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We report on a systematic numerical exploration of the vesicle dynamics in a channel, which is
a model of red blood cells in microcirculation. We find a spontaneous transition, called swirling,
from straight motion with axisymmetric shape to a motion along a helix with a stationary deformed
shape that rolls on itself and spins around the flow direction. We also report on a planar oscillatory
motion of the mass center, called three-dimensional snaking for which the shape deforms periodically.
Both emerge from supercritical pitchfork bifurcation with the same threshold. The universality of
these oscillatory dynamics emerges from Hopf bifurcations with two order parameters. These two
oscillatory dynamics are put in the context of vesicle shape and dynamics in the parameter space of
reduced volume v, capillary number, and confinement. Phase diagrams are established for v = 0.95,
v = 0.9, and v = 0.85 showing that oscillatory dynamics appears if the vesicle is sufficiently deflated.
Stationary shapes (parachute/bullet/peanut, croissant, and slipper) are fixed points, while swirling
and snaking are characterized by two limit cycles.

I. INTRODUCTION

Soft particles such as vesicles, red blood cells (RBCs), compound droplets, capsules, and elastic fibers display rich
dynamic behaviors in linear and quadratic flows [1–12]. If the zoology of dynamics shares some common characteristics,
the so-called tank treading, for example, it may also differ by bifurcation dynamics of each soft particle. A vesicle in
shear flow does not exhibit swinging contrary to capsule and red blood cell, for example, demonstrating the complexity
to understand deeply the coupling between shape and motion.

If deciphering the complex dynamics of such deformable particles is still an open issue, the challenge is also to
measure some physical and mechanical membrane properties by an inverse method comparing experimental shapes to
numerical ones [13–17]. In the high-throughput shape recognition of RBCs moving in a microcapillary for which a few
images per RBC are captured, it is essential to select relevant physical parameters (e.g., flow rate and confinement)
to avoid any oscillatory, chaotic or transient dynamics for efficient shape recognition [18, 19].

Recently, a planar oscillatory dynamics in Poiseuille flow, called snaking, was predicted numerically in 2D for vesicle
with a deflation equal to RBC [20] and in 3D for RBC model with shear elasticity [21, 22]. The center of mass oscillates
in a plane while the particle moves along a microcapillary and the shape deforms. Living systems such as listeria
bacteria, keratinocytes, and paramecium also exhibit oscillatory dynamics, but the center of mass moves along a helix
[23–25]. Is this possible with a passive soft particle such as a vesicle suggesting that these motions are universal and
shared by any entity, be it driven out of equilibrium, or active?

Here, we focus on a three-dimensional (3D) vesicle moving in a microcapillary, i.e., a bounded Poiseuille flow.
This configuration is a model of RBC in microcirculation in the dilute regime. While the dynamics in a shear flow
are well understood, this is much less the case in a Poiseuille flow with the following questions for example: Does
the snaking motion exist in 3D, or is this specific to 2D? Can we expect novel oscillatory dynamics such as those
observed experimentally in living systems? How do the new oscillating dynamics relate to the stationary solutions in
the parameter space?

II. PROBLEM FORMULATION

A. Governing equations

We consider a vesicle of volume V = (4/3)πR3
0 and area A in a capillary of radius Rc. In a typical experiment with

vesicles, the length scale is 10µm, the velocity 1–100µm s−1, and viscosity in the range 1–10 mPa s. Considering
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the density of water, the Reynolds number is of the order of 10−4, leading to negligible inertia contribution in the
momentum equation. As the fluids are incompressible, velocity v and pressure p satisfy the Stokes equations inside
and outside the vesicle:

−∇p+ η∆v = ∇ · σ = 0, ∇ · v = 0, (1)

where η is the viscosity and σ the Newtonian stress tensor.
Far from the vesicle, the unperturbed flow V∞ is imposed:

V∞(x) = Vm
(
1− r2/R2

c

)
ex, r ≤ Rc, (2)

where r2 = y2 + z2, x = (x, y, z) and Vm is the velocity at the centerline.
The material interface of vesicles is a lipid bilayer of approximately 4 nm thickness. Lipids are free to move

along each monolayer. The exchange of lipids between monolayers and their friction [26] is neglected. The area
compressibility coefficient is very large meaning that in the range of experimental shear stress, the area is locally
conserved, which results in

∇s · v = 0, (3)

where ∇s = (I − nn) ·∇ is the surface gradient operator.
Finally, the membrane is a two-dimensional (2D) incompressible fluid with bending resistance, leading to out-of-plane

membrane force. Its free energy is the so-called Helfrich energy, with an additional term ensuring the two-dimensional
incompressibility:

Fm =
κ

2

∫
S

[2H(x)]
2

dS +

∫
S

γ(x)dS, (4)

where H(x) is the local mean curvature and γ(x) a local Lagrange multiplier with the dimension of a surface tension.
The conditions of coupling between the interface and bulk flows result from the conditions of continuity and

mechanical equilibrium at the interface:

vo = vi, (5)

[σo − σi]n+ fm = 0, (6)

where fm is the membrane force density derived from Eq. (4) and n the normal unit vector. The membrane shear
dissipation [27, 28] is neglected, unlike the case of polymersomes, for which it is predominant [29, 30].

B. Dimensionless numbers and physical quantities

The reference length R0 is defined by the volume V :

Lref = R0, V =
4

3
πR3

0, (7)

the reference time by the viscous relaxation of a bending mode:

Tref =
η R3

0

κ
, (8)

and the pressure and the hydrodynamic stress tensor by

pref =
κ

R3
0

. (9)

Vesicles are deflated, i.e., their area A is larger than the area of a sphere of the same volume V . This deflation
allows the system to vary its shape driving by the mechanical equilibrium at the interface. This property is quantified
by the reduced volume v or the excess area. We choose the reduced volume:

v =
V

4
3π( A4π )3/2

= (4π)3/2
R3

0

A3/2
. (10)
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The ability to deform more or less freely from the wall is evaluated by the confinement number Cn:

Cn =
R0

Rc
. (11)

When Cn becomes small, the dynamic behavior in unbounded Poiseuille flow is recovered.
The capillary number Cameasures the competition between the hydrodynamic stress of the order of η (∂V∞/∂r)r=R0/2

and the bending response of the membrane κ/R2
0:

Ca =
ηVmR

2
0

κ

(
R0

Rc

)2

. (12)

This expression can also be rewritten with the flow curvature Vm/R
2
c , making the connection between unbounded and

bounded limits more simple.

C. Numerical formulation

The Stokes equations in multiphasic systems can be converted into a boundary integral formulation; see Ref. [31]
for generalities and Refs. [32–34] for vesicles. As underlined in Refs. [35–37], 3D computations of vesicles in bounded
configuration are still a challenge. In this paper we use an isogeometric FEM-BEM method based on loop subdivision
surfaces used both for the finite element solver for membrane forces (FEM) and for the boundary element method
(BEM) for the fluid solver [38]. The confined geometry needs an additional specific method to take into account the
no-slip condition at the wall; see Ref. [39] for details on the length of the capillary, its meshing, and the validation.
Here, all the simulations are performed with 1280 elements for the vesicle membrane and without viscosity contrast.
There is a remeshing algorithm with criteria based on local curvature, area element, and angles of an element, which
allows preservation of a regular mesh, even in some cases with high curvature [40].

Computations are performed by decreasing the reduced volume by step ∆v = 0.05 until a new dynamics is achieved.
The range of reduced volume spans from v = 0.95 to v = 0.85, the capillary number from Ca = 0.1 to Ca = 10,
the confinement from C−1n = 1 to C−1n = 8. We also investigate the unbounded limit with Ref. [38] to compare with
C−1n = 8. As explained further, the cases v = 0.75 and v = 0.8 have been performed for one set of parameters to
check the universality of oscillatory dynamics.

We vary the initial shape of the vesicle, the lateral position of its center of mass yCM (0) ≡ H, and the tilt angle
with respect to the flow axis θy(0) of its longest axis in the (x, z) plane in order to explore stability of solutions. We
have verified that the kind of dynamics does not depend on the choice of the initial perturbation, y axis, z axis, or
a mixing. For the sake of simplicity, the results are presented as if the perturbation was always along the y axis.
Generally, the initial shape is the one at thermal equilibrium. We checked that an initial prolate shape leads to the
same results in several cases. The value of H has been varied from 0.0005 << 1 to max(H) ≈ C−1n − 0.4. Smaller
values of H are preferred for studying the linear stability far from the threshold and the nature of bifurcation. Details
will be provided in the last paragraph of Sec. IV. Larger values of H are used to establish the phase diagram and the
role of initial conditions close to the swirling-to-slipper transition. In most cases, θy(0) was equal to 0° or ±10°. For
one set parameters (Ca = 1, C−1n ), we have verified that swirling always appears whatever the initial angle between
5° and 45°. When the stability of a solution branch is investigated, such as the axisymmetric one or the snaking one
for example, the initial shape is that of the branch; its orientation and radial position are generally varied with 10°
and moved by 0.0005. If necessary, we will specify the conditions in the text.

III. SHAPES OF SLIGHTLY DEFLATED VESICLES IN POISEUILLE FLOW

First, we have systematically explored the quasispherical case (v ≥ 0.9). Whatever the initial perturbation [H,
θy(0)], Ca, and Cn, all the final states—axisymmetric shape, croissant, and slipper—are stationary. Bullet and
parachute shapes are axisymmetric with a positive and negative curvature at the rear, respectively [36, 41]. Further-
more, there is no membrane flow. Croissantlike shapes are symmetric to (y, z) and (x, z) planes, already observed
in unbounded [42] and bounded cases [35, 36]. There are four vortices at the membrane. Slippers are stationary
out-of-axis shapes, already observed in 2D [43], in the 3D unbounded case [42], and recently in the 3D bounded case
[35, 36].

The phase diagrams have been established for v = 0.95 and v = 0.9. As shown in Fig. 1, they are qualitatively
similar. The transition slipper → croissant → parachute is shifted to higher capillary number when the reduced
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FIG. 1. Phase diagram of a confined vesicle with v = 0.95 (left) and v = 0.9 (right) in a Poiseuille flow in the parameter space
(Ca,Cn). Only stationary shapes exist.
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FIG. 2. Examples of stationary shapes with v = 0.85. (a) Peanut shape (axisymmetric): Ca = 1 and C−1
n = 1.8. (b) Slipper

shape: Ca = 3 and C−1
n = 5. (c) Croissant shape: Ca = 20 and C−1

n = 2. See text for details on the properties of each shape
and on parachute. The color code corresponds to the mean curvature H.

volume is decreased. We observe a croissantlike shape for C−1n = 8, a solution also obtained in the unbounded limit.
While only slippers are solutions with C−1n = 5 and v = 0.9 whatever the capillary number in Ref. [36], we still
observe the transition slipper → croissant → parachute in this regime. We didn’t observe periodic oscillations in the
unconfined limit with ν = 0.9 and Ca = 4 as reported in Ref. [36].

IV. SHAPES AND DYNAMICS OF DEFLATED VESICLES IN POISEUILLE FLOW

Next we consider smaller v, v = 0.85. In weak confinement, namely, the unbounded limit, we observe similar
shapes as slightly deflated vesicles: axisymmetric (parachute), slipper [Fig. 2(b)], and croissant [Fig. 2(c)]. In strong
confinement Cn ≥ 0.8, whatever the initial position H and the capillary number, the final state is stationary and
axisymmetric, as observed in experiments [41, 45]. For small and moderate capillary numbers, the axisymmetric shape
is called peanut, see Fig. 2(a).

As the channel diameter is increased, this state becomes unstable in favor of a nonstationary mode. Unexpectedly,
this mode cannot be identified as snaking but is instead what we call swirling [Fig. 3(b)]. Swirling is peculiar, as
the shape of the vesicle is fixed but its lateral position and orientation change periodically (Fig. 4). The vesicle
moves along a helix while rotating about the flow direction (Fig. 4). The direction of the longest semiaxis L1 varies
periodically. Considering its projections in the planes (x, y), (x, z), and (y, z), three angles θxy, θxz, and θyz are
defined, respectively. While the trajectory is characterized by a fixed distance RCM of the vesicle from the channel
axis, the positions (YCM , ZCM ) of the mass center oscillate in quadrature.

In order to gain further insight into the origin of the swirling and its relation to snaking, we have set θy(0) = 0,
thus imposing the z → −z symmetry. The oscillatory dynamics of the vesicle center of mass is confined to the (x, y)
plane [Fig. 3(a)] and is synchronized with deformation of the vesicle [Figs. 5(a) and 5(c)]. This mode is characterized
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FIG. 3. 3D snaking and swirling: v = 0.85, Ca = 1, and C−1
n = 2.75. (a) Snaking: θy(0) = 0. The center of mass oscillates

in the plane (x, y): blue curve. The shape deforms. (b) Swirling: θy(0) 6= 0. The center of mass moves along a helix (blue
curve) centered on the microcapillary’s axis, the x axis. The shape does not deform and turns around the helix. The black
arrows point outward to the center of mass with solid and dashed lines in the planes (x, y) and (x, z), respectively. Color code
corresponds to interfacial velocity; see movies in Ref. [44].

by a limit cycle as shown in Fig. 5(b). The dependence on H will be discussed further. We thus recover the 3D analog
of the snaking motion reported in 2D [20]. Breaking the z → −z symmetry results in the instability of the snaking,
and a small perturbation of θy leads to swirling, see Fig. 5(d).

As shown in Figs. 5(a) and 5(b), where all the parameters are the same except H, slipper and snaking are unex-
pectedly two solutions varying H from 0.0005 to H = 0.3. Each basin of attraction of solutions depends on H, at
least in a part of parameter space. To gain insight, we established the phase diagram of shapes and dynamics in
(Cn, H) space in the case Ca = 1, see Fig. 5(e). The possible position of the initial thermodynamic shape is restricted
to a range [0, Hmax] as mentioned in Sec. II C. Hmax corresponds to the dotted line. If the confinement is large, only
axisymmetric shapes exist and the axi→ snaking transition does not depend on H (dashed line). Far from the center
line, i.e., H between 0.06 and Hmax, the snaking → slipper does not depend on H contrary to close to the center line
(H < 0.06) where there is a weak dependence. Note that thanks to Fig. 5(d), we know that the snaking domain also
corresponds to swirling.

The bifurcation diagram of the observed motions is shown in Fig. 6(a). The solutions are obtained by slightly
off-centering the vesicle in the y direction. We use two initial orientations: the z → −z symmetric orientation
[θy(0) = 0] to track the snaking branch and a tilt towards the z axis (θy(0) > 0) to track the swirling branch. Below
a critical value C−1n = C−1nc = 1.98 ± 0.015, the mass center comes back to the centerline defining the stable branch
of axisymmetric shapes (green triangles). Above the critical value, the centered solution is unstable as checked by
small perturbation of the lateral position. Two branches of solutions emerge at this point: the swirling branch (black
circles), which is unconditionally stable, and the snaking branch (oscillation amplitude is shown as blue squares),
which is stable only with respect to perturbations that respect the z → −z symmetry. Indeed, the three black arrows
with C−1n = 2.3, 2.75, and 2.9 correspond to the perturbation where the axisymmetric shape is turned by θy(0) = 10°.
The result is the same if the initial shape is at thermodynamic equilibrium. If there is also a perturbation of the radial
position, the time to join the swirling branch is decreased (other points). The black arrow with C−1n = 3.1 corresponds
to the perturbation where the axisymmetric shape is turned by θy(0) = 10°, but in this case the swirling branch does
not exist anymore. The final state is a slipper (orange circles). The blue arrows with C−1n = 2.3 and 2.75 correspond
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FIG. 4. Swirling: v = 0.85, Ca = 1, C−1
n = 2.75, and θy(0) = 10◦. (a) Temporal variation of the radial position of the mass

center RCM . (b) Temporal variation of the cartesian positions (YCM , ZCM ). (c) The angles θxy and θxz of the longest semiaxis
L1 oscillate in quadrature in the planes (x, y) and (x, z), respectively. The angle θyz of L1 in the plane (y, z) varies linearly
with time. The inset refers to the shape and its rotation (yellow arrow) during one period seen from the rear at four times
1–4 (color code). (d) The lengths Lj of three semiaxis of the equivalent ellipsoid tend to a constant. (e) Cross sections of the
shapes in the plane (x, y) at the times 1–4 defined in (b). (f) Cross-sections of the shapes in the plane (x, z). The color code
corresponds to numbers 1–4 defined in (b).

to the perturbation of snaking with a rotation of θy(0) = 10°. The system evolves to swirling. With C−1n = 3, the
system evolves to slipper. Finally, to be complete, the three first points with 1.98 < C−1n < 2 were obtained beginning
with the solution with C−1n = 2.05 to decrease the time of calculations. Indeed, close to the threshold, there is a
critical slowdown. Both for snaking and swirling the amplitudes grow continuously from 0 and scale as |Cn −Cnc|1/2
close to the critical point, a signature of supercritical pitchfork bifurcation considering the accuracy of simulations
[46]. Swirling is stable whatever the perturbation is in the range of confinement shown in Fig. 6(a). If C−1n ≥ 3±0.05,
swirling, snaking, and axisymmetric shape are unstable. The system reaches the slipper branch of solution (orange
circle). For lower C−1n , this branch is only obtained if the initial position is larger than a critical value. Finally, the
phase diagram in the space (Ca,Cn) is shown in Fig. 6(b).
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FIG. 5. (Left panel) 3D snaking: v = 0.85, Ca = 2.3, C−1
n = 2.5, and θy(0) = 0◦. (a) The same initial shape evolves to slipper

(orange, H = 0.03) or snaking (blue, H = 0.0005) following the initial position H; see the blue and orange arrows for the path.
Snaking is an oscillation of the mass center position in a plane, here (x, y). (b) Phase portrait of (a) showing the fixed point
(slipper) and limit cycle (snaking). (c) The 3D shape oscillates during snaking, temporal variations of the lengths Lj of the
three semiaxis of the equivalent ellipsoid. (Right panel) (d) Transition from 3D snaking to swirling after a rotation θy = 10◦ of
the long axis angle around y axis: v = 0.85, Ca = 1, and C−1

n = 2.75. Insert: In the phase space (YCM , ZCM ), the black line
corresponds to 3D snaking and the red circle to the limit cycle of swirling. (e) Phase diagram in the parameter space (C−1

n , H)
with Ca = 1. For steric reasons, the domain above the dotted line is not relevant.

V. DISCUSSION AND CONCLUSION

We provided the first observation and nonlinear characterization of snaking and swirling for vesicles in 3D. Snaking
has been observed in 2D with v = 0.6, as well as for 3D models of RBCs. Here we have shown that swirling is in fact
the most unstable oscillatory mode for a vesicle moving along a microcapillary in the range of investigated parameters,
thereby highlighting the role of the space dimension in such dynamics.

Snaking has been observed in 2D with v = 0.6, which supports its application to RBCs. We also observed swirling
in 3D with Ca = 1, Cn = 0.4, v = 0.8, 0.75, and v = 0.7, ensuring its general relevance. Considering parameters such
as R0 = 3 µm, η = 10−3 Pa s, κ = 10−19 J [47], Cn = 0.4 leads to a maximum velocity of 100 µm s−1. The range of
relevant velocities in microfluidic chips is 1–100 µm s−1. The period is of the order of 20 s. The length covered during
a period varies between 20 µm and 2 mm. The lowest dynamics is measurable with classic microfluidics, while the
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FIG. 6. Analysis of stability. (a) Diagram of bifurcation: v = 0.85 and Ca = 1. Order parameters are the position of the
mass center (YCM ) if the mode is stationary and the amplitudes (ACM ) if oscillating. Above C−1

n = 2.95 ± 0.05, the vesicle
transits to the slipper branch whatever the perturbation. This branch is extended to zero by considering initially H = 0.1.
Below C−1

n = 2.95 ± 0.05, the initial shape is axisymmetric and H = 0.0005. The swirling (snaking) branch is reached with
θy(0) = 10◦ (0◦). Blue arrows correspond to the snaking-to-swirling transition when a perturbation breaking the mirror
symmetry (θy = 10◦) is applied to snaking. Below C−1

n = 1.98 ± 0.015, only the axisymmetric branch exists whatever the
perturbation. (b) Phase diagram in the plane (Ca,Cn).

largest one needs probably a tracking of the shape along the pipe, e.g., a pulled glass on a motorized stage. Swirling
can be characterized by the rotation of the protuberance at the rear of the vesicle as shown in Fig. 5(c) and Figs. 4(e)
and 4(f), which is of the order of the vesicle’s size.

Our study shows that in 3D, snaking and swirling are deeply interconnected. Indeed, Fig. 6(a) shows that preventing
the breaking of the z → −z symmetry in the vesicle dynamics changes the vesicle dynamics from swirling to snaking.
This suggests that the swirling dynamics can be represented to the leading approximation as a superposition of snaking
dynamics in two orthogonal planes (x, y) and (x, z), where the position oscillations along the y and z directions have
the same amplitudes but different phases. The phase shift between the oscillation of YCM and ZCM can be either π/2
or −π/2. These two possibilities correspond to either clockwise or counterclockwise swirling which can be selected by
the sign of θy(0) = ±10°. The vesicle thus acquires chirality through spontaneous symmetry breaking. This chirality
is also manifested in the vesicle shapes, as the shapes observed for two different swirling directions differ by a mirror
symmetry and cannot be made identical by any rotation of the space. In this view the swirling motion is the ultimate
state of the symmetry loss sequence parachute → croissant → slipper → swirling, where the last symmetry lost is the
mirror plane of the slipper.

Helical trajectories in a pipe or in an unbounded fluid have been observed also for microswimmers [48, 49] and
other cells [23–25], highlighting their universality. The oscillatory nature of swirling and snaking clearly suggests a
Hopf bifurcation at their origin. Here, however, we are dealing with a nonclassical case of Hopf bifurcation, because
we have two order parameters, corresponding to the vesicle displacements in y and z directions (YCM and ZCM ),
which are independent in the linear approximation but are coupled at higher order. Our results suggest that a weakly
nonlinear analysis based on the symmetries of the configuration should be possible. Finally, the numerical simulations
should be extended to include spontaneous curvature, area difference elasticity, viscosity contrast, or shear elasticity
for RBCs. Since the two motions have been shown to be universal, we expect that including further ingredients should
only affect our results quantitatively.

In summary, dynamics of vesicles in Stokes flow reveals rich nonlinear dynamics with stationary modes, namely,
fixed points (bullet, parachute, slipper, croissant) and oscillatory dynamics or limit cycles (swirling, snaking). If
the stationary states have been studied in the past, the numerical challenge of a 3D vesicle’s computations delayed
the investigations of oscillatory modes. This work also highlights the role of initial conditions in the emergence of
nonlinear dynamics, an issue still present whatever the mechanical properties of the membrane.
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