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Abstract

We develop a mathematical formalism that allows to study decoherence with a great level generality,
so as to make it appear as a geometrical phenomenon between reservoirs of dimensions. It enables us
to give quantitative estimates of the level of decoherence induced by a purely random environment on a
system according to their respectives sizes, and to exhibit some links with entanglement entropy.

Introduction

The theory of decoherence is arguably one of the greatest advances in fundamental physics of the past
forty years. Without adding anything new to the quantum mechanical framework, and by assuming that
the Schrédinger equation is universally valid, it explains why quantum interferences virtually disappear
at macroscopic scales. Since the pioneering papers [13]| [14], a wide variety of models have been designed
to understand decoherence in different specific contexts (see the review [16] or [3] and the numerous
references therein). In this paper, we would like to embrace a more general point of view and understand
why decoherence is so ubiquitous between quantum mechanical systems.

We start by introducing general notations to present as concisely as possible the idea underlying the
theory of decoherence ( We then build two simple but very general models to reveal the mathematical
mechanisms that make decoherence so universal, thereby justifying why quantum interferences disappear
due to the Schrédinger dynamics only ( and ‘ The most important result is Theorem proved in
§23] giving estimates for the level of decoherence induced by a random environment on a system of given
sizes. We conclude in that even very small environments (of typical size at least Ng = In(Ns) with
Ns the size of the system) suffice, under assumptions discussed in We also give a general formula
estimating the level of classicality of a quantum system in terms of the entropy of entanglement with its
environment (§3.2] proved in the annex .

1 The basics of decoherence

The theory of decoherence sheds light on the reason why quantum interferences disappear when a system
gets entangled with a macroscopic one, for example an electron in a double-slit experiment that doesn’t
interfere anymore when entangled with a detector. According to Di Biagio and Rovelli [1], the deep
difference between classical and quantum is the way probabilities behave: all classical phenomena satisfy
the total probability formula

PB=y)= » PA=2)PB=y|A=x)
z€Ilm(A)

relying on the fact that, even though the actual value of the variable A is not known, one can still assume
that it has a definite value among the possible ones. This, however, is not correct for quantum systems.
It is well-known that the diagonal elements of the density matrix account for the classical behavior of a



system (they correspond to the terms of the total probability formula) while the non-diagonal terms are
the additional interference termsﬂ

Consider a system S, described by a Hilbert space Hs of dimension d, that interacts with an environ-
ment & described by a space He of dimension n, and let B = (]7))1<i<a be an orthonormal basis of Hs.
In the sequel, we will say that each |i) corresponds to a possible history of the system in this basis (this
expression will be given its full meaning in an ongoing article dedicated to the measurement problem
[I1]). Let’s also assume that B is a conserved basis during the interaction with £ (in some contexts
called a pointer basis). When £ is a measurement apparatus for the observable A, the eigenbasis of Ais
clearly a conserved basis; in general, any observable that commute with the interaction Hamiltonian is
suitable.

Inspired by [I], let’s denote | W) = (Zf N )) ®|&o) the initial state of S+& before interaction. After
a time ¢, the total state evolves to |¥(t)) = Z?zl ¢ i) ® |Ei(t)). Let also n(t) = max [(E:(®)|E; ()] If
(lex))1<k<n denotes an orthonormal basis of He, the state of S, obtained by tracing out the environment,
is:

ps(t) = tre [W(2)) (W(1)]

*Z Zlczl [erl€(O)* 1) (i1 + > ey (exl€ilt)) (€ ()lex) |1) (]

k=1 \ i=1 1<i#j<d

d n
=l Yo lexl&@ i) (1 + Y ed (€ t)|(2|ek (exl ) I£:0)) 1) (]
i=1 k=1 ~- 1<i#j<d ~

d
=Skl Y ed E @) 1) Gl

i=1 1<i#j<d

d
=g+

where pfgd) stands for the (time independent) diagonal part of ps(t) (which corresponds to the total
probability formula), and pg”( t) for the remaining non diagonal terms responsible for the interferences
between the possible histories. It is not difficult to show (see the Annex |A]) that H|p(‘”( Ol < n(e).

Therefore n measures how close the system is from being classical because, as shown in [A] we have for
all subspacesEI F C Hs:

| tr(ps(Wr) —  tr(p§Tlr) | < dim(F) n(t). (1)
—_—— ——
quantum probability  classical probability

In other words, 7n(t) estimates how decohered the system is. Notice well that it is only during an
interaction between S and £ that decoherence can occur; any future internal evolution U of £ lets n
unchanged since (UE;|UE;) = (&;|E:)-

The aim of the theory of decoherence is to explain why 7(t) rapidly goes to zero when n is large,
so that the state of the system almost 1mmed1atel evolves from ps to p< ) in the conserved basis.
As recalled in the introduction, a lot of different models already explain this phenomenon in specific
contexts. In this paper, we shall build two (excessively) simple but quite universal models that highlight
the fundamental reason why 7n(¢) — 0 so quickly, and that will allow us to determine the typical size of
an environment needed to entail proper decoherence on a system.

1As a reminder, this is because the probability to obtain an outcome z is:

tr(p ‘x) ('7‘") = Zj:1 Pij (]ll‘) (.I‘Z) = Z?:l pii' (.I‘Z) |2 + Zlgi<j§n QRe(pij <]|~I> (ac\z))
—_—— —_—
P(i)P(x|i) interferences

2Recall that, in the quantum formalism, probabilistic events correspond to subspaces.

31t is actually very important that the decoherence process (in particular a measurement) is not instantaneous. Otherwise,
it would be impossible to explain why an unstable nucleus continuously measured by a Geiger counter is not frozen due to the
quantum Zeno effect. See the wonderful model of |2, §8.3 and §8.4] that quantifies the effect of continuous measurement on the
decay rate.



2 First model: purely random environment

When no particular assumption is made to specify the type of environment under study, the only rea-
sonable behaviour to assume for |&;(t)) is that of a Brownian motion on the sphere S" = {|U) € H¢ |
[T = 1} € He ~ C™ ~ R*". Tt boils down to representing the environment as a purely random system
with no preferred direction of evolution. This choice will be discussed in §2.5] Another bold assumption
would be the independence of the (|€;(t)))1<ica; we will dare to make this assumption anyway.

2.1 Convergence to the uniform measure

We will first show that the probabilistic law of each |&;(t)) converges exponentially fast to the uniform
probability measure on S™. To make things precise, endow S™ with its Borel o-algebra B and with the
canonical Riemannian metric g which induces the uniform measure p that we suppose normalized to a
probability measure. Denote Af = %&(\/ggij 0; f) the Laplacian operator on C*°(S™) which can be

extended to L?(S™), the completion of C°°(S™) for the scalar product (f,h) = Jsn f(@)h(2)dp. Finally,
recall that the total variation norm of a measure defined on B is given by ||o||rv = sup|o(B)|.
BeB

Proposition 2.1. Let v; be the law of the random variable |E;(t)), that is 1.(B) = P(|€i(t)) € B) for
all B € B. Then ||lvy — pl|rv t—+> 0 ezxponentially fast.
— 400

Proof. The overall idea is to decompose the density of the measure v, in an eigenbasis of the Laplacian
so that the Brownian motion (which is generated by A) will exponentially kill all modes but the one
associated with the eigenvalue 0, that is the constant one.

It is recalled in [9] that the eigenvalues of A take the form Ay = —k(k 4+ 2n — 2) for k € N with
multiplicity dx = %(Qk +2n — 2). Denote (fr;) ken an orthonormal Hilbert basis in L?(S™) of
e 1<I<dy,

eigenfunctions of A, where fi; is associated with the eigenvalue ;. Note that dg = 1 and that fy1 is
constant (as any harmonic function on a manifold without boundary, due to the maximum principle) so
it is the density of a uniform measure. The law vy of the deterministic variable |£;(0)) = |€o) corresponds
to a Dirac distribution, which is not strictly speaking in L?*(S™), so we rather consider it as given by
a sharply peaked density (with respect to u) denoted po € L?(S™); the latter can be decomposed in
the Hilbert basis (fk,) as po = > x5 S ki frr. The fact that [|pol|2. = S S Jak,|? yields
|ak,i| < |lpollz2. Denote also p; the density after a time ¢, i.e. v¢(dx) = pi(z)u(dz). The Hille-Yosida
theory allows to define the Brownian motion on the sphere as the Markov semigroup of stochastic kernels
generated by A; in particular, this implies p; = e®py = ZX:OB g k(k+2n=2)t Zflkl ak,i fr,i. Note that

A/(::"' = 0 due to Stokes’ theorem,

d
thus fsn ao,1fo1 = fsn ao,1fo1 + Z::i Ry fs" frq = fsn po = 1. Hence ao,1fo,1 = 1, and therefore:

ao,1fo,1 is a probability density because for all k > 1, fgn fren = fsn

1
lve — pllrv = > |pe(x) — 1|dp (classical result on the total variation norm)
S’IL

1 +oo ( ) dg

—k(k+2n—2)t
“>e > lari| || fril o
2 k=1 =1

<1 (%)

1 R
§HPOHL2 Ze_k(HZ"_Q)tdk
k=1

N

/N

where () relies on Hélder’s inequality || fx.i[| 71 < #(S™)*2|| fx.1]lz2 = 1. It remains to find a characteristic
time after which the above series is efficiently bounded. We reproduce the argument of [9], setting
up = e FEFI=Dt g o6 that uy = 2ne” "Dt and :

Uk+1 _ k+2n—2 2k+2n e_[(zn_l)(k+1)+k]z
Uk k+1 2k +2n — 2




Ifn>2andt>t, = In(2n—1) , then “Z:l < 2nolznd2 1 ; < g, which implies :

2n—1 2 2n 2n—
+oo 3
lve = pllrv < ||p0HL2u1 ;(Z)k < 3(lpol|p2me” "7V

Interestingly enough, the convergence is faster as n increases since the characteristic time to equilibrium
satisfies t,, — 0 and the exponential is sharper. O

n—r00

2.2 Most vectors are almost orthogonal

Consequently, we are now interested in the behavior of the scalar products between random vectors uni-
formly distributed on the complex n-sphere S™. The first thing to understand is that, in high dimension,
most pairs of unit vectors are almost orthogonal.

Proposition 2.2. Denote by S = (€1]&2) € C the random variable where |E1) and |E2) are two indepen-
dent uniform random variables on S™. Then E(S) =0 and V(S) = E(|S|?) =

Proof. Clearly, |£1) and — |&1) have the same law, hence E(S) = E(—S) = 0. What about its vari-
ance ? One can rotate the sphere to impose for example |1) = (1,0,...,0), and by independence
|E2) still follows a uniform law. Such a uniform law can be achieved by generating 2n independent
normal random variables (X;)i<i<on following N(0,1) and by considering the random vector |E2) =

( \/X)?jl)fxgn e j;‘%:+:)§:§n . Indeed, for any continuous function f :S"™ — R (with do™ denoting
the measure induced by Lebesgue’s on S™):
1 1 + i Ton—1 + 1Ton (22442
B8N = e [, 1| T e b b s,
( 7T R2n xl +I2n 1/x1+“'+x2n

- @ /O - [ i f(u)da"(u)} e~ 2 gy
[ fas

which means that |£2) defined this way follows indeed the uniform law. In these notations, S =

X1+iXy : : 7+x3 _
s s Note that, up to relabelling the variables, we have Vk € [1,n], E (7)(27L +X§n) =
X +X
E (7}@’1 1+X§i) and so:

X7+ X2 1 — X2 1+ X3, 1 1
=2 () et (R ) T

Another way to recover this result would have been to define the unitary evolution operators (U” (t))1<i<d
such that |€;(t)) = U (t) |£), resulting from the interaction Hamiltonian. Again, if no direction of evo-
lution is preferred, it is reasonable to consider the law of each U® (t) to be given by the Haar measure
dU on the unitary group U,. If moreover they are independent, then U@ (¢)TU ) (t) also follows the Haar
measure for all 4, j so that, using [12] (112)]:

—_

V((ED)IE D)) = / (EolUED)

n =2

O

Therefore, [(£;()|€;(¢))] is, after a very short time, of order 1/V W When d = 2, if £

is composed of Ng particles and each of them is described by a p—dlmensmnal Hilbert space, then very
rapidly:

n~p e (2)
which is virtually zero for macroscopic environments, therefore decoherence is guaranteed. Of course, this
is not true anymore if d is large, because there will be so many pairs that some of them will inevitably



become non-negligible, and so will 7. We would like to determine a condition between n and d under
which proper decoherence is to be expected. In other words, what is the minimal size of an environment
needed to decohere a given system?

2.3 Direct study of n

To answer this question, we should be more precise and consider directly the random variable 7, 4 =
max |(€:|E;)| where the (|&;)), ;<  are d random vectors uniformly distributed on the complex n-sphere
i <ig

S™. In the following, we fix £ € |0, 1] as well as a threshold s € [0, 1] close to 1, and define d3}5,(n) =
min{d € N | P(n,,q > €) > s}, so that if d;,5,(n) points or more are placed randomly on S”, it is very
likely (with probability > s) that at least one of the scalar products will be greater that e.

Theorem 2.3. The following estimates hold :

I digha() ~ /2T —5) (12 )

n—1

2. V(n,a) ~0 and | nn,a ~ E(n,a) ~ /1 — d—=

To derive these formulas, we first need the following geometrical lemma.

Lemma 2.4. Let A, = |S"| be the area of the complex n-sphere for do™ (induced by Lebesgue’s measure),
Ch(z) = {u € S™ | [{u|z)| > €} the ‘spherical capﬁ centered in x of parameter ¢, and A;, = |C},| the area
of any spherical cap of parameter €. Then for all n > 1:

An

A" — (1 o 62)77,71

Proof of Lemma. Recall that S® C C" ~ R?" can be seen as a real manifold of dimension 2n—1. Consider
the set of coordinates (7,6, ¢1,...,p2an—3) on S™ defined by the chart

F: [0,1] x [0,2x[x[0,7]*""* x [0,27] — S
(7“,9,4,01,...,(,0271_3) — (l‘l + T2, ..., Tan—1 +i1‘2n)2’(121,...7332n):
(rcos(0),rsin(0), V1 —r2 cos(p1), V1 — r2sin(p1) cos(p2), . . .,
V1 —r2sin(¢1)...cos(p2n-3),V1—r?sin(epi)...sin(pan—3))

This amounts to choose the modulus r and the argument 6 of x1 + ixz2, and then describe the remaining
parameters using the standard spherical coordinates on S" ™!, seen as a sphere of real dimension 2n — 3,
including a radius factor v/1 —r2. The advantage of these coordinates is that C;(1,0,...,0) simply
corresponds to the set of points for which r > e.

Let’s determine the metric g.
—T

1—-r2

o 6. =0, F(r,0,p01,...,02n—3) = (cos(),sin(h), [@]), where [@] stands for the standard expres-

sion of the spherical coordinates on S™~*

e ¢p =gF(r,0,p1,...,p2n—3) = (—rsin(0),r cos(H),0,...,0)

o eg, =0, F(r,0,01,...,02n-3) = (0,0,v1 —1r2[eg,]) where [eg,] stands for the tangent vector on
Sn—l

Obviously, € L €5 and ez, | €5, as well as e,, L eg; for i # j as is the case in the standard spherical
coordinates. Moreover, since [i] is radial and [eZ,] tangent to S"~!, we also have ¢;. | e3,, therefore g is
diagonal in these coordinates. Its components are given by :

- = 7'2
® Grr = <6r|67‘> =1+ 1—r2

e g = (éh]|€p) = r?

4We use the quotation marks, because on S™ equipped with its complex scalar product, this set doesn’t look like a cap as
it does in the real case. QM is nothing but a strange way of calculating probabilities (in which all possible histories interfere)
based on a geometrical structure, but the geometry in use is also quite different from the intuitive one given by the familiar
real scalar product...



® oo = (1 —1%)[gy, ;] With [g] the metric corresponding to the spherical coordinates on S™~!

It is now easy to compute the desired quantity :

1 2 —
R r 2n—3
A, = / \/Edr/ B rdfy/1 —r2 Viglder ... dpon -3
e [0,27[x [0,7[2"—4 x [0,27[
1

= 271'An,1/ r(l— r2)"72dr

_ TAny /1 2(n — 1)r(1 — 3" 2dr
on—1J,
_ 7r14n71 _ 22yn—1
") 1-¢%)
and, finally,
A, An n—
Tn = T% = (1 - 52) 1.

We are now ready to prove the theorem.

Proof of Theorem[2.3 For this proof, we find some inspiration in [6], but eventually find sharper bounds
with simpler arguments. We say that a set of vectors on a sphere are e-separated if all scalar products
between any pairs among them are not greater than € in modulus. Consider the following events :

o A:VEke[l,d—1],|(Eal€k)| <€
e B: (|&))1<k<d—1 are e—separated

and write P(n,,q < ) =P(A | B)P(B) = %P(nn,d_l < ¢), with :

d—1
1 n n 5
IED(A n B) F /(Sn)d—l do (.’131) ...do (xd—l)l{asl ..... x4_1 are e-separated} (An - U Cn(xk) )
. n k=1
P(B a 1 n n
( ) F lgn)d—l do (zl) ...do (:L’dfl)l{zl,“.,zd,l are e-separated}
L (lusieien]|
I Y P
. . Uiz co ) A
We need to find bounds on the latter quantity. Obviously, E |’“*1A7"k| B) < (d- 1)A—"',

corresponding to the case when all the caps are disjoint. For the lower bound, define the sequence

n

d_,ci(e . . d_,ce(lE Ce
uqg = E <M>7 which clearly satisfies uqg < E |U’“*1A7:(lk))| B |, because conditioning on

the vectors being separated can only decrease the overlap between the different caps. First observe that
AL

ulen

= «, and compute :



1 (
Ud = Ud— 1+An ( (1€a)) \UC (I€x) D
1

1 n
= Ug—1 + AinAi / dO' dO' ( ) /C‘E o) 1{U¢UZ;1 C,ﬁ(xk)}da (y)
do"(y)

1 n e
:/LLdil_'—AinF\/('Sn)d 1d0’ (331)(210’ (l'dfl)‘/sn |C’n(y)| {y fUd lcg(zk)}Tn

‘Uz;i Cr(zr)

A5 1
= " coodo™ (zg— 1-—
=uUg_1 + =~ A, AT /Sn)di1 do"(z1)...do" (z4-1) i
= Uq— 1+An(1—ud 1)

=(1-a)ug-1+a

where the main trick was to invert the integrals on x4 and on y. This result is actually quite intuitive:
it states that when adding a new cap, only a fraction 1 — ugq_1 of it on average will be outside the
previous caps and contribute to the new total area covered by the caps. Hence uq =1 — (1 — a)d, and
the recurrence relation becomes:

A5 Ap\T
(1 —@-nh ) B(nar <€) < Pl < &) < (1 - A—) B(nar < 2).
Applying the lemma, we get by induction:

d—1

[Ta-ka =" <Plma<e) <Q—-(1-)")

k=1

d(d—1)
2

Note that the left inequality is valid only as long as d < (ﬁ)n_17 but when d is larger than

this critical value, the right hand side becomes very small (of order e 1/20—e )nil), so taking 0 as a
lower bound in this case is actually very precise. The two bounds are in fact extremely close to each
other, and get closer as n goes larger, as exemplified by numerical simulations (a precise argument
could be given but it would be quite lengthy and would not bring any additional understanding to
the problem). Consequently, we can make the following approximation for the distribution function

2\n—1y 4d=1)

of Tt Blina < ) ~ (1 — (1 — &))"
1 e

dysz(n) ~+/—2In(1 — s) <@> , which is the first part of the theorem.

It is then straightforward to obtain the estimation

The function & +— (1 — (1 —¢&?)"71) A happens to be almost constant equal to 0 in the vicinity of
e = 0, almost 1 in the vicinity of € = 1, and to have a very sharp step between the two; this step sharpens
as n and d grow larger. This explains why the mass of probability is highly peaked around a critical
value e, so that V(n,,,4) ~ 0 and 9n,q =~ E(9n,q4) is almost a deterministic variable. This is certainly due
to the averaging effect of considering the maximum of a set of @
€. satisfies:

(1-(1- Ei)nfl)d(dzil) — 1 S e, = \/1 — (1 —2-2/dd=-D)1/n=1  ~ m

2 n,d— oo

scalar products. The critical value

It simply remains to use the well-known formula: E(n,,q) = fol P(nn,a < €)de = e, ~ v1 — d—2/" which
completes the proof. O

2.4 Comparison with simulation and consequences

The above expressions actually give incredibly good estimations for d5;5, (n) and 7, 4, as shown in Figures

[ and 2
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Figure 2: Simulation vs prediction for d — E(n, q) at fixed n

This theorem has a strong physical consequence. Indeed, £ induces proper decoherence on S as long
as Mn,q < 1, that is when d~?/™ is very close to 1, i.e. when d < /2. Going back to physically
meaningful quantities, we write as previously n = p™¢ and d = p™S where N¢ and Ns stand for the
number of particles composing £ and S. The condition becomes: 2In(p)Ns < p™¢ or simply :

ln(Ns)
In(p)

A more precise condition can be obtained using d..., because £ induces proper decoherence on S as

long as d < d;,)5,(n) for an arbitrary choice of ¢ close to 0 and s close to 1. This rewrites: 21In(p)Ns <

In(y/—2In(1 —s)) +In (1_152 ) pNe ~ e2pNe or simply: In(Ns) < 21n(e) + In(p)Ne. Thus, for instance,
a gas composed of thousands of particles will lose most of its coherence if it interacts with only a few
external particles. It is rather surprising that so many points can be placed randomly on a n-sphere
before having the maximum of the scalar products becoming non-negligible. It is this property that
makes decoherence an extremely efficient high-dimensional geometrical phenomenon.

< Ng

2.5 Discussing the hypotheses

On the one hand, this result could be seen as a worst case scenario for decoherence, since realistic
Hamiltonians are far from random and actually discriminate even better the different possible histories.
This is especially true if £ is a measurement apparatus for example, whose Hamiltonian is by construction
such that the (|€;(¢)))1<i<a evolve quickly and deterministically towards orthogonal points of the sphere.

On the other hand, pursuing such a high level of generality led us to abstract and unphysical assump-
tions. First, realistic dynamics are not isotropic on the m-sphere (some transitions are more probable



than others). Then, the assumption that each |£;(t)) can explore indistinctly all the states of He is very
criticizable. As explained in [§]:

‘...the set of quantum states that can be reached from a product state with a polynomial-
time evolution of an arbitrary time-dependent quantum Hamiltonian is an exponentially small
fraction of the Hilbert space. This means that the vast majority of quantum states in a
many-body system are unphysical, as they cannot be reached in any reasonable time. As a
consequence, all physical states live on a tiny submanifold’

It would then be more accurate in our model to replace S™ by this submanifold. By how does it
look like geometrically and what is its dimension? If it were a subsphere of S of exponentially smaller
dimension, then n should be replaced everywhere by something like In(n) in what precedes, so the
condition would rather be Ns <« Ng¢ which is a completely different conclusion. Some clues to better
grasp the submanifold are found in [7], §3.4]:

‘...one can prove that low-energy eigenstates of gapped Hamiltonians with local interac-
tions obey the so-called area-law for the entanglement entropy. This means that the entan-
glement entropy of a region of space tends to scale, for large enough regions, as the size of the
boundary of the region and not as the volume. (...) In other words, low-energy states of re-
alistic Hamiltonians are not just “any” state in the Hilbert space: they are heavily constrained
by locality so that they must obey the entanglement area-law.’

More work is needed in order to draw precise conclusions taking this physical remarks into account. ..

3 Second model: interacting particles

3.1 The environment feels the system

At present, let’s better specify the nature of the environment. Suppose that the energy of interaction dom-
inates the evolution of the whole system S + £ and can be expressed in terms of the positions x1,...,zN
of the N particles composing the environment, together with the state of S (this is the typical regime
for macroscopic systems which decohere in the position basis [10, §III.E.2.]). If the latter is |i), denote
H(i,z1...xN) this energy. The initial state |¥) = (Zle ci \z)) Q[ fl@1...zn)|z1...2n)dey ... doN

evolves into:

d ) ]
ZCZ‘ |’L> ®/f(131 .. .CEN)(B%H(Z’mlme)t |l’1 .. .xN> dzi...dznN.
i=1

=1£;(t))
Therefore:

(EDE; (1) = /|f(a:1 )Pk At E gy g

where A(i,j,21...25) = H(j,z1...2n) — H(i,z1...2N) is a spectral gap between eigenvalues of the
Hamiltonian, measuring how much the environment feels the transition of S from |i) to |j) in a given
configuration of the environment. In a time interval [T, T, the mean value 5 ITT (Ei(t)|E;(¢)) dt yields

JIf(z1... xN)|25inc(MT) which is close to zero for all ¢ and j as soon as T' > xh

,7,L1...TN
which is likely to be small if £ is a macroscopic system, for the energies involved will be much greater

than h. Similarly, the empirical variance is:

Vg [ HEOIEOIPA~ [1f@ o)t da . dey

plus terms that go to zero after a short time. Note that the variables z;...znx could be discretized to
take p possible values, in which case n = dim(H¢e) = p, and the integral becomes a finite sum. For a
delocalized initial state with constant f, this sum is equal to p~%, and we recover the previous estimate
ifd=2: n~p /2. This model teaches us that the more the environment feels the difference between
the possible histories, the more they decohere.

min  A(4, 5,71 ...



3.2 Entanglement entropy as a measure of decoherence

What precedes suggests the following intuition: the smaller 7 is, the more information the environment
has stored about the system because the more distinguishable (i.e. orthogonal) the (|€;(t)))1<i<a are;
on the other hand, the smaller 7 is, the fewer quantum interferences occur. It motivates the search for
a general relationship between entanglement entropyﬂ (how much & knows about S) and the level of
classicality of a system. Such results have already been derived for specific environments [3], (3.76)] [4]
[5] but not, to our knowledge, in the general case. The following formula is proved in the annex [A| when
S stands for the linear entropy (or purity defect) 1 — tr(p?), and some justifications are given when S
denotes the entanglement entropy:

S(ps(t))

. 3
wso) S (o8 @

VF CHs, |tr(ps(t)lr) — tr(pTr)| < dim(F) \/ 1—

Conclusion

We introduced general mathematical notations that can be relevant for any study on decoherence, in
particular the parameter 7n(t) that quantifies the level of decoherence at a given instant. Two simple
models were then presented, designed to feel more intuitively the general process of decoherence. Most
importantly, our study revealed the mathematical reason why it is so fast and universal, namely because
surprisingly many points can be placed randomly on a n-sphere before having the maximum of the scalar
products becoming non-negligible. We also learned that decoherence is neither perfect nor everlasting,
since 1 is not expected to be exactly 0 and will eventually become large again (according to Borel-
Cantelli’s lemma for the first model, and finding particular times such that all the exponentials are
almost real in the second) pretty much like the ink drop in the glass of water will re-form again due
to Poincaré’s recurrence theorem, even though the recurrence time can easily exceed the lifetime of
the universe for realistic systems [I5]. Finally, decoherence can be estimated by entanglement entropy
because 7 is linked to what the environment knows about the system.

Further works could include the search for a description of the submanifold of reachable states men-
tioned in §2.5] and the study of the infinite dimensional case, where the very definition of 7 is not obvious
anymore (since the scalar products vary continuously, their supremum is necessarily 1). Another inter-
esting question would be to investigate how 7 depends on the basis in which decoherence is considered:
quantum interferences are indeed suppressed in the conserved basis, but how strong are they in the other
bases?
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A Annex: decoherence estimated by the entanglement en-
tropy with the environment

We establish here the formula : we first derive the inequality , and then look for a relation between
1 and the linear entropy or the entanglement entropy. Inserting the second into the first directly yields

©)-

5Recall that for a bipartite quantum system, the entanglement entropy is defined as the von Neumann entropy of the
reduced density matrix for any of the subsystems.
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A.1 Relation between 1 and the level of classicality

Let’s keep the notations of | where we defined p) (t) = 3=, it (£;(£)|€:(1)) |3} (j]. We have [|p” ()] <
n(t) because for all vectors [¥) = >, ax |k) € Hs of norm 1,

PO = D7 edi (E(0IEW®) ay i)

1<i#j<d

= [1p¥ @) Zm |Zc] ) a;]” < Zm Z\cﬂ
J#l

Now, if F'is a subspace of Hs (i.e. a probabilistic event), let (¢x)r be an orthonormal basis of F. We
have:

dim(F)

tr(ps (t)Ir) — tr(p§ Tr) = tr(p (OIr) = > (oxlpS (D))
k=1
dim(F‘)
= |tr(ps(®Ir) — tr(p§"R) < D o (B < dim(F)n(t).

In a nutshell: Pquantum = Peiassical + 0(77)

A.2 Relation between 7 and the linear entropy

We define the linear entropy (or purity defect) of a state p to be Sin(p) = 1 — tr(p?). Since S is
Szm(Ps(t))
Zn(pg
measures the ratio of purity that has already been lost compared to its final ideal value. Recall that

ps(t) = Z?:1‘Ci|2 l4) (i + 21@7&;'@1 cic; (€5 (1)|€: (1)) 14) (4|, so that:

initially in a pure state, the quantity goes from 0 at ¢ = 0 to almost 1 when ¢ — +oco. It

Sin(ps(®)) 1= Xilail* =230, leil*le; (€ (8) 1€ (D))

Sin(ps)) L= el
>1-— n2(t)2zl:i¢jz|cl|| |‘C4]|
N
>1-7°(t)

since the last fraction always equals 1 because 1 = (3,]ci|*)(3;lcil?) = 3, leil* + QZ#J\CJ |c;|2.
Note that, for any given time ¢, this inequality is actually an equality for the initial state |¥s(0)) =
Cig i0) + ¢jo |jo) where 7o and jo denote two indices such that n(t) = [(&, (¢)|Ej, (¢))]- Thus:

n(t)=,/1— inf M
s Spin (p)

A.3 Relation between 7 and the entanglement entropy

The entanglement entropy is always much harder to manipulate. We were not able to prove in the
general case a similar result when the linear entropy S, is replaced by the entanglement entropy S, but
numerical simulations tend to indicate that the same formula is still (almost) true and that there exists

a deep link between the quantity 1 — n?(t) and the ratio Ss((p S(g); Here are some considerations to get
Ps

convinced.

2 .
In dimension d = 2, if one denotes f(t) = (£2(t)|€1(¢)), one can write ps(t) = ( le1] Clc2f(t)>,

ceaf(t)  lal
whose eigenvalues are ev: = (1 £ \/(Je1[> — [c2[2)2 + 4f2(t)]c1]2[c2|?). At large times, f < 1 and after
some calculations we get at leading order:

c 2C 2
Sps(t) _ _eviln(ev) tev-tn(ev) \ istinp(nal® —n(ef) ,
Se@) ~ ePh{al) +lePn(e?) ~ o hal?) + e hoP)
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The ratio preceding ? is a one-parameter real function in |c1|? (since |c2|*> = 1 — |c1|?) defined on [0, 1];
it turns out that is takes only values in [—1,—0.7] and tends to —1 only when |c1]? tends to 0 or 1.
Therefore, in dimension 2, we still have (at least at leading order):

o S
m0_¢1'%5>a£5'

In higher dimension, if we suppose that one of the (£;(¢)|€;(t)) decreases much slower than the others
(assume without loss of generality that it is (£2(¢)|€1(t)), still denoted f(¢)), then after some time ps(t)
is not very different from:

le *  eief ()
cieaf(t)  lef?
|eal?

|cal?

Using the previous inequality in dimension 2:

Sles(t)) o (L= O)(erl +leal®) +leal* ++Jeal” ) 2
S(es”) fer[? 4+ feal g

and, once again, this bound is attained for an appropriate choice of the (¢;)1<i<a-
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