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1Université Sorbonne Paris Nord, 2University of Liverpool

February 6, 2023

Abstract

We study some fundamental properties, such as the transience, the recurrence, the first
passage times and the zero-set of a certain type of sawtooth Markov processes, called extremal
shot noise processes. The sets of zeros of the latter are Mandelbrot’s random cutout sets, i.e.
the sets obtained after placing Poisson random covering intervals on the positive half-line.
Based on this connection, we provide a new proof of Fitzsimmons-Fristedt-Shepp Theorem
[FFS85] which characterizes the random cutout sets.
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1 Introduction

Extremal shot noise processes (ESNs) first appeared in the eighties in the framework of applied
stochastic geometry and of random sets for modelling extremes in a spatial setting, see Serra
[Ser82, page 470] and Heinrich and Molchanov [HM94]. They have been then reintroduced in
a more general setting by Dombry [Dom12] who has studied some of their properties and shed
light on their connection with max-stable random fields.

We work here in the setting of one-dimensional Markov processes. Let N ∶= ∑s≥0 δ(s,ξs) be a
Poisson point process (PPP) on [0,∞) × (0,∞) with intensity λ × µ with µ a Borel measure on
(0,∞) and λ the Lebesgue measure. We denote the tail of µ by µ̄(x) = µ([x,∞)) and suppose
µ̄(x) < ∞ for all x > 0. Denote by (a)+ ∶= max(a,0), the positive part of any real number a. Let
b ∈ R.

Definition 1. We call standard ESN(b, µ) the process (M(s), s ≥ 0) valued in [0,∞) and ob-
tained from N as follows:

M(t) ∶= sup
0≤s≤t

(ξs − b(t − s))+.
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When b = 0, the process M is a classical extremal process. We refer to Resnick’s book [Res08,
Chapter 4.3], see also the references therein. When b ≠ 0, the contribution of any atom to the
process is affected by its age, which is the so-called shot noise structure.

Extremal shot noise processes as defined above form a certain class of sawtooth processes,
in the sense that they evolve linearly or stay constant between their jumps. Such processes are
known to play an important role in the theory of Markov processes, see for instance Blumenthal
[Blu92, page 49]. We refer also to Boxma et al. [BPSZ06] and Löpker and Stadje [LS11] for
works on a general class of sawtooth processes close to ESNs. It turns out that many natural
problems can be solved with closed-form solutions for ESNs. Their finite dimensional laws, their
semigroup and their long-term behavior are for instance obtained in Theorem 1. The generator
is studied in Theorem 2, and last but not least, the Laplace transform of their first-passage
times, also available explicitly in terms of b and µ, is given in Theorem 4.

Random cutout sets were introduced by Mandelbrot [Man72]. They are defined as the sets
of real numbers left uncovered by Poisson random covering intervals on the positive half line.
Namely, the random cutout set based on the PPP N is given by

R ∶= [0,∞) − ⋃
s≥0

(s, s + ξs). (1.1)

Those random sets are at the core of the theory of random coverings, see Kahane [Kah00] and
[Kah90]. Barral and Fan have studied in [BF04] and [BF05] some of their multifractal properties.
They also appear in many other contexts. We refer the reader for instance to Bertoin [Ber91]
and [Ber94] where they are used for studying the existence of increase times in Lévy processes
and the differentiability of their sample paths. They also play a crucial role in the study of
zero-sets of certain processes, see e.g. Bi and Delmas [BD14], Evans and Ralph [ER10] and
Foucart and Uribe Bravo [FUB14]. Some random sets with closely related constructions are
studied in Marchal [Mar15] and Rivero [Riv03].

The question of when the random set R is almost surely reduced to the singleton {0}, that
is to say when the whole open half-line is covered, was asked in [Man72] and the necessary and
sufficient condition was found by Shepp [She72]. A definitive answer on how to characterize the
law of the random cutout set is given by Fitzsimmons-Fristedt-Shepp’s Theorem [FFS85], with
the potential measure ofR given explicitly. Arguments in [FFS85] were based on approximations
of R by intersections of regenerative sets. We refer also to Bertoin [Ber99, Chapter 7].

A striking feature of the ESN process lies in its simple connection with the random cutout
set associated to N . We shall see that the random set R in (1.1) coincides with the closure
of the zero-set of a standard ESN(1, µ) process. The main contribution of the paper is a new
proof of Fitzsimmons-Fristedt-Shepp’s Theorem, see Corollary 1, based on this connection and
on classical arguments of potential theory of Markov processes. Most important properties of
R, such as the regenerative property and the fact that it is a perfect set (i.e. it has no isolated
point), will also directly follow from this representation.

Notation. Let R+ ∶= [0,∞). For any subset A ⊂ R+, we denote its closure by Ā. For any
x, y ∈ R, we denote by x∧y and x∨y the minimum and the maximum of x and y. In any integral

∫
b
a , we adhere to the convention that the lower delimiter a is excluded from the integration,

while the upper delimiter b is included (except for b = ∞). We denote by C0([0,∞)) the space of
continuous functions vanishing at ∞, and by ∥f∥∞ the supremum norm of f . We set C1

b ([0,∞))

the space of continuously differentiable bounded functions and C1
c ([0,∞)) the space of those

with compact support included in [0,∞). For any function f , we denote by f∣[a,b) the restriction
of f on the interval [a, b). The limit inferior and superior of a function f are denoted respectively

by lim f and lim f . For any event A, we denote by Ac the complementary event. Lastly, X
law
= Y

means that the random variables X and Y have the same law.
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2 Extremal shot noise processes as Markov processes

We first collect some basic observations from Definition 1. Let M be a standard ESN(b, µ)
process. The process M takes only positive values, starts from 0 and has clearly càdlàg paths.

In the case b ≤ 0 (i.e. the slopes are nonnegative) the process has almost-surely non-decreasing
sample paths which go towards ∞. When b < 0, paths are increasing, and they are not monotonic
when b > 0, see Figure 1 below. Note also that by construction, for any b ∈ R, we have M(t) ≥
(−bt)+ ≥ 0 for all t ≥ 0, P-a.s.. We shall mainly focus on the case b ≠ 0 in the article.

The Markov property of the Poisson point processN and the fact that the “response function”
s ↦ −b(t − s) in the shot noise structure is linear in time will imply that the standard ESN
process (M(t), t ≥ 0) is a time-homogeneous Markov process. In particular there exists a family
of probability distributions (Px, x ∈ R+) on the space of non-negative càdlàg paths such that
Px is the law of the process M started with initial value M0 = x. The probability law Px can
be constructed on the same probability space as N by adjoining a point (0, x) to the PPP N .
Namely set N x ∶= δ(0,x) +N and define

Mx
(t) = sup

0≤s≤t
{(ξs − b(t − s))+ ∶ (s, ξs) is an atom of N x} = (x − bt)+ ∨M

0
(t), (2.2)

where M0 is the standard ESN(b, µ) process.

We see from (2.2) that the process will leave x along (x − bt)+ until it encounters the first
atom of N satisfying ξ > (x− bt)+ and jumps there. If the process is able to reach the boundary
0, then it stays at 0 until the next atom of N .

In particular, any point x > 0 is instantaneous (it is left immediately) and is irregular for itself
(the process does not return to it immediately). Indeed, when b < 0, the paths being increasing,
the point x will not be reached again. When b > 0, the process will return to x by firstly getting
back above it and secondly reaching it by linear decay. Since by assumption µ̄(x) < ∞, it can
occur only after a strictly positive time a.s..

b > 0

ESN with slope −b

b = 0 b < 0

Figure 1: Sample paths of an ESN(b, µ).

When b > 0 and µ̄(0) < ∞, it is clear that the point 0 will be reached with positive probability.
This is furthermore an holding point. Indeed the process started at 0 stays at 0 for an exponential
time with parameter µ̄(0), the rate at which a new atom of N is encountered. When µ̄(0) = ∞,
the set {0 ≤ s ≤ t ∶ ξs ∈ (0,1)} is a dense subset of [0, t]. Hence, when starting with initial value
0, the process M will make immediately a positive jump a.s..

The only point at which the process may have a non trivial behavior is thus 0. A natural
question in the case b > 0 is whether or not the negative slopes are strong enough for the paths
to be able to reach 0 when µ̄(0) = ∞. We may also wonder if the process can be transient when
b > 0. Before tackling this problem, see Theorem 4, we gather in our first theorem fundamental
properties of ESNs, as for instance their Markov property.
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Theorem 1 (Finite dimensional laws, semigroup and stationary distribution). Let b ∈ R, µ be
a measure on (0,∞) and M be a ESN(b, µ).

1. Let n ≥ 1 and 0 = s0 < s1 < s2 < ⋯ < sn. For any u1,⋯, un ∈ R+.

P0(M(s1) ≤ u1,⋯,M(sn) ≤ un)

= exp
⎛

⎝
−

n

∑
i=1
∫

si

si−1

µ̄
⎛

⎝

n

⋀
j=i

(uj + b(sj − t))
⎞

⎠
dt

⎞

⎠

n

∏
i=1

1{ui≥(−bsi)+}. (2.3)

In particular the one-dimensional law at time s has the following cumulative distribution
function: for any u ∈ R,

F 0
s (u) ∶= P0(M(s) ≤ u) = exp(−∫

s

0
µ̄ (u + b(s − t))dt)1{u≥(−bs)+} (2.4)

= exp(−
1

b
∫

u+bs

u
µ̄(y)dy)1{u≥(−bs)+} if b ≠ 0. (2.5)

2. Let x ∈ [0,∞) and t ≥ 0. For any u ∈ R,

F xt (u) ∶= Px(M(t) ≤ u) = F 0
t (u)1{u≥(x−bt)+}.

Namely the random variable M(t) under Px takes the value (x − bt)+ with probability
F 0
t (x − bt)+) and conditionally given that M(t) > (x − bt)+, it is distributed as M0(t).

The process M is a Markov process with the Feller property, i.e. its semigroup (Pt) satisfies

(a) PtC0([0,∞)) ⊂ C0([0,∞)),

(b) For any f ∈ C0([0,∞)), Ptf Ð→
t→0

f uniformly.

3. Assume b > 0. The following equivalence holds

∀s > 0,P0(M(s) = 0) > 0 if and only if ∫
1

0
µ̄(v)dv < ∞.

4. Assume b > 0. The process M admits a stationary distribution if and only if ∫
∞

1 µ̄(u)du <
∞. In this case, it is unique and it is the limiting distribution of M : namely the stationary
distribution π satisfies for any u ≥ 0,

π([0, u]) = P0(M(∞) ≤ u) ∶= lim
t→∞

P0(M(t) ≤ u) = exp(−
1

b
∫

∞

u
µ̄(v)dv) .

If ∫
∞

1 µ̄(u)du = ∞ then M(s) → ∞ as s goes to ∞ in probability.

We now study the infinitesimal generator of M .

Theorem 2 (Generator of ESN). - Let A be the generator of the ESN(b, µ) process (M(t), t ≥ 0)
and set

D
b>0

∶= {f ∈ C1
b ([0,∞)) ∶ ∃ε > 0, such that f∣[0,ε] is constant} and Db≤0

∶= C1
c ([0,∞)). (2.6)

Then according to b > 0 (negative slopes) or b ≤ 0 (non negative slopes) the generator A acts on
any f ∈ Db>0 or f ∈ Db≤0 as follows :

Af(x) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∫
∞
x (f(y) − f(x))µ(dy) − bf ′(x) for any x > 0,

∫
∞

0 (f(y) − f(0))µ(dy) ≠ 0 for x = 0.

(2.7)

Moreover the set Db>0 and Db≤0 are cores.
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Remark 3. 1. A simple use of Fubini-Lebesgue theorem gives the following alternative ex-
pression for the generator A. Let f ∈ C1

b ([0,∞)), for any x > 0:

Af(x) = ∫
∞

x
µ̄(v)f ′(v)dv − bf ′(x). (2.8)

2. Although the generator takes this simple form, the ESN(b, µ) process is of course not the
superposition of a linear drift with an extremal process.

In the next theorem, the first passage time below any level a of M is studied and the questions
whether the process is recurrent or transient and if 0 is accessible are addressed.

For any a ∈ (0,∞), we set σa ∶= inf{s ≥ 0 ∶M(s) ≤ a}.

Theorem 4 (First passage times, transience/recurrence and zero-set). Let M be an ESN(b, µ)
with b > 0.

1. Let θ > 0. Define for any x > 0,

fθ(x) ∶= ∫
∞

x
e−

θ
b
s exp(

1

b
∫

1

s
µ̄(u)du)ds. (2.9)

One has fθ(x) < ∞ for all x > 0. For any x > a > 0, the Laplace transform of σa is given
by

Ex[e−θσa] =
fθ(x)

fθ(a)
.

2. Set

I ∶= ∫

∞

1
exp(

1

b
∫

1

s
µ̄(v)dv)ds. (2.10)

We have the following dichotomy:

• If I = ∞ then M is recurrent (i.e. it returns almost surely to any point a > 0).

Moreover,

– in the case ∫
∞

1 µ̄(v)dv = ∞, M is null recurrent,

– in the case ∫
∞

1 µ̄(v)dv < ∞, M is positive recurrent.

• If I < ∞ then M is transient (i.e. M(s) → ∞ a.s.)

3. Set

J ∶= ∫

1

0
exp(

1

b
∫

1

s
µ̄(v)dv)ds. (2.11)

We have the following dichotomy:

• If J = ∞ then 0 is inaccessible (i.e. M(s) > 0 for all s > 0 almost surely).

• If J < ∞ then 0 is accessible (i.e. M(s) = 0 for some s > 0 with positive probability).

Moreover, the inverse of the local time at 0 of M is a subordinator (τx,0 ≤ x < ζ)
with lifetime ζ and whose Laplace exponent is ϕ ∶ θ ↦ c/fθ(0) for some renormalisa-
tion constant c > 0.

Remark 5. A strong parallel can be drawn between the first passage times of ESNs and those
of branching processes with immigration, see Duhalde et al. [DFM14].

The next lemma establishes the connection between extremal shot noise processes and random
cutout sets.
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Lemma 1 (Form of the zero-set of ESN). Let b > 0. The closure of the zero-set of the ESN(b, µ)
process, (M(t), t ≥ 0), is of the following form

Z̄ = {t ≥ 0 ∶M(t) = 0} = [0,∞) − ⋃
s≥0

(s, s + ξs/b) a.s..

Lemma 1 and Theorem 4-(3) have for direct corollary Fitzsimmons-Fristedt-Shepp Theorem,
see [FFS85], which characterizes the random cutout set.

Corollary 1 (Theorem 1 in [FFS85]). Let µ be a measure on (0,∞) and N ∶= ∑s≥0 δ(s,ξs) be a
PPP on [0,∞) × (0,∞) with intensity λ × µ. Consider the random cutout set

R ∶= [0,∞) − ⋃
s≥0

(s, s + ξs),

we have that

1. R = {0} a.s. if and only if ∫
1

0 exp (∫
1
s µ̄(v)dv)ds = ∞ (Shepp’s criterion, see [She72]).

2. When ∫
1

0 exp (∫
1
s µ̄(v)dv)ds < ∞,

R
law
= {τx ∶ 0 ≤ x < ζ},

where (τx,0 ≤ x < ζ) is a subordinator with lifetime ζ and Laplace exponent θ ↦ c/fθ(0)
for some positive constant c > 0. In particular R is a regenerative set which is almost
surely perfect, i.e. R has no isolated point. It is furthermore bounded almost surely if and

only if ∫
∞

1 exp (∫
1
s µ̄(s)ds)ds < ∞ and has positive Lebesgue measure a.s. if and only if

∫
1

0 µ̄(s)ds < ∞.

Remark 6. ESN processes satisfy the property of max-infinite divisibility, see [Dom12, Proposi-
tion 2.3], that is to say,

(M(t), t ≥ 0)
law
= (∨

n
i=1Mi(t), t ≥ 0) , (2.12)

where M is a standard ESN(b, µ) process and the processes (Mi, i = 1,⋯, n) are i.i.d. standard
ESN(b, 1

nµ) processes. The identity (2.12) is a direct consequence of the superposition theorem
of Poisson point processes. In terms of the random cutout sets, this entails

R ∶= {t ≥ 0 ∶M(t) = 0}
law
= {t ≥ 0 ∶ ∨ni=1Mi(t) = 0} = ∩ni=1Ri,

with Ri ∶= {t ≥ 0 ∶Mi(t) = 0} for i = 1,⋯, n. We recover here the fact that the random cutout
sets are infinitely divisible for the intersection, see [FFS85, Section 5] and Fristedt [Fri96].

Many explicit examples can be designed by choosing specific tails for the measure µ. We refer
the reader to the examples in [FFS85]. We only shed light on the following important example
in which the inverse local time at 0 of the standard ESN is a stable subordinator.

Example 1 (Selfsimilar ESN with negative slopes). Let b ∈ R+ and c > 0. Assume µ̄(x) = c
x for

all x > 0 and let M be an ESN(b, µ). Then

1. For any x ≥ 0, t ≥ 0,

F xt (u) ∶= Px(M(t) ≤ u) =
⎛

⎝

1

1 + bt
u

⎞

⎠

c/b

1{u≥(x−bt)+}.

Moreover, for any k > 0 and u ≥ 0, F xt/k(u/k) = F
kx
t (u) so that (kMx(t/k), t ≥ 0) has same

law as (Mkx(t), t ≥ 0), i.e. M is selfsimilar with index 1.
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2. The finite-dimensional law of M satisfies for any u1,⋯, un ∈ R,

P0(M(s1) ≤ u1,⋯M(sn) ≤ un) =
n

∏
i=1

n

⋀
j=i

(
uj + b(sj − si−1)

uj + b(sj − si)
)

c
b

1{ui≥(−bsi)+}, (2.13)

where 0 = s0 < s1 < ⋯ < sn.

3. When b > 0, Theorem 4-(2) ensures that when c/b > 1, M is transient, otherwise it is null
recurrent. Furthermore, by applying Theorem 4-(3), we see that 0 is accessible for M if
and only if c/b < 1. In this case, fθ(0) = θ

c/b−1 for all θ > 0 (up to a multiplicative positive
constant) and by Theorem 4-(3), the zero-set of M is the closure of the range of a stable
subordinator with index 1 − c/b.

Remark 7. The selfsimilar ESN(b, µ) process studied in Example 1 appears as the functional
limit of certain Galton-Watson processes with immigration, see Iksanov and Kabluchko in [IK18].
They have shown that if (Yn, n ∈ N) is a Galton-Watson process with immigration (GWI) whose
offspring distribution has finite mean m and whose immigration distribution, say ν, is such that
ν̄(n) ∼

n→∞
c

logn for some c > 0 then

(
1

n
( logY[ns])+, s ≥ 0) Ô⇒

n→∞
(M(s), s ≥ 0)

where M is a selfsimilar standard ESN with b = − logm ∈ R and with µ̄(x) = c/x for all x > 0.
The process M describes therefore the evolution of the growth rate of the GWI process. In the
subcritical case (b > 0), a phase transition occurs in the growth rate: it is null-recurrent when
c/b ≤ 1 and transient otherwise. It does not return to 0 almost surely if and only if c/b ≥ 1. In
the supercritical case (b < 0), the process M is transient and becomes less and less “jumping”
as time goes to ∞, this is simply due to the fact that fewer and fewer atoms of N can be found
above the line t ↦ −bt, see Figure 1. At an intuitive level, this is saying that the growth rate is
mostly governed by the first immigration arrivals.

3 Study of ESN processes

We establish here the results of Section 2.

3.1 Finite-dimensional laws, semigroup and stationary law of ESNs: proof of
Theorem 1

Proof of Theorem 1-(1). Recall N the Poisson point process with intensity λ × µ and the
Poisson construction of M in Definition 1. Recall that almost surely for all s ≥ 0, M(s) ≥ (−bs)+.
Let s1 > 0 and u1 ∈ [0,∞). The event {M(s1) ≤ u1} coincides almost surely with the event that
all atoms (t, ξt) of N on [0, s1] are such that (ξt − b(s1 − t))+ ≤ u1. Note that since u1 ≥ 0, the
inequality is equivalent to ξt−b(s1−t) ≤ u1, and since any atom ξt is positive, it is also equivalent
to ξt ≤ (u1 + b(s1 − t))+, a.s.. More generally, for any s1 < s2 < ⋯ < sn and u1, . . . , un ≥ 0,

{M(s1) ≤ u1,M(s2) ≤ u2,⋯,M(sn) ≤ un}

= {∀t ∈ [0, s1], (ξt − b(s1 − t))+ ≤ u1,∀t ∈ [0, s2], (ξt − b(s2 − t))+ ≤ u2,⋯,

∀t ∈ [0, sn], (ξt − b(sn − t))+ ≤ un} ∩ {u1 ≥ (−bs1)+} ∩⋯ ∩ {un ≥ (−bsn)+}

= {N(Ac) = 0} ∩ {u1 ≥ (−bs1)+} ∩⋯ ∩ {un ≥ (−bsn)+},
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with A, obtained by gathering all conditions on each disjoint intervals (si, si+1], given by

A ∶= {0 ≤ t < s1, ξ ≤
n

⋀
i=1

(ui + b(si − t))+, s1 ≤ t < s2, ξ ≤
n

⋀
i=2

(ui + b(si − t))+,⋯,

sn−1 ≤ t ≤ sn, ξ ≤ (un + b(sn − t))+} .

Finally, since N(Ac) is a Poisson random variable with parameter

(λ × µ)(Ac) =
n

∑
i=1
∫

si

si−1

µ̄
⎛

⎝

n

⋀
j=i

(uj + b(sj − t))
+

⎞

⎠
dt,

we get

P0(M(s1) ≤ u1,⋯M(sn) ≤ un) = P(N(Ac) = 0)1{ui≥(−bsi)+,∀1≤i≤n}

= exp
⎛

⎝
−

n

∑
i=1
∫

si

si−1

µ̄(
n

⋀
j=i

(uj + b(sj − t)))dt
⎞

⎠
1{ui≥(−bsi)+,∀1≤i≤n}.

The case n = 1, s1 = s, u1 = u gives (2.4), namely

F 0
s (u) ∶= P0(M(s) ≤ u) = exp(−∫

s

0
µ̄ (u + b(s − t))dt)1{u≥(−bs)+},

and (2.5) is obtained by change of variable. ◻

Proof of Theorem 1: (2). Recall that the ESN process started from x is defined at any time
t by (2.2), namely Mx(t) =M0(t) ∨ (x − bt)+. One has

P(Mx
(t) ≤ y) = F 0

t (y)1{y≥(x−bt)+} = F
0
t (y)1{y≥x−bt}. (3.14)

Since the process M takes only non-negative values, F 0
t (y) = 0 if y < 0 and one can replace in

(3.14) in the indicator function (x − bt)+ by x − bt. We shall use both writings. The expression
in (3.14) is simpler to handle in some calculations.

The fact that M satisfies the Markov property is checked as follows. Let s, t ≥ 0 and x ≥ 0,
then

Mx
(t + s) = sup

0≤u≤t+s
ξ0=x

(ξu − b(s + t − u))+

= sup
0≤u≤t
ξ0=x

(ξu − b(t − u) − bs)+ ∨ sup
t≤u≤t+s
ξ0=x

(ξu − b(s + t − u))+

= (Mx
(t) − bs)+ ∨M(t, t + s),

with M(t, t+ s) ∶= supt≤u≤t+s(ξu − b(t+ s−u))+ = sup0≤u≤s(ξu+t − b(s−u))+ which is independent
from Mx(t). Note that (M(t, t + s), s ≥ 0) is a standard ENS(b, µ) constructed from the PPP
N shifted by time t.

We now check the Feller property.

a) Let f ∈ C0([0,∞)). We plainly see from (2.2) that almost surely for any x0 ≥ 0 and any
t ≥ 0, Mx(t) → Mx0(t) as x goes to x0. For the case x0 = 0, recall that M0(t) ≥ −bt
a.s. so that (−bt) ∨M0(t) =M0(t). Therefore by continuity under expectation, the map
Ptf ∶ x↦ E[f(Mx(t)] is continuous on [0,∞).
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b) For any x ∈ [0,∞), and all t ≥ 0, by (3.14)

Px(M(t) ≤ u) = P0(M(t) ≤ u)1{x−bt≤u}.

By (2.4), P0(M(t) ≤ u)→1 as t goes to 0. Therefore, as t goes to 0, Px(M(t) ≤ u)→1{x≤u}
and M(t) converges in law towards x under Px. This implies the pointwise continuity
of the semigroup for given x ≥ 0 as t → 0, which is equivalent to the uniform one since
PtC0([0,∞)) ⊂ C0([0,∞)), see e.g. Rogers and Williams book [RW00, Lemma 6.7 Chapter
III].

Proof of Theorem 1: (3) and (4). Recall b > 0. Since we assume (2.5), for any u ≥ 0,

F 0
s (u) ∶= P0(M(s) ≤ u) = exp(−

1

b
∫

u+bs

u
µ̄(y)dy) .

1. By letting u go to 0 in the expression above, we see that for all s > 0, P0(M(s) = 0) =

e−
1
b ∫

bs
0 µ̄(v)dv. The latter is strictly positive if and only if ∫

1
0 µ̄(v)dv < ∞.

2. By letting s go to ∞, we see that

lim
s→∞

P0(M(s) ≤ u) = exp(−
1

b
∫

∞

u
µ̄(y)dy) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if ∫
∞

1 µ̄(y)dy = ∞

> 0 if ∫
∞

1 µ̄(y)dy < ∞.

Hence, the process converges towards ∞ in probability if and only if ∫
∞

1 µ̄(y)dy = ∞.
Assume now ∫

∞
1 µ̄(y)dy < ∞ and let π be a stationary distribution. Then for any y ≥ 0,

π([0, y]) = ∫
∞

0
Px(M(t) ≤ y)π(dx) = ∫

∞

0
P0(M(t) ≤ y)1{y≥x−bt}π(dx)

= P0(M(t) ≤ y)π([0, y + bt]).

By letting t to ∞, we see that π exists if and only if M admits a limiting distribution and
that in this case π and the latter coincide.

◻

3.2 Infinitesimal generator of ESNs: proof of Theorem 2.

Proof. Note that since the process is Feller, the generator A (obtained as a strong derivative
of the semigroup) matches with the weak generator, see e.g. Böttcher et al. [BSW13, Theorem
1.33].

Let f be a C1
b ([0,∞)) function. We see from (3.14) that the semigroup of M takes the form

Ex[f(M(t))] = f((x − bt)+)F
0
t ((x − bt)+) + ∫((x−bt)+,∞)

f(m)dF 0
t (m) (3.15)

where dF 0
t denotes the Stieltjes measure associated to F 0

t restricted on (0,∞).

One has for all x > 0

lim
t→0+

Ex[f(M(t))] − f(x)

t
= lim
t→0+

1

t
(f((x − bt)+) − f(x))F

0
t ((x − bt)+) (3.16)

+ lim
t→0+

1

t
∫

∞

(x−bt)+
(f(y) − f(x))dF 0

t (y). (3.17)

9



For (3.16), since for any x > 0, P0(M(t) ≤ (x − bt)+) = F 0
t ((x − bt)+) → 1 as t goes to 0, and

f ∈ C1, we have that the middle term below can be deleted

lim
t→0+

1

t
(f((x − bt)+) − f(x))F

0
t ((x − bt)+) = lim

t→0+
1

t
(f(x − bt) − f(x))F 0

t (x − bt) = −bf
′
(x).

We deal now with (3.17). By (2.4), for any u > 0:

1

t
P0(M(t) ≥ u) =

1

t
(1 − exp ( − ∫

t

0
µ̄(u + b(t − v))dv)) →

t→0
µ̄(u). (3.18)

By assumption f is continuous and bounded, hence for all x > 0, and for any small ε > 0,

lim
t→0+

∣
1

t
∫

x

(x−bt)+
(f(y) − f(x))dF 0

t (y)∣ ≤ sup
y∈[x−ε,x]

∣f(y) − f(x)∣µ([x − ε, x]),

which converges towards 0 × µ({x}) = 0 as ε → 0. Thus lim
t→0+

1
t ∫

x
(x−bt)+(f(y) − f(x))dF

0
t (y) = 0

for all x > 0. Combining this with (3.18) we have

lim
t→0+

1

t
∫

∞

(x−bt)+
(f(y) − f(x))dF 0

t (y) = ∫
∞

x
(f(y) − f(x))µ(dy).

Hence for all x > 0:
Af(x) = ∫

∞

x
(f(y) − f(x))µ(dy) − bf ′(x). (3.19)

Recall that no assumption is made on the measure µ near 0. The generator at x = 0 is thus
more involved to study because the right-hand side above might not be well-defined when x = 0
even if f ∈ C1

b ([0,∞)). We thus restrict ourselves to the function space Db>0 in the case b > 0
and Db≤0 in the case b ≤ 0, see (2.6). When b > 0, for any f ∈ Db>0, the term in (3.16) vanishes
at x = 0 for all t ≥ 0, and a similar study of (3.17) provides

Af(0) = ∫
∞

0
(f(y) − f(0))µ(dy).

We now verify that Db>0 is a core for the ESN(b, µ). Recall (3.15). For fixed time t, with x < bt,
we have that

Ptf(x) = f(0)F
0
t (0) + ∫

∞

0
f(y)dF 0

t (y) = Ptf(0),

so that the function Ptf is also constant near the boundary 0. By assumption f ∈ C1 and we
see that Ptf is differentiable on [0,∞). Since PtD

b>0 ⊂ Db>0, and Db>0 is dense in C0([0,∞)),
Db>0 is a core, see e.g. Kallenberg [Kal02, Proposition 19.9]. Everything works similarly when
b ≤ 0. Note that the term in (3.16) vanishes at x = 0 for t small enough. One readily checks that
PtD

b≤0 ⊂ Db≤0 with by definition Db≤0 ∶= C1
c ([0,∞)).

3.3 First passage times, transience, recurrence and zero-set : proofs of The-
orem 4 and Corollary 1

In all this section, we consider an ESN(b, µ) with negative slopes, i.e. b > 0. Notice that in
the case b ≤ 0, the process has almost-surely non-decreasing sample paths and questions to be
addressed in this section are pointless.

Proof of Theorem 4-(1). Let θ > 0 and set for any x > 0:

fθ(x) ∶= ∫
∞

x
e−

θ
b
s exp(

1

b
∫

1

s
µ̄(u)du)ds. (3.20)
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For any x > 0, there is a constant C(x) > 0 such that fθ(x) ≤ C(x) ∫
∞
x e−

θ+µ̄(x)
b

sds < ∞. Moreover,

for all x > 0, f ′θ(x) = −e
− θ
b
x exp (1

b ∫
1
x µ̄(u)du). Recall the generator of M , A in (3.19), and the

form (2.8). We verify now that fθ is θ-invariant for A, i.e. Afθ = θfθ. One has

Afθ(x) = ∫
∞

x
µ̄(v)f ′θ(v)dv − bf

′
θ(x)

= ∫

∞

x
( − µ̄(v))e−

θ
b
v exp(

1

b
∫

1

v
µ̄(u)du)dv + be−

θ
b
x exp(

1

b
∫

1

x
µ̄(u)du)

= [be−
θ
b
v exp(

1

b
∫

1

v
µ̄(u)du)]

∞

v=x
+ ∫

∞

x
θe−

θ
b
v exp(

1

b
∫

1

v
µ̄(u)du)dv

+ be−
θ
b
x exp(

1

b
∫

1

x
µ̄(u)du)

= θ∫
∞

x
e−

θv
b exp(

1

b
∫

1

v
µ̄(u)du) = θfθ(x),

where in the third equality we have performed an integration by parts, together with the fact

that e−
θ
b
v exp (−1

b ∫
v

1 µ̄(u)du) →
v→∞

0.

Let f̃θ be a C1
b ([0,∞)) function such that f̃θ(v) = fθ(v) for any v ∈ [a/2,∞) and f̃θ is a

constant on [0, a/3]. Then f̃θ ∈ D
b>0, see (2.6), and in particular by Theorem 2 is in the domain

of A. Then by applying Dynkin’s formula, see [RW00, (10.11), Chapter III.10, page 254] we
have, for any x > a.

Ex[e−θσa∧tfθ(M(σa ∧ t))] − fθ(x) = Ex[e−θσa∧tf̃θ(M(σa ∧ t))] − f̃θ(x)

= Ex [∫
σa∧t

0
e−θs(Af̃θ − θf̃θ)(M(s))ds]

= Ex [∫
σa∧t

0
e−θs(Afθ − θfθ)(M(s))ds] = 0.

Since the process M has no negative jumps, one has almost surely M(σa) = a on the event
{σa < ∞}. The function fθ being continuous, we get by letting t go to ∞:

Ex[e−θσa1{σa<∞}] = Ex[e−θσa] = fθ(x)/fθ(a). (3.21)

◻

Proof of Theorem 4-2). We now study the recurrence and the transience of the process. Recall

I ∶= ∫
∞

1 exp (1
b ∫

1
s µ̄(v)dv)ds and define the function g(s) ∶= exp (1

b ∫
1
s µ̄(v)dv) for all s > 0 so

that I = ∫
∞

1 g(s)ds and fθ(x) = ∫
∞
x e−

θ
b
sg(s)ds for all x > 0. Moreover ∫

1
a g(s)ds ≤ e

θ
b fθ(a) < ∞

for all a > 0 and by Lemma 3.21:

Ex[e−θσa] =
fθ(x)

fθ(a)
=
∫

1
x e

− θ
b
sg(s)ds + ∫

∞
1 e−

θ
b
sg(s)ds

∫
1
a e

− θ
b
sg(s)ds + ∫

∞
1 e−

θ
b
sg(s)ds

=

∫ 1
x e

− θ
b
s
g(s)ds

∫ ∞1 e
− θ
b
s
g(s)ds

+ 1

∫ 1
a e

− θ
b
s
g(s)ds

∫ ∞1 e
− θ
b
s
g(s)ds

+ 1

. (3.22)

1. Recurrence: assume I = ∞. One has ∫
∞

1 g(s)ds = ∞ and by monotone convergence, we
have

fθ(1) = ∫
∞

1
e−

θ
b
sg(s)ds →

θ→0+
I = ∞,
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and ∫
1
a e

− θ
b
sg(s)ds →

θ→0+ ∫
1
a g(s)ds < ∞. Hence, by letting θ go to 0 in (3.22), we get

Px(σa < ∞) = lim
θ→0+

Ex[e−θσa] = lim
θ→0+

fθ(x)

fθ(a)
= 1.

2. Transience: assume I < ∞. One has ∫
∞

1 g(s)ds < ∞. By letting θ go to 0 in (3.22), we see
that

Px(σa < ∞) = lim
θ→0+

fθ(x)

fθ(a)
< 1. (3.23)

It remains to show that the process M goes to ∞ a.s.. Denote by θt the time shift operator,
i.e. θt(M(⋅)) =M(t + ⋅). For any a > 0, one has

Px( lim
t→∞

M(t) < a) ≤ lim
t→∞

Px(σa ○ θt < ∞)

= lim
t→∞

Ex [PM(t)(σa < ∞)] . (3.24)

Moreover

Ex [PM(t)(σa < ∞)] ≤ Px(M(t) ≤ a) +Ex [1{M(t)>a}PM(t)(σa < ∞)]

=∶ I + II.

Note that the condition I < ∞ implies that ∫
∞
µ̄(u)du = ∞ and by Theorem 1-(3), in this

case the process goes to ∞ in probability. The first term I at the right-hand side in (3.24)
goes towards 0 as t goes to ∞. We study now the second term II. By the assumption
I < ∞, we see that for any a > 0, θ ↦ fθ(a) is well-defined and continuous at θ = 0. Recall
f0(x) = ∫

∞
x g(s)ds for all x ≥ 0. One has by (3.23) and by applying Fubini-Tonelli theorem

in the last inequality,

Ex[1{M(t)>a}PM(t)(σa < ∞)] = Ex [1{M(t)>a}
f0(M(t))

f0(a)
]

=
1

f0(a)
Ex [∫

∞

0
1{a<M(t)≤s}g(s)ds]

≤
1

f0(a)
∫

∞

a
Px(M(t) ≤ s)g(s)ds.

By dominated convergence, since Px(M(t) ≤ s) Ð→
t→∞

0, we have that

II ∶= Ex[1{M(t)>a}PM(t)(σa < ∞)] Ð→
t→∞

0.

Therefore Px( lim
t→∞

M(t) < a) = 0 and since a can be arbitrarily large, lim
t→∞

M(t) = ∞ a.s.

◻

Proof of Theorem 4-3). Recall J = ∫
1

0 exp (1
b ∫

1
s µ̄(v)dv)ds. Given an initial value x > 0, for

any x > a1 > a2 > 0, we have that σa1 ≤ σa2 ≤ σ0 a.s.. Therefore σ0+ ∶= lim
a→0+

↑ σa ≤ σ0 a.s.. Since

the process M is Feller, it is quasi-continuous to the left and one has by the absence of negative
jumps: on the event {σ0+ < ∞}:

M(σ0+) = lim
a→0+

M(σa) = lim
a→0+

a = 0.
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Thus, since by definition σ0 is the first hitting time of 0, σ0+ ≥ σ0 a.s. This entails σ0+ = σ0. On
the event σ0+ = ∞, trivially σ0 = ∞. To sum up, we have σ0+ = σ0 a.s. By Lemma 3.21, for any

θ > 0, Ex[e−θσa] = fθ(x)
fθ(a) . In this equality, by letting a go to 0, we see that

Ex[e−θσ0] =
fθ(x)

fθ(0)
,

with

fθ(0) ∶= fθ(0
+
) = ∫

∞

0
e−

θ
b
s exp(∫

1

s
µ̄(u)du)ds

= ∫

1

0
e−

θ
b
s exp(∫

1

s
µ̄(u)du)ds + ∫

∞

1
e−

θ
b
s exp(∫

1

s
µ̄(u)du)ds.

The second term in the right-hand side is nothing but fθ(1) which is always finite. The first
term is finite if and only if J < ∞. In the case J = ∞, one therefore has Ex[e−θσ0] = 0 and
σ0 = ∞ a.s. Otherwise, when J < ∞, fθ(0) < ∞ and σ0 < ∞ with positive probability.

It remains to identify the law of the inverse local time of M when 0 is accessible, i.e. when
J < ∞. Recall that this entails fθ(0) < ∞ for all θ > 0. The fact that the inverse of the local
time is a subordinator with Laplace exponent ϕ(θ) = 1/fθ(0) (up to a multiplicative constant)
follows from standard arguments that we briefly explain here. We refer for the following facts
to [RW00, Chapter III-16, p. 266]. The map x ↦ fθ(x) = fθ(0)Ex[e−θσ0] is a θ-excessive
function and is the θ-potential of the local time 1 (Lt, t ≥ 0) at 0 of M , namely for all x ≥ 0
and θ ≥ 0, fθ(x) = Ex [∫

∞
0 e−θtdLt]. The inverse of the local time defined at any x ≥ 0, by

τx ∶= inf{t ≥ 0 ∶ Lt > x}, is a subordinator (τx,0 ≤ x < ζ) with lifetime ζ = L∞. We denote by ϕ
its Laplace exponent i.e. E0[e

−θτx] = e−xϕ(θ) and one has,

fθ(0) = E0 (∫

∞

0
e−θtdLt) = E0 (∫

L∞

0
e−θτxdx) = 1/ϕ(θ),

hence ϕ(θ) = 1/fθ(0). We recall also that the closure of the zero set of M and the closure of the
range of (τx,0 ≤ x < ζ) coincide. For all those latter facts on the inverse local time, we refer to
Bertoin’s book [Ber96, Chapter IV, page 120 and Theorem 4-(iii)]. ◻

The proof of Theorem 4 is achieved. We now explain the connection between ESNs and
random cutout sets by establishing Lemma 1.

Proof of Lemma 1. Recall b > 0. Recall Definition 1. The ESN(b, µ) started at 0 is given for
all t ≥ 0 by M(t) = sup0≤s≤t(ξs − b(t − s))+. We see that M(t) > 0 if and only if there exists an
atom (s, ξs) such that s ≤ t and ξs−b(t−s) > 0, namely t ∈ ⋃s≥0[s, s+ξs/b). Recall that M(t) ≥ 0
a.s. Therefore {M(t) > 0}c = {M(t) = 0} for all t a.s. and

Z = {t > 0 ∶M(t) = 0} = [0,∞[−⋃
s≥0

[s, s + ξs/b).

Plainly, Z̄ ∶= {t > 0 ∶M(t) = 0} ⊂ [0,∞[−⋃s≥0(s, s + ξs/b). Moreover, the only points which
belong to Z̄ and not Z are those atoms of times s which are accumulation points of zeros from
the left, so that finally Z̄ = [0,∞[−⋃s≥0(s, s + ξs/b) = R. ◻

It only remains to explain how Corollary 1, which restates Fitzsimmons-Fristedt-Shepp The-
orem, is deduced.

1we work here up to a positive multiplicative constant
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Proof of Corollary 1. It will follow directly by applying Lemma 1, Theorem 4 and Theorem
1-3. in the case b = 1. Consider M the ESN(1, µ) started at 0, constructed from the same
Poisson point process N as the random cutout set R. By Lemma 1, one has the identity

R = {t ≥ 0 ∶M(t) = 0}.

In particular, by Theorem 4-3, 0 is inaccessible for M , equivalently R = {0} a.s. if and only if
J = ∞ (with b = 1). When J < ∞, R coincides with Z̄ = {τx ∶ 0 ≤ x < ζ} with (τx,0 ≤ x < ζ)
the subordinator defined as the inverse local time of M at 0 and whose Laplace exponent is
ϕ ∶ θ ↦ c/fθ(0) (for some constant c > 0). The fact that R is a regenerative set is immediate
since Z̄ is the closure of the range of the subordinator (τx, x ≥ 0), see [Ber99, Chapter 2.1].
It is perfect a.s. since 1/fθ(0) → ∞ as θ goes to ∞ which ensures that the Lévy measure of
(τx,0 ≤ x < ζ) is infinite. The set R is bounded a.s. if and only if M is transient, namely I < ∞.

We have seen in Theorem 1-3, that P(t ∈ Z) > 0 for all t > 0 if and only if ∫
1

0 µ̄(s)ds < ∞. Fix
a > 0, an application of Fubini-Tonelli theorem yields ∫

a
0 P0(M(s) = 0)ds = E[λ(Z ∩ [0, a])] > 0

(which is equivalent to λ(Z ∩ [0, a]) > 0 with positive probability) if and only if ∫
1

0 µ̄(v)dv < ∞.
Recall that the λ(Z) is either zero almost surely or positive almost surely, see e.g. [Ber99,
Proposition 1.8]. Then we can conclude that λ(Z) is positive almost surely. ◻
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construction, approximation and sample path properties, Lect. Notes Math., vol.
2099, Cham: Springer, 2013 (English).

14



[DFM14] Xan Duhalde, Clément Foucart, and Chunhua Ma, On the hitting times of
continuous-state branching processes with immigration, Stochastic Process. Appl. 124
(2014), no. 12, 4182–4201.

[Dom12] Clément Dombry, Extremal shot noises, heavy tails and max-stable random fields,
Extremes 15 (2012), 129–158.

[ER10] Steven N. Evans and Peter L. Ralph, Dynamics of the time to the most recent common
ancestor in a large branching population, Ann. Appl. Probab. 20 (2010), no. 1, 1–25
(English).

[FFS85] Patrick J. Fitzsimmons, Bert Fristedt, and Larry A. Shepp, The set of real numbers
left uncovered by random covering intervals, Z. Wahrsch. Verw. Gebiete 70 (1985),
no. 2, 175–189.

[Fri96] Bert Fristedt, Intersections and limits of regenerative sets, Random discrete struc-
tures. Based on a workshop held November 15-19, 1993 at IMA, University of Min-
nesota, Minneapolis, MN, USA, Berlin: Springer-Verlag, 1996, pp. 121–151 (English).

[FUB14] Clément Foucart and Gerónimo Uribe Bravo, Local extinction in continuous-state
branching processes with immigration, Bernoulli 20 (2014), no. 4, 1819–1844.

[HM94] Lothar Heinrich and Ilya S. Molchanov, Some limit theorems for extremal and union
shot-noise processes, Math. Nachr. 168 (1994), 139–159 (English).

[IK18] Alexander Iksanov and Zakhar Kabluchko, Functional limit theorems for
galton–watson processes with very active immigration, Stochastic Processes and their
Applications 128 (2018), no. 1, 291 – 305.

[Kah90] Jean-Pierre Kahane, Recouvrements aléatoires et théorie du potentiel. (Random
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