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Abstract

Our main result is a succinct counterpoint to Courcelle’s meta-theorem as fol-
lows: every arborescent monadic second-order (MSO) property is either NP-hard or
coNP-hard over graphs given by succinct representations. Succint representations are
Boolean circuits computing the adjacency relation. Arborescent properties are those
which have infinitely many models and countermodels with bounded treewidth.

Moreover, we explore what happens when the arborescence condition is dropped
and show that, under a reasonable complexity assumption, the previous dichotomy
fails, even for questions expressible in first-order logic.

1 Introduction

In this paper, we are interested in deciding properties of graphs defined in monadic second-
order logic (MSO). A series of results by Courcelle deals with this question; in particular
[10] proves that every MSO property is decidable in linear time, given a graph with
bounded treewidth (encoded by its adjacency matrix). Now what if the graph is not arbi-
trary, but presents some structure that allows a shorter encoding? Assume that the graph
is described succinctly, i.e, by a Boolean circuit which computes the adjacency relation
between nodes, which are represented by binary numbers. In this case the adjacency ma-
trix might be exponentially larger than the circuit representation, so Courcelle’s theorem
does not give a polynomial-time algorithm. One natural question is whether it is possible
to exploit the circuits in better ways than just querying for all possible edges, in order to
more directly deduce structural information about the graph. Our main result essentially
tells that it is impossible as soon as the property is non-trivial for bounded treewidth
graphs.

Theorem 1. If φ is an arborescent MSO sentence, then testing φ on graphs represented
succinctly is either NP- or coNP-hard.

Arborescent means that φ has infinitely many models with some fixed treewidth, and
infinitely many countermodels with some fixed treewidth. Formal definitions appear in
Section 2, including a definition of treewidth.

Succinct representations of graphs have already been considered in the literature. In
[7, Table 1], the authors establish a list of natural graph properties that are polynomial-
time solvable when using the usual input representations (matrix or adjacency list) but
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become (at least) NP-hard when using succinct representations. Interestingly, all of these
properties fall into our meta-theorem 1. Moreover, their [7, Theorem 3.1] gives a sufficient
condition for NP-hardness, which can be compared to a weak form of our gluing lemmas,
though our final statement, involving logic, is incomparable. Finally, [7, Open problem 1]
vaguely conjectures that all nontrivial properties are NP-hard, provided that a good
definition of nontriviality be given. Theorem 1 proves this conjecture for MSO sentences
and some natural notion of nontriviality (and adapting it by including the symmetric co-
NP-hardness case), while Theorem 22 disproves it when this is relaxed, under reasonable
complexity assumptions.

Later, [8] establishes that NP-hard properties with the usual representation become
NEXPTIME-hard with succinct representations, and [12] exposes such complexity lower
bound conversions for weaker classes, proving for example that connectivity and pla-
narity testing are PSPACE-hard for succinctly represented graphs. Although a complexity
blowup is expected when taking the succinct version of a problem, this is not a general
fact. Actually, [21] shows that when taking CNF or DNF formula as succinct representa-
tions, there are examples of problems whose complexity does not increase when encoded
in the new form, or increases to an intermediate complexity class less powerful than the
exponential blow up. In the present paper, we focus on MSO property testing on graphs
with succinct representations by circuits.

Our motivation comes from the world of automata networks. An automata network
(AN) can be seen as a computer network where all machines hold a local state and
update synchronously by reading neighboring states and applying a local transition. To
update a machine (referred to as an automaton) v of the network, first collect the states
of its inbound neighbors into a tuple, and then feed that tuple as an input symbol to
the update function of v. Globally speaking, all automata are updated synchronously
(though an extensive literature has explored other update modes [23]), so that the state
of v at time t+1 only depends on the states of its neighbors at time t. One of the initial
intents behind this definition was to model the dynamics of gene regulation [2, 4, 15, 18].
Nowadays, automata networks are also used as a setup for distributed algorithms and as a
modelling tool in engineering. Those applications have motivated the study of automata
network per se and many theoretical properties were found [1, 3, 9, 11, 17].

In general, the automata in a network may behave nondeterministically, so that the
dynamics as a whole may be nondeterministic. The local behavior of each automaton
is typically described as a formula or relation, which can be gathered into one Boolean
circuit. Given two binary words z1, . . . , zn and z′1, . . . , z

′
n (referred to as configurations)

assigning states to all automata of the network, the circuit returns whether or not the
first configuration can transition into the second one. It succinctly encodes the directed
graph (referred to as the transition graph) whose vertices are the configurations, and edges
follow the transitions. While seemingly artificial, this encoding is relevant for applications.
When automata networks are used to model actual computer networks, it is reasonable to
assume access only to the source code of the programs run by the nodes. Boolean circuits
represent this source code.

The results from [24] already hint that the encoding cannot be smartly used to solve
some questions efficiently. For instance, with deterministic automata networks encoded as
n-bit-input n-bit-output circuits (computing the unique successor of each configuration):

Theorem 2 (see [24]). Let φ denote a question about graphs expressible in first-order logic.
It is either O(1), or NP-hard, or coNP-hard, given a deterministic automata network as
input, whether its transition graph satisfies φ.
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In particular, first-order logic cannot express any non-trivial polynomial-time solvable
question about the dynamics of deterministic automata networks, unless P = NP. This
is a strong indication that it is indeed not tractable to analyze the Boolean circuits given
to us in order to extract structural information about the dynamics: the best we can do
is to evaluate the circuits to explore the transition graph.

Contributions. The present work started as an attempt to generalize Theorem 2 in two
directions: from first-order logic (FO) to monadic second-order logic (MSO), and from
deterministic automata networks to nondeterministic networks. Neither generalization is
trivial.

Questions about general ANs are harder than questions about deterministic ANs. For
instance, the question “is the AN deterministic?” is expressible in FO. If we restrict
ourselves to deterministic ANs, that question is O(1); in general, it is not. Thence our
generalization will prove, in particular, that determinism is either NP- or coNP-hard.

Questions in MSO are stronger than questions in FO. In particular, all minor-hereditary
properties are expressible in MSO. Thence our results prove, in particular, that testing
whether the transition graph is series-parallel is either NP- or coNP-hard.

In addition to being technically harder, both generalizations are useful. Indeed, when
restricting ourselves to deterministic networks, we restrict ourselves to transition graphs
of out-degree one. This is a strong restriction from the perspective of succinct graphs
taken in the present paper. The generalization to nondeterministic networks lifts that
restriction, which enables future work to explore deeper connections between automata
networks, Boolean circuits, and graph combinatorics. Moreover, MSO logic allows to
express the relation “there is a chain of transitions from configuration x to configuration
y”, which FO cannot. That relation naturally arises in many practical questions.

Things turned out more complicated than expected, and we do not get a general result:
Theorem 1 requires the arborescent hypothesis. Many of the properties considered in the
literature so far, and in particular questions mentioned earlier in this introduction, are
arborescent (up to turning counting questions into decision questions in the usual way,
e.g., “how many fixpoints?” becomes “are there more than k fixpoints?” for a fixed k).

The arborescent condition is crucial in our proofs, since it gives the existence of regular
families of models and countermodels on which to build a polynomial reduction. It is
natural to ask whether it is necessary. In Section 7, we give the following partial answer:

Theorem 3. There is a (nonarborescent) first-order sentence ψ such that, under plausi-
ble complexity assumptions, testing ψ on a given succinctly represented graph is neither
constant time, nor NP-hard, nor coNP-hard.

Contents. In Section 2, we give the definitions and notations. In Section 3, we restate
the main result and give a proof outline. In Sections 4–6, we prove the main result; their
respective roles are explained in the proof outline in Section 3. Readers willing to skip the
technical details can safely skip these sections. In Section 7, we discuss nonarborescent
sentences. We conclude with a discussion and a few suggestions for further research.

2 Definitions

For the formal exposure of our results, we restrict to the graph terminology, but occa-
sionally also rephrase them in terms of automata networks.
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Succinct graph representations (SGR). A graph G is said to be succinctly repre-
sented as a pair (N,C), where C is a Boolean circuit on 2n inputs and one output and N
is an integer (encoded in binary) with N ≤ 2n, whenever there is a one-to-one labeling of
the vertices of G onto {0, · · · , N − 1} such that C(x, y) = 1 if and only if there is an edge
from the vertex labeled x to the vertex labeled y. We denote G = GN,C , and we always
assume that a Boolean circuit is not bigger than the adjacency matrix of the encoded
graph (up to a polynomial factor), because such an encoding always exists.

MSO Logic. Given a SGR (N,C), we want to test Monadic Second-Order logic formu-
lae over the graph GN,C . MSO formulae have two kinds of variables: vertices (x1, x2, . . . )
and sets of vertices (X1,X2, . . . )—Accordingly, there are two kinds of existential quanti-
fiers: existence of a vertex, and existence of a set of vertices. The Boolean connectives
¬ and ∧ are as usual. The universal quantifiers, bounded quantifiers and other Boolean
connectives are derived from them. The atoms are: equality (x1 = x2), membership
(x1 ∈ X1), and adjacency relation E(x1, x2), meaning that GN,C has an edge from x1
to x2. Note that the adjacency symbol E is a relational symbol in our signature, not a
functional symbol.

A sentence is a closed monadic second-order formula, i.e., one where all variables are
bound to a quantifier. Here are some examples, where GN,C is seen as the graph of a
non-deterministic dynamics (vertices are interpreted as configurations):

• (Existence of a loop) ∃x : E(x, x).
• (Unicity of the loop) ∀x,∀x′ : E(x, x) ∧ E(x′, x′) =⇒ x = x′.
• (Determinism) ∀x,∀y,∀y′ : E(x, y) ∧ E(x, y′) =⇒ y = y′.
• (Nontrivial cycle) ∃X, [∃x ∈ X] ∧ [∀x ∈ X,∃y ∈ X : x 6= y ∧ E(x, y)].

With this MSO signature, it is possible to express as a macro the relation E∗(x, y):
“there exists a chain x = z1, z2, . . . , zn−1, zn = y such that E(zk, zk+1) holds for every
1 ≤ k ≤ n − 1.” On the other hand, it is not possible to express something like: “all
configurations have the same out-degree.” See [16] or [20] for more information about
MSO logic in graphs.

Tree decompositions. A tree decomposition of a graph G = (V,E) is a tree T whose
nodes are labeled with subsets of V—called bags— satisfying the three conditions below.
If p is a node of T , we write B(p) for its label, i.e., the corresponding bag.

(i) Every node of G belongs to at least one bag.
(ii) For every edge (v1, v2) of G, at least one bag contains both v1 and v2.
(iii) For all nodes p, q, r of T , if q is on the (unique) path from p to r, then B(p)∩B(r) ⊆

B(q).

That definition is usually stated for undirected graphs, but it works without change for
directed graphs. In other terms, we look at tree decompositions of the symmetric closures
of the considered graphs. A graph has, in general, many different tree decompositions.
The width of a decomposition is the size of its largest bag minus one. The treewidth of
a graph is the minimal width among all of its tree decompositions. For every integer
k, a k-tree decomposition means a tree decomposition of width k. In this paper, any
tree (including tree decompositions) is regarded as rooted and oriented downwards: edges
point away from root.

4



Additional conventions. If G is a graph, let |G| denote the number of its nodes,
dubbed its size. If S is an instance of SAT, let |S| denote the number of its variables,
also dubbed its size. If φ is an MSO sentence, its quantifier rank is its number of
quantifiers (not the number of alternations). Unless stated otherwise: increasing means
strictly increasing; integer means positive or zero integer; polynomial means noncon-
stant polynomial with integer coefficients.

3 Statement of the main result and proof outline

The problem. Given an MSO sentence φ, define the model checking problem of φ on
graphs given by a succinct representation.

Succinct-φ
Input: a succinct graph representation (N,C).
Output: does GN,C |= φ?

Observe that φ is not part of the input: it is considered constant. In other words, we
have a family of problems parameterized by MSO sentences.

Our main result is a counterpoint to Courcelle’s theorem:

Theorem 4. If φ has infinitely many models with the same treewidth k1 and infinitely
many countermodels with the same treewidth k2, then Succinct-φ is either NP-hard or
coNP-hard.

An MSO sentence is arborescent if it satisfies the condition of Theorem 4. All examples
of sentences given in the previous section are arborescent. We will discuss non-arborescent
sentences in Section 7.

Proof outline. First, we show that there exists a “good” graph, call it Ω, such that
Ω ⊔ G is always a model of φ (where ⊔ denotes disjoint union), no matter what G is.
Then, we show that there exists a “bad” graph, say Y , such that Y ⊔ · · · ⊔ Y is always
a countermodel of φ, no matter how many disjoint copies of Y we put. We can arrange
things so that Ω and Y have the same number of vertices.

Now we perform a reduction: we are given an instance S of SAT with s Boolean
variables, and we produce a succinct graph representation (N,C) such that GN,C |= φ if
and only if S has at least one positive assignment. We take N = 2s ·|Ω| = 2s ·|Y | so that we
have 2s groups of |Ω| = |Y | vertex labels. For each vertex label (n-bit string), the circuit
C interprets the first s bits as an assignment of the variables of S, and evaluates S on
that assignment. If it finds “true”, then the corresponding |Ω| vertex labels realize a copy
of Ω in GN,C . If it finds “false”, then the corresponding |Y | vertex labels realize a copy of
Y instead. Consequently, GN,C contains as many copies of Ω as positive assignments for
S, and as many copies of Y as negative assignments for S. This completes the reduction:
if there is at least one positive assignment, the defining property of Ω guarantees that the
graph satisfies φ. Otherwise, the graph is only a pack of disjoint copies of Y , which does
not satisfy φ.

This whole construction can be performed in polynomial time because Ω and Y do
not depend on S: they only depend on φ, hence they are constants (recall that φ is not
part of the input of the problem). The only part of C that depends on φ is the evaluation
of S, but both are encoded as Boolean circuits, which is easy to implement.

Of course, things are not that simple. First problem: we are actually unable to control
whether Ω (called a saturating graph) turns every graph into a model or every graph into
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a countermodel. In the latter case, we will have to symmetrize all the remainder of the
proof (in particular, Y ⊔ · · · ⊔ Y will have to be a model), and in that case we will get
coNP-hardness instead of NP-hardness. On the other hand, it turns out that Ω does not
depend on φ, but only on the quantifier rank of φ, which is pretty amusing. The details
are explained in Section 4.

Second problem: we have to relax the requirements on Y . What we will actually get
is a triple of graphs (X,Y,Z) such that X ⊕Y ⊕· · ·⊕Y ⊕Z is a countermodel of φ (or, if
needed, a model of φ), no matter how many copies of Y are in there. The gluing operator
⊕ is more general than disjoint union; G ⊕G′ basically means: “take the disjoint union
of G and G′, but also merge some marked vertices of G with some marked vertices of
G′”. The details are explained in Section 5 (for notational convenience, X,Y,Z are called
G1, G2, G3 in that section—the subscripts come in handy).

Third problem: because of the concessions just made on Y , in the reduction from SAT
described above, we have to account for the merged vertices (per definition of ⊕). This
requires care, because we cannot allow any extraneous configuration in the graph: every
single vertex has to belong to the (unique) copy of X, the (unique) copy of Z, some copy
of Y , or some copy of Ω. The details are explained in Section 6, which also includes the
final proof of Theorem 4.

Sections 4, 5 and 6 each start with a proposition, and the remainder of the section is
the proof of the proposition. These three propositions together quickly yield a proof for
Theorem 4.

4 A graph saturating all sentences of fixed quantifier rank

Proposition 5. Fix m ∈ N. There exists a graph Ωm such that, for every MSO sentence
φ of rank m, either:

(i) for every graph G, we have G ⊔ Ωm |= φ; or
(ii) for every graph G, we have G ⊔ Ωm 6|= φ.

In the first case, we say that Ωm is a sufficient subgraph for φ; in the second case,
Ωm is a forbidden subgraph for φ. A graph that is either sufficient or forbidden for a
given sentence is called saturating for that sentence. The rest of this section is a proof of
Proposition 5.

If G and G′ are graphs, write G ≡m G′ if and only if G and G′ satisfy exactly the
same MSO sentences of quantifier rank m. Write G ⊔G′ for the disjoint union of a copy
of G and a copy of G′. If k is an integer, write

⊔kG the disjoint union of k copies of G.

Lemma 6. For every nonempty graph G, there exists an integer q(G,m) such that
⊔q(G,m)G ≡m

⊔q(G,m)+1G.

Proof. We show that there exists an integer q(G,m1,m2) such that, in the MSO-Ehrenfeucht-
Fräıssé game over the graphs

γ =
⊔q(G,m1,m2)

G and γ′ =
⊔q(G,m1,m2)+1

G,

if Spoiler plays at most m1 point moves and m2 set moves, then Duplicator wins. (For
more details about MSO-Ehrenfeucht-Fräıssé games, see Section 7.2 of [16].) To conclude
the proof, it will suffice to set q(G,m) = max{q(G,m1,m2) : m1 +m2 = m}. Reason by
induction over m2.
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If m2 = 0, then Spoiler only plays point moves. Set q(G,m1, 0) = m1. Since the game
lasts m1 turns, Spoiler touches at most m1 copies of G in γ′, thus they cannot point any
difference with γ.

If m2 > 0, then set:

log2 (q(G,m1,m2)) = |G| · (q(G,m1,m2 − 1) +m1 +m2) .

Call γi (respectively γ
′
i) the i

th copy of G in γ (respectively γ′), for 1 ≤ i ≤ q(G,m1,m2)
(respectively 1 ≤ i ≤ q(G,m1,m2) + 1). If Spoiler starts by playing a point move in γi,
then Duplicator chooses the same vertex in γ′i. The case of Spoiler playing in γ′i is sym-
metric: up to reordering the γ′i, we can assume that Spoiler never plays in γ′q(G,m1,m2)+1.
Duplicator continues this strategy as long as Spoiler plays point moves.

Now consider the first set move of Spoiler and suppose that it was in γ. Recall
that we can assume no point move took place in γ′q(G,m1,m2)+1. Spoiler just pointed a
subset of vertices of γ, or equivalently pointed a subset of vertices of each γi separately.
Call V1, . . . , V2|G| all possible subsets of vertices of G and f : {1, . . . , q(G,m1,m2)} →
{1, . . . , 2|G|} the function such that for each γi, Spoiler pointed Vf(i). For 1 ≤ i ≤
q(G,m1,m2), Duplicator plays in γ′i the set Vf(i), i.e., the same set of vertices as Spoiler
played in γi. It remains to play a set of vertices for γ′q(G,m1,m2)+1: choose n such that

|f−1(n)| > q(G,m1,m2 − 1) and play Vn.
Call f ′ the function such that, for every i, Duplicator played Vf ′(i) in γ′i. To finish

the game, Duplicator actually plays 2|G| games in parallel, one in each couple of graphs
(f−1(n), f ′−1(n)) for 1 ≤ n ≤ 2|G|. All those couples of graphs either have the same
number of copies of G inside, or both have more than q(G,m1,m2 − 1) copies of G, and
Duplicator wins by induction.

Symmetrically, suppose that the first set move of Spoiler was in γ′. Up to reordering
the γ′i, we can suppose both that no point move took place in γ′q(G,m1,m2)+1 and that

|f ′(q(G,m1,m2) + 1)| > q(G,m1,m2 − 1). In γi, Duplicator plays the set Vf(i). To finish

the game, Duplicator actually plays 2|G| games in parallel, one in each couple of graphs
(f−1(n), f ′−1(n)) for 1 ≤ n ≤ 2|G|. Once again all those couples of graphs either have the
same number of copies of G inside, or both have more than q(G,m1,m2− 1) copies of G,
so Duplicator wins by induction.

Lemma 7 (Proposition 7.5 from [16]). For every m, the relation ≡m has finitely many
equivalence classes.

Call a(m) the number of classes of ≡m and let A1, . . . , Aa(m) denote representatives
of each class.

Proof of Proposition 5. Define Ωm as follows: take q(Ai,m) disjoint copies of Ai, for i
ranging in {1, . . . , a(m)}. We show that Ωm is either a forbidden or a sufficient subgraph
for φ. for every graph G, we have G ≡m Ai for one i in {1, . . . , a(m)}. Hence Ωm ⊔G ≡m

Ωm ⊔ Ai: in the MSO-Ehrenfeucht-Fräıssé game between those graphs, Duplicator can
apply its winning strategies separately in Ωm and in G/Ai. Consequently, adding G to
Ωm is equivalent to adding a [q(Ai,m) + 1]th copy of Ai to Ωm. By definition of q in
Lemma 6, the resulting graph is equivalent to Ωm. As a conclusion, Ωm ≡m Ωm ⊔G, and
whether it is a model of φ or not does not depend on G.
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5 Pumping models of arborescent sentences

A boundaried graph is a digraph G endowed with an additional specific sequence P =
(p0, . . . , pℓ−1) of distinct nodes of G, called ports. The set of vertices, of edges and of
ports of a boundaried graph G are denoted by V (G), E(G) and P (G) respectively. If G
and G′ denote boundaried graphs with the same number of ports, then G⊕G′ (“G glued
to G′”) is defined as the graph G⊔G′ where the ith port of G is merged with the ith port
of G′.

A ℓ-biboundaried graph, or ℓ-graph for short, is a digraph G endowed with two se-
quences of ℓ ports: the primary ports, denoted by P1(G), and the secondary ports, denoted
by P2(G). (So we have |P1(G)| = |P2(G)| = ℓ.) For two such graphs G and G′, write
G⊕G′ for G⊔G′ where P2(G) is identified with P1(G

′). Moreover, set P1(G⊕G
′) = P1(G)

and P2(G⊕G
′) = P2(G

′). Note that P1(G) and P2(G) may intersect. Now let Γ = {Gi}i∈I
be a finite family of ℓ-graphs; if w is a nonempty word over alphabet I, then define ∆Γ(w)
by induction over the length of w as follows:

∆Γ(w1) = Gw1
, ∆Γ(w1 . . . wn) = ∆Γ(w1 . . . wn−1)⊕Gwn

.

See Figure 1—although the possibility that P1 and P2 intersect is not shown on that
figure. We suppose that all nodes of all graphs constructed below are taken from a
linearly ordered infinite set, so that we can specify ports of ℓ-graphs be just specifying
sets of nodes, that will always be ordered according to that global order. Thus, to simplify
notations, we often treat P1(G) and P2(G) as sets.

Proposition 8. Let φ denote an MSO sentence and k an integer. If φ has infinitely
many models of treewidth k, then there exists a triple of ℓ-graphs Γ = {G1, G2, G3} for
some ℓ ≤ k + 1 with P1(G1) ∩ P2(G1) 6= V (G1) and such that ∆Γ(2 · 1n · 3) is a model of
φ for every integer n.

For the remainder of this section, we prove Proposition 8. Fix a sentence φ and an
integer k.

Definition 9. Let G, G′ be ℓ-graphs for some ℓ ≤ k + 1. We write G ∼ G′ if and only if
for every ℓ-graph H, we have:

G⊕H |= φ ⇐⇒ G′ ⊕H |= φ.

Of course this depends on φ and k, but they have been fixed for this section. Relation ∼
only holds among ℓ-graphs for the same number of ports ℓ (which will be bags of a k-tree
decomposition, hence of size ℓ ≤ k + 1). Call Σ the set of equivalence classes of ∼ for all
ℓ ≤ k + 1.

Lemma 10 (Theorem 13.1.1 from [20]). The set Σ of equivalence classes of ∼ is finite.

Definition 11. Let G denote a graph with a k-tree decomposition T . For a node v of
T , let S(v) denote the largest subtree of T rooted in v. Call N (v) the boundaried graph
consisting of the subgraph of G spanned by

⋃

u∈S(v)B(u) and whose set of ports is B(v).
Finally, call C(v) the equivalence class of N (v) for the relation ∼. When the tree to which
v belongs is unclear, we write ST (v), NT (v) and CT (v) to specify it.

Observe that any tree decomposition of any graph can be viewed as a Σ-labeled tree:
label each node v with C(v) instead of a bag. We say that the Σ-labeled tree corresponds
to the tree decomposition. The following remark is an immediate consequence of the
definition of ∼.

8



Gwn
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Figure 1: Illustration of ∆

•
Twn

•
Tw

n−1

Tw
n−2

...

•
Tw2

Tw1

Figure 2: Illustration of Λ

Remark 12. Let G denote a graph with a k-tree decomposition T , and v the root of T .
Whether G |= φ or not depends only on CT (v).

A Σ-labeled tree is positive if it corresponds to the decomposition of a model of φ.
A given Σ-labeled tree might correspond to decompositions of several different graphs,
but Remark 12 ensures that they are either all models, or all countermodels. The next
definition applies both to tree decompositions and to Σ-labeled trees.

Definition 13. Let T denote a tree, v a node of T , and T ′ another tree. Write T [S(v)←
T ′] for the tree obtained by replacing the largest subtree of T rooted in v with T ′. If v is
a leaf of T , then write T ⊕v T

′ for the tree T [S(v) ← T ′]. When no confusion arises, we
may drop the subscript and write T ⊕ T ′.

Now let T = {Ti}i∈I denote a finite family of trees, each with a pointed leaf, and w a
finite, nonempty word over alphabet I. Define ΛT by induction over the length of w:

ΛT (w1) = Tw1
, ΛT (w1 . . . wn) = ΛT (w1 . . . wn−1)⊕ Twn

,

where the pointed leaf of the result is inherited from Tw1
or Twn

, respectively. See Figure 2.

Lemma 14. Let G denote a model of φ with a k-tree decomposition T , and H a graph
with a k-tree decomposition U whose root is called u. If v is a node of T such that
CT (v) = CU (u) then T [S(v)← U ], viewed as a Σ-labeled tree, is positive.

Proof. Let T1 denote T \(ST (v)−{v}) and T2 denote ST (v). Call G1 and G2 the subgraphs
of G spanned by the nodes in all the bags of T1 and T2, respectively, and set P (G1) =
P (G2) = B(v). Observe that G = G1 ⊕ G2. Make H a boundaried graph by setting
P (H) = B(u). The relation CU (u) = CT (v) implies that NU(u) ∼ NT (v), in other terms
H ∼ G2, so by definition of ∼ we have G = G1 ⊕G2 |= φ ⇐⇒ G1 ⊕H |= φ (recall that
⊕ is symmetric on boundaried graphs). Hence G1 ⊕ H is a model of φ. Observe that
T [S(v)← U ] corresponds to a tree decomposition of G1⊕H and the lemma is proved.

Remark 15. Let Γ = {Gi}i∈I a collection of ℓ-graphs and T = {Ti}i∈I a collection of
Σ-labeled trees, both indexed by the same finite set I. Suppose that for every i, the tree
Ti corresponds to a decomposition of Gi such that the root’s bag is P1(Gi) and there is a
leaf whose bag is P2(Gi). Make that leaf the pointed leaf of Ti. Then, for every nonempty
word w over alphabet I, the tree ΛT (w) corresponds to a decomposition of ∆Γ(w). As
an illustration of this remark, we could say that the bags of the bold nodes in Figure 2
are the nodes in hatched areas in Figure 1.
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T2
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•v′

T3

Dn
→

T2

T1

T1

T1

T3

Figure 3: Proof of Proposition 8.

Recall that in a digraph (and in particular in a tree), the degree of a node is the sum
of its in-degree and its out-degree.

Lemma 16. If a graph G has a k-tree decomposition with n nodes, then it has a k-tree
decomposition of degree 3 with at least n nodes.

Proof. Split any node with more than 3 neighbors in the tree into a chain of nodes.

Proof of Proposition 8. The sentence φ has models with k-tree decompositions having
arbitrarily high numbers of nodes. By Lemma 16, there is a sequence (Mi)i∈N of models
and a sequence (Di)i∈N of respective k-tree decompositions of degree 3. Choose each Di

to be minimal (in the number of nodes among k-tree decompositions of degree 3 of Mi)
and view the Di’s as Σ-labeled trees. The Di’s are unbounded since Mi’s are unbounded.
By Lemma 10 the set Σ of values for C(·) is finite; so any large enough Σ-labeled path
contains two nodes with the same label. In particular, for large enough n, Dn contains a
path with two nodes v and v′ such that C(v) = C(v′). Suppose without loss of generality
that v has lesser depth than v′ and let (see Figure 3):

T1 = S(v) \ (S(v
′)− {v′}), T2 = Dn \ (S(v) − {v}), T3 = S(v

′).

Define the graphs G1, G2 and G3 as the induced subgraphs of Mn spanned by all the bags
of T1, T2 and T3, respectively. Set P2(G2) = P1(G1) = B(v) and P2(G1) = P1(G3) =
B(v′); choose arbitrarily P1(G2) and P2(G3). Note that P1(G1) ∩ P2(G1) 6= V (G1) other-
wise it would mean that all the bags of T1 are identical to B(v) = B(v′), but then we could
obtain a strictly smaller tree decomposition of Mi by replacing T1 with a single node with
a single node of bag B(v) thus contradicting the minimality of Di. Let Γ = (G1, G2, G3)
and T = (T1, T2, T3), so that by Remark 15, the tree ΛT (2 · 1m · 3) corresponds to a
decomposition of ∆Γ(2 · 1m · 3) for every m. Since C(v) = C(v′), Lemma 14 implies that
for every integer m, the tree ΛT (2 · 1m · 3) is positive. Therefore ∆Γ(2 · 1m · 3) is a model
of φ.

Remark 17. Note that in Proposition 8, graphs G1, G2 and G3 are constant so the
family of graphs of the form ∆Γ(2 · 1n · 3) for n ≥ 1 is of bounded pathwidth (see [14] for
definition and background). Therefore it holds that an MSO formula has infinitely many
models among bounded treewidth graphs if and only if it does among bounded pathwidth
ones.
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6 A reduction from Succinct-φ to SAT

In all this section, for any biboundaried graph G, assume that V (G) = {0, . . . , |G| − 1}
and for a node u of G, write G(u) the set {v : (u, v) ∈ E(G)}. Thus, P1(G), P2(G)
and G(u) are all subsets of {0, . . . , |G| − 1}. We present our construction is a separate
statement.

Definition 18. If S is an instance of SAT with s variables, then S is the word of length
2s such that Si is 1 if S(i) is false, and 0 if S(i) is true (viewing the binary expansion of
i as a Boolean assignment for S).

Proposition 19. Fix an MSO sentence φ. Let k be an integer and Γ = {G0, G1, G2, G3}
four k-graphs satisfying the following conditions:

(i) |G0| = |G1|;
(ii) P1(G0) ∩ P2(G0) = P1(G1) ∩ P2(G1) 6= V (G1); and
(iii) for every p in P1(G0) ∩ P2(G0), we have G0(p) = G1(p).

Suppose that, for every word w over alphabet {0, 1}, we have ∆Γ(2 ·w · 3) |= φ if and only
if w contains letter 0. Then Succinct-φ is NP-hard.

The main tool is the following lemma.

Lemma 20. Let S be an instance of SAT with s variables, k an integer and Γ =
{G0, G1, G2, G3} four k-graphs satisfying conditions (i)–(iii) from Proposition 19. Then,
there is a succinct graph representation (N,C) such that

GN,C = ∆Γ(2 · S · 3),

that can be computed in polynomial time given S (the Gi are considered constant).

Proof. If G is a biboundaried graph, define:

P ′
1(G) = P1(G) \ P2(G), P ′

2(G) = P2(G) \ P1(G), P ′
3(G) = P1(G) ∩ P2(G).

The rationale is that we will need to handle ports that are in P1(G) ∩ P2(G) as a special
case later. By Conditions (i) and (ii), we have |P ′

1(G1)| = |P
′
1(G0)| = |P

′
2(G1)| = |P

′
2(G0)|;

call k′ that quantity. We also have |P ′
3(G1)| = |P

′
3(G0)|; call k

′′ that quantity. Observe
that k = k′ + k′′.

Recall that for any k-graph G, we assume that V (G) = {0, . . . , |G|−1}. Intuitively, we
want to arrange things so that P1(G) is at the beginning of the interval (i.e., {0, . . . , k−1})
and P2(G) at the end of the interval (i.e., {|G| − k, . . . , |G| − 1}), so that it becomes
easy to merge vertices when computing a gluing (⊕) operation—see Figure 4. Things are
unfortunately not that simple: we need to account for the possibility that P1(G)∩P2(G) 6=
∅. Thus we will put P ′

1 at the beginning, P ′
3 at the end, and P ′

2 just before P ′
3. The only

exception is in G3: we put P ′
3 just after P ′

1, for reasons that we will explain later on.
Formally speaking, for i = 0, 1, 2, assume without loss of generality that:

P ′
1(Gi) = (0, . . . , k′ − 1), P ′

1(G3) = (0, . . . , k′ − 1),

P ′
2(Gi) = (|Gi| − k, . . . , |Gi| − k

′′ − 1), P ′
2(G3) = (|G3| − k

′, . . . , |G3| − 1),

P ′
3(Gi) = (|Gi| − k

′′, . . . , |Gi| − 1), P ′
3(G3) = (k′, . . . , k − 1).

Define the quantities:

n1 = |G1| − k = |G0| − k, n2 = |G2| − k, n3 = |G3|.
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Note that n1 > 0 by Condition (ii). We set N = n2+2s ·n1+n3 so that the vertex labels
are {0, . . . , n2+2s ·n1+n3− 1}: see Figure 4 for a picture of its organization. The initial
segment is the (unique) copy of G2, followed by 2s copies of G0 or G1, followed by the
(unique) copy of G3. Those copies overlap to account for the merged vertices between
all those graphs. Let ℓ = 2s − 1 be the index of the last copy of G0 or G1. For q in
{−1, 0, . . . , 2s}, define (see the following paragraph for intuition):

δq0(r) = δq1(r) =

{

n2 + q · n1 + r if r ∈ {0, . . . , |G1| − k
′′ − 1},

n2 + ℓ · n1 + r if r ∈ {|G1| − k
′′, . . . , |G1| − 1};

(1)

δq2(r) =

{

r if r ∈ {0, . . . , |G2| − k
′′ − 1},

δℓ1(r) + |G1| − |G2| if r ∈ {|G2| − k
′′, . . . , |G2| − 1};

(2)

δq3(r) = n2 + 2s · n1 + r.(3)

The functions δ map integers to integers, but we implicitly extend them to sets of integers,
elementwise. Intuitively, δqj (r) refers to the rth node of a copy of Gj in Figure 4, i.e., as
a vertex label of GN,C . There is only one copy of G2 and one of G3, so if j = 2, 3, this
is unambiguous. But there are many (precisely 2s) copies of G0 and G1, and whether a
given graph is G0 or G1 will change according to S; therefore, the superscript q is used
to specify which copy of G0 (or G1) we are targeting. It will be convenient to write δq2
and δq3 even though they do not depend on q.

Now the only difficulty resides in the k′′ ports common to all occurrences of G0 and
G1—which are also common to the copy of G2 and the copy of G3, by construction. They
are “physically” located after the last copy of G0 or G1, which has index ℓ. There is a
special case in Equations (1) and (2) to redirect any edges going into these nodes to the
proper location. The graph G3 is organized so that elements of P ′

3(G3) are already at the
right place. The edges going out of those nodes are handled later on.

We are now ready to give the global description of GN,C in terms of the adjacency
relation, i.e., the set of vertex labels corresponding to the out-neighbors of a given vertex
label. We define C ′ a function mapping vertex labels to sets of vertex labels.

• If x < n2, then set:

(4) C ′(x) = (δ02 ◦G2)(x).

• If x− n2 < 2s · n1, then by Euclidean division by n1 (recall n1 6= 0) let q, r be such
that x− n2 = q · n1 + r, with r ∈ {0, . . . , n1 − 1}. Let i and j denote S(q − 1) and
S(q) respectively. However if q = 0, then set i = 2 instead. Set:

(5) C ′(x) =

{

(δqj ◦Gj)(r) ∪ (δq−1
i ◦Gi)(r + ni) if r ∈ {0, . . . , k′ − 1},

(δqj ◦Gj)(r) otherwise.

• Otherwise, n2+2s ·n1 ≤ x, so let q = 2s and r = x−(n2+2s ·n1). Let i = S(2s−1),
and set:
(6)

C ′(x) =











(δ03 ◦G3)(r) ∪ (δq−1
i ◦Gi)(r + n1) if 0 ≤ r < k′,

(δ03 ◦G3)(r) ∪ (δ02 ◦G2)(r + n2) ∪
⋃ℓ

t=0(δ
t
1 ◦G1)(r + n1) if k′ ≤ r < k,

(δ03 ◦G3)(r) otherwise.

Let C be a Boolean circuit such that C(x, y) = 1 if and only if y ∈ C ′(x). Observe that
GN,C is, by construction, ∆Γ(2 ·S ·1c ·3). Assume, for the sake of the discussion, that S(0)

12



k′′
G2

G0 or G1
G0 or G1

G0 or G1

. . .
G0 or G1

G3

0 n2

n2 + k′ = |G2| − k
′′

n2 + n1

n2 + n1 + k′ = n2 + |G0| − k
′′

n2 + 2n1

n2 + n1 + |G1| − k
′′

n2 + (2s − 1) · n1

n2 + 2s · n1

Figure 4: Proof of Lemma 20, a representation of {0, . . . , n2 + 2s · n1 + n3 − 1} as the set
of vertex labels of GN,C . The gray area (k′′) is actually common to all the graphs.

evaluates to true and S(1) to false, so the first two graphs after G2 are G0, then G1. Those
two graphs share k′ vertices that they do not share with any other Gj in the construction.
Those vertices are “physically” located at nodes {0, . . . , k′ − 1} of the copy of G1. The
edges from G0 going into those shared nodes naturally point correctly, because the last k′

nodes of G0 are identified with the first k′ nodes of G1 (both are, by definition, encoded
by vertex labels n2 +n1 + {0, . . . , k

′− 1}—see the overlaps in Figure 4). The edges going
out of those shared nodes into G0 are realized by the first case in Equation (5). The same
reasoning goes for S(1) and S(2), and so on.

As explained previously, there are k′′ nodes that are shared by all the copies of
G0, G1, G2, G3. The edges going into those nodes were handled in the definition of δqj ; the
edges going out of those nodes are handled by the second case of Equation (6). That case
assumes that all copies of G0 and G1 in the graph are in fact copies of G1; this yields the
desired results by Condition (iii).

Given S, it is straightforward to construct such a Boolean circuit C in polynomial
time from the description above, because the Gi are considered constant, and the only
part that depends on S merely evaluates S. Moreover, each vertex label requires at most
two evaluations of S to compute its set of successors through C ′ (in Equation 5, for the
values of i and j). This concludes the proof.

We are now equipped to prove Proposition 19, leading to Theorem 4.

Proof of Proposition 19. Immediate consequence of Lemma 20: given an instance S of
SAT, compute in polynomial time the corresponding succinct graph representation (N,C),
and ask Succinct-φ on GN,C .

Proof of Theorem 4. Let φ denote an arborescent MSO sentence with m quantifiers. By
Proposition 5, the graph Ωm is either forbidden or sufficient for φ. Assume that Ωm is
sufficient for φ and prove that Succinct-φ is NP-hard. (If it was forbidden, then consider
¬φ instead—this would yield that Succinct-φ is coNP-hard.) By Proposition 8 applied
to ¬φ, there exist a triple of graphs Γ = (G1, G2, G3) such that ∆Γ(2 · 1n · 3) is a model
of ¬φ for every integer n. Let H denote the subgraph of G1 spanned by:

[P1(G1) ∩ P2(G1)] ∪ {j : ∃i ∈ P1(G1) ∩ P2(G1), (i, j) ∈ E(G1)}

and G0 = H ⊔ Ωm (see Figure 5). Let G′
1 =

⊕n
i=1G1, where n is the smallest integer

such that |G′
1| ≥ |G0|. Finally, let G′

0 denote G0 with enough isolated nodes added so
that |G′

0| = |G
′
1|. It is possible to reorder the nodes of G′

0, G
′
1 and add ports so that the

quadruple Γ′ = (G′
0, G

′
1, G2, G3) satisfies all the conditions of Proposition 19 (same as

Lemma 20). This concludes the proof of the theorem.
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P1(G1) ∩ P2(G1)

Ωm

Figure 5: Representation of G0 in the proof of Theorem 4.

7 Nonarborescent formulae

First, if φ is an MSO sentence with finitely many models or with finitely many coun-
termodels, we can test φ in constant time (recall our convention that Boolean circuits
are never bigger than the encoded graph). We call such sentences trivial. Note that no
trivial MSO sentence is also arborescent.

In this section, we explore what focus on nonarborescent, yet nontrivial sentences,
when neither Theorem 4, nor the above remark can be applied.

For instance, the question “is GN,C a clique?” is expressible in first order, hence in
MSO, but is both nonarborescent and nontrivial. It is easy to show that this question is
coNP-hard: given an instance S of SAT with s variables, construct a circuit for a graph
on N = 2s vertices that views n-bit vertex labels as an assignment for S and evaluates it.
If it finds “false”, then each bit can nondeterministically become either 0 or 1. If it finds
“true”, then all bits are required to stay in the same state. The succinctly represented
graph is a clique if and only if all assignments for S evaluate to false. Producing Boolean
circuits which evaluate a given instance of SAT is easily done in polynomial time, which
concludes the reduction.

It is tempting to conjecture that for every nontrivial MSO formula φ, the problem
Succinct-φ is either NP- or coNP-hard. The next theorem shows that this conjecture is
unlikely to hold.

Definition 21 ([22, Definition 1]). A set M of integers is robust if and only if:

∀k,∃ℓ ≥ 2 : {ℓ, ℓ+ 1, . . . , ℓk} ⊂M.

This implies that M is infinite.

We denote by UNSAT the complement of SAT (i.e. CNF formulae that are not
satisfiable).

Theorem 22. There is a nontrivial first-order sentence ψ such that, if either SAT or
UNSAT reduces to Succinct-φ, then there is a polynomial-time algorithm solving SAT
for a robust set of sizes of instances.

According to [22, Proposition 8, Theorem 12], our Theorem 22 implies:

Corollary 23. Let ψ be given by Theorem 22. If either SAT or UNSAT reduces to
Succinct-φ, then any problem in the polynomial hierarchy can be solved in polynomial
time on a robust set of sizes of instances.

The rest of this section is a proof of Theorem 22. For now, let ψ be an arbitrary first-
order sentence, and f a polynomial reduction from either SAT or UNSAT to Succinct-φ.
If S is a SAT (or UNSAT) instance, denote by Gf(S) the graph succinctly represented by
f(S).
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Definition 24. Let P be a polynomial and n a positive integer. The reduction f is
P -meager in n if and only if for every positive instance S of SAT with size n, we have:

|Gf(S)| ≤ P (n).

The set of values in which f is P -meager is called the P -meagerness set of f .

If f is P -meager in some integer n, then any SAT instance S of size n such that Gf(S)

has more than P (n) vertices must be a negative instance. On the other hand, if Gf(S) is
smaller than P (n), then we can test ψ on Gf(S) in time polynomial in |Gf(S)| (the degree
of the polynomial being the quantifier rank of ψ, recall that ψ is a first-order sentence)
and therefore in time polynomial in n. Thus we have the following lemma.

Lemma 25. Assume that f is a reduction as before and let P be a polynomial. There
is a polynomial-time algorithm that solves SAT on all instance sizes that are in the P -
meagerness set of f .

Proof. Given an instance S of SAT with size n, compute the network f(S) in polynomial
time; call G its transition graph. We can compute the size of G from f(S) in polynomial
time, because we have the list of nodes and the state set of each node. If |G| > P (n),
then return ’false’: if f is not P -meager in n then the answer doesn’t matter, and if f is
P -meager in n then it means that S is a negative instance of SAT. Otherwise compute
G itself, which can be done in polynomial time since |G| ≤ P (n), and evaluate ψ on G,
which can also be done in polynomial time (the final answer is negated if reduction f is
from UNSAT instead of SAT).

Lemma 26. Let f be a reduction as before and P be a polynomial. If f has a nonrobust
P -meagerness set then, for every integer d ≥ 1, either:

(i) f produces a model of ψ whose size is not in N
(d) = {nd : n ∈ N}; or

(ii) there exists an increasing primitive-recursive sequence µ such that µ(n)d is the size
of a model of ψ for each n.

Proof. By hypothesis there is an integer k such that, for every ℓ ≥ 2, there is at least
one value among ℓ, ℓ + 1, . . . , ℓk in which f is not P -meager. Observe that if P ′ is the
polynomial giving the execution time of f , then f produces networks whose transition
graphs have size at most 2P

′(n) with n the size of the SAT or UNSAT instance. Let
t : N→ N be a primitive recursive function such that, for every n:

(7) t(n+ 1) > max{2P
′(t(n)), t(n)k}.

Moreover since the meagerness set of f is nonrobust, we can additionally choose t such
that f is not P -meager in t(n), for every n. (Starting from a function t that satisfies
Equation (7), given n, it is possible to enumerate all values t(n), t(n)+1, . . . , t(n)k and to
find the one for which f is not P -meager. That computation can be done in a primitive
recursive fashion.)

For every n, let us pass to f a positive instance of SAT with size t(n) (or a negative
instance if reduction f is from UNSAT instead of SAT); the result is a sequence of au-
tomata networks, (α(n))n∈N. This sequence can be made primitive recursive because t
and f are. Call β(n) the transition graph of α(n); since f is a reduction and we passed
positive instances of SAT to it, the graph β(n) is a model of ψ. By non-P -meagerness of
f in t(n), we can furthermore compute the positive instances of SAT such that:

P (t(n)) ≤ |β(n)|,
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in a primitive recursive fashion (simply by enumerating the satisfiable propositional for-
mulae of size t(n)). Also, considering that P ′ is the running time of f , that a transition
graph is at most exponential in the size of the network, and Equation (7), we have:

|β(n)| ≤ 2P
′(t(n)) < t(n+ 1).

Since P (t(n)) ≤ |β(n)| < P (t(n+ 1)), the sequence |β(n)| is increasing in n.
Moreover for every d ≥ 1, there is an n0 such that for every n ≥ n0, we have |β(n +

2)|1/d > |β(n)|1/d (as |β(n+2)| > 2P
′(|β(n)|)). If |β(n)|1/d is not an integer for some n then

the reduction f produces a model of ψ whose size is not in N
(d) and the lemma follows.

Otherwise, we define the map µ : N → N by µ(n) = |β(2(n + n0))|
1/d; by the previous

inequality µ is an increasing map. Finally, since α(n) is primitive recursive in n, so is
β(n) and so is µ(n). The lemma follows because by construction µ(n)d is always the size
of a model of φ.

Definition 27. The spectrum of ψ is the set of sizes of models of ψ. In symbols:

Spec(ψ) = {|G| : G |= ψ}.

See [19] for a survey about this notion.
A function h : N→ N is time-constructible if and only if there is a Turing machine

that, for every n, halts in exactly h(n) steps on input n written in binary.

Lemma 28. For every time-constructible function h, there exist a first-order sentence ψh

and an integer d such that Spec(ψh) = Im(h)(d), where Im(h)(d) = {nd : n ∈ Im(h)}.

Proof. By [5, Theorem 4.5] and [6, Theorem 3], we just have to prove that Im(h) is a
NEXPTIME language. Given n, the algorithm guesses a word u of length at most n, runs
h on input u and checks that it halts in n steps exactly. If n ∈ Im(h) then there is u such
that h(u) = n and |u| ≤ n because the machine cannot read more than n input symbols
within n steps.

Lemma 29. There is a first-order sentence ψ and an integer d such that, for every
increasing primitive-recursive function R, we have:

(8) Im(R)(d) 6⊆ Spec(ψ) ⊆ N
(d).

Proof. Let (Rn)n∈N be a computable enumeration of increasing primitive-recursive func-
tions. (To construct one, start from a computable enumeration of primitive-recursive
functions (R′

n)n∈N [13, Exercice I.7.4] and change R′
n into Rn as follows: Rn : i 7→

max{Rn(i−1)+1, R′
n(i)}. This transformation is computable and leaves increasing func-

tions unchanged, so it hits all of them.)
For every integer n, define the set:

(9) E(n) = {Ri(j) : 0 ≤ i, j ≤ n},

and let h denote an increasing time-constructible function such that:

(10) h(n) > maxE(n),

for instance, h may explicitly compute maxE(n) and spend that many steps idling by
decreasing a counter.

Let us show that for every n, there exists an element in Im(Rn) \ Im(h). The set
{h(0), . . . , h(n − 1)} cannot contain {Rn(0), . . . , Rn(n)} because Rn is injective (since it
is increasing). So there is an element i of {0, . . . , n} such that Rn(i) does not belong to
{h(0), . . . , h(n− 1)}. We have Rn(i) < h(n) by Equations (9)–(10); since h is increasing,
Rn(i) is not in Im(h). The existence of desired formula ψ follows from Lemma 28.
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Proof of Theorem 22. Let ψ and d be given by Lemma 29 and assume that f is a polyno-
mial reduction from either SAT or UNSAT to Succinct-ψ. Both the spectrum of ψ and
its complement are infinite, so ψ is nontrivial. If there exists some polynomial P such
that f has a robust meagerness set, then by Lemma 25 there exists a polynomial-time
algorithm solving SAT on a robust set of instance sizes. Otherwise, since Spec(ψ) ⊆ N

(d),
Lemma 26 implies that there is an increasing primitive-recursive map µ such that, for
every n, the quantity µ(n)d is the size of a model of ψ. But then, by Lemma 29, one of
those sizes will not be contained in the spectrum of ψ: a contradiction.

Discussion and Future work

One could consider different parametrizations of Succinct-φ. Let us first point out
that parametrization by the size or quantification rank of the formula fails. The formula
∃x : E(x, x) expresses the property: “the graph has at least one loop” (or the transition
graph has at least one fixed point, in terms of automata networks). That question is
NP-hard: given an instance S of SAT, produce a succinct graph representation (2|S|, C)
with labels on |S| bits that evaluates it on S; if it finds “true”, then the only edge is to
itself; if it finds “false”, then the only edge is to the lexicographic next label (cyclically).
The formula above is virtually the smallest possible by any reasonable parameterization
of logic formulae, so there is no hope to get fixed-parameter tractability if the parameter
concerns the formula. Moreover, in this reduction, every (succinctly represented) graph
produced is either a huge cycle or a sequence of paths ending in loops. This implies that
they all have treewidth 2, so parameterization by the treewidth of graphs also fails: we
have NP-difficulty even when the treewidth is guaranteed to be at most 2.

Another relevant parameter, when taking the automata networks point of view, is
the size of the alphabets Qv used at each automaton. For instance, as it is usually the
case in the automata networks literature, one could consider MSO model checking on
transition graphs of automata networks where all nodes share the same alphabet of size
q. These must have qn vertices, for some integer n. Our reduction in Lemma 20 fails in
this settings, as it produces transition graphs (GN,C) whose number of vertices may not
be a power of q. We do not know whether our main theorem holds for a fixed alphabet,
but it is interesting to note that some formulae become trivial when fixing the alphabet:
for instance, a formula asking that each configuration belong to a cycle of length two has
no model with a ternary alphabet.

On the other hand, it remains to fully characterize which nonarborescent MSO sen-
tences yield an NP- or coNP-hard problem, and what happens with those that do not.
In particular, Theorem 22 does not say whether the formula φ has a polynomial-time
solvable Succinct-φ problem. We do not know whether it could be the case for some
φ under reasonable complexity assumptions. From our construction, we can nevertheless
deduce that an arborescent MSO sentence φ is either proven to be NP-hard when Ωm |= φ,
or to be coNP-hard when Ωm 6|= φ.

It would be interesting to consider probabilistic algorithms, e.g. showing that “draw a
configuration at random and check whether it is a fixed point” cannot be a good algorithm
to find fixed points in general. On another point of view, it could be interesting to obtain
general hardness results on probabilistic automata networks, for example by considering
circuits succintly computing a probability on graphs.

Finally, let us recall that the main result of this paper does not hold when restricting
to some natural families of automata networks and using other input representation than
circuits: for instance threshold automata networks or automata networks with bounded
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degree can be naturally described as labeled graphs. In such cases, arborescent formulae
can have a polynomial-time MSO model-checking problem, like “being a constant func-
tion”. It would be interesting to understand what properties become tractable in these
natural restrictions (which are often considered in the literature) and which fragment of
MSO remains intractable.
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The authors are very grateful to Édouard Bonnet (LIP, France) for the proof of Proposi-
tion 5, and to Aliénor Goubault–Larrecq for her suggestions on port sizes.

References

[1] B. Elspas. “The theory of autonomous linear sequential networks”. In: IRE Trans.
Circ. Theory 6 (1959), pp. 45–60.

[2] S. A. Kauffman. “Metabolic stability and epigenesis in randomly constructed genetic
nets”. In: Journal of Theoretical Biology 22 (1969), pp. 437–467.

[3] P. Cull. “Linear analysis of switching nets”. In: Biol. Cybernet. 8 (1971), pp. 31–39.

[4] R. Thomas. “Boolean formalization of genetic control circuits”. In: Journal of The-
oretical Biology 42 (1973), pp. 563–585.

[5] N. Jones and A. Selman. “Turing Machines and the Spectra of First-Order Formu-
las”. In: J. Symb. Log. 39.1 (1974), pp. 139–150.

[6] R. Fagin. “A spectrum hierarchy”. In: Zeitschrift für mathematische Logik und
Grundlagen der Mathematik 21 (1975), pp. 123–134.

[7] H. Galperin and A. Wigderson. “Succinct representations of graphs”. In: Informa-
tion and Control 56.3 (1983), pp. 183–198. doi: 10.1016/s0019-9958(83)80004-7.

[8] C. H. Papadimitriou and M. Yannakakis. “A note on succinct representations of
graphs”. In: Information and Control 71.3 (1986), pp. 181–185. doi: 10.1016/s0019-9958(86)80009-2

[9] F. Robert. Discrete Iterations: A Metric Study. Springer Verlag, 1986.

[10] B. Courcelle. “The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs”. In: Information and Computation 85.1 (1990), pp. 12–75.

[11] E. Goles and S. Martinez. Neural and Automata Networks: Dynamical Behavior and
Applications. Kluwer Academic Publishers, 1990.
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