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In-place sub-quadratic polynomial modular remainder

Jean-Guillaume Dumas∗ Bruno Grenet∗

April 3, 2023

Abstract

We consider the computation of the euclidean polynomial modular remainderR(X) ≡ A(X) mod B(X)
with A and B of respective degrees n and m ≤ n. If the multiplication of two polynomials of degree k

can be performed with M(k) operations and O(k) extra space, then standard algorithms for the remain-
der require O

(

n

m
M(m)

)

arithmetic operations and, apart from that of A and B, O(n) extra memory.
This extra space is notably usually used to store the whole quotient Q(X) such that A = BQ+R with
degR < degB.

We avoid the storage of the whole of this quotient, and propose an algorithm still using O
(

n

m
M(m)

)

arithmetic operations but only O(m) extra space.
When the divisor B is sparse with a constant number of non-zero terms, the arithmetic complexity

bound reduces to O(n).
When it is allowed to use the input space of A or B for intermediate computations, but putting A

and B back to their initial states after the completion of the remainder computation, we further propose
an in-place algorithm (that is with its extra required space reduced to O(1) only) using O(nlog2(3))
arithmetic operations over any field of zero or odd characteristic and over most of the characteristic two
ones.

To achieve this, we develop techniques for Toeplitz matrix operations which output is also part of the
input.

1 Introduction

Modular methods with dense univariate polynomials over a finite ring are of central importance in computer
algebra and symbolic computation. For instance, they are largely used with lifting or Chinese remaindering
techniques as the bases to compute at a larger precision. There, the quotient of the Euclidean division is
not needed, but is very often computed anyway along the algorithm.

In terms of arithmetic operations, from the work of [21, 17] to more recent results of [5], many sub-
quadratic algorithms were developed for this task, based on fast polynomial multiplication [7, 16, 27]. But
these fast algorithms come at the expense of (potentially large) extra temporary space to perform the
computation. On the contrary, classical, quadratic algorithms, when computed sequentially, quite often
require very few (constant) extra registers. Further work then proposed simultaneously “fast” and “in-
place” algorithms, for both matrix and polynomial operations [6, 12, 13].

We here propose algorithms to extend the latter line of work. In the polynomial setting, we compute
the remainder only of the Euclidean division. This means that, e.g., with respect to [13, Alg. 3], we obtain
the remainder without needing any space for the quotient. As polynomials and Toeplitz matrices are indeed
different representations of the same objects, see, e.g., [3, 4, 12], we also develop methods for Toeplitz matrix
operations, in-place with accumulation or over-place: those are difficult cases where the output is also part
of the input. The difficulty when the result overwrites (parts) of the input, is that in-place methods start
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with absolutely no margin for extra space. Thus, for instance, the generic recursive techniques of [6, 12]
usually do not apply.

Next we first detail our model for in-place computations in Section 1.1, recall some quadratic in-place
algorithms in Section 1.2 and some fast algorithms in Section 1.3. Then, in Section 2, we derive new in-place
algorithms for circulant and Toeplitz matrices over fields of zero or odd characteristic. In Section 3 we then
propose a fast remaindering algorithm using only a multiple of the remainder space. Further, in Section 4,
we extend this to using as extra space only a small fraction of the remainder space. Finally in Section 5
we combine these techniques to obtain sub-quadratic in-place algorithms for the polynomial remainder only.
We also propose in Appendix B some ways to adapt our algorithms to the characteristic two specificities.

1.1 In-place model

There exist different models for in-place algorithms. We here choose to call in-place an algorithm using
only the space of its inputs, its outputs, and O(1) extra space. But algorithms are only allowed to
modify their inputs, provided that their inputs are restored to their initial state afterwards. We
do not take into account the potential space used by the recursive call stack. (This space is bounded by the
recursion depth of the algorithms, and managed in practice by the compiler.) This is a less powerful model
than when the input is purely read-only, but it turns out to be crucial in our case, especially when we have
accumulation operations (e.g., like ~a += ~b). If atomic operations are used to perform the accumulation,
then usually a constant number of extra space is sufficient. Differently, fast algorithms usually work with
(non-constant) large blocks of data and having only the latitude to use a constant extra-space is often not
sufficient.

Also, as a variant, by over-place, we mean an algorithm where the output replaces (parts) of its input
(e.g., like ~a = b·~a). Similarly, we allow all of the input to be modified, provided that the parts of the input
that are not the output are restored afterwards. In the following we signal by a “Read-only:” tag the parts
of the input that the algorithm is not allowed to modify (the other parts are modifiable as long as they are
restored).

The main limitations of this model are for black-box inputs, or for different inputs whose representations
share some data. For more details on these models, we refer to [24, 12].

1.2 In place and over-place quadratic algorithms

We recall here that classical, quadratic, algorithms for polynomial remaindering and triangular matrix op-
erations can be performed in-place. For any ring D we have for instance the following over-place algorithms
for triangular matrix operations, given in Algorithm 1.

Algorithm 1 Over-place quadratic triangular matrix operations
(left: matrix-vector multiplication; right: triangular system solve)

Input: U ∈ D
m×m upper triangular and ~v ∈ D

m.
Read-only: U .

Output: ~v ← U ·~v.
1: for i = 1 to m do

2: for j = 1 to i− 1 do

3: vj += Uj,ivi
4: end for

5: vi ← Ui,ivi;
6: end for

Output: ~v ← U−1·~v.
1: for i = m down-to 1 do

2: for j = m down-to i+ 1 do

3: vi -= Ui,jvj
4: end for

5: vi ← U−1
i,i vi; {If Ui,i ∈ D

∗}
6: end for

For any vector ~v = [v1, . . . , vm], we associate the polynomial of degree ≤ m− 1, with these coefficients:

V (X) =
∑m−1

i=0 vi+1X
i. We then give a quadratic in-place remaindering in Algorithm 2, as the classical long

division.
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Algorithm 2 In-place quadratic polynomial remainder

Input: ~a ∈ D
N , ~b ∈ D

M with bM ∈ D
∗.

Read-only: ~a,~b.
Output: R(X) = A(X) mod B(X).

1: if N < M then return R(X) = A(X) =
∑N−1

i=0 ai+1X
i. end if

2: Let n = N −M + 1 and ~r = [an+1, . . . , aN ];
3: for i = n down-to 1 do

4: Let ~r = [ai, r1, . . . , rM−1];
5: rM ← rM ·b−1

M ; {Local quotient is rM ·b−1
M }

6: ~r -= rM ·~b; {Except for last entry (of index M)}
7: end for

8: return R(X) =
∑M−2

i=0 ri+1X
i.

1.3 Fast algorithms

More generally, if M(M) is a submultiplicative complexity bound on an algorithm computing the multipli-
cation of polynomials of degree M , we suppose in the following that there exists (not in-place) algorithms,
see, e.g., [13, 16, 27], such that:

• M×M Toeplitz matrix-vector multiplication requires less than O(M(M)) operations and O(M) extra
space. More precisely, if t·M extra space is required, the matrix-vector multiplication requires less
than λtM(M) operations;

• M×M Triangular Toeplitz system solve requires also O(M(M)) operations and O(M) extra space.
More precisely, if s·M extra space is required, the system solving requires less than λsM(M) operations.

Also, for sparse inputs, we suppose:

• M×M sparse Toeplitz (constant number of non-zero terms) matrix-vector multiplication requires less
than O(M) operations and O(M) extra space;

• M×M Triangular sparse Toeplitz (constant number of non-zero terms) system solve requires less than
O(M) operations and O(M) extra space.

2 Accumulated in-place and over-place Toeplitz operations

We thus now turn to in-place accumulated and over-place Toeplitz matrix-vector operations. Toeplitz matrix-
vector multiplication can be reduced to circulant matrix-vector multiplication, via an embedding into a
double-size circulant matrix. But this is not immediately in-place, since doubling the size requires a double
space. We see in the following how we instead double the operations while keeping the same dimension. We
start by the usual definitions, also extending circulant matrices to f-circulant matrices, following [25] (see
also, e.g., [23, Theorem 2.6.4]).

Definition 1. For ~a ∈ D
m, the circulant matrix represented by ~a, C(~a), is the m ×m matrix (Cij), such

that C1j = aj and the (i+ 1)-th row is the cyclic right shift by 1 of the i-th row.

Definition 2. For f ∈ D and ~a ∈ D
m, the f-circulant matrix represented by ~a, Cf(~a), is the m×m matrix

(Γij), such that:

for C = C(~a),

{

Γij = Cij if i ≤ j,

Γij = f · Cij otherwise.
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Definition 3. For ~a ∈ D
2m−1, the (square) Toeplitz matrix represented by ~a, T(~a), is the m ×m matrix

(Tij), such that Tij = am+j−i. Similarly, for ~a ∈ D
m+n−1, we denote by Tm,n(~a) the m × n rectangular

Toeplitz matrix defined by its first column, ~a1..m bottom to top, and its first row, ~am..(m+n−1), left to right.

We see immediately that we these notations, we have for instance C1(~a) = C(~a), C0(~a) = 1
2 (C1(~a) +

C-1(~a)), or also Cf(~a) = T([f ·~a2..m,~a]), where [~u,~v] denotes the vector obtained by concatenation of ~u and ~v.
It is well known that circulant matrices are diagonalized by a discrete Fourier transform, and hence

can be manipulated via fast Fourier transforms as C1(~a) = F−1
m diag(Fm~a)Fm, for Fm a DFT-matrix, see,

e.g., [14, § 4.7.7]. This gives a first way to compute circulant matrix-vector multiplication in-place (using
and restoring afterwards both the matrix and the vector). Indeed, the (even truncated) Fourier transform
and its inverse can be computed in-place [24, 15, 9]. This gives us an in-place algorithm to compute the

accumulation ~c += C1(~a) ·~b is:

1. ~a← Fm~a, ~b← Fm
~b and ~c← Fm~c;

2. ~c += diag(~a) ·~b;

3. ~c← F−1
m ~c; ~b← F−1

m
~b and ~a← F−1

m ~a.

We use this idea and generalize it to f-circulant matrices, using fast methods for f-circulant matrices
of [10, 25].

More precisely, we extend [25, Alg. 1] to (1) dimensions that are not a power of two (without any extra
space for virtual zeroes), and (2) to any odd characteristic (i.e. we do not need an n-th root of unity), using
techniques adapted from [11, Alg. 19]. To preserve a small memory footprint, it is crucial to handle carefully
both cases where dimensions are not powers of two, and fields without roots of unity. On the one hand,
using the closest larger power of two could double the required space. On the other hand, using an extended
field would also multiply the size of the representation.

Our new algorithm is given as Algorithm 3. We use peeling to handle odd dimensions, and sum of squares
to handle square roots. For now, we have two cases where this algorithm does not work:

• We need a division by 2, and thus cannot handle the even characteristic case;

• We need at least two squares, and thus cannot handle the field with 3 elements (our algorithm works
over an extension, the field with 9 elements for instance, but this would, in theory, double the required
space).

The cases we can tackle thus include any field of characteristic zero (complexes, reals, rationals, . . . ), the
characteristic 3 with more than 9 elements, any other odd characteristic.

Theorem 4. Over any field with zero or odd characteristic (except the field of cardinality 3), Algorithm 3
is correct and requires less than O(mlog2(3)) operations.

Proof. When m is even and f is a square, the correctness is that of [25, Alg. 1] (see also an equivalent proof in
polynomial form in Appendix A). When f is not a square, we decompose f 6= 1 as a sum of squares such that:
(λ+1)f = λ12+b2. That is b2 = g = (λ+1)(f−1)+1. For any b 6= 0, λ = (b2−1)/(f−1)−1 is a possibility
if both λ and λ + 1 are invertible. As soon as the field contains at least 3 distinct non-zero squares, there
is always a solution. This includes fields of zero characteristic, and odd characteristic fields with at least 7
elements (odd finite fields for instance have (q−1)/2 nonzero squares in Fq). In the field with 5 elements, it is
sufficient that both 1 and −1 are squares: it remains to remark that C2 = −C1+2C-1 and C3 = 2C1−C-1.

Thus only the case of F3 does not have a solution. Then,
((

~c(1 + λ−1) + C1(A)~b
)

λ+ Cg(A)~b
)

1
1+λ =

~c +
(

λ
1+λ C1(A) +

1
1+λ Cg(A)

)

~b. Now, λ
1+λ + 1

1+λ = 1 and λ
1+λ + 1

1+λg = λ+1+(λ+1)(f−1)
1+λ = f , so that

(

λ
1+λ C1(A) +

1
1+λ Cg(A)

)

= Cf(A) and the non square branch of the algorithm is also correct.
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Algorithm 3 IPfCmv: In-place accumulated f -circulant matrix-vector multiplication

Input: f ∈ D, ~a,~b,~c ∈ D
m.

Read-only: f .
Output: ~c += Cf(~a) ·~b.
1: if m ≤ Threshold then {Constant-time if Threshold ∈ O(1)}
2: return the quadratic in-place matrix-vector multiplication.
3: end if

4: if m is odd then

5: repeat

6: Let β1
$← D

∗, s.t. λ1 = (β1 − 1) ∈ D
∗; let g = 1− β−1

1 ;
7: until g is a square
8: Let βg = −fβ1; λg = fβ1;

9: Let ǎ = ~a2..m, b̌ = ~b2..m , b̂ = ~b1..m−1 and ĉ = ~c1..m−1;
10: for i = m down-to 2 do bi ⋆= λ1; bi += λgbi−1; end for

11: ĉ += C1(ǎ) · b̌; {IPfCmv with square and even dimension}
12: for i = 2 down-to m do bi -= λgbi−1; bi /= λ1; end for

13: for i = m down-to 2 do bi ⋆= β1; bi += βgbi−1; end for

14: ĉ += Cg(ǎ) · b̌; {IPfCmv with square and even dimension}
15: for i = 2 down-to m do bi -= βgbi−1; bi /= β1; end for

16: ~c += a1·~b; {Linear in-place accumulation}
17: cm += f ·ǎ·b̂; {Linear in-place dotproduct}
18: else if f is not a square, or f = 0 then

19: repeat

20: Let λ
$← D

∗, s.t. (λ + 1) ∈ D
∗; Let g = 1 + (λ+ 1)(f − 1);

21: until g is a square
22: ~c ⋆=(1 + λ−1);

23: ~c += C1(a) ·~b; {IPfCmv call}
24: ~c ⋆= λ;
25: ~c += Cg(A) ·~b; {IPfCmv call with a square}
26: ~c ⋆=(λ+ 1)−1;
27: else

28: Let a1 = ~a1..m/2, a2 = ~am/2+1..m;

29: Let b1 = ~b1..m/2, b2 = ~bm/2+1..m; {m is even}
30: Let c1 = ~c1..m/2, c2 = ~cm/2+1..m;
31: c̄1 ← c2 + c1

√
f and c̄2 ← c2 − c1

√
f ; {butterflies}

32: b̄1 ← b2 + b1
√
f and b̄2 ← b2 − b1

√
f ; {butterflies}

33: ā1 ← a1 + a2
√
f and ā2 ← a1 − a2

√
f ; {butterflies}

34: c̄1 += C√
f(ā1) · b̄1; {Recursive IPfCmv call}

35: c̄2 += C-
√
f(ā2) · b̄2; {Recursive IPfCmv call}

36: a1 ← (ā1 + ā2)/2 and a2 ← (ā1 − ā2)/(2
√
f);

37: b1 ← (b̄1 − b̄2)/(2
√
f) and b2 ← (b̄1 + b̄2)/2;

38: c1 ← (c̄1 − c̄2)/(2
√
f) and c2 ← (c̄1 + c̄2)/2;

39: end if

40: return ~c.
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Now, for the odd dimension branch, we have that:

Cf(~a) =

















a1 a2 . . . . . . am

f ·am
. . .

. . .
...

...
. . .

. . .
. . .

...
f ·a3 . . . f ·am a1 a2
f ·a2 . . . . . . f ·am a1

















.

Thus apart from the diagonal, a1·~b, and the last row, f ·ǎ·b̂, the matrix-vector multiplication can be performed
by a lower triangular and an upper triangular Toeplitz multiplications, f ·L·̂b + U ·̌b. But [fL\U ] = Cf(ǎ).
Therefore both can be decomposed as fL = λg C1(ǎ) + βg Cg(ǎ) and U = λ1 C1(ǎ) + β1 Cg(ǎ) so that finally

f ·L·̂b+ U ·b̌ = C1(ǎ)(λ1b̌+ λg b̂) + Cg(ǎ)(β1b̌+ βg b̂).

For being in-place, each of the 3 vectors ~a, ~b, ~c need initial and final linear combinations of halves. Those
can be performed sequentially with, say, two temporaries: this is O(n) classical butterfly swaps of the generic
form t = air;u = bis; āi = t+ u; b̄i = t− u; āi ⋆= v; b̄i ⋆=w.

Finally, for the complexity bound, when called with a square Algorithm 3 uses at most 3 recursive calls
and therefore requires T (m) ≤ 3T (m/2) + 9m operations, that is O(mlog2(3)). These bounds also bound the
odd cases as the smallest power of two larger than x is O(x).

Theorem 4 does not work in particular in characteristic 2, as it divides by 2. We show how to deal with
most of the characteristic 2 cases in Appendix B.

Remark 5. In finite cardinality q such that p − 1 = t2s with t odd and s ≥ 2, it could be insteresting to
instead randomly select a non-square a until g ≡ a2

s 6= 1 mod p. This way λ ≡ (g − f)(f − 1)−1 and the
successive square roots from g will be squares for s recursive calls.

This generalization of fast algorithms for f-circulant matrices allows us to build algorithms for accumu-
lation with triangular Toeplitz matrices first, as sums of f-circulant in Algorithms 4 and 5, and then for any
Toeplitz matrix, again as sums of triangular Toeplitz matrices in Algorithm 6.

Algorithm 4 In-place accumulated Upp. Triang. Toeplitz m-v. mult.

Input: ~a,~b,~c ∈ D
m.

Output: ~c += T([~0,~a]) ·~b.
1: return ~c += C0(~a) ·~b. {Algorithm 3}

Algorithm 5 In-place accumulated Low. Triang. Toeplitz m-v. mult.

Input: ~a ∈ D
m−1, ~b,~c ∈ D

m.
Output: ~c += T([~a,~0]) ·~b.
1: Let t = 0;
2: ~c += C2([t,~a]) ·~b; {Algorithm 3}
3: return ~c -= C1([t,~a]) ·~b. {Algorithm 3}

Remark 6. We here present f-circulant matrices where the coefficient acts on the lower left part of the
matrix (excluding the diagonal). In the same manner, one can design an in-place fast algorithm for the
other type of f-circulant matrices, where the coefficient would act on the upper right part of the matrix
(excluding the diagonal). One could thus derive the transposed version of Algorithm 4: this would provide
instead a better algorithm than Algorithm 5 for lower triangular Toeplitz matrices, with a single call to (the
transposed version of) Algorithm 3.
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Algorithm 6 In-place accumulated square Toeplitz m-v. mult.

Input: ~a1 ∈ D
m−1, ~a2,~b,~c ∈ D

m,
Output: ~c += T([ ~a1, ~a2]) ·~b.
1: ~a2 -= [0, ~a1];

2: ~c += C0( ~a2) ·~b; {Algorithm 3}
3: ~a2 += [0, ~a1];
4: Let t = 0;
5: return ~c += C1([t, ~a1]) ·~b. {Algorithm 3}

Lemma 7. Algorithms 4 to 6 are correct.

Proof. Directly looking at the matrices values, we see that:

• T([ ~a1, ~a2]) = C0( ~a2 − [0, ~a1]) + C1([0, ~a1]) [23, Eq. (2.6.2)].

• T([~a,~0]) = C2([~a, 0])− C1([~a, 0]).

• T([~0,~a]) = C0(~a).

From this, we give in Algorithm 7 an in-place rectangular Toeplitz matrix-vector multiplication.

Algorithm 7 In-place accumulated rectangular Toeplitz m-v. mult.

Input: ~a ∈ D
m+n−1, ~b ∈ D

n, ~c ∈ D
m,

Output: ~c += Tm,n(~a) ·~b.
1: if m = n then

2: return ~c += T(~a) ·~b. {Algorithm 6}
3: end if

4: if m > n then

5: Let c1 = ~c1..n and c2 = ~c(n+1)..m;

6: c1 += T
(

~a(m−n+1)..(m+n−1)

)

·~b; {Algorithm 6}
7: c2 += Tm-n,n

(

~a1..(m−1)

)

·~b; {Recursive call}
8: else

9: Let b1 = ~b1..m and b2 = ~b(m+1)..n;

10: c += T
(

~a1..(2m−1)

)

· b1; {Algorithm 6}
11: c += Tm,n-m

(

~a(m+1)..(m+n−1)

)

· b2; {Recursive call}
12: end if

13: return ~c.

Proposition 8. Algorithm 7 is correct and requires less than O
(

max{m,n}min{m,n}log2(3)−1
)

operations.

Proof. Ifm>n, then there are first ⌊m/n⌋ square n×n calls to Algorithm 6. This is bounded byO((m/n)nlog2(3))
operations. The remaining recursive call is then negligible. This is similar when m<n.

These in-place accumulated Toeplitz matrix-vector multiplications, in turns, allows us to obtain an over-
place triangular Toeplitz multiplication or system solve, given in Algorithms 8 and 9.

Proposition 9. Algorithm 8 is correct and requires less than O(mlog2(3)) operations.

Proof. For the correctness, let T = T([~a,~0]) and consider it as blocks T1 = T([a(m−k+1)..m,~0]), T2 =

T([~a(k+1)..m,~0]) and G = Tm-k,k([a1, . . . , am−1]). Then T =
(

T1 0
G T2

)

. Thus T~b =
(

T1b1
Gb1+T2b2

)

. Let b̄1 = T1b1,

b̂2 = T2b2 and b̄2 = Gb1 + T2b2. Then b̄2 = b̂2 + Gb1 and the algorithm is correct. Now for the complexity
bound, the cost function is T (m) ≤ 2T (m/2) +O(mlog2(3)) = O(mlog2(3)).
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Algorithm 8 Over-place triang. Toeplitz m-v. mult.

Input: ~a,~b ∈ D
m, s.t. a1 ∈ D

∗.
Output: ~b← T([~a,~0]) ·~b.
1: if m ≤ Threshold then {Constant-time if Threshold ∈ O(1)}
2: return the quadratic in-place triangular m-v. mult.
3: end if

4: Let k = ⌈m/2⌉, b1 = ~b1..k and b2 = ~b(k+1)..m;

5: b2 ← T([~a(k+1)..m,~0]) · b2; {Recursive call}
6: b2 += Tm-k,k([a1, . . . , am−1]) · b1; {Algorithm 7}
7: b1 ← T([a(m−k+1)..m,~0]) · b1; {Recursive call}
8: return ~b.

Algorithm 9 Over-place triang. Toeplitz system solve

Input: ~a,~b ∈ D
m, s.t. a1 ∈ D

∗.
Output: ~b← T([~0,~a])−1 ·~b.
1: if m ≤ Threshold then {Constant-time if Threshold ∈ O(1)}
2: return the quadratic in-place triangular system solve.
3: end if

4: Let k = ⌈m/2⌉, b1 = ~b1..k and b2 = ~b(k+1)..m;

5: b2 ← T([~0,~a(k+1)..m])−1 · b2; {Recursive call}
6: b1 -= Tk,m-k(~a2..m) · b2; {Algorithm 7}
7: b1 ← T([~0,~a1..k])−1 · b1; {Recursive call}
8: return ~b.

Proposition 10. Algorithm 9 is correct and requires less than O(mlog2(3)) operations.

Proof. For the correctness, let T = T([~0,~a]) and consider it as blocks T1 = T([~0,~a1..k]), T2 = T([~0,~a(k+1)..m])

and G = Tk,m-k(~a2..m). Then T =
(

T1 G
0 T2

)

. Now define H , s.t. T−1 =
(

T−1
1 H

0 T−1
2

)

. Then H satisfies

T−1
1 G + HT2 = 0. Also, we have T−1~b =

(

T−1
1 b1+Hb2

T−1
2 b2

)

. Let b̄2 = T−1
2 b2 and b̄1 = T−1

1 b1 + Hb2. Then

b̄1 = T−1
1 b1+HT2b̄2 = T−1

1 b1−T−1
1 Gb̄2 = T−1

1

(

b1 −Gb̄2
)

. Now for the complexity bound, the cost function

is T (m) ≤ 2T (m/2) +O(mlog2(3)) = O(mlog2(3)).

We now have over-place Toeplitz methods. Next, we reduce the extra space for polynomial remaindering.
Eventually, we combine these two techniques to obtain in-place polynomial remaindering.

3 Over-writing the quotient

With two polynomials A and B of respective degrees N and M , the computation of the euclidean division
remainder R of degree strictly less than M such that A = BQ + R with quotient Q, can be rewritten as
R ≡ A−BQ mod XM . This is therefore enough to compute the quotient only up to the degree M − 1: let
AM ≡ A mod XM and QM ≡ Q mod XM , then R ≡ AM −BQM mod XM .

This observation is the ingredient that allows to compute the remainder using an extra space only of the
order of the degree of the divisor B. One can also see this as the long division algorithm applied to blocks
of dimension M .

Let us write the euclidean equation A = BQ+R in a Toeplitz matrix form. In Eqs. (1) and (2), we view
the polynomials A, Q and R as vectors [a0, . . . , aN ], [q0, . . . , qN−M ], [r0, . . . , rM−1, 0, . . . , 0] and then B as a
Toeplitz matrix B = T([0, . . . , 0, bM , . . . , b0, 0, . . . , 0]). Then, focusing on the last N −M + 1 rows of Eq. (1)
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we obtain directly the upper triangular (N −M + 1) × (N −M + 1) Toeplitz system of equations whose
solution is only the quotient, as shown in Eq. (2).



















a0
...
...
...

aN



















=



















b0 0
...

. . .

bM
. . . b0
. . .

...
0 bM



















·













q0
...
...

qN−M













+



















r0
...

rM−1

0



















. (1)













aM
...
...

aN













=



















bM . . . b0 0
. . .

. . .
. . .

. . .
. . . b0

0

. . .
...

bM



















·













q0
...
...

qN−M













. (2)

We now let n = N −M +1 and suppose that B is really of degree M , that is, its leading coefficients bM
is invertible in the coefficient domain. For the sake of simplicity we also assume that n is a multiple of M
(otherwise just complete the polynomial A with virtual leading zero coefficients up to the next multiple ofM)
and let µ = n

M . We then denote the M×M blocks of the Toeplitz matrix in Eq. (2) by: T = T([~0M−1, bM..1])

and G = T([bM−1..0,~0M−1]), that is:

T =







bM . . . b1
. . .

...
bM






and G =







b0
...

. . .

bM−1 . . . b0






. (3)

This in turns gives a way to access only the first coefficients of Q in an upper triangular Toeplitz system,
with a 2-block band structure:













q0
...
...

qM−1













=
[

IM 0
]













T G 0
. . .

. . .

. . . G
0 T













−1 











aM
...
...

aN













(4)

where
[

IM 0
]

is the concatenation of the M×M identity matrix and the (N −M)×(N −M) zero matrix.
Finally, recovering the remainder from the first M rows of Eq. (1) equations is just like multiplying the

quotient by G and thus R = A−BQ mod XM can be written as:

R =













a0
...
...

aM−1













−
[

G 0
]













T G 0
. . .

. . .

. . . G
0 T













−1 











aM
...
...

aN













(5)

In fact, as we need only the first M coefficient of the Toeplitz system we just need the first block-row of
the (upper triangular) inverse of the upper triangular 2-band Toeplitz matrix.

Now this first block-row of the inverse of an upper triangular Toeplitz matrix U is given by a direct
formula obtained from either of the equations U ·U−1 = I or U−1 ·U = I (see, e.g., [8, Eq.(1)] for the scalar
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case). If we denote by Hi the blocks of that row, we have that:











H1 = T−1

Hi−1G+HiT = 0, i = 2..µ

THi +GHi−1 = 0, i = 2..µ

(6)

Solving Eq. (6), we just get that Hi = T−1(−GT−1)i = (−GT−1)iT−1.
We have shown:

Lemma 11.












T G 0
. . .

. . .

. . . G
0 T













−1

= T−1.













I −GT−1 . . . (−GT−1)µ−1

. . .
. . .

...
. . . −GT−1

0 I













Now denote by [ ~a0, ~a1, . . . , ~aµ] the decomposition into blocks of dimension M of [a0, . . . , aN ]. Combin-
ing Eq. (5) and Theorem 11, we obtain now that:

R =













a0
...
...

aM−1













−GT−1

(

µ
∑

i=1

(

−GT−1
)i−1

~ai

)

=

µ
∑

i=0

(

−GT−1
)i

~ai (7)

From Eq. (7) we thus can immediately deduce the following Algorithm 10 that uses only O(M) extra
memory space in a Horner-like fashion of the polynomial in (−GT−1) of Eq. (7). Note that this algorithm
does not modify its input along its course: both A(X) and B(X) are for now read-only.

Algorithm 10 Overwritten-Quotient euclidean remainder

Input: A(X), B(X) in D[X ] of respective degrees N and M .
Read-only: A(X), B(X).
Output: R(X) ≡ A(X) mod B(X) of degree at most M − 1.
1: if M > N then return A.
2: Let n = N −M + 1, µ =

⌈

n
M

⌉

;

3: Let [ ~a0, . . . , ~aµ] = [a0, . . . , aN ,~0]; {Blocks of dimension M}
4: Let T = T([~0M−1, bM , . . . , b1]), G = T([bM−1, . . . , b0,~0M−1]);
5: ~r = ~aµ; {~r in-place of the result}
6: for i = µ− 1 down-to 0 do

7: ~t = T−1 · ~r; {Triang. Toeplitz solve}
8: ~r = (−G) · ~t; {Triang. Toeplitz m-v. mult.}
9: ~r += ~ai;

10: end for

11: return R =
∑M−1

i=0 riX
i.

Theorem 12. Algorithm 10 is correct and requires O
(

N
MM(M)

)

arithmetic operations and O(M) extra
memory space. If the polynomial B is sparse with a constant number of non-zero coefficients, the arithmetic
complexity is reduced to O(N).

Proof. Correctness stems directly from Theorem 11 and Eq. (7). For the complexity bounds, we use the
results of Section 1.3. For each block, the triangular Toeplitz system solve and the Toeplitz m-v. mult.
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require respectively λsM(m) and λtM(m) operations and, sequentially, max{s; t}M extra space. Apart
from this space, we only need one extra vector, ~t, to store intermediate results. Overall we thus perform
µ((λs+λt)M(M)+M) operations. With µ = n/M and n = N −M +1, this is

⌈

N−M+1
M

⌉

((λs+λt)M(M)+

M) = O( N
MM(M)) operations, using (1 + max{s; t})M extra space.

Now if B is sparse with a constant number of non-zero elements, each triangular Toeplitz system solve
and Toeplitz matrix-vector multiplication can be performed with only O(M) operations with the same extra
memory space. Thus the overall arithmetic bound becomes O(µM) = O(N).

Remark 13. Algorithm 10 is in fact just the long division polynomial algorithm applied to sub-blocks of the
polynomial of size M :

• ~t = T−1 · ~r, Line 7, corresponds to computing the quotient of the current leading coefficients, of the
dividend, by B;

• ~r = (−G) · ~t, Line 8, corresponds to recovering the lower part of the multiplication of that current
quotient by B;

• ~r += ~ai, Line 9, updates the next M coefficients of the current dividend (the leading ones being zero
by construction of the current quotient).

This in-place long division by block is also sketched for instance in the proof of [13, Lemma 2.1]. The latter
Lemma gives about 3λM(N) operations and (2+ s)M extra space. In fact a refined analysis should also give
the same (better) complexity as Theorem 12, that is less than 2λN

MM(M) operations and (1 + s)M extra
space.

4 Bands and Time-memory trade-off

Here we present a variant that enables to balance speed with storage. The algorithm still uses blocks, but
requires only a small fraction of extra space. If the output space is M , then one obtains an algorithm using
the space of one of its input, M space for the output plus only a fraction m = M/µ of extra space. The
drawback is that our complexity bounds become O

(

N
m

M
mM(m)

)

.
Therefore this opens a whole range of algorithms in practice, from m = O(1), that is a constant extra

space but quadratic complexity O(NM); to µ = O(1), with M(1 + o(1)) total space required (including
the output of size M , that is, the extra space can be a very small fraction of the output, but not quite a
constant), and a complexity that remains O

(

N
MM(M)

)

.
Following [8, 26, 19, 18, 1, 20], we start by generalizing Theorem 11 to more Toeplitz bands:

Lemma 14. For α−1 matrices G2, . . . , Gα of dimension m×m and for T1 an m×m upper triangular matrix,
let:











H1 = T−1
1

∑min{α;i}
j=2 Hi−j+1Gj +HiT1 = 0, i = 2..η,

T1Hi +
∑min{α;i}

j=2 Hi−j+1Gj = 0, i = 2..η.

(8)

Then, the inverse of the (mη)× (mη) upper triangular Toeplitz matrix with α non-zero block bands is given
in Eq. (9):







H1 . . . Hη

. . .
. . .

H1






=





















T G2 . . . Gα 0
. . .

. . .

. . .

G2

...
Gα

0 T





















−1

(9)
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Now we consider m consecutive coefficients of R in Eq. (5) for m < M . Let η =
⌈

N−M+1
m

⌉

and α =
⌈

M
m

⌉

+1. If the consecutive coefficients start at index i0, let k =
⌈

i0−1
m

⌉

. Then now let ~ρk = [ai0 , . . . , ai0+m−1]
and [ ~a1, . . . , ~aη] = [aM , . . . , aN , 0, . . . , 0] again completed with zeroes if N −M + 1 is not a multiple of m.

Let the first m rows of
[

T G
]

be
[

T1 G2 . . . Gα 0
]

=
[

Im 0
] [

T G
]

. Finally, consider the m

consecutive rows of
[

G 0
]

starting at row i0 as
[

F0 . . . Fk 0
]

Then combining Eq. (5) and Theo-
rem 14, we have the following:

Lemma 15. For A and B polynomials of respective degrees N and M we let R ≡ A mod B. Let ~ρk =
[ai0 , . . . , ai0+m−1] and [ ~a1, . . . , ~aη] = [aM , . . . , aN , 0, . . . , 0] and consider the Toeplitz blocks T and G of Eq. (3)
together with the subsets of m rows:
[

T1 G2 . . . Gα 0
]

=
[

Im 0
] [

T G
]

and:
[

F0 . . . Fk 0
]

=
[

0i0 Im 0M−i0−m

]

·
[

G 0
]

.

Finally let [H1, . . . , Hη] be the components of the Toeplitz inverse as in Theorem 14, then:







ri0
...

ri0+m−1






=

~ρk −
∑k

j=0 Fj

(

∑η−j
i=1 Hi~ai+j

)

.

This Theorem 15 together with the characterization of the inverse components of Eq. (8), now give us a
way to compute this subset of the remainder via a generalized Horner-like process.

To save space and time the idea is to avoid the computation of the inverse altogether. For this, we
recursively replace any computation of the form Hi ~aℓ, using Eq. (8) as follows: Hi ~aℓ = HiT1T

−1
1 ~aℓ =

(−∑min{α;i}
j=2 Hi−j+1Gj)T

−1
1 ~aℓ =

∑min{α;i}
j=2 Hi−j+1(−GjT

−1
1 ~aℓ). The core computations are now again of

the form GjT
−1
1 ~aℓ as in Algorithm 10 but α of them have to be performed at each step. In order to save

the space to store them (which would be mα, that is not smaller than mM/m = M), the idea is to modify
instead the appropriate ~ai−j+1 parts of the input. The trick is that it is possible to do this up to i = 1, then
store the overall sum into the final result space, and finally revert the whole computation (thus doubling the
cost) to put back the input in its initial state. This is shown in Algorithm 11.

Theorem 16. Algorithm 11 is correct and if Triangular Toeplitz solve requires λsM(m) operations with s·m
extra space and Toeplitz matrix-vector multiplication requires λtM(m) operations with t·m extra space, then
with (2 + max{s; t})m extra space, its arithmetic complexity is bounded by O

(

N
m

M
mM(m)

)

.

Proof. Correctness directly comes from Theorems 14 and 15. Then, the complexity bound is twice η(λsM(m)+

(α−1)λtM(m)+m) plus the middle computations
∑α−1

k=0 (k+1)(λsM(m)+λtM(m)+m). Its arithmetic com-
plexity is thus bounded by: (2η(λs+(α−1)λt)+αα+1

2 (λs+λt))M(m)+
(

2η + αα+1
2

)

m. With η =
⌈

N−M+1
m

⌉

and α =
⌈

M
m

⌉

+ 1 we obtain the claimed bound.
Now, if the operations are performed sequentially, then apart from the used input, ~ai, two size m memory

slots are required, ~r and ~t, and either the extra space of the Toeplitz solving or that of the multiplication.
This is (2 + max{s; t})m extra space.

Remark 17. Again, we see that ~r = T−1
1 · ~ai is computing the current quotient ~r = Quo(~ai(X)Xm−1, B1(X))

and that the loop (~t = Gj · ~r)j=2..α is the multiplication by the whole divisor, B(X)~r(X).

5 In-place modular remainder

We now derive algorithms that uses only O(1) extra memory space in the in-place model of Section 1.1:
modifying the inputs is possible if and only if all inputs are restored to their initial state after the completion
of the algorithm. This allows us to store some intermediate results, over-writing the input, provided that we
can afterwards recompute the initial inputs in their entirety. The idea is to combine Sections 2 to 4.

We can now present in Algorithm 12, a fully in-place remainder where only B(X) is modified but restored:
this variant replaces only Lines 7 to 9 of Algorithm 10. From this we obtain, Algorithm 13 which directly
update the dividend over-place, while also remaining fully in-place.
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Algorithm 11 BRem: block remainder using & restoring its LHS

Input: m, ~a ∈ D
N , ~b ∈ D

M , η =
⌈

N−M+1
m

⌉

, α =
⌈

M
m

⌉

+ 1;.

Read-only: ~b.

Output: R = [R0, . . . , Rα−1], with Rk = ~ρk−
∑k

j=0 Fj

(

∑η−j
i=1 Hi~ai+j

)

and theHi as defined in Theorem 14.

1: Let η, α and T , G, T1, G2, . . . , Gα as in Theorem 15;
2: Let [~ρ0, .., ~ρα−1] = [~a0..(M−1),~0] and [ ~a1, .., ~aη] = [~aM..N ,~0]
3: for i = η down-to 1 do {Propagate η times Eq. (8) to ~a}
4: ~r = T−1

1 · ~ai; {triangular Toeplitz solve}
5: for j = 2 to min{α; i} do
6: ~t = Gj · ~r; {Toeplitz matrix-vector multiplication}
7: ~ai−j+1 -= ~t;
8: end for

9: end for

10: for k = 0 to α− 1 do

11: Let i0 = k·m;
12: Let

[

F0 . . . Fk 0
]

=
[

0i0 Im 0M−i0−m

]

·
[

G 0
]

;
13: Rk = ~ρk;
14: for j = 0 to k do {Now this is just ~ρk −

∑k
j=0 FjT

−1
1 ~aj}

15: ~r = T−1
1 · ~aj ; {triangular Toeplitz solve}

16: ~t = Fj · ~r; {Toeplitz matrix-vector multiplication}
17: Rk -= ~t;
18: end for

19: end for

20: for i = 1 to η do {Unroll η times Eq. (8) to ~a}
21: ~r = T−1

1 · ~ai; {triangular Toeplitz solve}
22: for j = 2 to min{α; i} do
23: ~t = Gj · ~r; {Toeplitz matrix-vector multiplication}
24: ~ai−j+1 += ~t;
25: end for

26: end for

27: return R = [R0, . . . , Rα−1].

Algorithm 12 IPER (R,A,B): in-place euclidean remainder

Input: A(X), B(X) in D[X ] of respective degrees N and M .
Read-only: A(X).
Output: R(X) ≡ A(X) mod B(X) of degree at most M − 1.
1: if M > N then return A.
2: Let n, µ, [ ~a0, . . . , ~aµ], T , G as in Algorithm 10;
3: ~r = ~aµ; {~r in-place of the result}
4: for i = µ− 1 down-to 0 do

5: ~r ← T−1 · ~r; {Algorithm 9}
6: ~r ← (−G) · ~r; {Algorithm 8}
7: ~r += ~ai;
8: end for

9: return R =
∑M−1

i=0 riX
i.
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Algorithm 13 OPER (A,B): Over-place euclidean remainder

Input: A(X), B(X) in D[X ] of respective degrees N and M .
Output: A(X) ≡ A(X) mod B(X) of degree at most M − 1.
1: if M > N then return A.
2: Let n, µ, T , G as in Algorithm 12 and s = (N+1) mod M ;
3: Let [ ~a0, . . . ,~aµ−1] = [a0, . . . , aN−s] and ~aµ = ~a(N−s+1)..N ;
4: if s 6= 0 then

5: Let T1 = T([~0s−1, bM , . . . , bM−s+1]); {s×s upper left of T }
6: ~aµ ← T−1

1 · ~aµ; {Algorithm 9}
7: Let G1 = TM,s([bM−1, . . . , b0,~0s−1]); {Left s columns of G}
8: ~aµ−1 +=(−G1)· ~aµ {Algorithm 7}
9: end if

10: for i = µ− 1 down-to 1 do

11: ~ai ← T−1 · ~ai; {Algorithm 9}
12: ~ai−1 += (−G) · ~ai; {Algorithm 6}
13: end for

14: return A = ~a0.

Theorem 18. Algorithms 12 and 13 are correct, in-place and require less than O(NM log2(3)−1) operations.

Proof. Algorithm 12 calls µ=O(N/M) times Algorithms 8 and 9, each call requiring less than O(M log2(3))
operations by Theorems 9 and 10. This dominates the cost of Algorithm 13: its Lines 5 to 8 are the over-place
first iteration of Algorithm 12, for s < M .

Similarly, we replace the blocks of Lines 4 to 7 and of Lines 21 to 24 as well as the block of Lines 15 to 17
of Algorithm 11, to obtain Algorithm 14. This again allows us to have some latitude in practice for different
relative ratios between the degrees of the dividend and the divisor.

Theorem 19. Algorithm 14 is correct, in-place and requires less than O
(

N M
m2−log2(3)

)

operations.

Proof. The algorithm calls ηα + α2 = O
(

N
m

M
m

)

times Algorithm 7, each call requiring less than O(mlog2 3)

operations by Theorem 8. It also calls η = O(Nm ) times Algorithms 8 and 9, each call requiring also less than

O(mlog2(3)) operations by Theorems 9 and 10.

6 Conclusion

We have presented novel algorithms computing f-circulant and Toeplitz matrix-vector multiplications in-
place. This allows us to derive novel algorithms for accumulated or over-place Toeplitz multiplication or
system solving. We also present algorithms that reduce the extra storage required to compute the remainder
only when dividing polynomials. Eventually, we combine these techniques to propose the first in-place and
over-place algorithms computing only the remainder of the polynomial euclidean division.

Further work include finding ways to (1) further reduce the sub-quadratic complexity bounds for in-place
versions (for instance Appendix B sketches the use of k-adic transforms instead of diadic transform that can
further reduce the complexity exponent when the coefficient domain allows it); (2) deal with the field with 3
elements, there maybe some linearization of the extension with 9 elements could help; (3) avoid dividing by
2, in order to handle the even characteristic case. The latter can be achieved, in most of the characteristic
2 cases, via k-adic transforms. This is sketched in Appendix B.

Unfortunately there remains some cases where we still do not know sub-quadratic in-place algorithms.
This is F2, F3, and the even characteristic finite fields with cyclic group cardinality a Mersenne prime (as of
today, 51 are known).

Maybe some other fast transform that do not require extensions could be of help, provided that one can
make them in-place [22, 2].
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Algorithm 14 In-place euclidean block remainder

Input: m, ~a ∈ D
N , ~b ∈ D

M , η =
⌈

N−M+1
m

⌉

, α =
⌈

M
m

⌉

+ 1;.

Output: R = [R0, . . . , Rα−1], with Rk = ~ρk−
∑k

j=0 Fj

(

∑η−j
i=1 Hi~ai+j

)

and theHi as defined in Theorem 14.

1: Let η, α [~ρ0, . . . , ~ρα−1], T , G and
[

T1 G2 . . . Gα 0
]

=
[

Im 0
] [

T G
]

as in Algorithm 11;
2: for i = η down-to 1 do {Propagate η times Eq. (8) to ~a}
3: ~ai = T−1

1 · ~ai; {Algorithm 9}
4: for j = 2 to min{α; i} do
5: ~ai−j+1 -= Gj · ~ai; {Algorithm 7}
6: end for

7: end for

8: for k = 0 to α− 1 do

9: Let i0 = k·m and
[

F0 . . . Fk 0
]

=
[

0i0 Im 0M−i0−m

]

·
[

G 0
]

;
10: Rk = ~ρk;
11: for j = 0 to k do

12: Rk -= Fj · ~aj ; {Algorithm 7}
13: end for

14: end for

15: for i = 1 to η do {Unroll η times Eq. (8) to ~a}
16: for j = 2 to min{α; i} do
17: ~ai−j+1 += Gj · ~ai; {Algorithm 7}
18: end for

19: ~ai = T1 · ~ai; {Transpose of Algorithm 8}
20: end for

21: return R = [R0, . . . , Rα−1].
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A f-circulant/polynomial isomorphism

It is well known that the algebra of f -circulant n×n matrices is isomorphic to the algebra of polynomials
modulo Xn − f , see, e.g., [23, Theorem 2.6.1]. More precisely, define the reverse of a vector of dimension n
as ~a = rev (~a) = an..1 and identify polynomials to their vector of coefficients. Then we have that

P (X)Q(X) mod (Xn − f) = rev (Cf(P ) · rev (Q)) (10)

Let Y = Xn/2, then, when f is a square, the recursive branch of Algorithm 3 is a recursive application of
the Chinese Remaindering theorem with Xn−f = (Xn/2+

√
f)(Xn/2−

√
f), or Y 2−f = (Y +

√
f)(Y −

√
f).

Indeed both factors are coprime and satisfy

1

2
√
f
(Y +

√

f)− 1

2
√
f
(Y −

√

f) = 1. (11)

Therefore Let C+ = (C + PQ mod (Y +
√
f)) and C− = (C + PQ mod (Y − √f)), then C + PQ

mod (Y 2 − f) = 1
2
√
f
(Y +

√
f)C− − 1

2
√
f
(Y −

√
f)C+ = 1

2 (C+ + C−) + Y 1
2
√
f
(C− − C+).

This shows for instance the correctness of Algorithm 3, by seeing that C+PQ = rev (rev (C) + Cf(P ) · rev (Q)):

• Let P = [~a1,~a2] = ~a1 + Y~a2, Q = [~b1,~b2] = ~b1 + Y~b2, C = [~c1,~c2] = ~c1 + Y ~c2;

• Then rev (Q) = ~b = [ ~b2, ~b1] = ~b2 + Y ~b1, and rev (C) = ~c = [ ~c2, ~c1] = ~c2 + Y ~c1;

• Thus:

c̄1 = ~c2 +
√
f ~c1 ≡ ~c mod (Y −

√
f)

c̄2 = ~c2 −
√
f ~c1 ≡ ~c mod (Y +

√
f)

b̄1 = ~b2 +
√
f ~b1 ≡ ~b mod (Y −√f)

b̄2 = ~b2 −
√
f ~b1 ≡ ~b mod (Y +

√
f)

ā1 = ~a1 +
√
f~a2 ≡ ~a mod (Y −

√
f)

ā2 = ~a1 −
√
f~a2 ≡ ~a mod (Y +

√
f)

• Then:
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~C− = ( ~c+ Cf(P ) · ~b) mod (Y −
√
f) = c̄1 + C√

f(ā1)·b̄1
~C+ = ( ~c+ Cf(P ) · ~b) mod (Y +

√
f) = c̄2 + C-

√
f(ā2)·b̄2

• So that finally, C + PQ = rev
(

1
2 (

~C+ + ~C−) + Y 1
2
√
f
( ~C− − ~C+)

)

, i.e., C + PQ = 1
2
√
f
(~C− − ~C+) +

Y 1
2 (

~C+ + ~C−).

B Finite field of Characteristic two

With the isomorphism of Appendix A we can find an equivalent of Algorithm 3 for most of the finite fields
of characteristic two.

Denote [x]g
def
= gx. First, for a finite field of cardinality q = 2m, let q − 1 = kt, with k ≤ t. Then,

consider a k-th power, f , in F
∗
q : that is, for a generator g of this cyclic group, let f = gik = [ik]g for some i.

This means that the fj = [i + jt]g, for j = 1..k are all the k-th roots of f and they all belong to F
∗
q , as

(i+ jt)k ≡ ik mod (q − 1) and q − 1 = kt.

Thus, in Fq, we have that Y k − f =
∏k

j=1(Y − fj). Further, Xuk − f =
∏k

j=1(X
u − fj) (again, let

Y = Xu). All the (Xu − fj) are co-prime, since all the k-th roots are distinct (they have distinct exponent
with respect to the generator g, between 0 and q − 1).

Then, computing the extended gcd between Y − fj and (Y k − f)/(Y − fj), gives Bezout coefficients Uj

and vj , s.t. Uj(Y − fj)+ vj(Y
k− f)/(Y − fj) = 1, with deg vj < deg (Y − fj) = 1. This means that vj ∈ F

∗
q

(and the Bezout relation remains true if Y = Xu, for any u). Therefore, if n = ku, the Chinese remaindering

Lagrange formula now writes: c mod (Xn − f) =
∏k

j=1 (c mod (Xu − fj)) vj
Xn−f
Xu−fj

.

If the number of invertibles in Fq, 2
m− 1 is not a Mersenne prime, then it can be written as 2m− 1 = kt

with k ≥ t > 1 (that is k ≥ t ≥ 3) and we can form a k-adic recursion for circulant matrices. This also gives
rise to a sub-quadratic algorithm: since T (n) ≤ (1 + 2(k − 1))T (n/k) +O(n), then T (n) = O

(

nlogk(2k−1)
)

=

O
(

n1+logk(2−1/k)
)

(resp. T (n) ≤ kT (n/k) +O(n), then T (n) = O(n log(n)) if the field contains a k⌊logk(n)⌋-
th root of unity). Further, if k > 1, then 1 is not the only k-th power (there are t ≥ 3 of them), and we can
built the analogous of the full Algorithm 3. Indeed, by letting λ = (bk − f)/(f − 1), for another k-th power
bk, we can always compute Cf =

λ
λ+1 C1 +

1
λ+1 Cbk , and the accumulation c = c + Cf can be computed by

c = λ
λ+1

(

1
λ ((λ+ 1)c+ Cbk) + C1

)

. The conditions are that λ exists, thus f 6= 1; λ is invertible, thus f is

not a k-th power; and λ+ 1 is invertible, thus bk 6= 1. We have proven:

Proposition 20. For A(X) and B(X) polynomials of respective degrees N and M over any finite field with
even characteristic q = 2m, such that 2m − 1 = kt is composite, there exist an in-place algorithm requiring
less than O(NM logk(2−1/k)) arithmetic operations (resp. O(N log2 M) if the field contains a k⌊logk(n)⌋-th
root of unity).

When the cyclic group is a Mersenne prime, then unfortunately the only power with all its roots in the
field is 1 and we thus cannot combine recursive calls. This prevents us for now to have fast algorithms in
F2, F4, F8, F32, F128, F8192, ..., (as of today, only 51 Mersenne primes are known∗, and we do not know if
there are an infinite number of those or not).

For instance, we show how this can be acheived when the cyclic group cardinality is divisble by 3
in Algorithm 15 (this includes, e.g., F16, which contains 5 distinct cubes and 15 distinct cubic roots). We
here give only the part of the algorithm where the dimension is a multiple of 3 and where f is a cube. Other
dimensions and non-cubes would have to be dealt with similar techniques as in Algorithm 3.

∗https://www.mersenne.org/primes
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Algorithm 15 Tri-adic in-place convolution in characteristic 2

Input: A(X), B(X), C(X) of degree m− 1, with m ≡ 0 mod 3.
Input: (j0, j1, j2), s.t. (Y − j0)(Y − j1)(Y − j2) = Y 3 − f .
Output: C(X) += A(X)B(X) mod (Xm − f) mod 2.
1: Let a0 = ~a1..m/3, a1 = ~am/3+1..2m/3, a2 = ~a2m/3+1..m;

2: Let b0 = ~b1..m/3, b1 = ~bm/3+1..2m/3, b2 = ~b2m/3+1..m;
3: Let c0 = ~c1..m/3, c1 = ~cm/3+1..2m/3, c2 = ~c2m/3+1..m;
4: ā0←a0+a1j0+a2j

2
0 ; ā1←a0+a1j1+a2j

2
1 ; ā2←a0+a1j2+a2j

2
2 ;

5: b̄0←b0+b1j0+b2j
2
0 ; b̄1←b0+b1j1+b2j

2
1 ; b̄2←b0+b1j2+b2j

2
2 ;

6: c̄0←c0+c1j0+c2j
2
0 ; c̄1←c0+c1j1+c2j

2
1 ; c̄2←c0+c1j2+c2j

2
2 ;

7: c̄0(X) += ā0(X) · b̄0(X) mod (Xm/3 − j0); {Recursive call}
8: c̄1(X) += ā1(X) · b̄1(X) mod (Xm/3 − j1); {Recursive call}
9: c̄2(X) += ā2(X) · b̄2(X) mod (Xm/3 − j2); {Recursive call}

10:

{

a0←ā0+ā1+ā2; a1←ā0j
−1
0 +ā1j

−1
1 +ā2j

−1
2 ;

a2←ā0j
−2
0 +ā1j

−2
1 +ā2j

−2
2 ;

11:

{

b0←b̄0+b̄1+b̄2; b1←b̄0j
−1
0 +b̄1j

−1
1 +b̄2j

−1
2 ;

b2←b̄0j
−2
0 +b̄1j

−2
1 +b̄2j

−2
2 ;

12:

{

c0←c̄0+c̄1+c̄2; c1←c̄0j
−1
0 +c̄1j

−1
1 +c̄2j

−1
2 ;

c2←c̄0j
−2
0 +c̄1j

−2
1 +c̄2j

−2
2 ;

13: return ~c.
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