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In-place fast polynomial modular remainder

Jean-Guillaume Dumas∗ Bruno Grenet∗

October 24, 2023

Abstract

We consider the fast in-place computation of the Euclidean polynomial modular remainder R(X) ≡
A(X) mod B(X) with A and B of respective degrees n and m ≤ n. If the multiplication of two
polynomials of degree k can be performed with M(k) operations and O(k) extra space, then standard
algorithms for the remainder require O

(

n

m
M(m)

)

arithmetic operations and, apart from that of A and
B, at least O(n−m) extra memory. This extra space is notably usually used to store the whole quotient
Q(X) such that A = BQ+R with degR < degB.

We avoid the storage of the whole of this quotient, and propose an algorithm still using O
(

n

m
M(m)

)

arithmetic operations but only O(m) extra space.
When the divisor B is sparse with a constant number of non-zero terms, the arithmetic complexity

bound reduces to O(n).
When it is allowed to use the input space of A or B for intermediate computations, but putting

A and B back to their initial states after the completion of the remainder computation, we further
propose an in-place algorithm (that is with its extra required space reduced to O(1) only) using at most
O
(

n

m
M(m) log(m)

)

arithmetic operations, if M(m) is quasi-linear, or O
(

n

m
M(m)

)

otherwise. We also
propose variants that compute – still in-place and with the same complexity bounds – the over-place
remainder A(X) ≡ A(X) mod B(X) and the accumulated remainder R(X) += A(X) mod B(X).

To achieve this, we develop techniques for Toeplitz matrix operations which output is also part
of the input. In-place accumulating versions are obtained for the latter and then used for polynomial
remaindering. This is realized via further reductions to accumulated polynomial multiplication, for which
in-place fast algorithms have recently been developed.
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1 Introduction

Modular methods with dense univariate polynomials over a finite ring are of central importance in computer
algebra and symbolic computation. For instance, they are largely used with lifting or Chinese remaindering
techniques as the bases to compute at a larger precision. There, the quotient of the Euclidean division is
not needed, but is very often computed anyway along the algorithm.

In terms of arithmetic operations, from the work of [17, 15] to the more recent results of [3], many
sub-quadratic algorithms were developed for this task, based on fast polynomial multiplication [5, 14, 20].
But these fast algorithms come at the expense of (potentially large) extra temporary space to perform
the computation. On the contrary, classical, quadratic algorithms, when computed sequentially, quite often
require very few (constant) extra registers. Further work then proposed simultaneously “fast” and “in-place”
algorithms, for both matrix and polynomial operations [4, 10, 11].

We here propose algorithms to extend the latter line of work. In the polynomial setting, we compute
in-place the remainder only of the Euclidean division. This means that, e.g., with respect to [11, Alg. 3], we
obtain the remainder without needing any space for the quotient. As polynomials and Toeplitz matrices are
indeed different representations of the same objects, see, e.g., [1, 2, 10], we also develop methods for Toeplitz
matrix operations, in-place with accumulation or over-place: those are difficult cases where the output is
also part of the input. The difficulty when the result overwrites (parts) of the input, is that in-place methods
start with absolutely no margin for extra space. Thus, for instance, the generic recursive techniques of [4, 10]
usually do not apply. Instead we propose reductions to accumulated polynomial multiplication, for which a
recent fast in-place algorithm has been developed [9, § 4].

Next we first detail our model for in-place computations in Section 1.1, recall some quadratic in-place
algorithms in Section 1.2 and some fast algorithms in Sections 1.3 and 1.4. Then, in Sections 2 and 3,
we derive new in-place algorithms for circulant and Toeplitz matrices. In Section 4 we then propose a fast
remaindering algorithm using only a multiple of the remainder space and finally we combine all the reductions
to obtain fast and in-place algorithms computing just the polynomial remainder.

1.1 In-place model

There exist different models for in-place algorithms. We here choose to call in-place an algorithm using only
the space of its inputs, its outputs, and at most O(1) extra space. But algorithms are only allowed
to modify their inputs, if their inputs are restored to their initial state afterwards (obviously those
that are not both input and output). This is a less powerful model than when the input is purely read-only,
but it turns out to be crucial in our case, especially when we have accumulation operations.

The algorithms we describe are in-place with accumulation. The archetypical example is a multiply-
accumulate operation a += b× c. For such an algorithm, the condition is that b and c are restored to their
initial states at the end of the computation, while a (which is also part of the input) is replaced by a+ bc.

Also, as a variant, by over-place, we mean an algorithm where the output replaces (parts of) its input
(e.g., like ~a = b·~a). Similarly, we allow all of the input to be modified, provided that the parts of the input
that are not the output are restored afterwards. In the following we signal by a “Read-only:” tag the parts
of the input that the algorithm is not allowed to modify (the other parts are modifiable as long as they are
restored). Note that in-place algorithms with accumulation are a special case of over-place algorithms.

For recursive algorithms, some space may be required to store the recursive call stack. (This space is
bounded by the recursion depth of the algorithms, and managed in practice by the compiler.) Nonetheless,
we call in-place a recursive algorithm whose only extra space is the call stack.

The main limitations of this model are for black-box inputs, or for different inputs whose representations
share some data. For more details on these models, we refer to [19, 10].
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1.2 In place and over-place quadratic algorithms

We recall here that classical, quadratic, algorithms for polynomial remaindering and triangular matrix op-
erations can be performed in-place. For any ring D we have for instance the following over-place algorithms
for triangular matrix operations, given in Alg. 1.

Algorithm 1 Over-place quadratic triangular matrix operations
(left: matrix-vector multiplication; right: triangular system solve)

Input: U ∈ D
m×m upper triangular and ~v ∈ D

m

Read-only: U

Output: ~v ← U · ~v
1: for i = 1 to m do

2: for j = 1 to i− 1 do

3: vj += Uj,ivi
4: end for

5: vi ← Ui,ivi;
6: end for

Output: ~v ← U−1 · ~v
1: for i = m down-to 1 do

2: for j = m down-to i+ 1 do

3: vi –= Ui,jvj
4: end for

5: vi ← U−1
i,i vi; {If Ui,i ∈ D

∗}
6: end for

For any vector ~v = [v1, . . . , vm], we associate the polynomial of degree ≤ m− 1, with these coefficients:

V (X) =
∑m−1

i=0 vi+1X
i. We then give a quadratic in-place remaindering in Alg. 2, as the classical long

division.

Algorithm 2 In-place quadratic polynomial remainder

Input: ~a ∈ D
N , ~b ∈ D

M with bM ∈ D
∗

Read-only: ~a,~b
Output: R(X) = A(X) mod B(X)

1: if N < M then return R(X) = A(X) =
∑N−1

i=0 ai+1X
i end if

2: Let n = N −M + 1 and ~r = [an+1, . . . , aN ];
3: for i = n down-to 1 do

4: Let ~r = [ai, r1, . . . , rM−1];
5: rM ← rM · b

−1
M ; {Local quotient is rM · b

−1
M }

6: ~r –= rM ·~b; {Except for last entry (of index M)}
7: end for

8: return R(X) =
∑M−2

i=0 ri+1X
i.

By abuse of notation, we will often use vectors for polynomials and vice versa. For n coefficients, we will
then speak of a polynomial or a vector of size n and degree n− 1.

1.3 Fast algorithms

More generally, if M(M) is a sub-multiplicative complexity bound on an algorithm computing the multipli-
cation of polynomials of degree M , we suppose in the following that there exists (not in-place) algorithms,
see, e.g., [11, 14, 20], such that:

• M×M Toeplitz matrix-vector multiplication requires less than O(M(M)) operations and O(M) extra
space. More precisely, if t·M extra space is required, the matrix-vector multiplication requires less
than λtM(M) operations;

• M×M Triangular Toeplitz system solve requires also O(M(M)) operations and O(M) extra space.
More precisely, if s·M extra space is required, the system solving requires less than λsM(M) operations.

Also, for sparse inputs, we suppose:
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• M×M sparse Toeplitz (constant number of non-zero terms) matrix-vector multiplication requires less
than O(M) operations and O(M) extra space;

• M×M Triangular sparse Toeplitz (constant number of non-zero terms) system solve requires less than
O(M) operations and O(M) extra space.

1.4 In-place algorithms with accumulation

In an in-place setting, another difficulty arises when performing accumulating operations: the result is not
even available to store intermediate computations. Recently, in [9], a bilinear technique was developed for
the fast accumulated in-place polynomial multiplication, preserving an O(M(M)) complexity bound. Thus
we suppose in the following that there exists fast routines computing C(X) += A(X)B(X) in-place.

Therefore, in this paper, we reduce other in-place accumulating routines (Toeplitz, circulant, convolutions
operations) to this fundamental building block. This allows us, in fine, to obtain an in-place fast polynomial
modular remainder.

2 Fast in-place convolution with accumulation

From algorithms for polynomial multiplications at a lower level, one can devise an algorithm for the general-
ized accumulated convolution C += AB mod (Xn− f). To compute such convolutions, one can reduce the
computations to full in-place products. Those accumulated in-place polynomial multiplications (and their
cost), will also be denoted by M. Then, the idea is to unroll a first recursive iteration and then to call any
in-place accumulated polynomial multiplication on halves.

Algorithm 3 shows this, first with a Karatsuba-like iteration, using any in-place accumulated polynomial
multiplications (e.g. classical, Karatsuba, Toom-k, DFT, etc.). Apart from the full polynomial multiplica-
tions, only a linear number of operations will be needed. Therefore, the overall complexity bound will be
that of the accumulated polynomial multiplications.

Suppose indeed first that n is even, let t = n/2, and A(X) = a0(X)+Xta1(X), B(X) = b0(X)+Xtb1(X),
C(X) = c0(X)+Xtc1(X) are all of degree n− 1 = 2t− 1 (so that all of a0, a1, b0, b1, c0 and c1 are of degree
at most t− 1).

Then let τ0 + Xtτ1 = a0b1 + a1b0. Now, since X2t = Xn ≡ f mod Xn − f , we have that C += AB
mod (Xn − f) = C(X) + a0b0 + Xtτ0 + f · τ1 + f · a1b1. This can be computed with 4 full accumulated
sequential product, each of degree no more than 2t − 2 = n − 2; and by exchanging the lower and upper
parts, when accumulating a0b1X

t and a0b1X
t: this comes from the fact that: (τ0+Xtτ1)X

t ≡ Xtτ0 + f · τ1
mod Xn − f .

A la Karatsuba, a more efficient version could use only 3 full polynomial products: let instead m0 =
m00 +m01X

t = a0b0, m1 = m10 +m11X
t = (a0 + a1)(b0 + b1) and m2 = m20 +m21X

t = a1b1 be these 3
full products, to be computed and accumulated in-place.

Then, again as X2t = Xn ≡ f mod Xn, we have that:

C += AB mod (Xn − f) is

{

c0 +m00 + fm20 + f(m11 −m01 −m21)+

(c1 +m01 + fm21 + (m10 −m00 −m20))X
t

(1)

Equation (1) is an in-place accumulating linear computation, in the sense of [9]: for ~a ∈ D
m, ~b ∈ D

n,
~c ∈ D

s; α ∈ D
t×m, β ∈ D

t×n, µ ∈ D
s×t, with no zero-rows in α, β, µ.

One indeed needs to compute ~c += µ~m, some linear combinations of the same t intermediate results ~m,
that are themselves bilinear combinations of the inputs, ~m = (α~a) ⊙ (β~b): for Eq. (1), by considering

~m =
[

m00 m01 m10 m11 m20 m22

]

, we have that µ =

[

1 −f 0 f f −f

−1 1 1 0 −1 f

]

=
[

M0 M1 M2

]

, for

which M−1
0 = (1− f)−1

[

1 f
1 1

]

, M−1
1 =

[

0 1
f−1 0

]

, and M−1
2 = (f2 − f)−1

[

f f
1 f

]

.
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From this, [9, Alg. 3] derives an accumulating in-place algorithm using 2× 2 invertible blocks computing
linear combinations like [

ci
cj ] += M [ ρ0

ρ1
], via the equivalent algorithm: M

((

M−1 [
ci
cj ]
)

+= [ ρ0

ρ1
]
)

.
Again for Eq. (1), some successive operations are then simplified as follows:

(i) As 1+ f(1− f)−1 = (1− f)−1, then M−1
0 [ c0c1 ] = (1− f)−1

[

1 f
1 1

]

[ c0c1 ] can be sequentially computed via
c1 += c0; c1 /= (1− f); c0 += fc1.

(ii) As M−1
2 ·M0 =

[

0 −1
−f−1 0

]

= −
[

1 0
0 f−1

]

[ 0 1
1 0 ], then computing M2 right after M0 allows to simplify the

intermediate in-place operations into a variable swap, negations and multiplication by f−1.

(iii) That negation can be delayed, since (−M · c) += ρ is equivalent to −((M · c) –= ρ).

(iv) Similarly, −M−1
1 · M2 =

[

1 −f
−1 1

]

, thus computing M1 after M2 again simplifies to the sequential
computation: c0 –= c1; c1 –= (1 − f); c1 –= fc0.

(v) Finally,M1 =
[

f 0
0 1

]

[ 0 1
1 0 ] and thus this combination is again just a swap of variables and a multiplication

by f .

Overall, we obtain Alg. 3, thereafter.

Algorithm 3 In-place even degree f -convolution with accumulation

Input: A(X), B(X), C(X) polynomials of odd degree n− 1; f ∈ D \ {0, 1}.
Output: C += AB mod (Xn − f)
1: if n ≤ Threshold then {Constant-time if Threshold ∈ O(1)}
2: return the quadratic in-place polynomial multiplication.
3: else

4: Let t = n/2; {n is even},
5: Let A = a0 +Xta1; B = b0 +Xtb1; C = c0 +Xtc1;
{Iteration for m0}

6: c1 += c0;
7: c1 /= (1− f); {Simplification (i)}
8: c0 += f · c1;

9:

[

c0
c1

]

+= a0 · b0 {Via M, see Section 1.4, and denote a0b0 =

[

m00

m01

]

}

10: c0 /= f ; {Simplifications (ii) and (iii)}
{Iteration for m2}

11:

[

c1
c0

]

–= a1 · b1 {Via M, see Section 1.4, and denote a1b1 =

[

m20

m21

]

}

12: c0 –= c1; {this is c0/f +m00/f −m01 +m20 −m21}
13: c1 ⋆= (1− f); {Simplification (iv)}
14: c1 –= f · c0; {this is c1 −m00 +m01 −m20 + fm21}
{Iteration for m1}

15: a0 += a1;
16: b0 += b1;

17:

[

c1
c0

]

+= a0 · b0 {Via M, see Section 1.4, and denote (a0 + a1)(b0 + b1) =

[

m10

m11

]

}

18: b0 –= b1;
19: a0 –= a1;
20: c0 ⋆= f ; {Simplification (v)}
21: end if

Algorithm 3 works for odd degrees (even size), with both f and (1 − f) invertible. We need to design
variant algorithms for the other cases.
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Algorithm 4 deals with the case where f = 1. We present here only the version with 4 full products (as
M0 and M2 are not invertible when f = 1).

Algorithm 4 In-place even degree 1-convolution with accumulation

Input: A(X), B(X), C(X) polynomials of odd degree n− 1;
Output: C += AB mod (Xn − 1)
1: if n ≤ Threshold then {Constant-time if Threshold ∈ O(1)}
2: return the quadratic in-place polynomial multiplication.
3: else

4: Let t = n/2; {n is even},
5: Let A = a0 +Xta1; B = b0 +Xtb1; C = c0 + c1X

t;

6:

[

c0
c1

]

+= a0 · b0 {Via M, since u+ vY mod Y 2 − 1 ≡ u+ vY }

7:

[

c0
c1

]

+= a1 · b1 {Via M, since Y 2 ≡ 1}

8:

[

c1
c0

]

+= a0 · b1 {Via M, since (u+ vY )Y ≡ v + uY }

9:

[

c1
c0

]

+= a1 · b0 {Via M, since (u+ vY )Y ≡ v + uY }

10: end if

Algorithm 5 deals with the even degree case where f 6= 0. We here show only the version with 4 full
products, but just for the sake of simplicity. The additional difficulty here is that the degrees of the lower
and upper parts are different. Therefore, Alg. 5 ensures that there is always the correct space to accumulate.

Algorithm 5 In-place odd degree f -convolution with accumulation

Input: A(X), B(X), C(X) polynomials of even degree n− 1; f ∈ D
∗.

Output: C += AB mod (Xn − f)
1: if n ≤ Threshold then {Constant-time if Threshold ∈ O(1)}
2: return the quadratic in-place polynomial multiplication.
3: end if

4: Let t = (n+ 1)/2; {n is odd},
5: Let A = a0 +Xta1; B = b0 +Xtb1; C = c0 + c1X

t; {a1,b1,c1 of degree n− 1− t = t− 2}

6:

[

c0
c1

]

+= a0 · b0 {Via M, since degree 2t− 2 < 2t− 1 = n}

7:

[

c1..(t−1)

c1

]

+= a1 · b1 {Via M, since X2t ≡ fX, thus degree (2t− 4) + 1 = n− 2, still < n}

8: c0..(t−2) /= f ;

9:

[

ct..(2t−2)

c0..(t−2)

]

+= a0 · b1 {Via M, since degree 2t− 3 < 2t− 1 = n, with (u+ vXt−1)Xt ≡ (fv + uXt)}

10:

[

ct..(2t−2)

c0..(t−2)

]

+= a1 · b0 {Via M, since degree 2t− 3 < 2t− 1 = n, with (u+ vXt−1)Xt ≡ (fv + uXt)}

11: c0..(t−2) ⋆= f ;

Finally, we also have to deal with the case f = 0, that is with the in-place short product C += AB
mod Xn. If the field cardinality is not 2, then a simple way is to compute two f -convolutions, with two
different values for f , as shown in Remark 1.

Remark 1. If AB = QXn + R, of overall degree less than 2n − 1, then AB = Q(Xn − 1) + (R + Q) =
Q(Xn− g)+ (R+ gQ), for any g, and thus the respective remainders, by Xn− 1, and respectively by Xn− g,
share the same quotient Q. Now for any λ 6∈ {0, 1}, taking g = λ(λ−1)−1, we obtain that R = λR+(1−λ)R
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together with λ+g(1−λ) = 0. Therefore C += AB mod Xn can be computed by C += λAB mod (Xn−1)
followed by C +=(1−λ)AB mod (Xn−g). This is two calls among Algs. 3 to 5, with an overall complexity
bound of O(M(n)).

There remains to compute a short product in the field with 2 elements. For this, we use a cutting in
3 blocks of size close to n/3 and [6, Eq. (24)] modulo 2, recalled in Eq. (2).

A(Y ) = Y 2a2 + Y a1 + a0; B(Y ) = Y 2b2 + Y b1 + b0; C(Y ) = Y 2c2 + Y c1 + c0;

m0 = a0 · b0; m1 = (a0 + a1 + a2) · (b0 + b1 + b2); m2 = a2 · b2;

m3 = (a0 + a2) · (b0 + b2); m4 = (a1 + a2) · (b1 + b2);

m5 = (a1 + a2) · (b0 + b1); m6 = (a0 + a2) · (b1 + b2);

t0 = c0 +m0; t1 = c1 +m1 +m2 +m3 +m4;

t2 = m1 +m3 +m4 +m5 +m6;

then C +AB mod Y 3 ≡ Y 2t2 + Y t1 + t0 mod 2

(2)

From the 2 × 2 expansion of Eq. (2), again letting mi = mi0 + Ymi1, one obtains the 3 × 14 µ-matrix
of Eq. (3):





1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0 0 0 0 0
0 0 1 1 0 1 1 1 1 1 1 hose0 1 0



 (3)

The five first pairs of columns can be dealt with the technique of [9]. The last two pairs are not full rank and
thus cannot be handled like this (in other words, there are no places to put the high order terms of these
two products, even though their are needed for the final result). They, however, just represent (m50 +m60)
mod Xn/3 and thus can be performed via 2 recursive calls of degree n/3. There remains to handle the cases
where n is not a multiple of 3. For this, let t = ⌊n/3⌋ and Y = Xt and start by computing C += AB
mod X3t via the algorithm sketched above. Now the remaining one or two coefficients, that of X3t and
X3t+1, when applicable, are just accumulated directly, scalar multiplications by scalar multiplications. The
whole process is shown in Alg. 6.

Overall, Alg. 6 uses 5 polynomial multiplications with polynomials of degree n/3, then 2 recursive calls
of short products of degree n/3 and O(n) extra computations. The overall complexity is thus still O(M(n)),
as shown in Theorem 2.

Finally, Algs. 3 to 6 all together provide a complete solution for the fast in-place convolution with
accumulation, as given in Alg. 7.

Theorem 2. Using an in-place polynomial multiplication with complexity bounded by M(n), Alg. 7 is correct,
in-place and has complexity bounded by O(M(n)).

Proof. Correctness of Alg. 3 comes from that of Eq. (1). Correctness of Algs. 4 and 5 is direct from the
degrees of the sub-polynomials, as given in their inside comments. Correctness of Alg. 6 comes from that of
Eq. (2).

Also, all four algorithms are in-place as they use only in-place atomic operations or in-place polynomial
multiplication.

Then, Algs. 3 to 5 use only a linear number of operations plus up to four calls to polynomial multiplications
of half-degrees. Their complexity bound thus stems from the fact that M(n)/n is increasing and that the
number of operations is less than O(n) + 4M(n/2).

Finally, Alg. 6 uses a linear number of atomic operations, 5 polynomial multiplications with polynomials of
degree n/3 and only 2 recursive calls to third-degree polynomials. Thus its complexity bound satisfy T (n) ≤
2T (n/3) + 5M(n/3) +O(n). Again, the non-decreasingness of M(n)/n, gives that T (n) = O(M(n)).
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Algorithm 6 In-place short product (0-convolution) with accumulation

Input: A(X), B(X), C(X) polynomials of degree < n in D[X ];
Output: C += AB mod Xn.
1: if n ≤ Threshold then {Constant-time if Threshold ∈ O(1)}
2: return the quadratic in-place polynomial multiplication.
3: end if

4: if D \ {0, 1} 6= ∅ then {Use Remark 1}
5: Choose λ 6∈ {0, 1} and let g = λ(λ − 1)−1;
6: C += λAB mod (Xn − 1); {Algorithm 4 or Algorithm 5}
7: return C +=(1 − λ)AB mod (Xn − g). {Algorithm 3 or Algorithm 5}
8: end if {The rest is thus just when D ≃ F2}
9: Let t = ⌊n/3⌋;

10: Let A mod X3t = a0+Xta1+X2ta2; B mod X3t = b0+Xtb1+X2tb2; C mod X3t = c0+c1X
t+X2tc2;

11: Let mi = mi0 +mi1X
t, i = 0..6, as in Eq. (2);

12:





c0
c1
c2



 +=





1 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 0
0 0 1 1 0 1 1 1 1 1



 ·
[

m00 m01 m10 m11 m20 m21 m30 m31 m40 m41

]⊺

{[9, Alg. 3]}

13: a1 += a2; b0 += b1;
14: c2 += a1 · b0 mod Xt {Recursive call, for c2 += m5 mod Xt}
15: b0 –= b1; a1 –= a2;
16: a0 += a2; b1 += b2;
17: c2 += a0 · b1 mod Xt {Recursive call, for c2 += m6 mod Xt}
18: b1 –= b2; a0 –= a2;
19: if n ≥ 3t+ 1 then

20: for i = 0 to 3t do
21: c3t += Ai · B3t−i {Scalar accumulations}
22: end for

23: end if

24: if n = 3t+ 2 then

25: for i = 0 to 3t+ 1 do

26: c3t+1 += Ai · B3t+1−i {Scalar accumulations}
27: end for

28: end if

Algorithm 7 In-place convolution with accumulation

Input: A(X), B(X), C(X) polynomials of degree < n; f ∈ D.
Output: C += AB mod (Xn − f)
1: if f = 0 then

2: return Alg. 6.
3: else if n is odd then

4: return Alg. 5.
5: else if f = 1 then

6: return Alg. 4.
7: else

8: return Alg. 3.
9: end if
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3 Circulant and Toeplitz matrix operations with accumulation

Toeplitz matrix-vector multiplication can be reduced to circulant matrix-vector multiplication, via an em-
bedding into a double-size circulant matrix. But this is not immediately in-place, since doubling the size
requires a double space. We see in the following how we can instead double the operations while keeping the
same dimension. We start by the usual definitions, also extending circulant matrices to f-circulant matrices,
following, e.g., [18, Theorem 2.6.4].

3.1 Accumulating & in-place f-circulant matrices

Definition 3. For ~a ∈ D
m, the circulant matrix represented by ~a, C(~a), is the m ×m matrix (Cij), such

that C1j = aj and the (i+ 1)-th row is the cyclic right shift by 1 of the i-th row.

Definition 4. For f ∈ D and ~a ∈ D
m, the (lower) f-circulant matrix represented by ~a, Cf(~a), is the m×m

matrix (Γij), such that:

for C = C(~a),

{

Γij = Cij if i ≤ j,

Γij = f · Cij otherwise.

The algebra of f -Circulant matrices is in fact isomorphic to the algebra of polynomials moduloXn−f [18,
Theorem 2.6.1]. This means that the product of an f -circulant matrix by a vector is obtained by the
convolution of this vector by the vector representing the f -circulant matrix, and thus via Alg. 7.

In fact, it is well known that circulant matrices are diagonalized by a discrete Fourier transform, and
hence can be manipulated via fast Fourier transforms as C1(~a) = F−1

m diag(Fm~a)Fm, for Fm a DFT-matrix,
see, e.g., [12, § 4.7.7]. This gives an alternative way to compute circulant matrix-vector multiplication in-
place (using and restoring afterwards both the matrix and the vector). Indeed, the (even truncated) Fourier
transform and its inverse can be computed in-place [19, 13, 8]. This gives us an in-place algorithm to compute

the accumulation ~c += C1(~a) ·~b as:

1. ~a← Fm~a, ~b← Fm
~b and ~c← Fm~c;

2. ~c += diag(~a) ·~b;

3. ~c← F−1
m ~c; ~b← F−1

m
~b and ~a← F−1

m ~a.

Now, this diagonalization allows to compute fast in-place accumulated circulant matrix-vector only when
primitive roots exists, and only via this DFT algorithm. On the contrary, Alg. 7 has no restriction on f
and is a reduction to any accumulated in-place polynomial multiplication (including DFT ones, as, e.g., [9,
Alg. 7]).

3.2 Accumulating & in-place Toeplitz matrix operations

Definition 5. For ~a ∈ D
2m−1, the (square) Toeplitz matrix represented by ~a, T(~a), is the m ×m matrix

(Tij), such that Tij = am+j−i. Similarly, for ~a ∈ D
m+n−1, we denote by Tm,n(~a) the m × n rectangular

Toeplitz matrix defined by its first column, ~a1..m bottom to top, and its first row, ~am..(m+n−1), left to right.

Again, there is an isomorphism between rectangular Toeplitz matrices and the middle product of poly-
nomials, see, e.g., [10, § 3.1]. We also immediately see that with these notations, we have for instance
C1(~a) = C(~a), C0(~a) = 1

2 (C1(~a) + C-1(~a)), or also Cf(~a) = T([f ·~a2..m,~a]), where [~u,~v] denotes the vector
obtained by concatenation of ~u and ~v.

Fast algorithms for f-circulant matrices then allows us to build algorithms, by reduction, for accumulation
with triangular and square Toeplitz matrices first, as sums of f-circulant in Algs. 8 and 9, and then for any
Toeplitz matrix, again as sums of triangular Toeplitz matrices in Alg. 10.
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Algorithm 8 In-place accumulating Upp. Triang. Toeplitz m-v. mult.

Input: ~a,~b,~c ∈ D
m.

Output: ~c += T([~0,~a]) ·~b.

1: return ~c += C0(~a) ·~b. {Algorithm 7}

Remark 6. We here present f-circulant matrices where the coefficient acts on the lower left part of the matrix
(excluding the diagonal). In the same manner, one can design an in-place fast algorithm for the other type
of f-circulant matrices, where the coefficient would act on the upper right part of the matrix (excluding the
diagonal). One could thus derive the transposed version of Alg. 8, with a single call to (the transposed version
of) Alg. 7. Now it is also possible to use the same algorithm but on the transposed matrix and on reversed

vectors: letting ~b be the reversed vector of ~b, one can see by inspection that:

Cf(~a)
⊺ · ~b is the reverse of Cf(~a) ·~b (4)

Algorithm 9 In-place accumulating square Toeplitz m-v. mult.

Input: ~a1 ∈ D
m, ~a2,~b,~c ∈ D

m+1,
Output: ~c += T([ ~a1, ~a2]) ·~b.

1: ~c += C0( ~a2) ·~b; {Algorithm 7}

2: Let ~b1 = ~b1..m and ~c2 = ~c2..m+1;

3: In-place reverse ~a1 (resp. ~b1, ~c2) into ~a1 (resp. ~b1, ~c2)

4: ~c2 += C0( ~a1) · ~b1; {Equation (4) and Algorithm 7}

5: In-place reverse ~a1 (resp. ~b1, ~c2) into ~a1 (resp. ~b1, ~c2)
6: return ~c.

Lemma 7. Algorithms 8 and 9 are correct and have complexity bounded by O(M(n)).

Proof. The complexity bound comes from that of Alg. 7. Correctness is obtained directly looking at the
values of the matrices:

• T([~0,~a]) = C0(~a).

• T([ ~a1, ~a2]) = C0( ~a2) +

[

~0
⊺

0

C0( ~a1)
⊺ ~0

]

.

Then for Alg. 9, Remark 6 and Eq. (4) shows that it is possible to compute C0( ~a1)
⊺ · ~b1 via the reverse of

C0( ~a1) · ~b1.

From this, we give in Alg. 10 an in-place rectangular Toeplitz matrix-vector multiplication.

Proposition 8. Algorithm 10 is correct and requires less than O(M(max{m,n})) operations.

Proof. If m>n, then there are first ⌊m/n⌋ square n×n calls to Alg. 9. This is bounded by O((m/n)M(n)) ≤
O(M(m)) operations. The remaining recursive call is then negligible. This is similar when m<n.

These in-place accumulated Toeplitz matrix-vector multiplications, in turns, allows us to obtain an over-
place triangular Toeplitz multiplication or system solve, given in Algs. 11 and 12.

Proposition 9. Algorithm 11 is correct and requires less than O(M(m) log(m)) operations if M(m) is
quasi-linear, and O(M(m)) otherwise.
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Algorithm 10 In-place accumulating rectangular Toeplitz m-v. mult.

Input: ~a ∈ D
m+n−1, ~b ∈ D

n, ~c ∈ D
m,

Output: ~c += Tm,n(~a) ·~b.
1: if m = n then

2: return ~c += T(~a) ·~b. {Algorithm 9}
3: end if

4: if m > n then

5: Let c1 = ~c1..n and c2 = ~c(n+1)..m;

6: c1 += T
(

~a(m−n+1)..(m+n−1)

)

·~b; {Algorithm 9}

7: c2 += Tm-n,n

(

~a1..(m−1)

)

·~b; {Recursive call}
8: else

9: Let b1 = ~b1..m and b2 = ~b(m+1)..n;

10: c += T
(

~a1..(2m−1)

)

· b1; {Algorithm 9}

11: c += Tm,n-m

(

~a(m+1)..(m+n−1)

)

· b2; {Recursive call}
12: end if

13: return ~c.

Algorithm 11 Over-place triang. Toeplitz m-v. mult.

Input: ~a,~b ∈ D
m, s.t. a1 ∈ D

∗.
Output: ~b← T([~a,~0]) ·~b.
1: if m ≤ Threshold then {Constant-time if Threshold ∈ O(1)}
2: return the quadratic in-place triangular m-v. mult. {Algorithm 1}
3: end if

4: Let k = ⌈m/2⌉, b1 = ~b1..k and b2 = ~b(k+1)..m;

5: b2 ← T([~a(k+1)..m,~0]) · b2; {Recursive call}
6: b2 += Tm-k,k([a1, . . . , am−1]) · b1; {Algorithm 10}

7: b1 ← T([a(m−k+1)..m,~0]) · b1; {Recursive call}

8: return ~b.

Proof. For the correctness, let T = T([~a,~0]) and consider it as blocks T1 = T([a(m−k+1)..m,~0]), T2 =

T([~a(k+1)..m,~0]) and G = Tm-k,k([a1, . . . , am−1]). Then T =
[

T1 0
G T2

]

. Thus T~b =
[

T1b1
Gb1+T2b2

]

. Let b̄1 = T1b1,

b̂2 = T2b2 and b̄2 = Gb1 + T2b2. Then b̄2 = b̂2 + Gb1 and this shows that the algorithm is correct. Now
for the complexity bound, the cost function is T (m) ≤ 2T (m/2) +O(M(m)). This is ≤ O(M(m) log(m)) if
M(m) is quasi-linear, and O(M(m)) otherwise.

Proposition 10. Algorithm 12 is correct and requires less than O(M(m) log(m)) operations if M(m) is
quasi-linear, and O(M(m)) otherwise.

Proof. For the correctness, let T = T([~0,~a]) and consider it as blocks T1 = T([~0,~a1..k]), T2 = T([~0,~a(k+1)..m])

and G = Tk,m-k(~a2..m). Then T =
[

T1 G
0 T2

]

. Now define H , s.t. T−1 =
[

T−1

1
H

0 T−1

2

]

. Then H satisfies

T−1
1 G+HT2 = 0. Also, we have T−1~b =

[

T−1

1
b1+Hb2

T−1

2
b2

]

. Let b̄2 = T−1
2 b2 and b̄1 = T−1

1 b1 +Hb2. Then b̄1 =

T−1
1 b1 +HT2b̄2 = T−1

1 b1 − T−1
1 Gb̄2 = T−1

1

(

b1 −Gb̄2
)

and this shows that the algorithm is correct. Now for
the complexity bound, the cost function is T (m) ≤ 2T (m/2) +O(M(m)). Again, this is ≤ O(M(m) log(m))
if M(m) is quasi-linear, and O(M(m)) otherwise.

We now have over-place Toeplitz methods. Next, we reduce the extra space for polynomial remaindering.
Eventually, we combine these two techniques to obtain in-place polynomial remaindering.
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Algorithm 12 Over-place triang. Toeplitz system solve

Input: ~a,~b ∈ D
m, s.t. a1 ∈ D

∗.
Output: ~b← T([~0,~a])−1 ·~b.
1: if m ≤ Threshold then {Constant-time if Threshold ∈ O(1)}
2: return the quadratic in-place triangular system solve.
3: end if

4: Let k = ⌈m/2⌉, b1 = ~b1..k and b2 = ~b(k+1)..m;

5: b2 ← T([~0,~a(k+1)..m])−1 · b2; {Recursive call}
6: b1 –= Tk,m-k(~a2..m) · b2; {Algorithm 10}

7: b1 ← T([~0,~a1..k])
−1 · b1; {Recursive call}

8: return ~b.

4 In-place modular remainder

We consider the fast in-place (resp. over-place) computation of the Euclidean polynomial modular remainder
R(X) ≡ A(X) mod B(X) (resp. A(X) ≡ A(X) mod B(X)) with A and B of respective degrees n and
m ≤ n. Standard algorithms for the remainder require O

(

n
mM(m)

)

arithmetic operations and, apart from
that of A and B, at least O(n−m) extra memory [11]. This extra space is notably usually used to store the
whole quotient Q(X) such that A = BQ+R with degR < degB.

We first show how to avoid the storage of the whole of this quotient, and propose an algorithm still using
O
(

n
mM(m)

)

arithmetic operations but only O(m) extra space (when the divisor B is sparse with a constant
number of non-zero terms, the arithmetic complexity bound reduces to O(n)).

Finally, we combine this with the techniques of Sections 2 and 3 and use the input space of A or B for
intermediate computations in order to propose in-place and over-place algorithms for the modular remainder
using at most O(M(m) log(m)) arithmetic operations if M(m) is quasi-linear, and O(M(m)) otherwise.

4.1 Successively over-writing the quotients

With two polynomials A and B of respective degrees N and M , the computation of the Euclidean division
remainder R of degree strictly less than M such that A = BQ + R with quotient Q, can be rewritten as
R ≡ A−BQ mod XM . This is therefore enough to compute the quotient only up to the degree M − 1: let
AM ≡ A mod XM and QM ≡ Q mod XM , then R ≡ AM −BQM mod XM .

This observation is the ingredient that allows to compute the remainder using an extra space only of the
order of the degree of the divisor B. One can also see this as the long division algorithm applied to blocks
of dimension M .

Let us write the Euclidean equation A = BQ+R in a Toeplitz matrix form. In Eqs. (5) and (6), we view
the polynomials A, Q and R as vectors [a0, . . . , aN ], [q0, . . . , qN−M ], [r0, . . . , rM−1, 0, . . . , 0] and then B as a
Toeplitz matrix B = T([0, . . . , 0, bM , . . . , b0, 0, . . . , 0]). Then, focusing on the last N −M + 1 rows of Eq. (5)
we obtain directly the upper triangular (N −M + 1) × (N −M + 1) Toeplitz system of equations whose
solution is only the quotient, as shown in Eq. (6).
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. . .

bM
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. . .
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. (5)
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bM . . . b0 0
. . .

. . .
. . .

. . .
. . . b0

0

. . .
...

bM



















·













q0
...
...

qN−M













. (6)

We now let n = N −M + 1 and suppose that B is really of degree M , that is, its leading coefficients
bM is invertible in the coefficient domain. For the sake of simplicity we also assume that n is a multiple of
M (otherwise, for now, just complete the polynomial A with virtual leading zero coefficients up to the next
multiple of M) and let µ = n

M . We then denote the M×M blocks of the Toeplitz matrix in Eq. (6) by:

T = T([~0M−1, bM..1]) and G = T([bM−1..0,~0M−1]), that is:

T =







bM . . . b1
. . .

...
bM






and G =







b0
...

. . .

bM−1 . . . b0






. (7)

This in turns gives a way to access only the first coefficients of Q in an upper triangular Toeplitz system,
with a 2-block band structure:
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=
[

IM 0
]













T G 0
. . .
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0 T













−1 
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...
...

aN













(8)

where
[

IM 0
]

is the concatenation of the M×M identity matrix and the (N −M)×(N −M) zero matrix.
Finally, recovering the remainder from the first M rows of Eq. (5) equations is just like multiplying the

quotient by G and thus R = A−BQ mod XM can be written as:

R =













a0
...
...

aM−1













−
[

G 0
]













T G 0
. . .

. . .

. . . G
0 T













−1 











aM
...
...

aN













(9)

In fact, as we need only the first M coefficient of the Toeplitz system we just need the first block-row of
the (upper triangular) inverse of the upper triangular 2-band Toeplitz matrix.

Now this first block-row, of the inverse, of an upper triangular Toeplitz matrix U , is given by a direct
formula, obtained from either of the equations U ·U−1 = I or U−1 ·U = I (see, e.g., [7, Eq.(1)] for the scalar
case). If we denote by Hi the blocks of that row, we have that:











H1 = T−1

Hi−1G+HiT = 0, i = 2..µ

THi +GHi−1 = 0, i = 2..µ

(10)

Solving Eq. (10), we just get that Hi = T−1(−GT−1)i = (−GT−1)iT−1.
We have shown:
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Lemma 11.












T G 0
. . .

. . .

. . . G
0 T













−1

= T−1.













I −GT−1 . . . (−GT−1)µ−1

. . .
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. . . −GT−1

0 I













Now denote by [ ~a0, ~a1, . . . , ~aµ] the decomposition into blocks of dimension M of [a0, . . . , aN ]. Combin-
ing Eq. (9) and Lemma 11, we obtain now that:

R =













a0
...
...

aM−1













−GT−1

(

µ
∑

i=1

(

−GT−1
)i−1

~ai

)

=

µ
∑

i=0

(

−GT−1
)i

~ai (11)

From Eq. (11) we thus can immediately deduce the following Alg. 13 that uses only O(M) extra memory
space in a Horner-like fashion of the polynomial in (−GT−1) of Eq. (11). Note that this algorithm does
not modify its input along its course: both A(X) and B(X) are for now read-only (in particular virtually
padding ~a with virtual zeroes, Line 3, is therefore not an issue).

Algorithm 13 Overwritten-quotient Euclidean remainder

Input: A(X), B(X) in D[X ] of respective degrees N and M .
Read-only: A(X), B(X).
Output: R(X) ≡ A(X) mod B(X) of degree at most M − 1.
1: if M > N then return A.
2: Let n = N −M + 1, µ =

⌈

n
M

⌉

;

3: Let [ ~a0, . . . , ~aµ] = [a0, . . . , aN ,~0]; {Blocks of dimension M}

4: Let T = T([~0M−1, bM , . . . , b1]), G = T([bM−1, . . . , b0,~0M−1]);
5: ~r = ~aµ; {~r in-place of the result}
6: for i = µ− 1 down-to 0 do

7: ~t = T−1 · ~r; {Triang. Toeplitz solve}
8: ~r = (−G) · ~t; {Triang. Toeplitz m-v. mult.}
9: ~r += ~ai;

10: end for

11: return R =
∑M−1

i=0 riX
i.

Theorem 12. Algorithm 13 is correct and requires O
(

N
MM(M)

)

arithmetic operations and O(M) extra
memory space. If the polynomial B is sparse with a constant number of non-zero coefficients, the arithmetic
complexity is reduced to O(N).

Proof. Correctness stems directly from Lemma 11 and Eq. (11). For the complexity bounds, we use the
results of Section 1.3. For each block, the triangular Toeplitz system solve and the Toeplitz m-v. mult.
require respectively λsM(m) and λtM(m) operations and, sequentially, max{s; t}M extra space. Apart
from this space, we only need one extra vector, ~t, to store intermediate results. Overall we thus perform
µ((λs+λt)M(M)+M) operations. With µ = n/M and n = N −M +1, this is

⌈

N−M+1
M

⌉

((λs+λt)M(M)+

M) = O( N
MM(M)) operations, using (1 + max{s; t})M extra space.

Now if B is sparse with a constant number of non-zero elements, each triangular Toeplitz system solve
and Toeplitz matrix-vector multiplication can be performed with only O(M) operations with the same extra
memory space. Thus the overall arithmetic bound becomes O(µM) = O(N).
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Remark 13. Algorithm 13 is in fact just the long division polynomial algorithm applied to sub-blocks of the
polynomial of size M :

• Line 7, ~t = T−1 · ~r, corresponds to computing the quotient of the current leading coefficients, of the
dividend, by B;

• Line 8, ~r = (−G) · ~t, corresponds to recovering the lower part of the multiplication of that current
quotient by B;

• Line 9, ~r += ~ai, updates the next M coefficients of the current dividend (the leading ones being zero
by construction of the current quotient).

This in-place long division by block is also sketched for instance in the proof of [11, Lemma 2.1]. The latter
Lemma gives about 3λM(N) operations and (2+ s)M extra space. In fact a refined analysis should also give
the same (better) complexity as that of Theorem 12, that is less than 2λN

MM(M) operations and (1 + s)M
extra space.

4.2 In-place remainders via Toeplitz techniques

We now derive algorithms that use only O(1) extra memory space in the in-place model of Section 1.1:
modifying the inputs is possible if and only if all inputs are restored to their initial state after the completion of
the algorithm. This allows us to store some intermediate results, over-writing the input, provided that we can
afterwards recompute the initial inputs in their entirety. Further, this enables recursive calls, as intermediate
values are used but restored along the recursive descent. The general idea is then to combine Sections 3
and 4.1.

in fact, in the following, we present three in-place variants of polynomial remaindering:

• IPER: for R(X) ≡ A(X) mod B(X), creates a small remainder from a large polynomial using only
the output space and that of the modulus B (i.e. A is read-only and B is restored to its initial state
after completion);

• OPER: for A(X) ≡ A(X) mod B(X), updates a large polynomial into a small remainder (with B
restored to its initial state after completion);

• APER: for R(X) += A(X) mod B(X), accumulates the remainder of a large polynomial into a small
one (with both A and B restored to their initial states after completion).

We can now present in Alg. 14, a fully in-place remainder where only B(X) is modified but restored: this
variant replaces only Lines 7 to 9 of Alg. 13 by their over-place variants, Algs. 11 and 12, that modify and
restore some parts of B.

From Alg. 14 we also obtain, Alg. 15 which directly updates the dividend over-place, while also remaining
fully in-place. In Alg. 14, A is read-only and can thus be virtually padded with zeroes, when N −M + 1 is
not a multiple of M . This is not the case anymore in Alg. 15. This is the reason why we need to now take
some special care of the last s = (N + 1) mod M coefficients.

Finally, we also obtain the variant Alg. 16, where the remainder is accumulated in-place. As in Alg. 15
the dividend is updated over-place, but in fact enough information is preserved so as to put it back into its
initial state after the accumulation of the actual remainder.

Theorem 14. Algorithms 14 to 16 are correct, in-place and require less than O
(

N
MM(M) log(M)

)

operations

if M(M) is quasi-linear, and O
(

N
MM(M)

)

otherwise.

Proof. Algorithm 14 calls µ=
⌈

N−M+1
M

⌉

= O(N/M) times Algs. 11 and 12, each call requiring less than
O(M(M) log(M)) operations by Props. 9 and 10 if M(M) is quasi-linear, and O(M(M)) otherwise. This
suffices to prove the Theorem’s claims for Alg. 14. These costs also dominates the costs of Algs. 9 and 10
by Lemma 7 and Prop. 8, and therefore that of Alg. 15: its Lines 5 to 8 are the over-place first iteration
of Alg. 14, for s < M . Finally, Alg. 16 is also similar, using the same sub-algorithms, and only roughly
doubling the overall cost (by symmetry before and after the accumulation).
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Algorithm 14 IPER (R,A,B): In-place Polynomial Euclidean Remainder

Input: A(X), B(X) in D[X ] of respective degrees N and M .
Read-only: A(X).
Output: R(X) ≡ A(X) mod B(X) of degree at most M − 1.
1: if M > N then return A.
2: Let n, µ, [ ~a0, . . . , ~aµ], T , G as in Alg. 13;
3: ~r = ~aµ; {~r in-place of the result}
4: for i = µ− 1 down-to 0 do

5: ~r ← T−1 · ~r; {Algorithm 12}
6: ~r ← (−G) · ~r; {Algorithm 11}
7: ~r += ~ai;
8: end for

9: return R =
∑M−1

i=0 riX
i.

Algorithm 15 OPER (A,B): Over-place Polynomial Euclidean Remainder

Input: A(X), B(X) in D[X ] of respective degrees N and M .
Output: A(X) ≡ A(X) mod B(X) of degree at most M − 1.
1: if M > N then return A.
2: Let n, µ, T , G as in Alg. 14 and s = (N+1) mod M ;
3: Let [ ~a0, . . . ,~aµ−1] = [a0, . . . , aN−s] and ~aµ = ~a(N−s+1)..N ;
4: if s 6= 0 then

5: Let T1 = T([~0s−1, bM , . . . , bM−s+1]); {s×s upper left of T }
6: ~aµ ← T−1

1 · ~aµ; {Algorithm 12}

7: Let G1 = TM,s([bM−1, . . . , b0,~0s−1]); {Left s columns of G}
8: ~aµ−1 +=(−G1) · ~aµ; {Algorithm 10}
9: end if

10: for i = µ− 1 down-to 1 do

11: ~ai ← T−1 · ~ai; {Algorithm 12}
12: ~ai−1 += (−G) · ~ai; {Algorithm 9}
13: end for

14: return A = ~a0.

5 Conclusion

We have presented novel reductions of accumulated in-place f-circulant and Toeplitz matrix-vector multipli-
cations to in-place polynomial multiplication. This allows us to derive novel algorithms for accumulated or
over-place Toeplitz multiplication or Toeplitz system solving. We also present algorithms that reduce the
extra storage required to compute the remainder only when dividing polynomials. Eventually, we combine
these techniques to propose the first in-place, over-place and accumulating algorithms computing only the
remainder of the polynomial Euclidean division.
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in theoretical computer science. Birkhäuser, 1994. doi:10.1007/978-1-4612-0265-3.

16

https://doi.org/10.1016/0020-0190(85)90037-7
https://doi.org/10.1007/978-1-4612-0265-3


Algorithm 16 APER (R,A,B): Accumulated in-place Polynomial Euclidean Remainder

Input: R(X), A(X), B(X) in D[X ] of respective degrees M − 1, N and M .
Output: R(X) += A(X) mod B(X) of degree at most M − 1.
1: if M > N then return R += A.
2: Let n, µ, s, T , T1, G, G1, [ ~a0, . . . , ~aµ] as in Alg. 15, and ~r = [r0, . . . , rM−1];
3: if s 6= 0 then

4: ~aµ ← T−1
1 · ~aµ; {Algorithm 12}

5: ~aµ−1 –= G1 · ~aµ; {Algorithm 10}
6: end if

7: for i = µ− 1 down-to 1 do

8: ~ai ← T−1 · ~ai; {Algorithm 12}
9: ~ai−1 –= G · ~ai; {Algorithm 9}

10: end for

11: ~r += ~a0;
12: for i = 1 to µ− 1 do

13: ~ai−1 += G · ~ai; {Undo Line 9 via Algorithm 9}
14: ~ai ← T · ~ai; {Undo Line 8 via Algorithm 11}
15: end for

16: if s 6= 0 then

17: ~aµ−1 += G1 · ~aµ; {Undo Line 5 via Algorithm 10}
18: ~aµ ← T1 · ~aµ; {Undo Line 4 via Algorithm 11}
19: end if

20: return ~r.
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