

Shale mobility: From salt-like shale flow to fluid mobilization in gravity-driven deformation, the late Albian–Turonian White Pointer Delta (Ceduna Subbasin, Great Bight, Australia)

Gulce Dinc, Jean-Paul Callot, Jean-Claude Ringenbach

▶ To cite this version:

Gulce Dinc, Jean-Paul Callot, Jean-Claude Ringenbach. Shale mobility: From salt-like shale flow to fluid mobilization in gravity-driven deformation, the late Albian–Turonian White Pointer Delta (Ceduna Subbasin, Great Bight, Australia). Geology, 2023, 51 (2), pp.174-178. 10.1130/G50611.1. hal-03979159

HAL Id: hal-03979159 https://hal.science/hal-03979159

Submitted on 8 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Shale mobility: From salt-like shale flow to fluid mobilization in a gravity-driven deformation, the Late Albian-Turonian White Pointer Delta (Ceduna Basin, Great Bight, Australia)

Tracking no: G50611R

Authors:

Gulce Dinc (LFCR, E2S, CNRS, TotalEnergies, Université de Pau et Pays de l'Adour, Pau, France), Jean-Paul Callot (LFCR, E2S, CNRS, TotalEnergies, Université de Pau et Pays de l'Adour, Pau, France), and Jean-Claude Ringenbach (Totalenergies, CSTJF, avenue Larribau, 64000 Pau)

Abstract:

Large offshore depocenters above a weak detachment level (either salt or shale) can undergo gravity spreading and/or gliding. The gravitational systems (e.g. gliding deltas) are classically composed of an up-dip domain affected by extensional listric normal faults and a down-dip domain affected by toe thrusts. While the role of salt in such systems is a classic of tectonic lesson, the role and mechanical behavior of mobile shale levels in shale-prone gravity driven systems are increasingly questioned. A 3D seismic dataset in the Ceduna sub-basin displays the Late Albian-Turonian White Pointer Delta (WPD) as having an unusual diversity of shale-cored structures. The early flow of shale results in depocenters showing wedges, internal unconformities, and shale diapirs and ridges, while fluidization of shales underneath a significant burial results in mud volcanism, secondary radial fault sets and collapse features beneath the Campanian-Maastrichtian Hammerhead delta (HHD) which lies above the WPD. Massive shale mobilization together with downdip shortening and a distal margin uplift localizes a major thrust in the core of the basin ending the downward propagating failure of the WPD. Mobilization of thick shale intervals, either as salt-like flow or mud volcanism, appears as a key process of deformation to be considered at large scale for worldwide gravity-driven deformation systems.

Shale mobility: From salt-like shale flow to fluid mobilization in a gravity-driven deformation, the Late Albian-Turonian White Pointer Delta (Ceduna Basin, Great Bight, Australia)

4 Gulce Dinc¹*, Jean-Paul Callot¹, Jean-Claude Ringenbach²

⁵ ¹ Université de Pau et Pays de l'Adour, E2S UPPA, CNRS, TotalEnergies, LFCR, Pau, France

6 ² TotalEnergies, CSTJF, Pau, France

7 ABSTRACT

8 Large offshore depocenters above a weak detachment level (either salt or shale) can 9 undergo gravity spreading and/or gliding. The gravitational systems (e.g. gliding deltas) are 10 classically composed of an up-dip domain affected by extensional listric normal faults and a 11 down-dip domain affected by toe thrusts. While the role of salt in such systems is a classic of 12 tectonic lesson, the role and mechanical behavior of mobile shale levels in shale-prone gravity 13 driven systems are increasingly questioned. A 3D seismic dataset in the Ceduna sub-basin 14 displays the Late Albian-Turonian White Pointer Delta (WPD) as having an unusual diversity of 15 shale-cored structures. The early flow of shale results in depocenters showing wedges, internal 16 unconformities, and shale diapirs and ridges, while fluidization of shales underneath a significant 17 burial results in mud volcanism, secondary radial fault sets and collapse features beneath the 18 Campanian-Maastrichtian Hammerhead delta (HHD) which lies above the WPD. Massive shale 19 mobilization together with downdip shortening and a distal margin uplift localizes a major thrust 20 in the core of the basin ending the downward propagating failure of the WPD. Mobilization of 21 thick shale intervals, either as salt-like flow or mud volcanism, appears as a key process of 22 deformation to be considered at large scale for worldwide gravity-driven deformation systems.

23 INTRODUCTION

24 Development of large sedimentary deltas on passive margins is often associated with 25 gravity-driven collapse (e.g. Rowan 2020; McClay et al., 2003), which is controlled either by 26 pure gliding/spreading, or a combination of both, above a ductile decollement level, usually 27 made up of evaporites or mobile shales (Peel 2014). Gravity collapse shows three main domains 28 connected by a basal detachment: (1) an up-dip extensional domain associated to listric normal 29 growth faults, (2) a translational domain showing symmetrical structures (e.g. rafts, turtle 30 structures, etc.) and (3) a down-dip compressional fold and thrust belt (Morley et al., 2011; 31 Rowan et al., 2000; 2004; Schultz-Ela, 2001; Hudec and Jackson, 2004). Evaporite properties 32 allow for an efficient decoupling in any condition, but shale levels are considered to be mobile 33 only when overpressured (e.g. Mourgues and Cobbold, 2006).

34 Overpressurization is commonly attributed to compaction disequilibrium, resulting either 35 from rapid sedimentation of low permeability materials, or fluid generation and expansion (e.g. 36 hydrocarbon maturation, clay diagenesis, Tingay et al., 2007; Morley et al., 2018; Blouin et al., 37 2020). However, alternative explanations to this phenomenon have also been proposed (such as a 38 decrease of friction coefficient due to graphite, Rutter et al., 2013) as it partly fails to explain 39 mobilization of shales having already gone under significant burial, as well as fluidization of 40 clays (Soto et al., 2021). Gravity-driven collapse related to shale mobilization is observed in 41 many regions including the South Atlantic Margins (e.g. Niger Delta, Amazon Fan), the South 42 Australia Margin (Ceduna Sub-Basin), the Southeastern Asia and Indian Ocean margins (e.g. 43 Baram and Rovuma Deltas, Krishna Godavari domain), as well as in back-arc basins and 44 compressional prisms (e.g. Alboran Sea, Venezuela and Makran prisms) (Ahmed et al., 2022; 45 Hudec and Jackson, 2004; Choudhuri et al., 2010; Reis et al., 2010; Ruh et al., 2018; Soto et al.,

2021b; Corredor et al., 2005; Cruciani and Barci, 2016; Deville et al., 2006; Duerto and McClay,
2011).

48 Involvement of salt-like deformation in shale tectonics (e.g. diapirs, minibasins, welds, 49 etc.) has long been debated, following developments of deep offshore seismic acquisition on the 50 one side, improvement of seismic imaging and processing techniques on the other (Morley and 51 Guérin, 1996; Soto and Hudec 2021; Soto et al., 2021a, b, among others). Understanding of shale 52 mechanics helped to set the ground for understanding the ability of already compacted and cemented shales to behave in a viscous manner (Brown, 1990; Soto et al., 2021a) and salt-like 53 54 shale tectonics was put at the forefront in various settings recently (e.g. Hudec and Soto 2021; 55 Dinc, 2020; Back and Morley 2016; Ruh et al., 2018).

Our study gives insights into the involvement of massive shale mobilization, over more than 10⁵ km², during the development of the Ceduna Sub Basin which consists of two structurally independent and yet laterally stacked deltas, namely the Albian to Cenomanian White Pointer Delta and the Campanian to Maastrichtian Hammerhead Delta (WPD & HHD) above thick shale detachments (figure 1, Espurt et al., 2009; Totterdell et al., 2000; Ahmed et al., 2022). Here we focus on the WPD, which has been subjected to shale mobilization all along its development, evolving from salt-like shale flow to fluidization.

63 GEOLOGICAL SETTING

The Great Bight Basin (GBB) is part of the south Australia passive margins. The offshore portion of it is composed of five sub-basins, among which the Ceduna Sub-Basin stands as a Late Jurassic-Early Cretaceous rifted basin, covered by a maximum of 15km of Late Jurassic to Late Cretaceous sediments, which propagated the break up during Early Cretaceous between Australia and Antarctica (figure 1). The post-rift succession starts with the continental, Berriasian-Lower Valanginian Southern Right and Valanginian to Mid Albian Bronze Whaler megasequences(Totterdell et al. 2000).

71 The Ceduna Sub-basin gravity-driven and collapsing deltaic supersequences initiated 72 during the Late Albian-Santonian marine WPD, which involved massively the Albian Blue 73 Whale shale detachment (BW, figure 1B1, Espurt et al., 2009). This megasequence is formed of 74 two collapsing, gravity-controlled, systems (figure 1B2, see Ahmed et al., 2022 for a review). 75 First, a Late Albian-Early Cenomanian gliding system (Ahmed et al., 2022), located in the core 76 of the basin composed of a set of extensional up-dip listric faults, connected to the early downdip 77 thrust faults. This collapse system is followed by a Late Cenomanian set of extensional listric 78 faults initiating in the core of the delta and associated to down-dip thrust faults, offsetting the 79 earlier thrusts, which form a buttress for the main collapse system and localizes the decollement 80 of the secondary collapse system (Ahmed et al., 2022).

The deep margin uplift (Hill et al., 2019) results in the cessation of gravity gliding and a slight inversion phase for the WPD. The deposition of the Turonian-Santonian Tiger megasequence is coeval with the final separation of Australia and Antarctica (Totterdell et al., 2000), and the Late Santonian-Maastrichtian Hammerhead megasequence (HHD), starts to develop above the WPD.

86 DATA AND METHODS

The main dataset used in this study is the Ceduna PSDM 3D cube acquired by PGS in 2011. The survey covers an area of 12,413 km² with an inline and cross-line spacing of 12.5m and 15m respectively (see figure 1A for cube and lines orientation). On top of this Ceduna dataset, additional 2D seismic composite lines are used to connect the 3D survey up-dip to the nearest exploration wells to have seismic marker ties, and down-dip to the distal margin. The 2D lines (used in particular to tie the cube to the existing well but not displayed in the figure) were
extracted from the 2001 PSTM Flinders survey (lines w00fdw003, 0014 and 0023), 1997 AGSO
2D PSTM survey (line GA199-05B), and 1986 2D PSTM BMR 1986 survey (lines 065-07P1,
02P2, and 09P1) (Espurt et al. 2009; Totterdell and Bradshaw, 2004).

96 Three offshore wells have been used to tie the seismic picking to stratigraphic horizons, 97 Potoroo-1, Jerboa-1 and Gnarlyknots-1A, which are located outside the 3D survey, yet crossed 98 by the 2D regional lines (Totterdell et al., 2000; Dinc, 2020). Four key horizons are used in this 99 study (figure 1D): the top Blue Whale (BW, Late Albian), the top White Pointer (Cenomanian to 100 Early Turonian), the top Tiger (Late Turonian to Santonian), and the top upper Hammerhead 101 (Maastrichtian). Based on the recent recognition of the early collapse system (BW to lower 102 WPD, Ahmed et al., 2022), we also tracked three additional horizons: two within the WPD (the 103 Top Lower-Mid WP and Top Mid WP), and one within the Tiger Formation (Mid Tiger), where 104 they get available as they do not continuously extend and/or are poorly tied outboard the core of 105 the Ceduna Sub-Basin.

106 RESULTS AND DISCUSSION

A representative inline (n°2150), together with a connecting xline (n°11000) (figure 1A) are displayed in figure 2, associated with two time slices from the 3D dataset, localized at 8km and 5km depth, i.e. cutting through the BW and the Upper WPD megasequences respectively (figure 3). In that perspective, the 8km depth time slice focuses on the first collapse system (Mid Albian to Early Cenomanian) whereas the 5km depth time slice investigates the late stage of evolution of the second collapse system (Early Cenomanian to Early Turonian).

113 Evidence of shale mobility

114 Evidence for salt-like shale mobility is mostly confined to the core of the Ceduna Sub-115 Basin, where the phenomena is stratigraphically constrained to the early collapsed system 116 (Lower WPD). It mainly consists of low angle wedging observed at the edges of flat, low-117 dipping depocenters, which abut chaotic ridges which are composed of mobilized shales (figure 118 2 A1-2, B1-2). These depocenters form pod-like minibasins with internal unconformities related 119 to their successive stages of growth. They present onlaps on the slopes of the ridges (Figure 2A1-120 2, B2), similar to the shale-controlled minibasins observed onshore in the Makran (Ruh et al., 121 2018). These minibasins are controlled by the ductile flow of the underlying BW shales, and 122 show an elongation parallel to the overall gliding direction (figure 3B1).

123 To the north, the proximal domain of the delta lacks good examples of minibasins. 124 However, when expressed, the top part of the depocenters localize the decollement horizon responsible for the secondary collapse system development (figure 2A-A2-4). On the contrary, 125 126 within the distal domain of the WPD (figure 2B), these depocenters appear to be well expressed 127 and duplicated by a major thrust plane localized onto the BW detachment level (figure 2A, A1-2, 128 B2, figure 3A2, figure 4d-e). This part of the sub-basin shows extensive patterns of shale 129 mobilization controlling a large portion of Early WPD deposits downlapping onto the BW 130 shales. Above the duplexes, the transported depocenters show a more mature pattern, with 131 numerous welds and remnant of mobile shale masses separating the depocenters (figures 2B3-4). 132 Localization of the compressional deformation on these duplexes is associated with the decrease 133 of decollement depth and correlatively of the translated listric fault spacing (figure 2B1).

134 Shale mobility is quickly abandoned and buried beneath the growing WPD as early as the 135 first stage of gravity collapse (Late Albian-Early Cenomanian), displayed by the abandonment of 136 the early minibasins, passively transported and buried (figures 2A-B). During their burial, these 137 early minibasins are crosscut and deformed in the distal part by the development of fold and 138 thrusts related to the propagation of gravity collapse basinward. After the end of the WPD 139 deposition, transported minibasins are progressively welded, squeezing the shale plugs (figure 140 2B). During the Upper Tiger deposition, domal uplifts (figure 2A5) show the development of 141 sets of both radial and concentric normal faults (figure 3B1), which are stratigraphically 142 bracketed during the deposition of the lower HH Formation, and rooted in the top WPD deposits. 143 Polygonal faults system in the core of these radial normal faults sets, confined in this 144 stratigraphic interval, suggest high overpressures and two types of shale mobilization, here 145 involving fluidization (figure 3B1).

146 Imbrication of gravity collapse: an updated scenario

147 Both salt-like shale mobilization and shale fluidization together with the duplication of 148 the early minibasins along thrust faults are key features, improving the delta kinematic scenario 149 (figure 4). Following the deposition of the BW shales, early clastics of the lowermost WPD 150 megasequence trigger shale mobilization in the distal part (e.g. Morley et al., 2018), resulting in 151 the building of small, down-dip elongated, withdrawal minibasins similar to what is observed in 152 the western Gulf of Mexico (McDonnell et al., 2010; figure 4a, b), while the early collapse 153 system develops up-dip (figure 4b-c). During Early Cenomanian, the WPD early collapse system 154 forms in the inner domain and progressively migrates downdip, reactivating early developed 155 down-dip toe thrust (figure 4d). Buttressing against the early thrusts and deep margin uplift helps 156 to localize the major thrust duplex within the thickest part of the basin during the deposition of 157 the upper WPD sequence, duplicating the early minibasins (figure 4d-e). Although the ramp 158 developed at the toe of the delta slows down the WPD collapse, it favors the focus of shortening 159 above the major thrust and subsequent squeezing of the transported shale diapirs. This leads to

the final fluidization of the shales after Tiger deposition (figure 4e-g, Turonian). The entire WPD
system eventually gets frozen beneath the HHD megasequence (figure 4h).

162 **Controlling factors of shale mobility**

163 Even though bowl-shaped, subsiding depocenters (i.e. minibasins bordered by rising 164 chaotic mobile masses) are common features in salt tectonics, withdrawal depocenters related to 165 mobile shales are less common, yet repeatedly proposed and generally attributed to overpressures 166 and undercompaction during rapid sedimentation (e.g. Morley et al., 2018). In the case of early 167 WPD deposits, we suggest that the early shale mobilization is not related to the overpressure 168 with increasing burial depth due to clay dewatering, they are rather large mobile masses of 169 poorly compacted, water-rich unconsolidated sediments, with low viscosity and density, 170 mobilized early following their deposition, similarly to the olistrostromes of the Makran Prism 171 (Ruh et al., 2018). Early mobility is responsible for mechanical weakening of the shale masses 172 by penetrative deformation, up to a critical state, while repeated input of sediments increases 173 loading and pressurization and maintains the mobile shales at a critical state for plastic 174 deformation (Soto et al., 2021; Hudec and Soto, 2021).

175 The late stage of shale mobilization, i.e. fluidization at the crest of squeezed shale plugs, 176 occurs during the Turonian-Santonian time. This is coeval with generation of oil in the Blue 177 Whale formation and gas within the synrift Bronze Whaler megasequence of the Jerboa-1 well 178 (Ruble et al., 2001), which is considerably less buried than the core of the basin. Basin modelling 179 of the Potoroo and Gnarlyknots wells suggest that the Turonian source rocks generated liquid 180 products as early as Campanian (Toterdell et al., 2008). Oil and gas generation and migration 181 most probably occurred much earlier within the deeper, gas prone synrift sequence, thus leaving 182 time for gas to migrate and reach the shale plugs and withdrawal minibasins undergoing

8

183 shortening above the main thrust fault. Gas generation has a strong impact on the mechanics of 184 shale, promoting the complete loss of cohesive resistance (Tingay et al., 2018; Blouin et al., 185 2020), a mechanism which may help shales to achieve critical state and enhance mobility (Soto 186 et al., 2021a), eventually leading to fluidization and through fracturing processes, to loss of 187 material.

188 CONCLUSION

189 The Great Bight Ceduna Sub-Basin displays a multi stage gravity collapse solely based on shale mobility, over an area of more than 10^5 km², making the WPD one of the largest known 190 191 example of its kind at present. Our study shows that early shale mobilization led to the formation 192 of shale withdrawal minibasins at the distal part of the system, which eventually gets duplicated 193 in response to the propagation of the WPD collapse. A second stage of mobilization allows for 194 the fluidization of transported shale plugs due to hydrocarbon generation. More generally, our 195 results emphasize the need to consider salt-like mobilization of shale as a mechanism involved in 196 gravity-controlled tectonic systems and their evolution. Thus, even though salt and shales 197 tectonics bear thus strong analogies, contrarily to salt tectonics (i.e. halokinesis), argilokinesis 198 may involve a secondary deformation mechanism based on fluidization.

199 ACKNOWLEDGMEMENTS

We thank TotalEnergies and the UPPA Chair of Structural Geology for funding this project. We also thank J.I. Soto, C. Morley, the anonymous referee and editor G. Dickens for their insightful reviews of a first version of the article.

203 FIGURE CAPTIONS

Figure 1. A) Geographic setting of the Ceduna Sub-Basin, location of the 3D data set (with displayed inlines and crosslines) and the utilized composite 2D regional seismic lines; B) Two 206 previously published interpretative cross-sections; C) Simplified lithostratigraphic chart and 207 main targeted horizons.

Figure 2. A) Two interpreted 3D seismic lines located at the distal part of the delta (inline 2150), and B) cross view of the delta (xline 11000). A1 and A3) Examples of wedging patterns in the lower White Pointer. A4 and A5) Examples of intra minibasin unconformities; A2 and B1) Example of concentric normal faults above a shale plug. B1) The main zone of minibasin duplexation; B2) Example of wedging patterns in the lower White Pointer; B3) example of of translated WPD rollers and depocenters.

Figure 3. Top: 5km depth slice cutting across the Top WP/Tiger megasequence. A1 Concentric rounded closures of translated minibasins. B1 Close up on the radial and concentric fault sets associated to polygonal faults in the core ontop a shale dome. Bottom: 8km depth slice showing the shale withdrawal minibasins base (lower WP). B2. Close up on the elongated withdrawal minibasins' base.

Figure 4. Kinematic evolution scenario of Ceduna Sub-Basin, White Pointer Delta (for the sakeof simplicity the double collapse system of the WPD is not fully sketched).

221

222 **REFERENCES CITED**

Ahmed, B., McClay, K., Scarselli, N., Bilal, A., 2022, New insights on the gravity-driven
deformation of Late Albian – Early Turonian stacked delta collapse systems in the
Ceduna sub-basins, Bight basin, southern margin of Australia: Tectonophysics, 823,
226 229184.

- Back, S., and Morley, C.K., 2016, Growth faults above shale—Seismic-scale outcrop analogues
 from the Makran foreland, SW Pakistan: Marine and Petroleum Geology, v. 70, p. 144–
 162, https://doi.org/10.1016/j.marpetgeo.2015.11.008.
- Blouin A., Sultan, N., Imbert, P., Callot, JP., Evolution model for the Absheron Mud Volcano:
 from stratified sediments to fluid mud generation: Journal of Geophysical Research, Earth
 Surface, 125(12), e2020JF005623, 2020.
- Brown, K.M., 1990, The nature and hydrogeologic significance of mud diapirs and diatremes for
 accretionary systems. Journal of Geophysical Research, 95, 8969-8982.
- 235 Brun, J.P., Fort, X., 2008. Entre Sel et Terre, Structures et mécanismes de la tectonique salifère.
- Société Géologique de France. Between Salt and Earth, Structures and Mechanisms of
 Salt Tectonics: Vuibert, 153pp.
- Choudhuri, M., Debajyoti, G., Arindam, D., Sudipta, S., and Neerak, S., 2010. Spatiotemporal
 variations and kinematics of shale mobility in the Krishna-Godavari Basin, India, *in*Wood, L. ed., Shale Tectonics, American. Association of Petroleum Geologist Memoir
 93, 91-109.
- Corredor, F., Shaw, J.H., Bilotti, F., 2005, Structural styles in the deep-water fold and thrust belts
 of the Niger Delta: American. Association of Petroleum Geologist Bulletin 89, 753–780.
 https://doi.org/10.1306/02170504074.
- Cruciani, F., and Barchi, M.R., 2016, The Lamu basin deepwater fold-and-thrust-belt: an
 example of a margin scale, gravity-driven thrust belt along the continental passive margin
 of East Africa: Tectonics, 35, 491-510. Doi.org/10.1002/2015TC003856.
- Deville, E., Guerlais, A.-S., Callec, Y., Griboulard, R., Huyghe, P., Lallemant, S., Mascle, A.,
 Noble, M., Schmitz, J., and the collaboration of the Caramba working group, 2006,

Liquified vs. Stratified sediment mobilisation processes : insight from the south of the
Barbados accretionary prim: Tectonophysics, 428, 33-47. Doi:0.1016/j.tecto.2006.08.011.

- Dinc, G., 2020. Argilokinesis Occurring in Natural Cases Mise en évidence de l'argilocinèse
 massive sur cas naturels. [Ph.D. thesis]: Pau, Université de Pau et des Pays de l'Adour,
 France, 360 pp.
- Duerto, L. and McClay, K., 2011, Role of the shale tectonics on the evolution of the Eastern
 Venezuelan Cenozoic thrust and fold belt: Marine and Petroleum Geology, 28, 81–108.
- Espurt, N., Callot, J.-P., Totterdell, J., Struckmeyer, H., Vially, R., 2009, Interactions between
 continental breakup dynamics and large-scale delta system evolution: insights from the
 Cretaceous Ceduna delta system, Bight Basin, Southern Australian margin: Tectonics 28
 (6), TC6002. https://doi.org/10.1029/2009TC002447.
- Hill, K.C., Cunneen, J.C., Farrington, R., 2019. The Bight Basin, Evolution & Prospectivity II:
 Seismic, Structure and Balanced Sections. AEGC 2019: From Data to Discovery –
 Perth, Australia.
- Hudec, M.R., Jackson, M.P.A., 2004, Regional restoration across the Kwanza Basin, Angola: salt
 tectonics triggered by repeated uplift of a metastable passive margin: American
 Association of Petroleum Geology, 88, 971–990. https://doi.org/10.1306/02050403061
- McClay, K.R., Dooley, T., Zamora, G., 2003, Analogue models of delta systems above ductile
 substrates. Geological Society of London Special publication, v. 216, 411–428.
 https://doi.org/ 10.1144/GSL.SP.2003.216.01.27.
- McDonnell, A., Jackson, M.P.A., Hudec, M.R., 2010, Origin of transverse folds in an
 extensional growth-fault setting: Evidence from an extensive seismic volume in the
 western Gulf of Mexico. Marine and Petroleum Geology, 27, 1494-1507.

273	Morley, C.K., Guerin, G., 1996, Comparison of gravity driven deformation styles and behavior
274	associated with mobile shales and salt: Tectonics 15, 1154–1170.

- Morley, C.K., King, R., Hillis, R., Tingay, M., Backe, G., 2011, Deepwater fold and thrust belt
 classification, tectonics, structure and hydrocarbon prospectivity: a review: Earth Science
 Review, v. 104, 41–91. https://doi.org/10.1016/j.earscirev.2010.09.010.
- 278 Morley, C.K., von Hagke, C., Hansberry, R., Collins, A., Kanitpanyacharoen, W., and King, R.,
- 2018, Review of major shale-dominated detachment and thrust characteristics in the
 diagenetic zone: Part II, Rock mechanics and microscopic scale: Earth-Science Reviews,
 v. 176, p. 19–50, https:// doi .org /10 .1016 /j.earscirev.2017.09.015.
- Mourgues, R., Cobbold, P.R., 2006, Sandbox experiments on gravitational spreading and gliding
 in the presence of fluid overpressures: Journal of Structural Geology, v. 28, 887–901.
 https:// doi.org/10.1016/j.jsg.2005.12.013.
- Mourgues, R., Lecomte, E., Vendeville, B., Raillard, S., 2009, An experimental investigation of
 gravity-driven shale tectonics in progradational delta: Tectonophysics, v. 474 (3–4), 643–
 656. ISSN 0040-1951. https://doi.org/10.1016/j. tecto.2009.05.003.
- Peel, F.J., 2014, The engines of gravity-driven movement on passive margins: quantifying the
 relative contribution of spreading vs. gravity sliding mechanisms: Tectonophysics, v. 633,
 126–142. https://doi.org/10.1016/j.tecto.2014.06.023.
- Reis, A.T., Perovano, R., Siva, C.G., Vendeville, B.C., Araujo, E., Gorini, C., Oliveira, V., 2010,
 Two-scale gravitational collapse in the Amazon fan: a coupled system of gravity tectonics
 and mass-transport processes: Journal of the Geological Society of London, v. 167, 593-
- 294 604, doi.1144/0016-76492009-035.

295	Rowan, M.G., Trudgil, B.D., Fiduk, J.C., 2000, Deep-water, salt-cored foldbelts: lessons from
296	the Mississippi Fan and Perdido foldbelts, northern Gulf of Mexico, in Atlantic Rifts and
297	Continental Margins, Geophysical Monograph, 115. American Geophysical Union, pp.
298	173–191.

- Rowan, M.G., Peel, F.J., Vendeville, B.C., 2004, Gravity-driven fold belts on passive margins.
 American. Association of Petroleum Geologist Memoir, v. 82, 157–182.
 https://doi.org/10.1306/61EECE28-173E-11D7- 8645000102C1865D.
- Rowan, M.G., 2020, Salt- and Shale-Detached Gravity-Driven Failure of Continental Margins,
 Regional Geology and Tectonics: Principles of Geologic Analysis, 2020, pp. 205–234.
 ISBN: 9780444641342. https://doi.org/10.1016/B978-0-444-64134- 2.00010-9.
- Ruble, T.E., Logan, G.A., Blevin, J.E., Struckmeyer, H.I.M., Liu, K., Ahmed, M., Eadington,
 P.J., Quezada, R.A., 2001, Geochemistry and charge history of Palaeo-oil column:
 Jerboa-1, Eyre sub Basin, Great Australian Bight. PESA Eastern Australia basins
 Symposium, Melbourne, 25-28 Nov., 521-541.
- Ruh, J.B., Vergès, J., Burg, J.-P., 2018, Shale-related minibasins atop a massive olistostrome in
 an active accretionary wedge setting: Two-dimensional numerical modeling applied to
 the Iranian Makran: Geology, v. 46(9), 791-794.
- Schultz-Ela, D.D., 2001, Excursus on gravity gliding and gravity spreading. Journal of Structural
 Geology, v. 23, 725–731. https://doi.org/10.1016/S0191-8141(01)00004-9.
- 314 Soto, J.I., Heidari, M., Hudec, M.R., 2021a, Proposal for a mechanical model of mobile shales:
- 315 Nature Scientific Reports, 11:23785, doi.org/10.1038/s41598-021-02868-x.

316	Soto, J.I., Hudec, M.R., Mondol, N.H., and Heidari, M., 2021b, Shale transformations and
317	physical properties-Implications for seismic expression of mobiles shales. Earth-Sciences
318	Reviews, 220, 103746.
319	Tingay, M., Manga, M., Rudolph, M.L., and Davies, R., 2018, An alternative review of facts,
320	coincidence and past and future studies of the Lusi eruption. Marine and Petroleum
321	Geology, 95, 345-361.
322	Totterdell, J.M., Blevin, J.E., Struckmeyer, H.I.M., Bradshaw, B.E., Colwell, J.B., Kennard,
323	J.M., 2000, A new sequence framework for the Great Australian Bight: starting with a
324	clean slate: Australian Petroleum Production & Exploration Association, v. 40, 95-117.
325	Totterdell, J., Bradshaw, B., 2004, The structural framework and tectonic evolution of the Bight
326	Basin, in: Eastern Australasian Basins Symposium II. Petroleum Exploration Society of
327	Australia. Special Publication, pp. 41–61.
328	Toterdell, J.M., Struckmeyer, H.I.M., Boreham, C.J., Mitchell, C.H., Monteil, E., Bradshaw,
329	B.E., 2008, Mid-Late Cretaceous organic rich rocks from the eastern Bight Basin:
330	implications for prospectivity, PESA Eastern Australasian Basin symp. III, Sydney, 14-17
331	Sept. 2008, 137-158.

Sciences and Technologies College Geosciences Department B.P. 1155 - 64013 PAU CEDEX

Response to the main comments and remarks by reviewers and Editor

Prof. J. Soto

Structures related to shale fluidification: Polygonal or radial faults around the culmination of shale diapirs are, by itself, non-diagnostic of fluidification. I recommend to revise the text in lines 143 to 145, for example, to better constrain the structures observed by the authors to document this process (e.g., fluid pipes, feeders and conduits for mud volcanoes, etc.).

We agree that polygonal cracks as well as radial faults may derive from other processes and that only fluid conduits and/or mud volcanoes would surely demonstrate the importance of the fluid role. Nevertheless, these features are quite common in fluid-controlled domains and rather scarce (apart from volcanics systems) elsewhere. However, mainly due to seismic resolution, those features have not been demonstratively been observed. On places such as the inline of figure 2, it may be suspected if zoomed accordingly (e.g. considering vertical succession of enhanced portion of the reflectors, ...), but we rather think that the observed association of stratigraphically bracketed polygonal fault system surrounded by radial and concentric faults is sufficiently well established and comparable to other fluidized shale systems (e.g. Nigeria, offshore Azerbaijan, ...) to propose that the same phenomenon has occurred too in the Ceduna Sub-basin as well.

Include some information about timing of the sequences in figures 1 and 2. Nowadays, it is rather difficult to correlate many of the statements in the text regarding timing with those illustrations, because these figures do not contain any information regarding the age of the sequences and/or the key reflectors.

This is right and the figures have been modified accordingly and the labelling referred too better in the body of the manuscript.

All remarks made on the associated pdf file have been taken into account.

Pau, September the 20th 2022,

On behalf of G. Dinc and co-author, JP Callot

nline View of Distal White Pointer Delta

Line 2: 3D PSDM xline 11000

km

Translational Domain

B3

LEGEND:

Listric Faults

Strike Slip Faults

Conical Faults

Radial Faults

Polygonal Faults

Minibasin Closures

Shale Ridges

Listric Fault Domain

Radial Faults Surrounding Diapiric Depressions

Minibasin Features: **Circular vs Elongated**

