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In-place fast polynomial modular remainder

Jean-Guillaume Dumas∗ Bruno Grenet∗

February 24, 2023

Abstract

We consider the computation of the euclidean polynomial modular
remainder R(X) ≡ A(X) mod B(X) with A and B of respective degrees
n and m ≤ n. If the multiplication of two polynomials of degree k can
be performed with M(k) operations and O(k) extra space, then standard
algorithms for the remainder require O

(

n

m
M(m)

)

arithmetic operations
and, apart from that of A and B, O(n) extra memory. This extra space
is notably usually used to store the whole quotient Q(X) such that A =
BQ+R with degR < degB.

We avoid the storage of the whole of this quotient, and propose an
algorithm still using O

(

n

m
M(m)

)

arithmetic operations but only O(m)
extra space.

When the divisor B is sparse with a constant number of non-zero
terms, the arithmetic complexity bound reduces to O(n).

When it is allowed to use the input space of A or B for intermediate
computations, but putting A and B back to their initial states after the
completion of the remainder computation, we further propose an in-place
algorithm (that is with its extra required space reduced toO(1) only) using
Õ(n) arithmetic operations over any field of zero or odd characteristic and
over most of the characteristic two ones.

To achieve this, we develop techniques for Toeplitz matrix operations
which output is also part of the input.

1 Introduction

Modular methods with dense univariate polynomials over a finite ring are of cen-
tral importance in computer algebra and symbolic computation. For instance,
they are largely used with lifting or Chinese remaindering techniques as the
bases to compute at a larger precision. There, the quotient of the Euclidean
division is not needed, but is very often computed anyway along the algorithm.

In terms of arithmetic operations, from the work of [20, 16] to more re-
cent results of [4], many sub-quadratic algorithms were developed for this task,
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based on fast polynomial multiplication [6, 15, 25]. But these fast algorithms
come at the expense of (potentially large) extra temporary space to perform the
computation. On the contrary, classical, quadratic algorithms, when computed
sequentially, quite often require very few (constant) extra registers. Further
work then proposed simultaneously “fast” and “in-place” algorithms, for both
matrix and polynomial operations [5, 11, 12].

We here propose algorithms to extend the latter line of work. In the poly-
nomial setting, we compute the remainder only of the Euclidean division. This
means that, e.g., with respect to [12, Alg. 3], we obtain the remainder without
needing any space for the quotient. As polynomials and Toeplitz matrices are
indeed different representations of the same objects, see, e.g., [2, 3, 11], we also
develop methods for Toeplitz matrix operations, in-place with accumulation or
over-place: those are difficult cases where the output is also part of the input.
The difficulty when the result overwrites (parts) of the input, is that in-place
methods start with absolutely no margin for extra space. Thus, for instance,
the generic recursive techniques of [5, 11] usually do not apply.

Next we first detail our model for in-place computations in Section 1.1,
recall some quadratic in-place algorithms in Section 1.2 and some fast algorithms
in Section 1.3. Then, in Section 2, we derive new in-place algorithms for circulant
and Toeplitz matrices over fields of zero or odd characteristic. In Section 3
we then propose a fast remaindering algorithm using only a multiple of the
remainder space. Further, in Section 4, we extend this to using as extra space
only a small fraction of the remainder space. Finally in Section 5 we combine
these techniques to obtain fast in-place algorithms for the polynomial remainder
only. We also propose in Appendix B some ways to adapt our algorithms to the
characteristic two specificities.

1.1 In-place model

There exist different models for in-place algorithms. We here choose to call
in-place an algorithm using only the space of its inputs, its outputs, and

O(1) extra space. But algorithms are only allowed to modify their inputs,
provided that their inputs are restored to their initial state afterwards.
We do not take into account the potential space used by the recursive call stack.
(This space is bounded by the recursion depth of the algorithms, and managed
in practice by the compiler.) This is a less powerful model than when the input
is purely read-only, but it turns out to be crucial in our case, especially when we
have accumulation operations (e.g., like ~a += ~b). If atomic operations are used
to perform the accumulation, then usually a constant number of extra space
is sufficient. Differently, fast algorithms usually work with (non-constant) large
blocks of data and having only the latitude to use a constant extra-space is often
not sufficient.

Also, as a variant, by over-place, we mean an algorithm where the output
replaces (parts) of its input (e.g., like ~a = b·~a). Similarly, we allow all of the
input to be modified, provided that the parts of the input that are not the
output are restored afterwards. In the following we signal by a “Read-only:”
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tag the parts of the input that the algorithm is not allowed to modify (the other
parts are modifiable as long as they are restored).

The main limitations of this model are for black-box inputs, or for different
inputs whose representations share some data. For more details on these models,
we refer to [22, 11].

1.2 In place and over-place quadratic algorithms

We recall here that classical, quadratic, algorithms for polynomial remaindering
and triangular matrix operations can be performed in-place. For any ring D

we have for instance the following over-place algorithms for triangular matrix
operations, given in Algorithm 1.

Algorithm 1 Over-place quadratic triangular matrix operations
(left: matrix-vector multiplication; right: triangular system solve)

Input: U ∈ D
m×m upper triangular and ~v ∈ D

m.
Read-only: U .

Output: ~v ← U ·~v.
1: for i = 1 to m do

2: for j = 1 to i− 1 do

3: vj += Uj,ivi
4: end for

5: vi ← Ui,ivi;
6: end for

Output: ~v ← U−1·~v.
1: for i = m down-to 1 do

2: for j = m down-to i+ 1 do

3: vi -= Ui,jvj
4: end for

5: vi ← U−1
i,i vi; {If Ui,i ∈ D

∗}
6: end for

For any vector ~v = [v1, . . . , vm], we associate the polynomial of degree ≤
m− 1, with these coefficients: V (X) =

∑m−1
i=0 vi+1X

i. We then give a quadratic
in-place remaindering in Algorithm 2, as the classical long division.

Algorithm 2 In-place quadratic polynomial remainder

Input: ~a ∈ D
N , ~b ∈ D

M with bM ∈ D
∗.

Read-only: ~a,~b.
Output: R(X) = A(X) mod B(X).

1: if N < M then return R(X) = A(X) =
∑N−1

i=0 ai+1X
i. end if

2: Let n = N −M + 1 and ~r = [an+1, . . . , aN ];
3: for i = n down-to 1 do

4: Let ~r = [ai, r1, . . . , rM−1];
5: rM ← rM ·b−1

M ; {Local quotient is rM ·b−1
M }

6: ~r -= rM ·~b; {Except for last entry (of index M)}
7: end for

8: return R(X) =
∑M−2

i=0 ri+1X
i.
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1.3 Fast algorithms

More generally, if M(M) is a submultiplicative complexity bound on an algo-
rithm computing the multiplication of polynomials of degree M , we suppose in
the following that there exists (not in-place) algorithms, see, e.g., [12, 15, 25],
such that:

• M×M Toeplitz matrix-vector multiplication requires less than O(M(M))
operations and O(M) extra space. More precisely, if t·M extra space
is required, the matrix-vector multiplication requires less than λtM(M)
operations;

• M×M Triangular Toeplitz system solve requires also O(M(M)) opera-
tions andO(M) extra space. More precisely, if s·M extra space is required,
the system solving requires less than λsM(M) operations.

Also, for sparse inputs, we suppose:

• M×M sparse Toeplitz (constant number of non-zero terms) matrix-vector
multiplication requires less than O(M) operations and O(M) extra space;

• M×M Triangular sparse Toeplitz (constant number of non-zero terms)
system solve requires less than O(M) operations and O(M) extra space.

2 Accumulated in-place and over-place Toeplitz

operations

We thus now turn to in-place accumulated and over-place Toeplitz matrix-vector
operations. Toeplitz matrix-vector multiplication can be reduced to circulant
matrix-vector multiplication, via an embedding into a double-size circulant ma-
trix. But this is not immediately in-place, since doubling the size requires a
double space. We see in the following how we instead double the operations
while keeping the same dimension. We start by the usual definitions, also ex-
tending circulant matrices to f-circulant matrices, following [23].

Definition 1. For ~a ∈ D
m, the circulant matrix represented by ~a, C(~a), is the

m×m matrix (Cij), such that C1j = aj and the (i+1)-th row is the cyclic right
shift by 1 of the i-th row.

Definition 2. For f ∈ D and ~a ∈ D
m, the f-circulant matrix represented by ~a,

Cf(~a), is the m×m matrix (Γij), such that:

for C = C(~a),

{

Γij = Cij if i ≤ j,

Γij = f ·Cij otherwise.

Definition 3. For ~a ∈ D
2m−1, the (square) Toeplitz matrix represented by

~a, T(~a), is the m × m matrix (Tij), such that Tij = am+j−i. Similarly, for
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~a ∈ D
m+n−1, we denote by Tm,n(~a) the m×n rectangular Toeplitz matrix defined

by its first column, ~a1..m bottom to top, and its first row, ~am..(m+n−1), left to
right.

We see immediately that we these notations, we have for instance C1(~a) =
C(~a), C0(~a) = 1

2 (C1(~a) + C-1(~a)), or also Cf(~a) = T([f ·~a2..m,~a]), where [~u,~v]
denotes the vector obtained by concatenation of ~u and ~v.

It is well known that circulant matrices are diagonalized by a discrete Fourier
transform, and hence can be manipulated via fast Fourier transforms as Cã =
F−1
m diag(Fm~a)Fm, for Fm a DFT-matrix, see, e.g., [13, § 4.7.7]. This gives

a first way to compute circulant matrix-vector multiplication in-place (using
and restoring afterwards both the matrix and the vector). Indeed, the (even
truncated) Fourier transform and its inverse can be computed in-place [22, 14, 8]

and in-place algorithm to compute ~c = Cã ·~b is:

1. ~a← Fm~a and ~b← Fm
~b;

2. ~c← diag(~a) ·~b;

3. ~c← F−1
m ~c; ~b← F−1

m
~b and ~a← F−1

m ~a.

We use this idea and generalize it to f-circulant matrices, using fast methods
for f-circulant matrices of [9, 23].

More precisely, we extend [23, Alg. 1] to (1) dimensions that are not a
power of two (without any extra space for virtual zeroes), and (2) to any odd
characteristic (i.e. we do not need an n-th root of unity), using techniques
adapted from [10, Alg. 19].

To preserve a small memory footprint, it is crucial to handle carefully both
cases where dimensions are not powers of two, and fields without roots of unity.
On the one hand, using the closest larger power of two could double the required
space. On the other hand, using an extended field would also multiply the size
of the representation.

Our new algorithm is given as Algorithm 3. We use peeling to handle odd
dimensions, and sum of squares to handle square roots. For now, we have two
cases where this algorithm does not work:

• We need a division by 2, and thus cannot handle the even characteristic
case;

• We need at least two squares, and thus cannot handle the field with 3
elements (our algorithm works over an extension, the field with 9 elements
for instance, but this would, in theory, double the required space).

The cases we can tackle thus include any field of characteristic zero (com-
plexes, reals, rationals, . . . ), the characteristic 3 with more than 9 elements, any
other odd characteristic.

Theorem 4. Over any field with zero or odd characteristic (except the field of
cardinality 3), Algorithm 3 is correct and requires less than O(m logm) opera-
tions if f is a m-th power, and less than O

(

m log2 m
)

operations otherwise.
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Algorithm 3 IPfCmv: In-place accumulated f -circulant matrix-vector multi-
plication

Input: f ∈ D, ~a,~b,~c ∈ D
m.

Read-only: f .
Output: ~c += Cf(~a) ·~b.
1: if m ≤ Threshold then {Constant-time if Threshold ∈ O(1)}
2: return the quadratic in-place matrix-vector multiplication.
3: end if

4: if m is odd then

5: Let â = ~a1..m−1, ǎ = ~a2..m, ã = [am, . . . , a1];

6: Let b̂ = ~b1..m−1, ĉ = ~c1..m−1;
7: ĉ += Cf(â) · b̂; {IPfCmv with even dimension}
8: ~c += bm·ã; {Linear in-place accumulation}
9: cm += f ·ǎ·b̂; {Linear in-place dotproduct}

10: else if f is not a square, or f = 0 then

11: repeat

12: Let λ
$← D

∗, s.t. (λ+ 1) ∈ D
∗; Let g = 1 + (λ + 1)(f − 1);

13: until g is a square
14: ~c *= (1 + λ−1);

15: ~c += C1(a) ·~b; {Direct in-place circulant call}
16: ~c *= λ;
17: ~c += Cg(A) ·~b; {IPfCmv call with a square}
18: ~c *= (λ + 1)−1;
19: else

20: Let a1 = ~a1..m/2, a2 = ~am/2+1..m;

21: Let b1 = ~b1..m/2, b2 = ~bm/2+1..m; {m is even}
22: Let c1 = ~c1..m/2, c2 = ~cm/2+1..m;

23:

{

c̄1 ← c1
√
f + c2

c̄2 ← c1
√
f − c2

{Linear in-place butterflies}

24:

{

b̄1 ← b1
√
f + b2

b̄2 ← b1
√
f − b2

{Linear in-place butterflies}

25:

{

ā1 ← a1 + a2
√
f

ā2 ← a1 − a2
√
f

{Linear in-place butterflies}

26: c̄1 += C√
f(ā1) · b̄1; {Recursive IPfCmv call}

27: c̄2 += C-
√
f(ā2) · b̄2; {Recursive IPfCmv call}

28:

{

a1 ← (ā1 + ā2)/2

a2 ← (ā1 − ā2)/(2
√
f)

{Linear in-place butterflies}

29:

{

b1 ← (b̄1 + b̄2)/(2
√
f)

b2 ← (b̄1 − b̄2)/2
{Linear in-place butterflies}

30:

{

c1 ← (c̄1 + c̄2)/(2
√
f)

c2 ← (c̄1 − c̄2)/2
{Linear in-place butterflies}

31: end if

32: return ~c.
6



Proof. When m is even and f is a square, the correctness is that of [23, Alg. 1].
When f is not a square, we decompose f 6= 1 as a sum of squares such that:
(λ + 1)f = λ12 + b2. That is b2 = g = (λ + 1)(f − 1) + 1. For any b 6= 0,
λ = (b2 − 1)/(f − 1) − 1 is a possibility if both λ and λ + 1 are non-zero. As
soon as the field contains at least 3 distinct non-zero squares, there is always
a solution. This includes fields of zero characteristic, and finite fields with
at least 7 elements (since there are (q − 1)/2 nonzero squares in Fq). In the
field with 5 elements, both 1 and −1 are squares. It remains to remark that
C2 = −C1 +2C-1 and C3 = 2C1−C-1. Thus only the case of F3 does not have
a solution. Then,

((

~c(1 + λ−1) + C1(A)~b
)

λ+ Cg(A)~b
) 1

1 + λ

= ~c+

(

λ

1 + λ
C1(A) +

1

1 + λ
Cg(A)

)

~b (1)

Now, λ
1+λ + 1

1+λ = 1 and λ
1+λ + 1

1+λg = λ+1+(λ+1)(f−1)
1+λ = f , so that

(

λ

1 + λ
C1(A) +

1

1 + λ
Cg(A)

)

= Cf(A)

and the non square branch of the algorithm is also correct. Now for the odd
dimension branch. We have that:

Cf(~a) =







a1 . . . am−1 am
. . .

. . .
. . .

...
f ·a2 . . . f ·am a1






.

Therefore the matrix-vector multiplication can be performed via Cf(â) for the
top left corner, via a scalar multiplication for the right-most column and via a
dot-product for the bottom left row. For being in-place, each of the 3 vectors ~a,
~b, ~c need initial and final linear combinations of halves. Those can be performed
sequentially with, say, two temporaries: this is O(n) classical butterfly swaps of
the generic form t = air;u = bis; āi = t+ u; b̄i = t − u; āi *= v; b̄i *= w. Now
for the complexity bound. When called with an m-th power (for instance f = 1)
the algorithm will always take the branch where f is a square, and therefore
requires T (m) = 6m + 2T (m/2) + 6m operations, that is O(m logm). Now
when called with anything else, in the worst case it always takes the non-square
branch. Then the cost is T (m) = m+O(m logm)+m+(2T (m/2)+12m)+m,
so that it becomes O

(

m log2 m
)

. These bounds also bound the odd cases as the
smallest power of two larger than x is O(x).

Theorem 4 does not work in particular in characteristic 2, as it divides by
2. We show how to deal with most of the characteristic 2 cases in Appendix B.

Remark 5. We here present f-circulant matrices where the coefficient acts on
the lower left part of the matrix (excluding the diagonal). In the same man-
ner, one can design an in-place fast algorithm for the other type of f-circulant
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matrices, where the coefficient would act on the upper right part of the matrix
(excluding the diagonal).

This generalization of fast algorithms for f-circulant matrices allows us to
build algorithms for accumulation with triangular Toeplitz matrices first, as
sums of f-circulant in Algorithms 4 and 5, and then for any Toeplitz matrix,
again as sums of triangular Toeplitz matrices in Algorithm 6.

Algorithm 4 In-place accumulated Upp. Triang. Toeplitz m-v. mult.

Input: ~a,~b,~c ∈ D
m.

Output: ~c += T([~0,~a]) ·~b.
1: return ~c += C0(~a) ·~b. {Algorithm 3}

Algorithm 5 In-place accumulated Low. Triang. Toeplitz m-v. mult.

Input: ~a ∈ D
m−1, ~b,~c ∈ D

m.
Output: ~c += T([~a,~0]) ·~b.
1: ~c += C2([0,~a]) ·~b; {Algorithm 3}
2: return ~c -= C1([0,~a]) ·~b. {Algorithm 3}

Remark 6. Algorithm 4 deals with upper triangular Toeplitz matrices with in-
vertible diagonal element and Algorithm 5 with lower triangular Toeplitz ma-
trices with zero diagonal element. From Theorem 5, one could likewise derive
the transposed versions and this would provide instead an algorithm for lower
triangular Toeplitz matrices with a single call to Algorithm 3.

Algorithm 6 In-place accumulated square Toeplitz m-v. mult.

Input: ~a1 ∈ D
m−1, ~a2,~b,~c ∈ D

m,
Output: ~c += T([ ~a1, ~a2]) ·~b.
1: ~a2 -= [0, ~a1];

2: ~c += C0( ~a2) ·~b; {Algorithm 3}
3: ~a2 += [0, ~a1];

4: return ~c += C1([0, ~a1]) ·~b. {Algorithm 3}

Lemma 7. Algorithms 4 to 6 are correct.

Proof. Directly looking at the matrices values, we see that:

• T([~0,~a]) = C0(~a).

• T([~a,~0]) = C2([~a, 0])− C1([~a, 0]).

• T([ ~a1, ~a2]) = C0( ~a2 − [0, ~a1]) + C1([0, ~a1]) [21, Eq. (2.6.2)].
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From this, we give in Algorithm 7 an in-place rectangular Toeplitz matrix-
vector multiplication.

Algorithm 7 In-place accumulated rectangular Toeplitz m-v. mult.

Input: ~a ∈ D
m+n−1, ~b ∈ D

n, ~c ∈ D
m,

Output: ~c += Tm,n(~a) ·~b.
1: if m = n then

2: return ~c += T(~a) ·~b. {Algorithm 6}
3: end if

4: if m > n then

5: Let c1 = ~c1..n and c2 = ~c(n+1)..m;

6: c1 += T
(

~a(m−n+1)..(m+n−1)

)

·~b; {Algorithm 6}
7: c2 += Tm-n,n

(

~a1..(m−1)

)

·~b; {Recursive call}
8: else

9: Let b1 = ~b1..m and b2 = ~b(m+1)..n;

10: c += T
(

~a1..(2m−1)

)

· b1; {Algorithm 6}
11: c += Tm,n-m

(

~a(m+1)..(m+n−1)

)

· b2; {Recursive call}
12: end if

13: return ~c.

Proposition 8. Algorithm 7 is correct and requires less than

O
(

max{m,n} log2(min{m,n})
)

operations.

Proof. If m > n then there are first ⌊m/n⌋ square n× n calls. This is bounded
by O

(

(m/n)n log2(n)
)

operations. The recursive call is then negligible. This is
similar when m < n.

These in-place accumulated Toeplitz matrix-vector multiplications, in turns,
allows us to obtain an over-place triangular Toeplitz multiplication or system
solve, given in Algorithms 8 and 9.

Proposition 9. Algorithm 8 is correct and requires less than O
(

m log3 m
)

op-
erations.

Proof. For the correctness, let T = T([~a,~0]) and consider it as blocks T1 =
T([a(m−k+1)..m,~0]), T2 = T([~a(k+1)..m,~0]) and G = Tm-k,k([a1, . . . , am−1]). Then

T =
(

T1 0
G T2

)

. Thus T~b =
(

T1b1
Gb1+T2b2

)

. Let b̄1 = T1b1, b̂2 = T2b2 and b̄2 =

Gb1 + T2b2. Then b̄2 = b̂2 +Gb1 and the algorithm is correct.
Now for the complexity bound, the cost function is

T (m) ≤ 2T (m/2) +O
(

m log2 m
)

= O
(

m log3 m
)

.
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Algorithm 8 Over-place triang. Toeplitz m-v. mult.

Input: ~a,~b ∈ D
m, s.t. a1 ∈ D

∗.
Output: ~b← T([~a,~0]) ·~b.
1: if m ≤ Threshold then {Constant-time if Threshold ∈ O(1)}
2: return the quadratic in-place triangular m-v. mult.
3: end if

4: Let k = ⌈m/2⌉, b1 = ~b1..k and b2 = ~b(k+1)..m;

5: b2 ← T([~a(k+1)..m,~0]) · b2; {Recursive call}
6: b2 += Tm-k,k([a1, . . . , am−1]) · b1; {Algorithm 7}
7: b1 ← T([a(m−k+1)..m,~0]) · b1; {Recursive call}
8: return ~b.

Algorithm 9 Over-place triang. Toeplitz system solve

Input: ~a,~b ∈ D
m, s.t. a1 ∈ D

∗.
Output: ~b← T([~0,~a])−1 ·~b.
1: if m ≤ Threshold then {Constant-time if Threshold ∈ O(1)}
2: return the quadratic in-place triangular system solve.
3: end if

4: Let k = ⌈m/2⌉, b1 = ~b1..k and b2 = ~b(k+1)..m;

5: b2 ← T([~0,~a(k+1)..m])−1 · b2; {Recursive call}
6: b1 -= Tk,m-k(~a2..m) · b2; {Algorithm 7}
7: b1 ← T([~0,~a1..k])−1 · b1; {Recursive call}
8: return ~b.
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Proposition 10. Algorithm 9 is correct and requires less than O
(

m log3 m
)

operations.

Proof. For the correctness, let T = T([~0,~a]) and consider it as blocks T1 =
T([~0,~a1..k]), T2 = T([~0,~a(k+1)..m]) and G = Tk,m-k(~a2..m). Then T =

(

T1 G
0 T2

)

.

Now define H , s.t. T−1 =
(

T−1

1
H

0 T−1

2

)

. Then H satisfies T−1
1 G + HT2 = 0.

Also, we have T−1~b =
(

T−1

1
b1+Hb2

T−1

2
b2

)

. Let b̄2 = T−1
2 b2 and b̄1 = T−1

1 b1 +Hb2.

Then b̄1 = T−1
1 b1 +HT2b̄2 = T−1

1 b1 − T−1
1 Gb̄2 = T−1

1

(

b1 −Gb̄2
)

.
Now for the complexity bound, the cost function is

T (m) ≤ 2T (m/2) +O
(

m log2 m
)

= O
(

m log3 m
)

.

We now have new over-place Toeplitz methods. Next, we start by reducing
the extra space for polynomial remaindering. Eventually, we will combine these
two techniques to obtain in-place polynomial remaindering.

3 Over-writing the quotient

With two polynomials A and B of respective degreesN andM , the computation
of the euclidean division remainder R of degree strictly less than M such that
A = BQ+R with quotient Q, can be rewritten as R ≡ A−BQ mod XM . This
is therefore enough to compute the quotient only up to the degree M − 1: let
AM ≡ A mod XM and QM ≡ Q mod XM , then R ≡ AM −BQM mod XM .

This observation is the ingredient that allows to compute the remainder
using an extra space only of the order of the degree of the divisor B. One can
also see this as the long division algorithm applied to blocks of dimension M .

Let us write the euclidean equation A = BQ+R in a Toeplitz matrix form.
We view the polynomials A, Q and R as vectors [a0, . . . , aN ], [q0, . . . , qN−M ],
[r0, . . . , rM−1, 0, . . . , 0] andB as a Toeplitz matrixB = T([0, . . . , 0, bM , . . . , b0, 0, . . . , 0])
as follows:



















a0
...
...
...

aN



















=



















b0 0
...

. . .

bM
. . . b0
. . .

...
0 bM



















·













q0
...
...

qN−M













+



















r0
...

rM−1

0



















. (2)

Focusing on the last N −M +1 rows of Eq. (2) we obtain directly the upper
triangular (N − M + 1) × (N − M + 1) Toeplitz system of equations whose
solution is only the quotient:
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aM
...
...

aN













=



















bM . . . b0 0
. . .

. . .
. . .

. . .
. . . b0

0

. . .
...

bM



















·













q0
...
...

qN−M













. (3)

We now let n = N −M + 1 and suppose that B is really of degree M , that
is, its leading coefficients bM is invertible in the coefficient domain. For the sake
of simplicity we also assume that n is a multiple of M (otherwise just complete
the polynomial A with virtual leading zero coefficients up to the next multiple
of M) and let µ = n

M . We then denote the M×M blocks of the Toeplitz matrix

in Eq. (3) by: T = T([~0M−1, bM , . . . , b1]) and G = T([bM−1, . . . , b0,~0M−1]), that
is:

T =







bM . . . b1
. . .

...
bM






and G =







b0
...

. . .

bM−1 . . . b0






. (4)

This in turns gives a way to access only the first coefficients of Q in an upper
triangular Toeplitz system, with a 2-block band structure:













q0
...
...

qM−1













=
[

IM 0
]













T G 0
. . .

. . .

. . . G
0 T













−1 











aM
...
...

aN













(5)

where
[

IM 0
]

is the concatenation of the M×M identity matrix and the
(N −M)×(N −M) zero matrix.

Finally, recovering the remainder from the first M rows of Eq. (2) equations
is just like multiplying the quotient by G and thus R = A−BQ mod XM can
be written as:

R =













a0
...
...

aM−1













−
[

G 0
]













T G 0
. . .

. . .

. . . G
0 T













−1 











aM
...
...

aN













(6)

In fact, as we need only the first M coefficient of the Toeplitz system we just
need the first block-row of the (upper triangular) inverse of the upper triangular
2-band Toeplitz matrix.

Now this first block-row of the inverse of an upper triangular Toeplitz matrix
U is given by a direct formula obtained from either of the equations U ·U−1 = I
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or U−1 ·U = I (see, e.g., [7, Eq.(1)] for the scalar case). If we denote by Hi the
blocks of that row, we have that:











H1 = T−1

Hi−1G+HiT = 0, i = 2..µ

THi +GHi−1 = 0, i = 2..µ

(7)

Solving Eq. (7), we just get that Hi = T−1(−GT−1)i = (−GT−1)iT−1.
We have shown:

Lemma 11.













T G 0
. . .

. . .

. . . G
0 T













−1

= T−1.













I −GT−1 . . . (−GT−1)µ−1

. . .
. . .

...
. . . −GT−1

0 I













Now denote by [ ~a0, ~a1, . . . , ~aµ] the decomposition into blocks of dimension
M of [a0, . . . , aN ]. Combining Eq. (6) and Theorem 11, we obtain now that:

R =













a0
...
...

aM−1













−GT−1

(

µ
∑

i=1

(

−GT−1
)i−1

~ai

)

=

µ
∑

i=0

(

−GT−1
)i

~ai (8)

From Eq. (8) we thus can immediately deduce the following Algorithm 10
that uses only O(M) extra memory space in a Horner-like fashion of the poly-
nomial in (−GT−1) of Eq. (8). Note that this algorithm does not modify its
input along its course: both A(X) and B(X) are for now read-only.

Theorem 12. Algorithm 10 is correct and requires O
(

N
MM(M)

)

arithmetic
operations and O(M) extra memory space. If the polynomial B is sparse with
a constant number of non-zero coefficients, the arithmetic complexity is reduced
to O(N).

Proof. Correctness stems directly from Theorem 11 and Eq. (8). For the com-
plexity bounds, we use the results of Section 1.3. For each block, the triangular
Toeplitz system solve and the Toeplitz m-v. mult. require respectively λsM(m)
and λtM(m) operations and, sequentially, max{s; t}M extra space. Apart from
this space, we only need one extra vector, ~t, to store intermediate results. Over-
all we thus perform µ((λs + λt)M(M) + M) operations. With µ = n/M and
n = N −M + 1, this is

⌈

N−M+1
M

⌉

((λs + λt)M(M) +M) = O
(

N
MM(M)

)

oper-
ations, using (1 + max{s; t})M extra space.

Now if B is sparse with a constant number of non-zero elements, each tri-
angular Toeplitz system solve and Toeplitz matrix-vector multiplication can be
performed with only O(M) operations with the same extra memory space. Thus
the overall arithmetic bound becomes O(µM) = O(N).
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Algorithm 10 Overwritten-Quotient euclidean remainder

Input: A(X), B(X) in D[X ] of respective degrees N and M .
Read-only: A(X), B(X).
Output: R(X) ≡ A(X) mod B(X) of degree at most M − 1.
1: if M > N then return A.
2: Let n = N −M + 1, µ =

⌈

n
M

⌉

;

3: Let [ ~a0, . . . , ~aµ] = [a0, . . . , aN ,~0]; {Blocks of dimension M}
4: Let T = T([~0M−1, bM , . . . , b1]), G = T([bM−1, . . . , b0,~0M−1]);
5: ~r = ~aµ; {~r in-place of the result}
6: for i = µ− 1 down-to 0 do

7: ~t = T−1 · ~r; {Triang. Toeplitz solve}
8: ~r = (−G) · ~t; {Triang. Toeplitz m-v. mult.}
9: ~r += ~ai;

10: end for

11: return R =
∑M−1

i=0 riX
i.

Remark 13. This Algorithm 10 is in fact just the long division polynomial
algorithm applied to sub-blocks of the polynomial of size M :

• ~t = T−1 · ~r, Line 7, corresponds to computing the quotient of the current
leading coefficients, of the dividend, by B;

• ~r = (−G) · ~t, Line 8, corresponds to recovering the lower part of the
multiplication of that current quotient by B;

• ~r += ~ai, Line 9, updates the next M coefficients of the current dividend
(the leading ones being zero by construction of the current quotient).

This in-place long division by block is also sketched for instance in the proof
of [12, Lemma 2.1]. The latter Lemma gives about 3λM(N) operations and
(2 + s)M extra space. In fact a refined analysis should also give the same
(better) complexity as Theorem 12, that is less than 2λN

MM(M) operations and
(1 + s)M extra space.

4 Time-memory trade-off with more bands

Here we present a variant that enables to balance speed with storage. The
algorithm still uses blocks, but requires only a small fraction of extra space. If
the output space is M , then one obtains an algorithm using the space of one
of its input, M space for the output plus only a fraction m = M/µ of extra
space. The drawback is that our complexity bounds become O

(

N
m

M
mM(m)

)

.
Therefore this opens a whole range of algorithms in practice, from m = O(1),
that is a constant extra space but quadratic complexity O(NM); to µ = O(1),
with M(1 + o(1)) total space required (including the output of size M , that
is, the extra space can be a very small fraction of the output, but not quite a
constant), and a complexity that remains O

(

N
MM(M)

)

.
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Following [7, 24, 18, 17, 1, 19], we start by generalizing Theorem 11 to more
Toeplitz bands:

Lemma 14. For α− 1 matrices G2, . . . , Gα of dimension m×m and for T1 an
m×m upper triangular matrix, consider the following inverse of the (mη)×(mη)
upper triangular Toeplitz matrix with α non-zero blocks bands:







H1 . . . Hη

. . .
. . .

H1






=

























T1 G2 . . . Gα 0
. . .

. . .
. . .

. . .

. . .
. . .

. . . Gα

. . .
. . .

...
. . . G2

T1

























−1

.

Then










H1 = T−1
1

∑min{α;i}
j=2 Hi−j+1Gj +HiT1 = 0, i = 2..η,

T1Hi +
∑min{α;i}

j=2 Hi−j+1Gj = 0, i = 2..η.

(9)

Now we consider m consecutive coefficients of R in Eq. (6) for m < M .
Let η =

⌈

N−M+1
m

⌉

and α =
⌈

M
m

⌉

+ 1. If the consecutive coefficients start at

index i0, let k =
⌈

i0−1
m

⌉

. Then now let ~ρk = [ai0 , . . . , ai0+m−1] and [ ~a1, . . . , ~aη] =
[aM , . . . , aN , 0, . . . , 0] again completed with zeroes if N−M+1 is not a multiple
of m.

Let the first m rows of
[

T G
]

be

[

T1 G2 . . . Gα 0
]

=
[

Im 0
] [

T G
]

(10)

Finally, consider the m consecutive rows of
[

G 0
]

starting at row i0 as
[

F0 . . . Fk 0
]

Then combining Eq. (6) and Theorem 14, we have the following:

Lemma 15. For A and B polynomials of respective degrees N and M we let R ≡
A mod B. Let ~ρk = [ai0 , . . . , ai0+m−1] and [ ~a1, . . . , ~aη] = [aM , . . . , aN , 0, . . . , 0]

and consider the Toeplitz blocks T =







bM . . . b1
. . .

...
bM






, G =







b0
...

. . .

bM−1 . . . b0







together with the subsets of m rows
[

T1 G2 . . . Gα 0
]

=
[

Im 0
] [

T G
]

and
[

F0 . . . Fk 0
]

=
[

0i0 Im 0M−i0−m

]

·
[

G 0
]

. Finally let [H1, . . . , Hη]
be the components of the Toeplitz inverse as in Theorem 15, then:







ri0
...

ri0+m−1






= ~ρk −

k
∑

j=0

Fj

(

η−j
∑

i=1

Hi~ai+j

)

(11)
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This Theorem 15 together with the characterization of the inverse compo-
nents of Eq. (9), now give us a way to compute this subset of the remainder via
a generalized Horner-like process.

To save space and time the idea is to avoid the computation of the inverse
altogether. For this, we recursively replace any computation of the form Hi ~aℓ,

using Eq. (9) as follows: Hi ~aℓ = HiT1T
−1
1 ~aℓ = (−∑min{α;i}

j=2 Hi−j+1Gj)T
−1
1 ~aℓ =

∑min{α;i}
j=2 Hi−j+1(−GjT

−1
1 ~aℓ).

The core computations are now again of the form GjT
−1
1 ~aℓ as in Algo-

rithm 10 but α of them have to be performed at each step. In order to save the
space to store them (which would bemα, that is not smaller thanmM/m = M),
the idea is to modify instead the appropriate ~ai−j+1 parts of the input. The
trick is that it is possible to do this up to i = 1, then store the overall sum into
the final result space, and finally revert the whole computation (thus doubling
the cost) to put back the input in its initial state. This is shown in Algorithm 11.

Theorem 16. Algorithm 11 is correct and if Triangular Toeplitz solve requires
λsM(m) operations with s·m extra space and Toeplitz matrix-vector multiplica-
tion requires λtM(m) operations with t·m extra space, then with (2+max{s; t})m
extra space, its arithmetic complexity is bounded by O

(

N
m

M
mM(m)

)

.

Proof. Correctness directly comes from Theorems 14 and 15. Then, the com-
plexity bound is twice η(λsM(m) + (α− 1)λtM(m) +m) plus the middle com-

putations
∑α−1

k=0 (k + 1)(λsM(m) + λtM(m) +m). Its arithmetic complexity is
thus bounded by:

(

2η (λs + (α− 1)λt) + α
α+ 1

2
(λs + λt)

)

M(m) +

(

2η + α
α+ 1

2

)

m.

With η =
⌈

N−M+1
m

⌉

and α =
⌈

M
m

⌉

+ 1 we obtain the claimed bound.
Now, if the operations are performed sequentially, then apart from the

used input, ~ai, two size m memory slots are required, ~r and ~t, and either
the extra space of the Toeplitz solving or that of the multiplication. This is
(2 + max{s; t})m extra space.

Remark 17. Again, we see that ~r = T−1
1 · ~ai is computing the current quo-

tient ~r = Quo(~ai(X)Xm−1, B1(X)) and that the loop (~t = Gj · ~r)j=2..α is the
multiplication by the whole divisor, B(X)~r(X).

5 In-place modular remainder

We now derive algorithms that uses only O(1) extra memory space in the in-
place model of Section 1.1: modifying the inputs is possible if and only if all
inputs are restored to their initial state after the completion of the algorithm.

This allows us to store some intermediate results, over-writing the input,
provided that we can afterwards recompute the initial inputs in their entirety.
The idea is to combine Sections 2 to 4.
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Algorithm 11 BRem: block remainder using & restoring its LHS

Input: m, ~a ∈ D
N , ~b ∈ D

M , η =
⌈

N−M+1
m

⌉

, α =
⌈

M
m

⌉

+ 1;.

Read-only: ~b.

Output: R = [R0, . . . , Rα−1], with Rk = ~ρk −
∑k

j=0 Fj

(

∑η−j
i=1 Hi~ai+j

)

and

the Hi as defined in Theorem 14.
1: Let η =

⌈

N−M+1
m

⌉

, α =
⌈

M
m

⌉

+ 1;
2: Let [~ρ0, . . . , ~ρα−1] = [a0, . . . , aM−1, 0, . . . , 0] and [ ~a1, . . . , ~aη] =

[aM , . . . , aN , 0, . . . , 0]
3: Let T = T([~0M−1, bM , . . . , b1]), G = T([bM−1, . . . , b0,~0M−1])
4: Let

[

T1 G2 . . . Gα 0
]

=
[

Im 0
] [

T G
]

5: for i = η down-to 1 do {Propagate η times Eq. (9) to ~a}
6: ~r = T−1

1 · ~ai; {triangular Toeplitz solve}
7: for j = 2 to min{α; i} do
8: ~t = Gj · ~r; {Toeplitz matrix-vector multiplication}
9: ~ai−j+1 -= ~t;

10: end for

11: end for

12: for k = 0 to α− 1 do

13: Let i0 = k·m;
14: Let

[

F0 . . . Fk 0
]

=
[

0i0 Im 0M−i0−m

]

·
[

G 0
]

;
15: Rk = ~ρk;
16: for j = 0 to k do {Now this is just ~ρk −

∑k
j=0 FjT

−1
1 ~aj}

17: ~r = T−1
1 · ~aj ; {triangular Toeplitz solve}

18: ~t = Fj · ~r; {Toeplitz matrix-vector multiplication}
19: Rk -= ~t;
20: end for

21: end for

22: for i = 1 to η do {Unroll η times Eq. (9) to ~a}
23: ~r = T−1

1 · ~ai; {triangular Toeplitz solve}
24: for j = 2 to min{α; i} do
25: ~t = Gj · ~r; {Toeplitz matrix-vector multiplication}
26: ~ai−j+1 += ~t;
27: end for

28: end for

29: return R = [R0, . . . , Rα−1].
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First we present in Algorithm 12 a fully in-place remainder where only B(X)
is modified but restored: this variant replaces only Lines 7 to 9 of Algorithm 10.

Algorithm 12 In-place euclidean remainder (fully in-place variant of Algorithm 10)

Input: A(X), B(X) in D[X ] of respective degrees N and M .
Read-only: A(X).
Output: R(X) ≡ A(X) mod B(X) of degree at most M − 1.
1: if M > N then return A.
2: Let n = N −M + 1, µ =

⌈

n
M

⌉

;

3: Let [ ~a0, . . . , ~aµ] = [a0, . . . , aN ,~0]; {Blocks of dimension M}
4: Let T = T([~0M−1, bM , . . . , b1]), G = T([bM−1, . . . , b0,~0M−1]);
5: ~r = ~aµ; {~r in-place of the result}
6: for i = µ− 1 down-to 0 do

7: ~r← T−1 · ~r; {Algorithm 9}
8: ~r← (−G) · ~r; {Algorithm 8}
9: ~r += ~ai;

10: end for

11: return R =
∑M−1

i=0 riX
i.

Theorem 18. Algorithm 12 is correct, in-place and requires less than O
(

N log3 M
)

operations.

Proof. The algorithm calls µ = O
(

N
M

)

times Algorithms 8 and 9, each call

requiring less than O
(

M log3 M
)

operations by Theorems 9 and 10.

In the same way, we replace the blocks of Lines 6 to 9, symmetrically
of Lines 23 to 26 and the block of Lines 17 to 19 of Algorithm 11, to ob-
tain Algorithm 13. This again allows us to have some latitude in practice for
different relative ratios between the degrees of the dividend and the divisor.

Theorem 19. Algorithm 13 is correct, in-place and requires less than

O
((

M

m
+ logm

)

N log2 m

)

operations.

Proof. The algorithm calls ηα + α2 = O
(

N
m

M
m

)

times Algorithm 7, each call

requiring less than O
(

m log2 m
)

operations by Theorem 8. It also calls η =

O
(

N
m

)

times Algorithms 8 and 9, each call requiring less than O
(

M log3 M
)

operations by Theorems 9 and 10.

6 Conclusion

We have presented novel algorithms computing f-circulant and Toeplitz matrix-
vector multiplications in-place. This allows us to derive novel algorithms for
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Algorithm 13 In-place euclidean block remainder (fully in-place variant of Algo-

rithm 11)

Input: m, ~a ∈ D
N , ~b ∈ D

M , η =
⌈

N−M+1
m

⌉

, α =
⌈

M
m

⌉

+ 1;.

Output: R = [R0, . . . , Rα−1], with Rk = ~ρk −
∑k

j=0 Fj

(

∑η−j
i=1 Hi~ai+j

)

and

the Hi as defined in Theorem 14.
1: Let η =

⌈

N−M+1
m

⌉

, α =
⌈

M
m

⌉

+ 1;
2: Let [~ρ0, . . . , ~ρα−1] = [a0, . . . , aM−1, 0, . . . , 0] and [ ~a1, . . . , ~aη] =

[aM , . . . , aN , 0, . . . , 0]
3: Let T = T([~0M−1, bM , . . . , b1]), G = T([bM−1, . . . , b0,~0M−1])
4: Let

[

T1 G2 . . . Gα 0
]

=
[

Im 0
] [

T G
]

5: for i = η down-to 1 do {Propagate η times Eq. (9) to ~a}
6: ~ai = T−1

1 · ~ai; {Algorithm 9}
7: for j = 2 to min{α; i} do
8: ~ai−j+1 -= Gj · ~ai; {Algorithm 7}
9: end for

10: end for

11: for k = 0 to α− 1 do

12: Let i0 = k·m;
13: Let

[

F0 . . . Fk 0
]

=
[

0i0 Im 0M−i0−m

]

·
[

G 0
]

;
14: Rk = ~ρk;
15: for j = 0 to k do

16: Rk -= Fj · ~aj ; {Algorithm 7}
17: end for

18: end for

19: for i = 1 to η do {Unroll η times Eq. (9) to ~a}
20: for j = 2 to min{α; i} do
21: ~ai−j+1 += Gj · ~ai; {Algorithm 7}
22: end for

23: ~ai = T1 · ~ai; {Transpose of Algorithm 8}
24: end for

25: return R = [R0, . . . , Rα−1].
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accumulated or over-place Toeplitz multiplication or system solving. We also
present algorithms that reduce the extra storage required to compute the re-
mainder only when dividing polynomials. Eventually, we combine these tech-
niques to propose the first in-place algorithms computing only the remainder of
the polynomial euclidean division.

Further work include finding ways to (1) remove the extra logarithmic factors
in the complexities; (2) deal with the field with 3 elements, there maybe some
linearization of the extension with 9 elements could help; (3) avoid dividing by
2, in order to handle the even characteristic case. We propose some ways to
handle most of the characteristic 2 cases in in Appendix B. Unfortunately there
remains some cases we still do not have Õ(n) in-place algorithms. This is F2,
F3, and the finite fields with cyclic group cardinality a Mersenne prime (as of
today, 51 are known).
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A f-circulant/polynomial isomorphism

It is well known that the algebra of f -circulant n×n matrices is isomorphic to
the algebra of polynomials modulo Xn− f , see, e.g., [21, Theorem 2.6.1]. More
precisely, define the reverse of a vector of dimension n as rev (~a) = an..1 and
identify polynomials to their vector of coefficients. Then we have that

P (X)Q(X) mod (Xn − f) = rev (Cf(P ) · rev (Q))

Let Y = Xn/2, then, when f is q square, the recursive branch of Algorithm 3
is a recursive application of the Chinese Remaindering theorem with Xn − f =
(Xn/2+

√
f)(Xn/2−√f), or Y 2− f = (Y +

√
f)(Y −√f). Indeed both factors

are coprime and satisfy

1

2
√
f
(Y +

√

f)− 1

2
√
f
(Y −

√

f) = 1.
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Therefore Let C+ = (C+PQ mod (Y +
√
f)) and C− = (C+PQ mod (Y −√

f)), then C + PQ mod Y 2 − f = 1
2
√
f
C+(Y +

√
f) − 1

2
√
f
C−(Y −

√
f) =

1
2
√
f
(C+ − C−)Y + 1

2 (C+ + C−).

B Characteristic two

With the isomorphism of Appendix A we can find an equivalent of Algorithm 3
for most of the finite fields of characteristic two.

Consider q = 2m and let q−1 = kt, with k ≤ t. Then consider a k-th power,
f , in F

∗
q , that is for a generator g of this cyclic group, consider f = gik = [ik]g

for some i. Then the fj = [i + jt]g, for j = 1..k are all the k-th roots of f and
they all belong to F

∗
q, as (i+ jt)k ≡ ik mod q − 1 and q − 1 = kt.

Thus, in Fq, we have that Y k − f =
∏k

j=1(Y − fj). Further, Xuk − f =
∏k

j=1(X
u − fj) (again, let Y = Xu). All the (Xu − fj) are co-prime, since

all the k-th roots are distinct (they have distinct exponent with respect to g,
between 0 and q − 1).

Thus, computing the extended gcd between Y − fj and (Y k − f)/(Y − fj),
gives Bezout coefficients Uj and vj , s.t. Uj(Y − fj) + vj(Y

k − f)/(Y − fj) = 1,
with deg vj < deg (Y − fj) = 1. This means that vj ∈ F

∗
q (and this remains

true if Y = Xu, for any u).
Let n = ku, the Chinese remaindering Lagrange formula now writes:

c mod (Xn − f) =

k
∏

j=1

(c mod (Xu − fj)) vj
Xn − f

Xu − fj
.

Thus, as soon as the number of invertibles in Fq, 2
m − 1 is not a Mersenne

prime, then it can be written as 2m − 1 = kt with t ≥ k > 1 (that is t ≥ k ≥ 3)
and we can form a k-adic recursion for circulant matrices. This gives a fast
algorithm: if T (n) ≤ kT (n/k) +O(n logα(n)), then T (n) = O

(

n logα+1(n)
)

.
Further, if k > 1, then 1 is not the only k-th power (there are t ≥ 3 of

them), and we can built the analogous of the full Algorithm 3. Indeed, by
letting λ = (bk − f)/(f − 1), for another k-th power bk, we can always compute
Cf =

λ
λ+1 C1 +

1
λ+1 Cbk , and the accumulation c = c+ Cf can be computed by

c =
λ

λ+ 1

(

1

λ
((λ+ 1)c+ Cbk) + C1

)

.

The conditions are that λ exists, thus f 6= 1, λ invertible, thus f is not a
k-th power, λ+ 1 invertible, thus bk 6= 1.

We have proven:

Proposition 20. For A(X) and B(X) polynomials of respective degrees N
and M over any field with even characteristic q = 2m, such that 2m − 1 is
not prime, there exist an in-place algorithm requiring less than O

(

N log3 M
)

arithmetic operations.
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C Open cases

Cyclic group of Mersenne prime cardinality In case of a Mersenne prime,
then unfortunately the only power with all its roots in the field is 1 and we thus
cannot combine recursive calls. This prevents us for now to have superfast
algorithms in F2, F4, F8, F32, F128, F8192, ..., (as of today, only 51 Mersenne
primes are known1, and we do not know if there are an infinite number of those
or not.

Still, in characteristic 2, one can always use a triadic algorithm in an ex-
tension of degree 2, that is with an algebraic root of j2 + j + 1. Then the 3
roots of unity, 1, j and j + 1 are by definition inside the extension. And all the
coefficients can be formed as polynomials of degree 1 in j.

Now, to remain in-place, one cannot double the space of each coefficient
(that would be required to store polynomials of degree 1). But it should be
possible to sequentially compute with the real and imaginary parts. In fact, the
algorithm of [26, Eq. (19)] does exactly that, i.e. computing modulo Y −1, Y −j
and Y − (j+1) and then explicitly reconstructing the polynomial of degree 2 in
Y = Xn/3. But this algorithm uses 4 multiplications, that is 4 recursive calls,
with polynomials of degree n/3. Therefore its complexity bound would only be
O
(

nlog
3
(4)
)

.
Again our approach to have an algorithm for each possible coefficients in the

field, then works if there exist at least 2 distinct cubes in the extension. This
just discards F2 and F4.

Over F3 The same approach should work for −1 over F3, as it becomes a
square in F9

∼= F3[j]/(j
2 + 1). But, since Gauß, the minimum number of mul-

tiplications required to multiply two complex numbers is 3, resulting in the
Karatsuba O

(

nlog
2
(3)
)

complexity.

1https://www.mersenne.org/primes
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