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ABSTRACT 7 

Large offshore depocenters above a weak detachment level (either salt or shale) can 8 

undergo gravity spreading and/or gliding. The gravitational systems (e.g. gliding deltas) are 9 

classically composed of an up-dip domain affected by extensional listric normal faults and a 10 

down-dip domain affected by toe thrusts. While the role of salt in such systems is a classic of 11 

tectonic lesson, the role and mechanical behavior of mobile shale levels in shale-prone gravity 12 

driven systems are increasingly questioned. A 3D seismic dataset in the Ceduna sub-basin 13 

displays the Late Albian-Turonian White Pointer Delta (WPD) as having an unusual diversity of 14 

shale-cored structures. The early flow of shale results in depocenters showing wedges, internal 15 

unconformities, and shale diapirs and ridges, while fluidization of shales underneath a significant 16 

burial results in mud volcanism, secondary radial fault sets and collapse features beneath the 17 

Campanian-Maastrichtian Hammerhead delta (HHD) which lies above the WPD. Massive shale 18 

mobilization together with downdip shortening and a distal margin uplift localizes a major thrust 19 

in the core of the basin ending the downward propagating failure of the WPD. Mobilization of 20 

thick shale intervals, either as salt-like flow or mud volcanism, appears as a key process of 21 

deformation to be considered at large scale for worldwide gravity-driven deformation systems. 22 
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INTRODUCTION 23 

Development of large sedimentary deltas on passive margins is often associated with 24 

gravity-driven collapse (e.g. Rowan 2020; McClay et al., 2003), which is controlled either by 25 

pure gliding/spreading, or a combination of both, above a ductile decollement level, usually 26 

made up of evaporites or mobile shales (Peel 2014). Gravity collapse shows three main domains 27 

connected by a basal detachment: (1) an up-dip extensional domain associated to listric normal 28 

growth faults, (2) a translational domain showing symmetrical structures (e.g. rafts, turtle 29 

structures, etc.) and (3) a down-dip compressional fold and thrust belt (Morley et al., 2011; 30 

Rowan et al., 2000; 2004; Schultz-Ela, 2001; Hudec and Jackson, 2004). Evaporite properties 31 

allow for an efficient decoupling in any condition, but shale levels are considered to be mobile 32 

only when overpressured (e.g. Mourgues and Cobbold, 2006). 33 

Overpressurization is commonly attributed to compaction disequilibrium, resulting either 34 

from rapid sedimentation of low permeability materials, or fluid generation and expansion (e.g. 35 

hydrocarbon maturation, clay diagenesis, Tingay et al., 2007; Morley et al., 2018; Blouin et al., 36 

2020). However, alternative explanations to this phenomenon have also been proposed (such as a 37 

decrease of friction coefficient due to graphite, Rutter et al., 2013) as it partly fails to explain 38 

mobilization of shales having already gone under significant burial, as well as fluidization of 39 

clays (Soto et al., 2021). Gravity-driven collapse related to shale mobilization is observed in 40 

many regions including the South Atlantic Margins (e.g. Niger Delta, Amazon Fan), the South 41 

Australia Margin (Ceduna Sub-Basin), the Southeastern Asia and Indian Ocean margins (e.g. 42 

Baram and Rovuma Deltas, Krishna Godavari domain), as well as in back-arc basins and 43 

compressional prisms (e.g. Alboran Sea, Venezuela and Makran prisms) (Ahmed et al., 2022; 44 

Hudec and Jackson, 2004; Choudhuri et al., 2010; Reis et al., 2010; Ruh et al., 2018; Soto et al., 45 
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2021b; Corredor et al., 2005; Cruciani and Barci, 2016; Deville et al., 2006; Duerto and McClay, 46 

2011). 47 

Involvement of salt-like deformation in shale tectonics (e.g. diapirs, minibasins, welds, 48 

etc.) has long been debated, following developments of deep offshore seismic acquisition on the 49 

one side, improvement of seismic imaging and processing techniques on the other (Morley and 50 

Guérin, 1996; Soto and Hudec 2021; Soto et al., 2021a, b, among others). Understanding of shale 51 

mechanics helped to set the ground for understanding the ability of already compacted and 52 

cemented shales to behave in a viscous manner (Brown, 1990; Soto et al., 2021a) and salt-like 53 

shale tectonics was put at the forefront in various settings recently (e.g. Hudec and Soto 2021; 54 

Dinc, 2020; Back and Morley 2016; Ruh et al., 2018).  55 

Our study gives insights into the involvement of massive shale mobilization, over more 56 

than 105 km2, during the development of the Ceduna Sub Basin which consists of two 57 

structurally independent and yet laterally stacked deltas, namely the Albian to Cenomanian 58 

White Pointer Delta and the Campanian to Maastrichtian Hammerhead Delta (WPD & HHD) 59 

above thick shale detachments (figure 1, Espurt et al., 2009; Totterdell et al., 2000; Ahmed et al., 60 

2022). Here we focus on the WPD, which has been subjected to shale mobilization all along its 61 

development, evolving from salt-like shale flow to fluidization. 62 

GEOLOGICAL SETTING 63 

The Great Bight Basin (GBB) is part of the south Australia passive margins. The offshore 64 

portion of it is composed of five sub-basins, among which the Ceduna Sub-Basin stands as a Late 65 

Jurassic-Early Cretaceous rifted basin, covered by a maximum of 15km of Late Jurassic to Late 66 

Cretaceous sediments, which propagated the break up during Early Cretaceous between Australia 67 

and Antarctica (figure 1). The post-rift succession starts with the continental, Berriasian-Lower 68 
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Valanginian Southern Right and Valanginian to Mid Albian Bronze Whaler megasequences 69 

(Totterdell et al. 2000). 70 

The Ceduna Sub-basin gravity-driven and collapsing deltaic supersequences initiated 71 

during the Late Albian-Santonian marine WPD, which involved massively the Albian Blue 72 

Whale shale detachment (BW, figure 1B1, Espurt et al., 2009). This megasequence is formed of 73 

two collapsing, gravity-controlled, systems (figure 1B2, see Ahmed et al., 2022 for a review). 74 

First, a Late Albian-Early Cenomanian gliding system (Ahmed et al., 2022), located in the core 75 

of the basin composed of a set of extensional up-dip listric faults, connected to the early downdip 76 

thrust faults. This collapse system is followed by a Late Cenomanian set of extensional listric 77 

faults initiating in the core of the delta and associated to down-dip thrust faults, offsetting the 78 

earlier thrusts, which form a buttress for the main collapse system and localizes the decollement 79 

of the secondary collapse system (Ahmed et al., 2022). 80 

The deep margin uplift (Hill et al., 2019) results in the cessation of gravity gliding and a 81 

slight inversion phase for the WPD. The deposition of the Turonian-Santonian Tiger 82 

megasequence is coeval with the final separation of Australia and Antarctica (Totterdell et al., 83 

2000), and the Late Santonian-Maastrichtian Hammerhead megasequence (HHD), starts to 84 

develop above the WPD. 85 

DATA AND METHODS 86 

The main dataset used in this study is the Ceduna PSDM 3D cube acquired by PGS in 87 

2011. The survey covers an area of 12,413 km2 with an inline and cross-line spacing of 12.5m 88 

and 15m respectively (see figure 1A for cube and lines orientation). On top of this Ceduna 89 

dataset, additional 2D seismic composite lines are used to connect the 3D survey up-dip to the 90 

nearest exploration wells to have seismic marker ties, and down-dip to the distal margin. The 2D 91 
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lines (used in particular to tie the cube to the existing well but not displayed in the figure) were 92 

extracted from the 2001 PSTM Flinders survey (lines w00fdw003, 0014 and 0023), 1997 AGSO 93 

2D PSTM survey (line GA199-05B), and 1986 2D PSTM BMR 1986 survey (lines 065-07P1, 94 

02P2, and 09P1) (Espurt et al. 2009; Totterdell and Bradshaw, 2004).  95 

Three offshore wells have been used to tie the seismic picking to stratigraphic horizons, 96 

Potoroo-1, Jerboa-1 and Gnarlyknots-1A, which are located outside the 3D survey, yet crossed 97 

by the 2D regional lines (Totterdell et al., 2000; Dinc, 2020). Four key horizons are used in this 98 

study (figure 1D): the top Blue Whale (BW, Late Albian), the top White Pointer (Cenomanian to 99 

Early Turonian), the top Tiger (Late Turonian to Santonian), and the top upper Hammerhead 100 

(Maastrichtian). Based on the recent recognition of the early collapse system (BW to lower 101 

WPD, Ahmed et al., 2022), we also tracked three additional horizons: two within the WPD (the 102 

Top Lower-Mid WP and Top Mid WP), and one within the Tiger Formation (Mid Tiger), where 103 

they get available as they do not continuously extend and/or are poorly tied outboard the core of 104 

the Ceduna Sub-Basin. 105 

RESULTS AND DISCUSSION 106 

A representative inline (n°2150), together with a connecting xline (n°11000) (figure 1A) 107 

are displayed in figure 2, associated with two time slices from the 3D dataset, localized at 8km 108 

and 5km depth, i.e. cutting through the BW and the Upper WPD megasequences respectively 109 

(figure 3). In that perspective, the 8km depth time slice focuses on the first collapse system (Mid 110 

Albian to Early Cenomanian) whereas the 5km depth time slice investigates the late stage of 111 

evolution of the second collapse system (Early Cenomanian to Early Turonian).  112 

Evidence of shale mobility 113 
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Evidence for salt-like shale mobility is mostly confined to the core of the Ceduna Sub-114 

Basin, where the phenomena is stratigraphically constrained to the early collapsed system 115 

(Lower WPD). It mainly consists of low angle wedging observed at the edges of flat, low-116 

dipping depocenters, which abut chaotic ridges which are composed of mobilized shales (figure 117 

2 A1-2, B1-2). These depocenters form pod-like minibasins with internal unconformities related 118 

to their successive stages of growth. They present onlaps on the slopes of the ridges (Figure 2A1-119 

2, B2), similar to the shale-controlled minibasins observed onshore in the Makran (Ruh et al., 120 

2018). These minibasins are controlled by the ductile flow of the underlying BW shales, and 121 

show an elongation parallel to the overall gliding direction (figure 3B1). 122 

To the north, the proximal domain of the delta lacks good examples of minibasins. 123 

However, when expressed, the top part of the depocenters localize the decollement horizon 124 

responsible for the secondary collapse system development (figure 2A-A2-4). On the contrary, 125 

within the distal domain of the WPD (figure 2B), these depocenters appear to be well expressed 126 

and duplicated by a major thrust plane localized onto the BW detachment level (figure 2A, A1-2, 127 

B2, figure 3A2, figure 4d-e). This part of the sub-basin shows extensive patterns of shale 128 

mobilization controlling a large portion of Early WPD deposits downlapping onto the BW 129 

shales. Above the duplexes, the transported depocenters show a more mature pattern, with 130 

numerous welds and remnant of mobile shale masses separating the depocenters (figures 2B3-4). 131 

Localization of the compressional deformation on these duplexes is associated with the decrease 132 

of decollement depth and correlatively of the translated listric fault spacing (figure 2B1). 133 

Shale mobility is quickly abandoned and buried beneath the growing WPD as early as the 134 

first stage of gravity collapse (Late Albian-Early Cenomanian), displayed by the abandonment of 135 

the early minibasins, passively transported and buried (figures 2A-B). During their burial, these 136 
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early minibasins are crosscut and deformed in the distal part by the development of fold and 137 

thrusts related to the propagation of gravity collapse basinward. After the end of the WPD 138 

deposition, transported minibasins are progressively welded, squeezing the shale plugs (figure 139 

2B). During the Upper Tiger deposition, domal uplifts (figure 2A5) show the development of 140 

sets of both radial and concentric normal faults (figure 3B1), which are stratigraphically 141 

bracketed during the deposition of the lower HH Formation, and rooted in the top WPD deposits. 142 

Polygonal faults system in the core of these radial normal faults sets, confined in this 143 

stratigraphic interval, suggest high overpressures and two types of shale mobilization, here 144 

involving fluidization (figure 3B1). 145 

Imbrication of gravity collapse: an updated scenario 146 

Both salt-like shale mobilization and shale fluidization together with the duplication of 147 

the early minibasins along thrust faults are key features, improving the delta kinematic scenario 148 

(figure 4). Following the deposition of the BW shales, early clastics of the lowermost WPD 149 

megasequence trigger shale mobilization in the distal part (e.g. Morley et al., 2018), resulting in 150 

the building of small, down-dip elongated, withdrawal minibasins similar to what is observed in 151 

the western Gulf of Mexico (McDonnell et al., 2010; figure 4a, b), while the early collapse 152 

system develops up-dip (figure 4b-c). During Early Cenomanian, the WPD early collapse system 153 

forms in the inner domain and progressively migrates downdip, reactivating early developed 154 

down-dip toe thrust (figure 4d). Buttressing against the early thrusts and deep margin uplift helps 155 

to localize the major thrust duplex within the thickest part of the basin during the deposition of 156 

the upper WPD sequence, duplicating the early minibasins (figure 4d-e). Although the ramp 157 

developed at the toe of the delta slows down the WPD collapse, it favors the focus of shortening 158 

above the major thrust and subsequent squeezing of the transported shale diapirs. This leads to 159 
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the final fluidization of the shales after Tiger deposition (figure 4e-g, Turonian). The entire WPD 160 

system eventually gets frozen beneath the HHD megasequence (figure 4h). 161 

Controlling factors of shale mobility 162 

Even though bowl-shaped, subsiding depocenters (i.e. minibasins bordered by rising 163 

chaotic mobile masses) are common features in salt tectonics, withdrawal depocenters related to 164 

mobile shales are less common, yet repeatedly proposed and generally attributed to overpressures 165 

and undercompaction during rapid sedimentation (e.g. Morley et al., 2018). In the case of early 166 

WPD deposits, we suggest that the early shale mobilization is not related to the overpressure 167 

with increasing burial depth due to clay dewatering, they are rather large mobile masses of 168 

poorly compacted, water-rich unconsolidated sediments, with low viscosity and density, 169 

mobilized early following their deposition, similarly to the olistrostromes of the Makran Prism 170 

(Ruh et al., 2018). Early mobility is responsible for mechanical weakening of the shale masses 171 

by penetrative deformation, up to a critical state, while repeated input of sediments increases 172 

loading and pressurization and maintains the mobile shales at a critical state for plastic 173 

deformation (Soto et al., 2021; Hudec and Soto, 2021). 174 

The late stage of shale mobilization, i.e. fluidization at the crest of squeezed shale plugs, 175 

occurs during the Turonian-Santonian time. This is coeval with generation of oil in the Blue 176 

Whale formation and gas within the synrift Bronze Whaler megasequence of the Jerboa-1 well 177 

(Ruble et al., 2001), which is considerably less buried than the core of the basin. Basin modelling 178 

of the Potoroo and Gnarlyknots wells suggest that the Turonian source rocks generated liquid 179 

products as early as Campanian (Toterdell et al., 2008). Oil and gas generation and migration 180 

most probably occurred much earlier within the deeper, gas prone synrift sequence, thus leaving 181 

time for gas to migrate and reach the shale plugs and withdrawal minibasins undergoing 182 
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shortening above the main thrust fault. Gas generation has a strong impact on the mechanics of 183 

shale, promoting the complete loss of cohesive resistance (Tingay et al., 2018; Blouin et al., 184 

2020), a mechanism which may help shales to achieve critical state and enhance mobility (Soto 185 

et al., 2021a), eventually leading to fluidization and through fracturing processes, to loss of 186 

material. 187 

CONCLUSION 188 

The Great Bight Ceduna Sub-Basin displays a multi stage gravity collapse solely based 189 

on shale mobility, over an area of more than105 km2, making the WPD one of the largest known 190 

example of its kind at present. Our study shows that early shale mobilization led to the formation 191 

of shale withdrawal minibasins at the distal part of the system, which eventually gets duplicated 192 

in response to the propagation of the WPD collapse. A second stage of mobilization allows for 193 

the fluidization of transported shale plugs due to hydrocarbon generation. More generally, our 194 

results emphasize the need to consider salt-like mobilization of shale as a mechanism involved in 195 

gravity-controlled tectonic systems and their evolution. Thus, even though salt and shales 196 

tectonics bear thus strong analogies, contrarily to salt tectonics (i.e. halokinesis), argilokinesis 197 

may involve a secondary deformation mechanism based on fluidization. 198 
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FIGURE CAPTIONS 203 

Figure 1. A) Geographic setting of the Ceduna Sub-Basin, location of the 3D data set (with 204 

displayed inlines and crosslines) and the utilized composite 2D regional seismic lines; B) Two 205 
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previously published interpretative cross-sections; C) Simplified lithostratigraphic chart and 206 

main targeted horizons. 207 

Figure 2. A) Two interpreted 3D seismic lines located at the distal part of the delta (inline 2150), 208 

and B) cross view of the delta (xline 11000). A1 and A3) Examples of wedging patterns in the 209 

lower White Pointer. A4 and A5) Examples of intra minibasin unconformities; A2 and B1) 210 

Example of concentric normal faults above a shale plug. B1) The main zone of minibasin 211 

duplexation; B2) Example of wedging patterns in the lower White Pointer; B3) example of of 212 

translated WPD rollers and depocenters. 213 

Figure 3. Top: 5km depth slice cutting across the Top WP/Tiger megasequence. A1 Concentric 214 

rounded closures of translated minibasins. B1 Close up on the radial and concentric fault sets 215 

associated to polygonal faults in the core ontop a shale dome. Bottom: 8km depth slice showing 216 

the shale withdrawal minibasins base (lower WP). B2. Close up on the elongated withdrawal 217 

minibasins’ base. 218 

Figure 4. Kinematic evolution scenario of Ceduna Sub-Basin, White Pointer Delta (for the sake 219 

of simplicity the double collapse system of the WPD is not fully sketched). 220 
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Response to the main comments and remarks by reviewers and Editor 
 
 

Prof. J. Soto 
Structures related to shale fluidification: Polygonal or radial faults around the culmination of shale diapirs are, by 
itself, non-diagnostic of fluidification. I recommend to revise the text in lines 143 to 145, for example, to better 
constrain the structures observed by the authors to document this process (e.g., fluid pipes, feeders and conduits 
for mud volcanoes, etc.).  
We agree that polygonal cracks as well as radial faults may derive from other processes and that only 
fluid conduits and/or mud volcanoes would surely demonstrate the importance of the fluid role. 
Nevertheless, these features are quite common in fluid-controlled domains and rather scarce (apart 
from volcanics systems) elsewhere. However, mainly due to seismic resolution, those features have 
not been demonstratively been observed. On places such as the inline of figure 2, it may be 
suspected if zoomed accordingly (e.g. considering vertical succession of enhanced portion of the 
reflectors, …), but we rather think that the observed association of stratigraphically bracketed 
polygonal fault system surrounded by radial and concentric faults is sufficiently well established and 
comparable to other fluidized shale systems (e.g. Nigeria, offshore Azerbaijan, …) to propose that the 
same phenomenon has occurred too in the Ceduna Sub-basin as well. 
Include some information about timing of the sequences in figures 1 and 2. Nowadays, it is rather difficult to 
correlate many of the statements in the text regarding timing with those illustrations, because these figures do not 
contain any information regarding the age of the sequences and/or the key reflectors. 
This is right and the figures have been modified accordingly and the labelling referred too better in 
the body of the manuscript. 

 

All remarks made on the associated pdf file have been taken into account. 

 

Pau, September the 20th 2022, 
On behalf of G. Dinc and co-author, JP Callot 
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