] gives a complete classification.

From now on we assume p " 2. For a in k ˆlet us denote by πpaq the isomorphism class of the representation of G compactly induced from the character θpaq of I `. We let φpaq be the parameter of πpaq, rpaq the number of irreducible components of φpaq, and Πpaq the L-packet of πpaq, that is the set of isomorphism classes of tempered (in fact, discrete series) representations of G with parameter φpaq; it is known that Πpaq has 2 rpaq´1 elements, so one of our goals is to show that rpaq " 1. Let G ad be the adjoint group of G, and ι the quotient map from G to G ad .

Lemma C.2.πpaq is stable under the action of G ad .

Proof. -We follow the proof of [START_REF] Oi | Simple supercuspidal L-packets of quasi-split classical groups[END_REF] Proposition 5.2. As there, one gets a description of the quotient G ad {ιpGq. It is isomorphic to HompF ˆ, µ 2 q, itself isomorphic, by Kummer theory, to F ˆ{F ˆ2. More concretely if T is the diagonal torus of G made out of elements If b 2 is a unit in F then tpbq actually normalizes I and its congruence subgroups, and sends θpaq to the character given by pu 1 , . . . , u n`1 q Þ Ñ ψpu 1 `¨¨¨`u n´1 `b2 u n `pa{b 2 qu n`1 q, conjugate in I to θpaq. If b 2 is the uniformizer ̟, tpbq conjugates I to another Iwahori subgroup, but if s is the matrix in G with four blocks of size n, first line p0, I n q and second line p´I n , 0q, then stpbq normalizes I and its congruence subgroups, and sends θpaq to the character given by pu 1 , . . . , u n`1 q Þ Ñ ψpu 1 `¨¨¨`u n´1 `au n `un`1 q (recall that p " 2, so ´1 " 1 in k), which is conjugate to θpaq. Since the stabilizer in G ad of πpaq is a subgroup containing all of ιpGq, it follows that it is all of G ad .

An important point is the genericity of simple cuspidal representations. We fix the same Whittaker datum as Oi [START_REF] Oi | Simple supercuspidal L-packets of quasi-split classical groups[END_REF] §6.3(2) to define genericity. By [START_REF] Kaletha | Simple wild L-packets[END_REF] Proposition 5.1, the G ad -orbit of πpaq contains a single generic representation, so by the previous lemma the representation πpaq is generic. Reasoning as in [START_REF] Oi | Simple supercuspidal L-packets of quasi-split classical groups[END_REF] Corollary 4.9 and Corollary 5.7, we get:

Proposition C.3.
-The parameter φpaq is trivial on SL 2 pCq, every element of Πpaq is cuspidal, and among them only πpaq is a simple cuspidal representation.

It only remains to prove that rpaq " 1.

C.4.

Still following [START_REF] Oi | Simple supercuspidal L-packets of quasi-split classical groups[END_REF] we prove:

Proposition C.4. -Πpaq does not contain any level 0 cuspidal representation.

Proof. -Put s " 2 rpaq´1 and enumerate the elements of πpaq as π 1 " πpaq, . . . , π s , and let ξ i be the character of π i . Let g be a generic element of I `. Choose εpiq " 1 or ´1 for i " 1, . . . , s. Exactly as in the proof of Claim in loc. cit., we get that εp1qξ 1 `¨¨¨`εpsqξ s does not vanish at g. Using that the characteristic polynomial of g is irreducible of degree 2n (loc. cit., Lemma 7.5, still valid when p " 2), the proofs of Theorem 5.1 and Corollary 5.13 in loc. cit. give the result.

C.7.

To get the remaining assertion that rpaq is in fact 1, we use new information given by Adrian and Kaplan [START_REF] Adrian | The Langlands parameter of a simple supercuspidal representation: symplectic groups[END_REF]. Unfortunately that information is only available presently when F " Q 2 , hence the restriction in our main result, but we expect that the computation in loc. cit. can be carried over to the general case. When F " Q 2 there is only a " 1, so we put π " πp1q. In [1] Theorem 3.13, the authors, taking ̟ " 2, compute the Rankin-Selberg γ-factor γpπ ˆτ, ψ 1 q (a rational function in 2 s for a complex parameter s) for any tame character τ of Q 2 with τ 2 " 1 and a character ψ 1 of Q 2 trivial on 2Z 2 but not on Z 2 . They find (C.1) γpπ ˆτ, ψ 1 q " τ p2q2 1{2´s .

On the other hand if φ is the parameter of π, seen as a representation of W F of dimension 2n`1, and λ the character of W F corresponding to τ via class field theory, then (C.2) γpπ ˆτ, ψ 1 q " γpφ b λ, ψ 1 q where the right-hand side is the Deligne-Langlands factor p2q . That gives new information on φ which, we recall, is by Proposition C.7 either irreducible or the direct sum of a character ω with ω 2 " 1 and an irreducible representation, say α, with ω det α " 1.

But the factor γpπ ˆτ, ψ 1 q has no zero nor pole, so is equal to the factor εpπ ˆτ, ψ 1 q " εpφbλ, ψ 1 q which has the form u ¨2Artpφbλq´dimpφbλqqp1{2´sq for some non-zero complex number u: the exact value of the exponent comes from the fact that ψ 1 is trivial on 2Z 2 but not on Z 2 . This implies that Artpφ b λq " 2n `2, and taking λ trivial yields Artpφq " 2n `2.

Assume we are in the case where φ " ω ' α. Taking λ " ω gives a pole to γpφ b ω, ψq which contradicts (C.1) if ω is tame (that is, since F " Q 2 , unramified). Thus ω is wildly ramified, so its Artin exponent is at least 2, and the Artin exponent of α is at most 2n. That implies that α is tamely ramified, and in fact Artpαq " 2n, Artpωq " 2. But then det α is also tamely ramified, which contradicts ω det α " 1. That contradiction shows that φ is irreducible, as desired.

p2q That is to say, Arthur's correspondence is compatible with Rankin-Selberg γ-factors. It can be proved by a local-global argument. Detail will appear in joint work with Oi [START_REF] Henniart | Simple supercuspidal L-packets of symplectic groups over dyadic fields[END_REF].

C.8.

One can describe φ explicitly. By the main result of [START_REF]Self-dual representations of some dyadic groups[END_REF] an orthogonal irreducible representation of W Q 2 is induced from an order 2 wildly ramified character β of W K , where K is a totally ramified extension of Q 2 degree 2n `1. Such an extension is unique up to isomorphism, generated by a uniformizer z with z 2n`1 " 2. Let r β be the character of K ˆcorresponding to β via class field theory. Since Artpφq " 2n `2, we have Artp r βq " 2, and moreover detpφq " 1 is the restriction of r β to Q 2 times the determinant of the representation of W Q 2 induced from the trivial character of W K . That determinant is an unramified quadratic character of W K , computed in [START_REF] Bushnell | Gauss sums and p-adic division algebras[END_REF] as the unramified character taking value at Frobenius elements the Jacobi symbol of 2 modulo 2n `1. That imposes r βpzq, and with Artp r βq " 2 and r βp1 `zq " ´1 it determines r β hence β.
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  C Q ℓ are integral and have the same mod ℓ supercuspidal support (which is the supercuspidal support of any irreducible component of the reduction mod ℓ): it follows that the supercuspidal support of the generic irreducible component of the reduction mod ℓ of r Π i,w | det | p1´N q{2 w

  §2.1) is a maximal parahoric subgroup of G E . Lemma 3.4. -The character θ occurs in π 1 .
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 1 The next proposition is the first step towards Theorem 4.4. (See also Paragraph 1.3.) Proposition 4.1.
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 43 -There is a unitary automorphic character Ω : ZpAq{Zpkq Ñ C ˆsuch that (1) the local component Ω u is equal to the central character ω ρ of ρ, (2) the local component Ω w is equal to the central character ω π of π, (3) the local component Ω v is the trivial character of Zpk v q for any real place v of k.

  and χ 1,v and χ 2,v are congruent mod m. This proves Theorem 4.4.

  G ˚is unitary, then, composing with Std, we obtain a Langlands parameter Std ˝ϕ : WD k Ñ pGL N pCq ˆGL N pCqq ¸Wk . ' If l is non-split, its restriction to WD l has the form pw, xq Þ Ñ pφpw, xq, φpw, xq ˚q ¸w for a local Langlands parameter φ P ΦpGL N , lq, uniquely determined up to GL N pCq-conjugacy. ' If l is split, it is of the form pw, xq Þ Ñ pφpw, xq, φpw, xq ˚q ¸w for a local Langlands parameter φ P ΦpGL N , kq, uniquely determined up to GL N pCq-conjugacy. Definition 5.1. -The local transfer of π, denoted tpπq, is the isomorphism class of irreducible representations associated with φ through the local Langlands correspondence. It is (1) a class of representations of GL N pkq if G ˚is symplectic or special orthogonal, (2) a class of representations of GL N plq if G ˚is unitary, which is uniquely determined by the isomorphism class of π. Remark 5.2. -If G ˚is unitary and l is split over k, and if we fix an isomorphism of k-algebras l » k ˆk, which we use to identify U α n pkq with GL n pkq and GL N plq with GL N pkqˆGL N pkq, then (5.9) tpπq " π b π _

Definition 5 . 3 .

 53 -A discrete global Arthur parameter (for G ˚) is a formal sum(5.10) 

r Ψ 2

 2 pG ˚q be the set of equivalence classes of discrete global Arthur parameters for G ˚.

Remark 8 . 3 .

 83 -We expect Theorem 8.2 to hold without assuming that Π 1 , Π 2 are polarized. 9. Proof of the main theorem 9.1.

  coefficients in Z ℓ and are congruent mod m. Now apply Theorem 8.2 at w: the representations r Π 1,w b C Q ℓ and r Π 2,w b C Q ℓ are integral, their reductions mod ℓ share a common generic irreducible component, and such a generic component is unique. The result now follows from the fact that Π i,w b C Q ℓ » π i for i " 1, 2.

  ) complex representations of G to those of H called the local base change, denoted b " b K{F . Now let us fix a prime number ℓ different from p and an isomorphism of fields ι between C and Q ℓ . Replacing C by Q ℓ thanks to ι, one obtains a local base change b K{F,ℓ for irreducible smooth Q ℓ -representations.

  tpbq " pb, b, . . . , b, b ´1, . . . , b ´1q (with n times b and n times b ´1), then for any b in F with b 2 in F ˆthe image of tpbq in G ad pF q is actually in G ad , and the set of such tpbq's covers G ad {ιpGq.

  Atobe, R. Beuzart-Plessis, P.-H. Chaudouard, W. T. Gan, H. Grobner, G. Henniart, T. Lanard, E. Lapid, J. Mahnkopf, N. Matringe, A. Moussaoui, D. Prasad, S. W. Shin, S. Stevens, O. Taïbi and H. Yu for stimulating discussions about this work.

  ˚is classical, the local Langlands correspondence ([2] Theorem 2.2.1, [46] Theorems 2.5.1, 3.2.1, see also [4] Theorems 3.2, 3.6 and Remarks 3.3, 3.7) defines ϕ pSO α 2n pkqq is non-empty, finite and stable under O α 2n pkq-conjugacy. In each case, we have the following properties: ' Π ϕ pG ˚pkqq contains a tempered representation if and only if ϕ is bounded. When this is the case, all representations in Π ϕ pG ˚pkqq are tempered. ' Π ϕ pG ˚pkqq contains a discrete series representation if and only if ϕ is bounded and the quotient of the centralizer of the image of ϕ in p G by Zp p Gq W k is finite. When this is the case, all representations in Π ϕ pG ˚pkqq are discrete series representations. (See for instance

	where each Π
	(1) (symplectic, odd orthogonal and unitary cases) a partition (5.5) ΠpG ˚pkqq " ž ϕPΦpG ˚,kq Π ϕ pG ˚pkqq
	into non-empty finite sets Π ϕ pG ˚pkqq if G ˚is symplectic, odd special orthogonal or unitary, (2) (even orthogonal case) a partition (5.6) ΠpSO α 2n pkqq " ž ϕPΦpSO α 2n ,kq{O 2n pCq Π ϕ pSO α 2n pkqq

  1. More precisely, we have ' either G " SOpqq for a quadratic form q as in Theorem 2.8 if G is special orthogonal, ' or G " Uphq for an l{k-Hermitian form h as in Theorem 2.11 if G is unitary, ' or G is as in Paragraph 2.8 if G is symplectic (see also Paragraph 5.6).

whose restriction to GL 2 pO F q is the inflation of a cuspidal irreducible representation σ 1 of the group GL 2 pkq, where k is the residue field of F . Associated with σ 1 , there is ( [START_REF] Green | The characters of the finite general linear groups[END_REF]) a character (A. [START_REF] Arthur | Simple algebras, base change, and the advanced theory of the trace formula[END_REF] ξ 1 : l ˆÑ Z l such that ξ q 1 ‰ ξ 1 , where l is a quadratic extension of k and q is the cardinality of k. The representation π 1 ω K{F is isomorphic to π 1 if and only if λ 1 ω K{F is isomorphic to λ 1 . As these representations all have the same central character, this is equivalent to σ 1 η » σ 1 , where η is the unique character of order 2 of k ˆ(note that the restriction of ω K{F to O F is the inflation of η), which is equivalent to ξ 1 pη ˝Nl{k q " ξ q 1 , that is, ξ q´1 1 has order 2. Assume that this is the case. Thus e 1 " 2 and we may write b K{F pπ 1 q " ρ 1 ˆρα 1 for some (tamely ramified, integral) character

Assume further that ℓ is a prime divisor of q 2 ´1 not dividing q ´1, that is, ℓ is an odd prime divisor of q `1. Let µ be a character of l ˆof order ℓ and set ξ 2 " ξ 1 µ. Since ξ q 2 ‰ ξ 2 , there is a cuspidal Q ℓ -representation σ 2 of GL 2 pkq associated with ξ 2 . Since ξ 2 and ξ 1 are congruent, σ 2 and σ 1 are congruent (see for instance [START_REF]Classification des représentations modulaires de GL n pqq en caractéristique non naturelle[END_REF] 2.6). Let us inflate and extend σ 2 to a representation λ 2 of F ˆGL 2 pO F q which is congruent to λ 1 , then compactly induce λ 2 to a representation π 2 of GL 2 pF q. This is an integral cuspidal representation of level 0 which is congruent to π 1 .

Since µ q ‰ µ, we have e 2 " 1, thus b K{F pπ 1 q is a cuspidal representation ρ 2 of GL 2 pKq. Its reduction mod ℓ is an irreducible cuspidal F ℓ -representation of GL 2 pKq. It is the unique generic component of r ℓ pρ 1 ˆρα 1 q.

B

Cuspidal representations of split p-adic orthogonal groups with irreducible Galois parameter B.1.

Let F be a p-adic field with p ‰ 2, and let G be a split special orthogonal group over F , that is, G " SOpQq where Q is a maximally isotropic quadratic form over F . Let n be the dimension of Q. In this section, we assume that n ‰ 2. Let m " tn{2u be the Witt index of Q. With the notation of Paragraph 5.1, we have G " SO 2m`1 pF q if n is odd, G " SO 1 2m pF q if n is even. We will prove the following result.

Proposition B.1. -There exists a cuspidal representation of level 0 of G whose transfer to GL N pF q is cuspidal.

B.2.

In this paragraph, we refer to [START_REF] Lust | On depth zero L-packets for classical groups[END_REF] §2 (see p. 1090 in particular). Let V be the n-dimensional F -vector space on which Q is defined. Write

where V an is anisotropic (thus dimpV an q ď 1) and V iso is a sum of m hyperbolic planes.

Let q denote the cardinality of the residue field of F . The anisotropic group G an " SOpV an q has a unique (up to conjugacy) maximal parahoric subgroup. Its finite reductive quotient G an has neutral component the finite special orthogonal group SO a pqq with a " dimpV an q.

For any choice of integers m 1 , m 2 ě 0 such that m 1 `m2 " m, there is a maximal parahoric subgroup

where SO u,v pqq is the special orthogonal group over F q associated with a quadratic space of dimension u `v and Witt index v. Choose m 2 " 0, so that G has neutral component SO m,m pqq if n " 2m, and SO m`1,m pqq if n " 2m `1. In other words, G ˝is split.

B.3.

Let σ be a self-dual cuspidal irreducible representation of GL 2r pqq and s P F q2r be a parameter corresponding to σ. In particular, s has degree 2r over F q and s ´1 " s q r . Its characteristic polynomial P pXq is thus irreducible, of degree 2r, and self-dual (that is, reciprocal).

The parameter s can be seen in the dual group G ˝,˚Ď GL 2r pqq. It then defines a Lusztig series EpG ˝, sq. Proof. -If m is odd, see [START_REF] Lust | On depth zero L-packets for classical groups[END_REF] §7.2 (p. 1098). Assume now that m is even. We follow [START_REF] Lust | On depth zero L-packets for classical groups[END_REF] §7.3. Consider the group with connected centre r G " GSO m of which G ˝is a subgroup. The scalars 1 and ´1 are not eigenvalues of s. The centralizer of s is thus connected and the two Lusztig series associated with s are the same. A cuspidal representation of G ˝associated with s is an irreducible component of the restriction to G ˝of a cuspidal representation of r G associated with a semisimple element s P r G ˚lifting s. To prove the lemma, it thus suffices to prove that the Lusztig series Ep r G, sq contains a cuspidal representation. The two groups r G and G ˝act naturally on the same space, thus s and s have the same characteristic polynomial P pXq. It follows from [START_REF] Lust | On depth zero L-packets for classical groups[END_REF] §7.2 (p. 1098) that Ep r G, sq contains a cuspidal representation.

B.4.

Let τ be a cuspidal representation in the Lusztig series EpG ˝, sq. Let λ be an irreducible representation of J whose restriction to J ˝(the preimage of G ˝in J) is a direct sum of conjugates (under J) of the inflation of τ . Let π be the representation obtained by compactly inducing λ to G. It is a cuspidal irreducible representation of level 0 of G.

As G is split, it follows from Moeglin [START_REF]Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands, in Automorphic forms and related geometry: assessing the legacy of I[END_REF] that the Langlands parameter ϕ associated with π is described by the reducibility set Redpπq and the Jordan set Jordpπq (see for instance the introduction of [START_REF] Lust | On depth zero L-packets for classical groups[END_REF] for a definition).

Proof. -By [START_REF] Shahidi | A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups[END_REF] Corollary 9.10, all elements of Πpaq have the same formal degree. If dg is a Haar measure on G{Z, then the formal degree of πpaq is dg{volpI `{Z, dgq (by [START_REF] Oi | Simple supercuspidal L-packets of quasi-split classical groups[END_REF] Lemma 5.10), whereas the formal degree of a level 0 cuspidal representation of G is strictly smaller, by the following reasoning inspired by loc. cit., Proposition 5.11. A level 0 cuspidal representation π 1 of G is compactly induced from an irreducible representation ρ of a maximal parahoric subgroup P of G, trivial on the pro-p radical P `of P , and coming via inflation from a cuspidal representation of the finite (connected here) reductive group P " P {P `. The formal degree of π 1 is dimpρq volpP {Z, dgq dg.

One can assume that P contains I and I `contains P `. Since p " 2, the group P `contains Z, so what we have to prove is that dimpρq ă cardpP {I `q. But I `{P `is the unipotent radical U of the Borel subgroup B " I{P `of P , and obviously dimpρq 2 is at most cardpP q, so it is enough to check cardpP q ă cardpP {U q 2 or cardpU q 2 ă cardpP q, which is a consequence of the existence of the big cell BwU in the Bruhat decomposition for P .

Remark C.5. -It is highly plausible that for a cuspidal representation π 1 of G which is not of level 0 and is not a simple cuspidal either, the formal degree of π 1 is bigger than the formal degree of πpaq. But nothing explicit is known about such π 1 .

C.5.

Now we compute the character ξpaq of πpaq at an affine generic element g of I `, where g generic means that modulo I ``, g gives an pn `1q-tuple pu 1 , . . . , u n`1 q in k n`1 with all coordinates non-zero. As in [START_REF] Oi | Simple supercuspidal L-packets of quasi-split classical groups[END_REF] Lemma 2.5, we see that an element y conjugating g into I `belongs to I, so that by the usual formula for the character of compactly induced representations (see e. g. loc. cit. Theorem 3.2), the character ξpaq of πpaq at g is the sum ÿ pχ 1 ,...,χnqPk

which is a kind of Kloosterman sum, the sum ÿ pη 1 ,...,ηnqPk ˆn ψ `u1 η 1 `u2 η 2 `¨¨¨`u n´1 η n´1 `un η 2 n `au n η n`1 with η n`1 given by pη 1 . . . η n´1 q 2 η n η n`1 " 1. Noting that ψ takes only the values 1 and ´1, we conclude:

Proposition C.6. -The value of ξpaq at a generic element g of I `is an odd integer depending only on g modulo I ``.

C.6.

Still following [START_REF] Oi | Simple supercuspidal L-packets of quasi-split classical groups[END_REF] 5.3, we now show: Proposition C.7.rpaq " 1 or 2, and, seen as a representation of W F of dimension 2n `1, φpaq is either irreducible or the direct sum of a character ω with ω 2 " 1 and an irreducible (orthogonal) representation with determinant ω.