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We give a simple argument to obtain L p -boundedness for heat semigroups associated to strongly elliptic systems on R d by using Stein interpolation between Gaussian estimates and hypercontractivity. Our results give p explicitly in terms of ellipticity.

It is optimal at the endpoint p = ∞. We also obtain L p -estimates for the gradient of the semigroup, where p > 2 depends on ellipticity but not on dimension.

Introduction

In dimension d ≥ 3 we consider strongly (i.e. Legendre) elliptic systems on R d of N ≥ 1 equations in divergence form

(Lu) α = -(div(A∇u)) α = - d i,j=1 N β=1 ∂ i A α,β i,j ∂ j u β (α = 1, . . . , N )
with bounded, measurable and complex coefficients. This gives rise to a contraction semigroup (e -tL ) t>0 in (L 2 ) N := L 2 (R d ; C N ). Surprisingly little is know about explicit L p -estimates when no further regularity on the coefficients is imposed. For systems with minimally smooth coefficients we refer e.g. to [START_REF] Dong | Parabolic and elliptic systems with V M O coefficients[END_REF]. More precisely, consider the set J (L) := p ∈ (1, ∞) : e -tL is bounded in L p , uniformly for t > 0 .

By complex interpolation, it is an interval around 2, the endpoints of which are often denoted by p ± (L). All of our results will be stable under taking adjoints. Since p -(L) = (p + (L * )) ′ , we shall concentrate on the upper endpoint p + (L). It is known that p + (L) > 2 * , where 2 * := 2d d-2 is the Sobolev conjugate of 2, and that the improvement p + (L) -2 * can be arbitrarily small even when N = 1 [START_REF] Hofmann | Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces[END_REF]Sec. 2.2]. What seems to be missing though, are explicit lower bounds for p + (L) in terms of the data of L, such as ellipticity constants and dimensions, in particular when the improvement is expected to be large or even covers p + (L) = ∞. Indeed, all results for systems (that we are aware of) are perturbative from the general L 2 -theory and provide small, non-quantifiable improvements [START_REF] Tolksdorf | R-sectoriality of higher-order elliptic systems on general bounded domains[END_REF][START_REF] Auscher | Regularity theorems and heat kernel for elliptic operators[END_REF][START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]. In contrast, we proceed by interpolation from the L ∞ -theory for special systems described further below. Our results are new also for elliptic equations (N = 1).

The number p + (L) is related to the optimal ranges of various L p -estimates for L, such as Riesz transforms, boundary value problems and functional calculus, see the introduction of [START_REF] Auscher | Boundary value problems and Hardy spaces for elliptic systems with block structure[END_REF] for a comprehensive account on the literature. Thus, improving lower bounds for p + (L), as we shall do here, leads to automatic improvements in all these topics. All of our results are perturbative from the diagonal Laplacian system corresponding to A = 1 (C N ) d := (δ α,β δ i,j ) α,β i,j but not necessarily on a small scale. This is in the nature of things, because every strongly elliptic A is an L ∞ -perturbation of 1 (C N ) d of size smaller than 1 up to normalization:

d(A) := min t≥0 1 (C N ) d -tA L ∞ (R d ;L((C N ) d )) < 1.
The 'distance' d(A) is a well-known measure of ellipticity [START_REF] Koshelev | Regularity problem for quasilinear elliptic and parabolic systems[END_REF]. It can be bounded from above and below in terms of the usual ellipticity constants and when A = A * , there is an easy formula (Lemma 3). The dimensional constant

δ(d) := 1 + (d -2) 2 d -1 -1 2
will play an important role in this paper. Our main result is as follows.

Theorem 1. The following three statements hold.

(i) If d(A) ≥ δ(d), then p + (L) ≥ 2 * 1 -ln(d(A)) ln(δ(d))
.

(ii) If d(A) < δ(d), then p + (L) = ∞.
(iii) The result in (ii) is optimal in the sense that for each ε > 0 there is some

A ε with d(A ε ) ≤ δ(d) + ε and p + (L ε ) < ∞.
The dimensional constants in Theorem 1 are quite large in small dimensions and we collect some values in Figure 1. 

d δ(d) -ln(δ(d)) -1 ̺(A)
(A) = λ(A) Λ(A) ∈ (0, 1] that is sufficient for having d(A) = δ(d) in the special case A = A * , see Lemma 3.
Part (ii) is proved in Section 3 by combining results of Koshelev [START_REF] Koshelev | Regularity problem for quasilinear elliptic and parabolic systems[END_REF], see also [START_REF] Leonardi | Remarks on the regularity of solutions of elliptic systems, Applied nonlinear analysis[END_REF], with a characterization of Gaussian kernel estimates for e -tL due to Auscher-Tchamitchian [START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF]. In fact, in Theorem 9 we shall prove the stronger statement that e -tL has a Hölder regular integral kernel with Gaussian decay. Since δ(d) > d -1/2 , this disproves the conjecture in [START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF]Chap. 1,Sec. 1.4.6] that the best possible perturbation result would be d(A) ∈ O(d -1 ). The optimality statement in (iii) is almost classical, see Proposition 11.

Part (i) is proved in Section 4. The idea is to rewrite d(A) < 1 as A = τ (1 (C N ) d -B),
where B ∞ = d(A) and τ > 0. We embed A into an analytic family of elliptic matrices given by

A z := τ (1 (C N ) d -zB),
where r ≤ |z| ≤ R with r > 0 and R > 1. Then, in the spirit of Stein interpolation, we estimate e -tL = e -tL 1 by using the generic information p + (L z ) ≥ 2 * on the outer circle |z| = R and p + (L z ) = ∞ on the inner circle |z| = r provided r is small. The best bound is achieved when r, R are the largest possible; thus the optimal choice for r comes from (ii). We believe that this simple analytic perturbation argument is of independent interest and has multiple applications to other types of L p -estimates for divergence form operators.

Writing Theorem 1 (i) as 1 2

* -1 p + (L) ≥ ε(d, d(A)), we see that ε(d, d(A)) → 0 as d → ∞.
Inspired by Stein's result [START_REF] Stein | Some results in harmonic analysis in R n , for n → ∞[END_REF] on dimensionless bounds for the Riesz transform, we ask whether an improvement can be given independently of d. To this end, it will be advantageous to consider

N (L) := p ∈ (1, ∞) :
√ t∇ e -tL is bounded in L p , uniformly for t > 0 , instead of J (L). It is again an interval around 2. The left and right endpoints of N (L) are denoted by q ± (L) and it is a fact that q

-(L) = p -(L) and p + (L) ≥ q + (L) * [2, Sec. 3.4].
It follows that the improvement q + (L) -2 can be arbitrarily small. In the next result, proved in Section 6, we improve q + (L) in terms of d(A) alone. Writing the conclusion as

1 2 -1 q + (L) ≥ ε(d(A)) gives the dimensionless improvement 1 2 * -1 p + (L) ≥ ε(d(A)).
Theorem 2. It holds

q + (L) ≥      2 1+ σ-1 σ 2 ln(d(A)) if 1 4(σ-1) 2 ≤ d(A), 1 2 √ d(A) + 1 if d(A) ≤ 1 4(σ-1) 2 ,
where σ ≈ 5.69061 is the unique real solution to

ln(2σ -2) = σ(σ -2) 2(σ -1) .
For curiosity, let us mention that the first bound in Theorem 2 produces a larger improvement for p + (L) compared to Theorem 1 (i) in dimension d ≥ 922100.

It would be interesting to know to what extend our results can be extended to more general domains and boundary conditions. In case of Theorem 1 we provide an extension to bounded C 1 -domains with Dirichlet boundary conditions in Section 5.

Implicit constants.

We write X a Y, if X ≤ cY for some c = c(a) > 0.
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Strongly elliptic systems

Let d ≥ 3, N ≥ 1 and A : R d → L((C N ) d ) be measurable. We assume that A is uniformly strongly elliptic, that is

λ(A) := essinf x∈R d min |ξ|=1 Re(A(x)ξ • ξ) > 0 & Λ(A) := A L ∞ (R d ;L((C N ) d )) < ∞.
Let L =div(A∇•) be realized as an m-accretive operator in (L 2 ) N via the sesquilinear form

a(u, v) := ˆRd A∇u • ∇v dx = d i,j=1 N α,β=1 ˆRd A α,β i,j ∂ j u β ∂ i v α dx (u, v ∈ (W 1,2 ) N )
and let (e -tL ) t≥0 be the associated contraction semigroup, see [START_REF] Kato | Perturbation theory for linear operators[END_REF]Chap. 6]. We use the distance function

d(A) := min t≥0 1 (C N ) d -tA L ∞ (R d ;L((C N ) d )) ,
to measure ellipticity. By compactness, the minimum is attained in some t * ≥ 0. Let us verify that t * > 0 and that d(A) is an appropriate quantity to measure ellipticity.

Lemma 3. If ̺(A) := λ(A) Λ(A) denotes the ellipticity quotient of A, then 1 -̺(A) 1 + ̺(A) ≤ d(A) ≤ 1 -̺(A) 2 .
In particular, λ(A) > 0 if and only if d(A) < 1.

Proof. If λ(A) > 0, then we have for all t ≥ 0, each normalized ξ ∈ (C N ) d and almost

every x ∈ R d that |ξ -tA(x)ξ| 2 = 1 -2t Re (A(x)ξ | ξ) + t 2 |A(x)ξ| 2 ≤ 1 -2tλ(A) + t 2 Λ(A) 2 .
We choose t := λ(A) Λ(A) 2 to get the upper bound for d(A). Conversely, we let d(A) < 1 and fix t * > 0 such that The next smoothing of the coefficients lemma will be important in Section 3 and Section 5 to absorb terms, which are a priori not finite for non smooth coefficients. We include the simple proof for convenience. To this end, we let η ∈ C ∞ c (B(0, 1)) be non-negative with ´Rd η dx = 1 and put η n (x) := n d η(nx) for n ∈ N and x ∈ R d . We define the smoothed coefficients

1 (C N ) d -t * A ∞ = d(A). Then Re (t * A(x)ξ | ξ) = 1 -Re((1 (C N ) d -t * A(x))ξ | ξ) ≥ 1 -d(A). Hence, t * λ(A) ≥ 1 -d(A) > 0

and by the triangle inequality t * Λ(A) ≤ 1 + d(A). Rearranging gives the lower bound for d(A).

A n := A * η n . Lemma 5. Let O ⊆ R d be open, u ∈ W 1,2 (O) N be a weak solution to Lu = 0 in O and u n ∈ W 1,2 (O) N be the unique weak solution to -div(A n ∇u n ) = 0 in O & u -u n ∈ W 1,2 0 (O) N .
Then the following assertions are satisfied.

(i) For all n ∈ N it holds λ(A n ) ≥ λ(A), Λ(A n ) ≤ Λ(A), d(A n ) ≤ d(A) and u n is smooth in O. (ii) Along a subsequence u n → u in L 2 (O) N and a.e. on O.
Proof. As A n is smooth, so is u n by elliptic regularity theory, e.g. [10, Sec. 6.3.1, Thm. 3] adapted to systems. The rest of (i) follows from

A n (x)ξ • ζ = ˆRd η n (y)A(x -y)ξ • ζ dy (ξ, ζ ∈ (C N ) d ).
In order to prove (ii), let us show in a first step that (v n

) n := (u n -u) n ⊆ W 1,2 0 (O) N is bounded. Indeed, since -div(A n ∇v n ) = div(A n ∇u) in O,
this follows from the Lax-Milgram lemma and (i). Thus, we can find a subsequence (v k ) k , and some N and a.e. on O, and ∇u k → ∇w weakly in L 2 (O) dN . We claim that w = u. To this end, we fix some

v ∈ W 1,2 0 (O) N such that v k → v weakly in W 1,2 0 (O) N . By compactness, we can additionally assume v k → v strongly in L 2 (O) N and a.e. on O. Put w := v + u. In particular, u k → w in L 2 (O)
ϕ ∈ C ∞ c (O) N . Then 0 = ˆO A k ∇u k • ∇ϕ dx = ˆO ∇u k • A * k ∇ϕ dx -→ ˆO ∇w • A * ∇ϕ dx = ˆO A∇w • ϕ dx,
using also strong L 2 -convergence A k ∇ϕ → A∇ϕ, which follows from dominated convergence. This proves that w solves

Lw = 0 in O & w -u ∈ W 1,2 0 (O), hence w = u.
Remark 6. If A would be only defined on O, then we can extend it to R d without changing the "distance": Simply let t * > 0 such that

1 (C N ) d -t * A L ∞ (O) = d(A) and extend A to R d by (t * ) -1 1 (C N ) d .
Hence, we can always assume that A is defined on R d .

New thoughts on old results of Koshelev

In a series of articles, culminating in the monograph [START_REF] Koshelev | Regularity problem for quasilinear elliptic and parabolic systems[END_REF], Koshelev studied qualitative (Hölder) regularity of weak solutions to elliptic systems. In this section we explain how they lead us to an optimal perturbation result for Gaussian estimates for heat semigroups, when reinterpreted appropriately as quantitative statements.

Definition 7. Let O ⊆ R d be open. We call a function u ∈ W 1,2 (O) N L-harmonic in O, if we have for all ϕ ∈ C ∞ c (O) N that ˆO A∇u • ∇ϕ dx = 0.
The appropriate setting to study regularity of L-harmonic functions turns out to be the following weighted Morrey spaces H α (O) N , α ∈ R, which are defined as the spaces of all u ∈ W 1,2 (O) N modulo C N for which the norm u Hα(O) := sup

x 0 ∈O u Hα,x 0 (O) , where u Hα,x 0 (O) := ˆO |∇u| 2 |x -x 0 | α dx 1 2 , is finite. For α > d -2 sufficiently close to d -2 we have (8) c(α, d) := 1 + α(d -2) d -1 1 2 1 - α(α -(d -2)) 2(d -1) -1 > 0.
This quantity will play an important role. In fact, c(α, d) → δ(d) -1 in the limit as α → d -2. From now on we shall assume d(A) < δ(d).

We begin by looking at L-harmonic functions on the unit ball B. Let t > 0. Guided by the perturbation principle in Lemma 3, it begins with writing the equation Lu = 0 in B in the weak sense as

-∆u = -div(F ) with F := (1 (C N ) d -tA)∇u.
Due to technical reasons we replace A by A n and u by u n as defined in Lemma 5 and call the term on the right-hand sidediv(F n ). In addition, we choose t > 0 such that

d(A n ) = 1 (C N ) d -tA n ∞ .
Using a particular test function v defined via spherical harmonics, Koshelev proves in [14, Cor. 2.3.1] the following estimate for

x 0 ∈ 1 4 B: u n 2 H -α,x 0 ( 1 4 B) ≤ F n |x -x 0 | -α 2 L 2 ( 1 4 B) (c(α, d) + ε) u n H -α,x 0 ( 1 4 B) + C(α, d, ε) ∇u n L 2 ( 1 4 B) + C(α, d, ε) ∇u n 2 L 2 ( 1 4 
B) , with ε > 0 at our disposal. Moreover, the smoothing of the coefficients guarantees that the first summand on the right-hand side is finite and this is the very reason why we have to include this argument. By definition of F n , the fact that d(A n ) ≤ d(A) by Lemma 5 (i) and Young's inequality, it follows that

u n 2 H -α,x 0 ( 1 4 B) ≤ (c(α, d) + ε)d(A) u n 2 H -α,x 0 ( 1 4 B) + C(α, d, ε) ∇u n 2 L 2 ( 1 4 B) . Since d(A) < δ(d),
we can fix ε small and α close to d -2 depending only on dimension and d(A) such that the first term on the right can be absorbed. This is the key point and the result is

u n H -α ( 1 4 B) d,d(A) ∇u n L 2 ( 1 4 B) .
Then, in [14, Thm. 2.1.1], Koshelev proves that the left-hand side controls the Hölder seminorm of order µ = 1 2 (αd + 2) on 1 4 B. Applying Caccioppoli's inequality on the right-hand side eventually leads to

[u n ] (µ) 1 4 B := sup x,y∈ 1 4 B,x =y |u n (x) -u n (y)| |x -y| µ d,d(A) u n L 2 (B) .
Finally, we invoke Lemma 5 (ii) in order to deduce

[u]

(µ)

1 4 B ≤ lim sup n→∞ [u n ] (µ) 1 4 B d,d(A) u L 2 (B) .
This estimate holds for any L-harmonic function on the unit ball. Since we have

d(A) = d(A * ) & d(A) = d(A(x 0 + r •))
for each x 0 ∈ R d and r > 0, a scaling argument shows that the outcome of revisiting Koshelev's results is the following proposition.

Proposition 9. Suppose d(A) < δ(d).

There are µ ∈ (0, 1] and C > 0, both depending only on d and d(A), such that we have for all balls B = B(x, r) ⊆ R d and every Lor

L * -harmonic u in B that r µ [u] (µ) 1 4 B ≤ Cr -d 2 u L 2 (B) .
The quantitative Hölder estimate in Proposition 8 appeared much later in a different context. Namely, Auscher and Tchamitchian [START_REF] Auscher | Regularity theorems and heat kernel for elliptic operators[END_REF][START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF] called it property H(µ) and proved that it implies that e -tL has a kernel with pointwise Gaussian bounds. If we combine their Theorem 10 in [5, Chap. 1, Sec. 1.4.1] with Proposition 8 above, then we obtain the following perturbation result for Gaussian estimates.

Theorem 10. Suppose d(A) < δ(d).

The kernel of (e -tL ) t>0 is represented by a Hölder regular function (K t ) t>0 , which admits pointwise Gaussian estimates: There are c, a > 0 and µ ∈ (0, 1) such that

|K t (x, y)| ≤ ct -d 2 e -a |x-y| 2 t , |K t (x, y) -K t (x ′ , y ′ )| ≤ ct -d 2 |x -x ′ | + |y -y ′ | √ t µ
for all t > 0 and x, x ′ , y, y ′ ∈ R d . The constants c, a, µ depend only on d and d(A).

Let us recall that implicit constants in the above references depend on dimension and ellipticity, but the latter can be controlled in terms of d(A) and vice versa by Lemma 3.

From Young's inequality for convolutions, we obtain:

Corollary 11. If d(A) < δ(d), then p + (L) = ∞.
We shall see next that the "radius" r = δ(d) is optimal for the conclusion in Corollary 10 and hence also for the one in Theorem 9. Again this is implicit in Koshelev's work and relies on a counterexample due to De Giorgi.

Let c > 0 and D ≥ c 2 +1 (d-2)c . Define for x ∈ R d \{0} the elliptic system with coefficients

(A DG (x)) α,β i,j := cδ ij + D x i x j |x| 2 cδ αβ + D x α x β |x| 2 (i, j, α, β = 1, . . . , d). Then u(x) := x |x| b with b = d 2 - d 2 4 - d(d -1)cD + (d -1)D 2 1 + (c + D) 2 1 2 ∈ [1, d 2 )
solves the elliptic systemdiv(A DG ∇u) = 0 in the weak sense in B(0, 1), see [14, Sec. 2.5] or [START_REF] Guidugli | De Giorgi's counterexample in elasticity[END_REF]. Note that b = 1 if and only if D = c 2 +1 (d-2)c . Koshelev continues in [14, Sec. 

Proof. We pick

A = A DG as in (3) and set u(x) := x |x| b . Let φ ∈ C ∞ c be such that 1 B(0, 1 2 ) ≤ φ ≤ 1 B(0,1)
. Then v := φu ∈ D(L) and using Lu = 0, we deduce

Lv = -div(A(∇φ ⊗ u)) -div(φA∇u) = -div(A(∇φ ⊗ u)) -∇φ ⊙ (A∇u).
Our notation should be interpreted as what comes out from the product rule. The only thing that matters is that ∇φ vanishes near the origin and hence Lv ∈ (C ∞ c ) N . If we had p + (L) = ∞, then according to [2, Prop. 5.3] we would get v ∈ (L q ) N for every q ∈ (2 * , ∞). However, |v(x)| = |x| 1-b in a neighborhood of 0 can not belong to L q for q ≥ d b-1 .

The interpolation argument

We come to the proof of our main result, Theorem 1, for the case d(A) ≥ δ(d). We will use basic properties of semigroups and vector-valued holomorphic functions. For further background we refer to [START_REF] Arendt | Vector-Valued Laplace transforms and Cauchy problems[END_REF].

We begin with a Stein-type interpolation principle tailored to our needs (taking care of implicit constants in particular). We write

S δ := {z ∈ C : -δ < Re(z) < 1 + δ} & S := S 0 .
For a matrix A = A z depending on a parameter z we let a z be the sesquilinear form corresponding to

L z := -div(A z ∇•). Proposition 14. Let δ > 0. Suppose that {A z } z∈S δ ⊆ L ∞ (R d ; L((C N ) d ))
are uniformly strongly elliptic matrices such that:

(i) There are 0 < λ ≤ Λ with λ(A z ) ≥ λ and Λ(A z ) ≤ Λ for all z ∈ S. (ii) We have sup t∈R d(A it ) < δ(d). (iii) For all u, v ∈ (W 1,2 ) N the map z → a z (u, v) is holomorphic in S δ . Then for θ ∈ [0, 1] we have p + (L θ ) ≥ 2 * θ .
Proof. Fix t > 0 and θ ∈ [0, 1]. Let us define Φ(z) := e -tLz for z ∈ S δ . As an L((L 2 ) N )valued map, Φ is bounded by 1, holomorphic on S δ and in particular continuous on S. This follows from (iii), see [START_REF] Vogt | Holomorphic families of forms, operators and C0-semigroups[END_REF]. Now, we estimate Φ on the boundary of S. Let f ∈ (L 2 ) N .

(A) Estimate on the left boundary. Let z ∈ S with Re(z) = 0. Due to (ii) and Theorem 9 we have Gaussian estimates for the kernel (K t,z ) t>0 of (e -tLz ) t>0 at our disposal.

By (i) implicit constants depend only on λ, Λ and d. Young's inequality for convolutions yields e -tLz f ∞ d,λ,Λ t -d 4 f 2 . (B) Estimate on the right boundary. Let z ∈ S with Re(z) = 1. By holomorphy of the semigroup it follows that e -tLz f ∈ (W 1,2 ) N . Thus, by a Sobolev embedding, (i) and Hölder's inequality, we get

e -tLz f 2 2 * d ∇ e -tLz f 2 2 λ |a z (e -tLz f, e -tLz f )| = |(L z e -tLz f | e -tLz f ) 2 | ≤ L z e -tLz f 2 e -tLz f 2 .
The semigroup is contractive on (L 2 ) N in the sector {z ∈ C : | arg z| < ϕ}, where tan ϕ = λ Λ . In particular, e -tLz f 2 ≤ f 2 and by Cauchy's formula for the complex derivative

L z e -tLz f 2 = 1 2πi ˆ∂B(t,r) e -wLz u (w -t) 2 dw 2 λ,Λ t -1
with r = t sin(ϕ). Altogether, this gives

e -tLz f 2 * λ,Λ,d t -1 2 f 2 .
Combining (A) and (B), Stein's Interpolation Theorem [START_REF] Stein | Interpolation of linear operators[END_REF]Thm. 1] implies that

e -tL θ f 2 * θ d,λ,Λ,θ t d 2•2 * /θ -d 4 f 2 .
In the language of L p -L q -estimates, this means that (e

-t 2 L θ ) t>0 is L 2 -L 2 *
θ -bounded (with the right scaling in t). A general principle for these estimates ([2, Prop. 3.2]) implies e -tL θ f q d,λ,Λ,q f q for all q ∈ (2, 2 * θ ) as claimed.

Proof of Theorem 1 (i). Let

A be elliptic such that d(A) ∈ [δ(d), 1). Fix ε ∈ (0, 1 - d(A)) and t * > 0 such that 1 (C N ) d -t * A ∞ = d(A). We abbreviate B := 1 (C N ) d -t * A, which means A = (t * ) -1 (1 (C N ) d -B
). Now, we embed A into the analytic family

A z := (t * ) -1 (1 (C N ) d -F (z)B), where F (z) := r 1-z R z = r e z ln( R r ) ,
by letting F (z) vary over an annulus

A := {z ∈ C : r < |z| < R} with radii 0 < r < 1 < R chosen as r := δ(d) d(A) + ε & R := 1 d(A) + ε .
The function F is holomorphic, bounded by r -δ R 1+δ = δ(d) -δ R in any strip S δ , and maps S onto A. For z in a strip S δ with sufficiently small δ > 0 we can define the interpolating operators L z :=div(A z ∇ •), where A z is still elliptic by Lemma 3. Indeed, for δ > 0 sufficiently small our choice of R delivers sup

z∈S δ A z ∞ ≤ (t * ) -1 (1 + δ(d) -δ R d(A)) & sup z∈S δ d(A z ) ≤ δ(d) -δ R d(A) < 1.
This also proves (i) in Proposition 12. Part (iii) follows immediately and our choice of r yields sup

t∈R d(A it ) ≤ sup t∈R F (it)B ∞ = r d(A) < δ(d),
which is (ii). Consequently, Proposition 12 implies that p + (L) = p + (L θ ) ≥ 2 * θ , where θ ∈ (0, 1) is determined by 1 = r 1-θ R θ . Finally, we notice that

θ = 1 - ln(R) ln( R r ) -→ 1 - ln(d(A)) ln(δ(d))
as ε ց 0.

Remark 15. In Proposition 12 we assume that z → a z (u, v) is holomorphic in a larger strip for convenience to get continuity of z → e -tLz up to S. If this holds true for any other reason, it is enough to suppose that z → a z (u, v) is holomorphic in S.

Remark 16. The proof of Theorem 1 reveals that the same results hold for divergence form operators with form domain V on general open sets O ⊆ R d , provided that Theorem 9 holds true with implicit constants depending only on geometry, ellipticity and dimension, and that we have additionally

u L 2 * (O) ∇u L 2 (O) (u ∈ V ),
which was used in (B) above. 

a(u, v) := ˆΩ A∇u • ∇v dx (u, v ∈ W 1,2 0 (Ω) N ).
We fix our geometric setup.

Assumption 17. Throughout this section Ω ⊆ R d , d ≥ 3, is a bounded domain with C 1 -boundary. This means that there is some M > 0 such that for each x 0 ∈ ∂Ω there is an open neighborhood U of x 0 and a C 1 -diffeomorphism φ :

U → B(0, 1), φ(x) = (x ′ , ψ(x ′ ) -x d ) such that φ(U ∩ Ω) = B(0, 1) ∩ R d + and Dψ ∞ ≤ M .
We can choose M arbitrarily small by choosing the neighborhoods small enough. This is exactly the reason, why we assume that the boundary is C 1 and not just Lipschitz.

Theorem 18. In the setting above suppose that d(A) < δ(d). Then the kernel of (e -tL ) t>0 is represented by a measurable function (K t ) t>0 for which there are c, a > 0 and µ ∈ (0, 1) such that

|K t (x, y)| ≤ ct -d 2 e -a |x-y| 2 t , |K t (x, y) -K t (x ′ , y ′ )| ≤ ct -d 2 |x -x ′ | + |y -y ′ | √ t µ
provided that the right-hand side is finite, and u n and f n are sufficiently smooth, which is the case thanks to our smoothing procedure. Here ε > 0 is at our disposal, c(α, d) is as in (3) and α > d -2 is chosen such that c(α, d) is finite. By definition of F n and (5), we derive the estimate

u n H -α,x 0 ( 1 4 B + ) ≤ (1 + M ) 2 d(A) + M 2 c(α, d) + ε u n H -α,x 0 ( 1 4 B + ) + C(ε, d, M ) ∇u n L 2 ( 1 4 B + )
. As d(A) < δ(d), we can pick ε > 0, α > d -2 and M > 0 depending only on d(A) and d such that first term on the right can be absorbed in order to obtain

u n H -α ( 1 4 B + ) d,d(A) ∇u n L 2 ( 1 4 B + ) . As in Section 3 we deduce [u φ,ρ ] (µ) 1 4 B + d,d(A) u φ,ρ L 2 (B + ) ,
where µ := 1 2 (αd + 2). Transforming back gives (5) for some γ = γ(M ) ∈ (0, 1).

At this point we are in the same situation as on R d and we can derive the following statement.

Corollary 21. In the setup of this section the following assertions hold true.

(i) If d(A) ≥ δ(d), then p + (L) ≥ 2 * 1 -ln(d(A)) ln(δ(d)) . (ii) If d(A) ≤ δ(d), then p + (L) = ∞.
(iii) Part (ii) is sharp in the sense that for all bounded C 1 -domains Ω ⊆ R d and for each ε > 0 there is some

A ε with d(A ε ) ≤ δ(d) + ε and p + (L ε ) < ∞.
Proof. The estimates for p + (L) follow as before, see also Remark 14. As for the sharpness of the radius d(A) = δ(d) we can, after translation, assume 0 ∈ Ω. We take the same coefficients A = A DG as in the proof of Proposition 11 and localize u to a ball contained in Ω. As before, this produces some v ∈ D(L) with v / ∈ (L q ) N for q large but Lv ∈ (C ∞ c ) N . Arriving at a contradiction with p + (L) = ∞ requires a different (and in fact simpler) argument compared to the case Ω = R d . By ellipticity and Poincaré's inequality, there is some θ 2 > 0 such that Lθ 2 is still m-accretive. Hence, L is invertible in (L 2 ) N and the semigroup enjoys the exponential bound e -tL f 2 ≤ e -θ 2 t f 2 for all t > 0 and f ∈ (L 2 ) N . By interpolation with the uniform bound on (L p ) N for some p > q, we get e -tL f q e -θqt f q with some θ q > 0. But then the formula L -1 f = ˆ∞ 0 e -tL f dt, valid in (L 2 ∩ L q ) N by the exponential estimate, implies that L -1 maps (L q ∩ L 2 ) N into itself, in contradiction with the properties of v.

Dimensionless improvements

Here, we prove Theorem 2. For 1 < p < ∞ we denote by ( Ẇ1,p ) N the space of all C Nvalued tempered distributions modulo C N for which the distributional gradient belongs to (L p ) dN . We endow this space with the norm ∇ • p and denote by (W -1,p ) N the anti-dual space of (W 1,p ′ ) N . We define

(22) -div A∇ : ( Ẇ1,p ) N → ( Ẇ-1,p ) N , -div A∇u | v := ˆRd A∇u • ∇v dx.
By Hölder's inequality, this is a bounded map.

We denote by c(p) the operator norm of the Riesz transform R := ∇(-∆) - implies q + (L) ≥ p.

Proof. By the characterization of q + (L) in [START_REF] Auscher | Boundary value problems and Hardy spaces for elliptic systems with block structure[END_REF]Sec. 13.3], it suffices to prove that the map in ( 6) is invertible and that the inverse is compatible with the one for p = 2.

We borrow an idea from [2, Lem. 2 : ( Ẇs,p ) N → ( Ẇs-1,p ) N is an isomorphism for s = 0, 1 and all p ∈ (1, ∞), it follows that alsodiv A∇ : ( Ẇ1,p ) N → ( Ẇ-1,p ) N is invertible with compatible inverse.

The constant c(p) has a long history and independence of d goes back to Stein [START_REF] Stein | Some results in harmonic analysis in R n , for n → ∞[END_REF]. Its exact value remains unknown to date. The best known estimates can be used to determine an improvement for q + (L) -2 explicitly. Dragičević and Volberg have shown in [9, Cor. 0.2] that c(p) ≤ 2(p -1). (Note that their short argument applies word-by-word to C N -valued functions.) However, this does not give c(2) = 1, suggesting that their bound can be improved by interpolation for p > 2 not too far away from 2. In fact, this is the case we are most interested in and we include the proof of the following elementary lemma. A similar argument for the Ahlfors-Beurling transform is found in [START_REF] Bañuelos | L p -bounds for the Beurling-Ahlfors transform[END_REF]. Proof. Let p > 2 and fix q ≥ p. Riesz-Thorin interpolation and the fact that c(2) = 1 yields

c(p) ≤ c(q) θ with 1 p = 1 -θ 2 + θ q .
We insert this value of θ to get c(p) ≤ (2(q -1))

2q q-2 1 2 -1 p = e 2q 
q-2 ln(2q-2)

1 2 -1 p .
Since 1 2 -1 p > 0, we have to minimize the expression 2q q-2 ln(2q -2) in q > 2. A straightforward calculation shows that this minimum is attained in q = σ, which is admissible when p ≤ σ.

Proof of Theorem 2. Simply use the upper bounds for c(p) from above in Proposition 18 and solve for d(A).

Remark 4 .

 4 From the above proof we see that the first inequality in Lemma 3 becomes an equality if A = A * and the second one if A = λ1 (C N ) d + B with λ > 0 and B * = -B. For more on d(A) and eigenvalues of A see [14, Sec. 1.1.].

2 . 5 ]Proposition 13 .

 2513 by showing that for this choice of D he can pick c = c(d) > 0 such that d(A DG ) = δ(d). Since d(A DG ) depends continuously on D and c, we can pick these parameters for any given ε > 0 in such a way that b > 1 & d(A DG ) < δ(d) + ε. (12) Now we use a localization argument from [5, Chap. 1, Sec. 1.3] to prove: For any ε > 0 there is A such that d(A) < δ(d) + ε and p + (L) < ∞.

5 .

 5 Extension to bounded C 1 -domains Let us extend Theorem 1 and Theorem 9 to bounded C 1 -domains with Dirichlet boundary conditions. The divergence form operator L =div(A∇ •) with uniformly strongly elliptic A ∈ L ∞ (Ω; L((C N ) d )) is now realized in L 2 (Ω) N as the m-accretive operator associated to the form

1 2 ( 1 +

 11 3.4]. Fix t * > 0 such that d(A) = 1 (C N ) dt * A ∞ and put B := 1 (C N ) dt * A. Then we can factorize div A∇ = (t * ) -1 (-∆) + (t * ) -1 div B∇ = (t * ) -1 (-∆) R * BR) (-∆) BRf p ≤ c(p) 2 d(A) f p for f ∈ (L p ) N ∩ (L 2 ) N , we need c(p) < 1 √ d(A) to invert (1 + R * BR) -1 = ∞ n=0 (-R * BR) n , in (L p ) N .The inverse is compatible since the same Neumann series converges also in (L 2 ) N owing to c(2) = 1. Next, since (-∆)

1

 1 

Lemma 24 . 1 p

 241 If σ ≈ 5.69061 is the unique real solution to ln(2σ -2) = σ(σ -2) 2(σ -1) and 2 ≤ p ≤ σ, then c(p) ≤ e ≤ 2(p -1).

  1 2 (defined via a Fourier multiplication operator with symbol -i ξ |ξ| ⊗ 1 C N ) from (L p ) N to (L p ) dN . By Plancherel's theorem we have c(2) = 1.

	Proposition 23. Let p > 2. Then c(p) < 1 √ d(A)

for all t > 0 and x, x ′ , y, y ′ ∈ Ω. The constants c and a depend only on d, d(A) and geometry.

Proof. The proof is very similar to the one of Theorem 9. We abbreviate Ω(x, r) := Ω ∩ B(x, r).

We use again elliptic estimates for L-harmonic functions due to Koshelev, this time also in the half space after localization and transformation. The kernel estimates will then follow from [6, Thm. 12] provided we can check what they call property (D) for L and L * . By the easy argument in [5, p. 37] it suffices to show a property similar to Proposition 8 and formulated as follows:

There are C > 0 and γ ∈ (0, 1) such that for all

Here ρ 0 ≤ 1 is chosen small as explained in [6, p. 20].

In view of d(A) = d(A * ), we stick to the case of L-harmonic functions. When x 0 ∈ Ω and B(x 0 , r) ⊆ Ω, this estimate has already been obtained in Section 3 with γ = 1 4 . By a case distinction (whether or not B(x 0 , r 2 ) intersects ∂Ω) it suffices to treat in addition the case x 0 ∈ ∂Ω. So, let r ≤ ρ 0 and u ∈ W 1,2 0 (Ω) N with Lu = 0 in Ω(x 0 , r). Let t > 0 and pick ρ ≃ M r small enough such that φ -1 (B(0, ρ)) ⊆ B(x 0 , r). Put B + := R d + ∩ B, where B is again the unit ball, and write u φ,ρ := (u • φ -1 )(ρ •). A change of coordinates implies that u φ,ρ ∈ W 1,2 (B + ) N is a weak solution of

that vanishes on ∂R d + ∩ ∂B + . Next, we use a smoothing procedure as in Section 3. We let A n and u n be defined as in Lemma 5 with A replaced by (Dφ) φ,ρ A φ,ρ (Dφ) ⊤ φ,ρ (see also Remark 6). Then the same lemma assures that u n → u φ,ρ in L 2 (B + ) N and a.e. along a subsequence. In addition, we have u n ∈ C ∞ ( 3 4 B + ) N by elliptic regularity [10, Sec. 6.3.1, Thm. 5]. As in Section 3, we writediv(A n ∇u n ) = 0 as

, where the first inequality is due to Lemma 5 (i) and the second one follows by definition of φ. Koshelev proves in [14, (2.4.13)] for each x 0 ∈