
HAL Id: hal-03978957
https://hal.science/hal-03978957

Preprint submitted on 8 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Hardness of monadic second-order formulae over
succinct graphs

Guilhem Gamard, Pierre Guillon, Kévin Perrot, Guillaume Theyssier

To cite this version:
Guilhem Gamard, Pierre Guillon, Kévin Perrot, Guillaume Theyssier. Hardness of monadic second-
order formulae over succinct graphs. 2023. �hal-03978957�

https://hal.science/hal-03978957
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Hardness of monadic second-order formulae

over succinct graphs

G. Gamard P. Guillon K. Perrot G. Theyssier

Version of February 8, 2023

Abstract

Our main result is a succinct counterpoint to Courcelle’s meta-theorem as follows:
every arborescent monadic second-order (MSO) property is either NP-hard or coNP-
hard over graphs given by succinct representations. Succint representations are
Boolean circuits computing the adjacency relation. Arborescent properties are those
which have infinitely many models and countermodels with bounded treewidth.

We actually prove this result in the terminology of automata network, which is
a generalization of finite cellular automata over arbitrary graphs. This model arose
from the biological modelization of neural networks and gene regulation networks.
Our result states that every arborescent MSO property on the transition graph of
automata networks is either NP-hard or coNP-hard.

Moreover, we explore what happens when the arborescence condition is dropped
and show that, under a reasonable complexity assumption, the previous dichotomy
fails, even for questions expressible in first-order logic.

1

1 Introduction

In this paper, we are interested in deciding properties of graphs defined in monadic
second-order logic. A series of results by Courcelle deals with this question; in par-
ticular [10] proves that every MSO property is decidable in linear time, given a graph
with bounded treewidth (encoded by its transition matrix). Now what if the graph is
not typical, but presents some structure that allows a shorter encoding? Assume that
the graph is described succintly, i.e, by a Boolean circuit which computes the adjacency
relation between nodes, which are represented by binary numbers. One natural question
is whether it is possible to exploit the circuits in better ways than just querying for pos-
sible edges, in order to more directly deduce structural information about the transition
graph. Our main result essentially tells that it is impossible as soon as the property is
non-trivial for bounded treewidth graphs.

Theorem 1.1. If φ is an arborescent MSO sentence, then testing φ on graphs represented
succinctly is either NP- or coNP-hard.

Arborescent means that φ has infinitely many models with some fixed treewidth, and
infinitely many countermodels with some fixed treewidth. Formal definitions appear in
Section 2, including a definition of treewidth. Many of the properties considered in the
literature so far.

Our motivation comes from the world of automata networks.
An automata network (AN) can be seen as a computer network where all machines

hold a local state and update synchronously by reading neighboring states and applying
a local transition. One of the initial intents behind this definition was to model the
dynamics of gene regulation [4, 6, 13, 14, 15, 18]. Nowadays, automata networks are
also used as a setup for distributed algorithms and as a modelling tool in engineering.
Those applications have motivated the study of automata network per se and many
theoretical properties were found [2, 3, 5, 9, 11, 17, 19, 20].

Let us give a slightly more formal description of automata networks. An AN is given
by a finite digraph, called communication graph, where each node is endowed with a local
update function. The graph is directed, so one-way transfer of information is possible.
Different automata may have different transition tables and state sets. To update a
node v of the network, first collect the states of its inbound neighbors into a tuple, and
then feed that tuple as an input symbol to the update function of v. Globally speaking,
all nodes are updated synchronously (though an extensive literature has explored other
update modes [25]), so that the state of v at time t+1 only depends on the states of its
neighbors at time t.

This description suggests an alternative way to think about automata networks: they
can be seen as a generalization of finite cellular automata. The generalization resides in
that the “grid” of an AN can be an arbitrary (finite) digraph, rather than just a regular
grid. Besides, each cell gets its own update function, so no uniformity is enforced. That
analogy between automata networks and cellular automata is relevant, as we often meet
the same sort of research problems in both cases: information needs to flow in the

2

network to enable nodes to perform useful tasks, so we need to understand what can or
cannot be transmitted efficiently, and where.

In general, the automata in a network may be nondeterministic, so that the network
as a whole may be nondeterministic. Hence we need to consider network updates as a
relation, rather than a function. We now formalize this idea. Let F denote an automata
network. A configuration of F is a possible state of the whole system, i.e., an assignment
of a state to each node. If configuration x1 evolves in one round into configuration x2,
then we say that x1 transitions to x2. We sometimes say that x1 is a predecessor of x2,
or that x2 is a successor of x1. In general, automata networks are nondeterministic, so
that a given configuration might have several successors.

The concepts of predecessor and sucessor allow to state virtually all interesting ques-
tions about F . For instance:

• Is F deterministic, i.e., do all configurations have exactly one successor? If not,
how many configurations have more than one successor? How many have none?
What is the maximal number of successors for a configuration?

• Is F injective, i.e., do all configurations have exactly one predecessor? How many
have more than one? Or none? What is the maximal number of predecessors?

• Does F have a fixed point, i.e., a configuration that is its own successor? How
many are there?

• Does F have a cycle of configurations? (A sequence of configurations x0, . . . , xk−1

such that xi transitions to xi+1, with indices taken modulo k.) How many of them
does it have? What are their lengths?

The transition graph of F , denoted by GF , is the digraph of the transition relation. In
other terms, its vertices are the configurations of F and there is an edge from configura-
tion x1 to configuration x2 if x1 transitions to x2. The transition graph is exponentially
bigger than the communication graph. That graph describes the dynamical behavior
of F : all the questions above (and many more) are actually questions about GF rather
than F .

We are interested in testing properties of GF , given F as input. When given as input
to an algorithm, F is encoded through a Boolean circuit that, given two integer sequences
z1, . . . , zn and z′1, . . . , z

′
n in binary, returns whether or not the first configuration can

transition into the second one. This corresponds to a succinct representation for GF .
While seemingly artificial, this encoding is relevant for applications. When automata

networks are used to model actual computer networks, it is reasonable to assume access
only to the source code of the programs run by the nodes. Boolean circuits represent
this source code. Similarly in biology, experimental observations show how each pair of
nodes (in this case, genes) influence each other; for a given node, the influences should
be summed or otherwise accumulated. This data does not give a complete transition
table for each node, but can easily be encoded as Boolean circuits. If a transition table
happens to be available, it can be re-encoded as a circuit quickly and efficiently without
sacrificing much space.

In a sense, designing algorithms (respectively, hardness results) for automata net-
work is like designing algorithms (respectively, hardness results) for succinct graphs. In

3

particular, every graph is the transition graph of an automata network, i.e., for every
graph G = (V,E) there is an automata network F such that GF = G (we can choose F
with just one nondeterministic automaton having |V | states). The results from [26] al-
ready hint that the encoding cannot be smartly used to efficiently solved some questions.
For instance,

Theorem 1.2 (see [26]). Let φ denote a question about graphs expressible in first-order
logic. It is either O(1), or NP-hard, or coNP-hard, given a deterministic automata
network F as input, whether GF satisfies φ.

In particular, first-order logic cannot express any non-trivial polynomial-time solvable
question about the dynamics of automata networks, unless P = NP. This is a strong
indication that it is indeed not tractable to analyze the Boolean circuits given to us
in order to extract structural information about the dynamics: the best we can do
is to evaluate the circuits to explore the transition graph. The intuition behind this
hardness result is that automata networks are morally a model of computation, so they
are subjected to some analogue of Rice’s theorem:

Theorem 1.3 (see [1]). Any nontrivial property of the function computed by a Turing
machine is undecidable.

The “function computed by a Turing machine” in Theorem 1.3 compares to “prop-
erty of GF ” in Theorem 1.2, while “undecidable” compares to “NP-hard or coNP-hard”
and “trivial” compares to “O(1)”. There is no hope to obtain undecidability results on
automata networks because GF is a finite object: we can always enumerate all config-
urations of F and reconstruct GF , then test whatever we want on it. That would take
exponential space, though, so it makes sense to try and find more direct algorithms or
hardness results for questions about GF . What we show is that such algorithms, under
standard complexity assumptions (P 6= NP), cannot run in polynomial time.

There are other “Rice theorems” for models of computation, e.g., cellular automata:
see [12].

Contributions. The present work started as an attempt to generalize Theorem 1.2 in
two directions: from first-order logic (FO) to monadic second-order logic (MSO), and
from deterministic automata networks to nondeterministic networks. Neither general-
ization is trivial.

Questions about general ANs are harder than questions about deterministic ANs.
For instance, the question “is F deterministic?” is expressible in FO. If we restrict
ourselves to deterministic ANs, that question is O(1); in general, it is not. Thence
the generalization requires to prove, in particular, that determinism is either NP- or
coNP-hard.

Questions in MSO are stronger than questions in FO. For instance, MSO can express
“GF is connected”, while FO cannot. Thence we need to prove, in particular, that
connectedness of the transition graph is either NP- or coNP-hard.

4

Hardness of connectedness and determinism will both be consequences of our main
result, Theorem 1.4. In addition to being technically harder, both generalizations are
useful. Indeed, when restricting ourselves to deterministic networks, we restrict ourselves
to transition graphs of out-degree one. This is not very exciting from the perspective
of graph theory. The generalization to nondeterministic networks lifts that restriction,
which enables future work to explore deeper connections between automata networks,
Boolean circuits, and graph combinatorics. Moreover MSO logic allows to express the
relation “there is a chain of transitions from configuration x to configuration y”, which
FO cannot. That relation naturally arises in many practical questions.

Things turned out more complicated than expected, and we do not get a general
result.

Theorem 1.4. If φ is an arborescent MSO sentence, then testing φ on the transition
graph of automata networks is either NP- or coNP-hard.

This theorem rephrases Theorem 1.1. Many of the properties considered in the
literature so far, and in particular questions mentioned earlier in this introduction, are
arborescent (up to turning counting questions into decision questions in the usual way,
so “how many fixpoints are there?” becomes “are there more than k fixpoints?” for a
fixed k).

The arborescent condition is crucial in our proofs, since it gives the existence of
regular families of models and countermodels on which to build a polynomial reduction.
It is natural to ask whether it is necessary. In Section 7, we give the following partial
answer:

Theorem 1.5. There is a (nonarborescent) first-order sentence ψ such that, under
plausible complexity assumptions, testing ψ in the transition graph of a given AN is
neither constant time, nor NP-hard, nor coNP-hard.

Contents.

• In Section 2, we give the definitions and notations.
• In Section 3, we restate the main result and give a proof outline.
• In Sections 4–6, we prove the main result; their respective roles are explained in
the proof outline in Section 3. Readers willing to skip the technical details can
safely skip these sections.

• In Section 7, we discuss nonarborescent sentences.
• We conclude with a discussion and a few suggestions for further research.

2 Definitions

Automata networks. An automata network is a finite digraph F = (V,E) where each
node v is equipped with a finite state set Qv and a local function (also called transition

5

function):

fv :

∏

(u,v)∈E

Qu

→ Qv.

A configuration is an assignment of a state to each node; formally, it is an element of
∏

u∈V Qu. If x is a configuration and v a node of F , we write xv for the state of v in x;
formally, it is the projection πv(x). The updated configuration F (x) is the configuration
given by:

F (x)v = fv

∏

(u,v)∈E

xu

 ,

for every v in V . As the notation F (x) suggests, we often view an automata network as
a global function:

F :
∏

u∈V

Qu →
∏

u∈V

Qu

from the set of configurations to itself.
We will consider nondeterministic automata networks throughout this paper, unless

specified otherwise. The global function F becomes a global relation F ⊆
∏

u∈V Qu ×
∏

u∈V Qu (or equivalently a “multi-valued functions”), which tells whether a configura-
tion can transition to another one. The terminology and notation of the deterministic
case carry over to nondeterministic networks. This global nondeterminism can come
from the Cartesian product of local nondeterministic fv ⊆

∏

u∈V Qu × Qv (a natu-
ral definition for nondeterministic automata networks), but it is generally not enough.
For instance, a particle moving nondeterministically on a graph cannot be modeled be
a Cartesian product of local nondeterministic choices made at each node, correlation
between choices of neighboring nodes is required. To emphasize the locality of tran-
sitions in the general case, a nondeterministic automata network can be defined by
F = {(x, y) : ∀U ∈ U , (xU , yU) ∈ fU}, where U is a set of subsets of V , and for each of
its elements U ∈ U , fU ⊆

∏

u∈U Qu ×
∏

u∈U Qu is a relation “located” over U .

Remark 2.1. The automata networks constructed in our proof cannot generally be ob-
tained through the Cartesian product of local determinism, but they are non-deterministic
in a very weak sense: each configuration has only a bounded number of images (the tran-
sition graph has bounded degree). The bound depends only on the formula. This makes
the result stronger that it is actually stated.

Another point of view is that of succinct graph representations, where the communi-
cation graph and the locality of map F is discarded while describing the graph GF . A
graph G is said to be succinctly represented as a pair (N,C), where C is a Boolean cir-
cuit on 2n inputs and one output and N is an integer (encoded in binary) with N ≤ 2n,
whenever there is a one-to-one labeling of the vertices of G onto {0, · · · , N − 1} such
that C(x, y) = 1 if and only if there is an edge from the vertex labeled x to the vertex
labeled y.

6

It is easy to transform an automata network F encoded as above into a succinct
graph representation of GF . Conversely, one can see a succinct representation (N,C) of
a graph G as a (degenerate) automata network with just one node and N states whose
transition graph is G.

We always assume that a Boolean circuit is not bigger than its transition table: if
it were, we could encode the table into a circuit of the same size (up to a polynomial
factor).

MSO Logic. Given an automata network F , we want to test Monadic Second-Order
logic formulae inside its transition graph GF . MSO formulae have two kinds of vari-
ables: vertices (x1, x2, . . .) and sets of vertices (X1,X2, . . .)—in our case, vertices are
configurations. Accordingly, there are two kinds of existential quantifiers: existence of a
configuration, and existence of a set of configurations. The Boolean connectives ¬ and ∧
are as usual. The universal quantifiers, bounded quantifiers and other Boolean connec-
tives are derived from them. The atoms are: equality (x1 = x2), membership (x1 ∈ X1),
and transition (F (x1, x2), meaning F (x1) = x2 or more correctly x2 ∈ F (x1)). Note
that the transition symbol F is a relational symbol in our signature, not a functional
symbol.

A sentence is a closed monadic second-order formula, i.e., one where all variables are
bound to a quantifier. Here are some examples:

• (Existence of a fixed point) ∃x : F (x, x).
• (Unicity of fixed point) ∀x,∀x′ : F (x, x) ∧ F (x′, x′) =⇒ x = x′.
• (Injectivity) ∀y,∀x,∀x′ : F (x, y) ∧ F (x′, y) =⇒ x = x′.
• (Determinism) ∀x,∀y,∀y′ : F (x, y) ∧ F (x, y′) =⇒ y = y.
• (Nontrivial cycle) ∃X, [∃x ∈ X] ∧ [∀x ∈ X,∃y ∈ X : x 6= y ∧ F (x, y)].

With this MSO signature, it is possible to express as a macro the relation F ∗(x, y):
“there exists a chain x = z1, z2, . . . , zn−1, zn = y such that F (zk, zk+1) holds for every
1 ≤ k ≤ n − 1.” On the other hand, it is not possible to express something like: “all
configurations have the same out-degree.” See [16] or [23] for more information about
MSO logic in graphs.

Tree decompositions. A tree decomposition of a graph G = (V,E) is a tree T whose
nodes are labeled with subsets of V—called bags— satisfying the three conditions below.
If p is a node of T , we write B(p) for its label, i.e., the corresponding bag.

(i) Every node of G belongs to at least one bag.
(ii) For every edge (v1, v2) of G, there is at least one bag in T containing both v1 and

v2.
(iii) For all nodes p, q, r of T , if q is on the (unique) path from p to r, then B(p)∩B(r) ⊆

B(q).

That definition is usually stated for undirected graphs, but it works without change for
directed graphs. In other terms, we look at tree decompositions of the symmetric closures

7

of the considered graphs. A graph has, in general, many different tree decompositions.
The width of a decomposition is the size of its largest bag minus one. The treewidth of
a graph is the minimal width among all of its tree decompositions. For every integer k,
a k-tree decomposition means a tree decomposition of width k. In this paper, any tree
(including tree decompositions) is regarded as rooted and oriented downwards: edges
point away from root.

Additional conventions. If G is a graph, let |G| denote the number of its nodes,
dubbed its size. If S is an instance of SAT, let |S| denote the number of its variables,
also dubbed its size. If φ is an MSO sentence, its quantifier rank is its number
of quantifiers (not the number of alternances). Unless stated otherwise: increasing

means strictly increasing; integer means positive or null integer; polynomial means
nonconstant polynomial with integer coefficients.

3 Statement of the main result and proof outline

The problem. Given an MSO sentence φ, define the problem φ-Dynamics as follows:

φ-Dynamics

Input: an automata network F (given as Boolean circuits for the local relation of
each node).
Output: does GF |= φ?

Observe that φ is not part of the input: it is considered constant. In other words, we
have a family of problems parameterized by MSO sentences.

Analogously, we can define the model checking problem of φ on graphs given by a
succinct representation.

Succinct-φ
Input: a succinct representation (C,N) of some graph G.
Output: does G |= φ?

Following the remarks on automata networks encoding and succinct representations,
it is straightforward to show that for any MSO formula φ the problems φ-Dynamics

and Succinct-φ are LOGSPACE-equivalent. Our main result is the following.

Theorem 3.1. If φ has infinitely many models with the same treewidth k1 and infinitely
many countermodels with the same treewidth k2, then φ-Dynamics is either NP-hard
or coNP-hard. The result still holds if we restrict inputs of φ-Dynamics to automata
networks with bounded non-determinism (transition graph with outdegree at most k, for
large enough k depending on φ).

It can also be phrased as a counterpoint to Courcelle’s theorem, as follows:

Corollary 3.2. If φ is an MSO property with infinitely many models and countermodels
among graphs of bounded treewidth, then the problem Succinct-φ is either NP-hard or
coNP-hard. The result still holds if we restrict to graphs of bounded degree.

8

An MSO sentence is arborescent if it satisfies the condition of Theorem 3.1. All
examples of sentences given in the previous section are arborescent. We will deal with
non-arborescent sentences in Section 7.

Proof outline. First, we show that there exists a “good” graph, call it Ω, such that
Ω ⊔ G is always a model of φ (where ⊔ denotes disjoint union), no matter what G is.
Then, we show that there exists a “bad” graph, say Y , such that Y ⊔ · · · ⊔ Y is always
a countermodel of φ, no matter how many disjoint copies of Y we put. We can arrange
things so that Ω and Y have the same number of vertices.

Now we perform a reduction: we are given an instance S of SAT with s Boolean
variables, and we produce an automata network F such that GF |= φ if and only if S has
at least one positive assignment. The network F has s automata with two states (0 and
1) and one “big” automaton with |Ω| = |Y | states. What F does is interpret the states of
the s Boolean automata as an assignment for the variables of S, and evaluate S on that
assignemnt. If it finds “true”, then the big automaton transitions so as to realize a copy
of Ω in GF . If it finds “false”, then the big automaton realizes a copy of Y instead. (The
Boolean automata never change their states.) Consequently, GF contains as many copies
of Ω as positive assignments for S, and as many copies of Y as negative assignments for
S. This completes the reduction: if there is at least one positive assignment, the defining
property of Ω guarantees that the dynamics satisfies φ. Otherwise, the dynamics is only
a pack of disjoint copies of Y , which does not satisfy φ.

This whole construction can be performed in polynomial time because Ω and Y do
not depend on S: they only depend on φ, hence they are constants. (Recall that φ is not
part of the input of the problem.) The only part of F that depends on φ is the evaluation
of S, but automata network are encoded as Boolean circuits. It is easy, given an instance
of SAT, to produce in polynomial time circuits that evaluate a given assignment.

Of course, things are not that simple. First problem: we will not be able to control
whether Ω (called a saturating graph) turns any graph into a model or into a counter-
model. If it so happens that Ω turns any graph into a countermodel, then we will have
to symmetrize all the remainder of the proof (in particular, Y ⊔ · · · ⊔ Y will have to be
a model), and in that case we will get coNP-hardness instead of NP-hardness. On the
other hand, it turns out that Ω does not depend on φ, but only on the quantifier rank
of φ, which is pretty amusing. The details are explained in Section 4.

Second problem: we have to relax the requirements on Y . What we will actually get
is a triple of graphs (X,Y,Z) such that X⊕Y ⊕· · ·⊕Y ⊕Z is a countermodel of φ (or, if
needed, a model of φ), no matter how many copies of Y are in there. The gluing operator
⊕ is more general than disjoint union; G⊕G′ basically means: “take the disjoint union
of G and G′, but also merge some designated vertices of G with designated vertices
of G′”. The details are explained in Section 5 (for notational convenience, X,Y,Z are
called G1, G2, G3 in that section—the subscripts come in handy).

Third problem: because of the concessions just made on Y , the reduction from SAT
described above does not work anymore. Indeed we have to make some space for X and
Z in the dynamics of F , and we have to account for the merged vertices (per definition

9

of ⊕). This requires care, because we cannot allow any extraneous configuration in
the dynamics: every single configuration has to belong to the (unique) copy of X, the
(unique) copy of Z, some copy of Y , or some copy of Ω. The details are explained in
Section 6, which also includes the final proof of Theorem 3.1.

Sections 4, 5 and 6 each start with a proposition, and the remainder of the section
is the proof of the proposition. These three propositions together quickly yield a proof
for Theorem 3.1.

4 A graph saturating all sentences of fixed quantifier rank

Proposition 4.1. Fix m ∈ N. There exists a graph Ωm such that, for every MSO
sentence φ of rank m, either:

(i) for every graph G, we have G ⊔ Ωm |= φ; or
(ii) for every graph G, we have G ⊔ Ωm 6|= φ.

In the first case, we say that Ωm is a sufficient subgraph for φ; in the second case,
Ωm is a forbidden subgraph for φ. A graph that is either sufficient or forbidden for a
given sentence is called saturating for that sentence. The rest of this section is a proof
of Proposition 4.1.

If G and G′ are graphs, write G ≡m G′ if and only if G and G′ satisfy exactly the
same MSO sentences of quantifier rank m. Write G⊔G′ for the disjoint union of a copy
of G and a copy of G′. If k is an integer, write

⊔kG the disjoint union of k copies of G.

Lemma 4.2. For every nonempty graph G, there exists an integer q(G,m) such that
⊔q(G,m)G ≡m

⊔q(G,m)+1G.

Proof. We show that there exists an integer q(G,m1,m2) such that, in the MSO-Ehrenfeucht-
Fräıssé game over the graphs

γ =
⊔q(G,m1,m2)

G and γ′ =
⊔q(G,m1,m2)+1

G,

if Spoiler plays at most m1 point moves and m2 set moves, then Duplicator wins. (For
more details about MSO-Ehrenfeucht-Fräıssé games, see Section 7.2 of [16].) To conclude
the proof, it will suffice to set q(G,m) = max{q(G,m1,m2) : m1+m2 = m}. Reason by
induction over m2.

If m2 = 0, then Spoiler only plays point moves. Set q(G,m1, 0) = m1. Since the
game lasts m1 turns, Spoiler touches at most m1 copies of G in γ′, thus they cannot
point any difference with γ.

If m2 > 0, then set:

log2 (q(G,m1,m2)) = |G| · (q(G,m1,m2 − 1) +m1 +m2) .

Call γi (respectively γ
′
i) the i

th copy of G in γ (respectively γ′), for 1 ≤ i ≤ q(G,m1,m2)
(respectively 1 ≤ i ≤ q(G,m1,m2) + 1). If Spoiler starts by playing a point move

10

in γi, then Duplicator chooses the same vertex in γ′i. The case of Spoiler playing in
γ′i is symmetric: up to reordering the γ′i, we can assume that Spoiler never plays in
γ′q(G,m1,m2)+1. Duplicator continues this strategy as long as Spoiler plays point moves.

Now consider the first set move of Spoiler and suppose that it was in γ. Recall
that we can assume no point move took place in γ′q(G,m1,m2)+1. Spoiler just pointed a
subset of vertices of γ, or equivalently pointed a subset of vertices of each γi separately.
Call V1, . . . , V2|G| all possible subsets of vertices of G and f : {1, . . . , q(G,m1,m2)} →
{1, . . . , 2|G|} the function such that for each γi, Spoiler pointed Vf(i). For 1 ≤ i ≤
q(G,m1,m2), Duplicator plays in γ′i the set Vf(i), i.e., the same set of vertices as Spoiler
played in γi. It remains to play a set of vertices for γ′q(G,m1,m2)+1: choose n such that

|f−1(n)| > q(G,m1,m2 − 1) and play Vn.
Call f ′ the function such that, for every i, Duplicator played Vf ′(i) in γ′i. To finish

the game, Duplicator actually plays 2|G| games in parallel, one in each couple of graphs
(f−1(n), f ′−1(n)) for 1 ≤ n ≤ 2|G|. All those couples of graphs either have the same
number of copies of G inside, or both have more than q(G,m1,m2− 1) copies of G, and
Duplicator wins by induction.

Symmetrically, suppose that the first set move of Spoiler was in γ′. Up to reordering
the γ′i, we can suppose both that no point move took place in γ′q(G,m1,m2)+1 and that

|f ′(q(G,m1,m2)+1)| > q(G,m1,m2−1). In γi, Duplicator plays the set Vf(i). To finish

the game, Duplicator actually plays 2|G| games in parallel, one in each couple of graphs
(f−1(n), f ′−1(n)) for 1 ≤ n ≤ 2|G|. Once again all those couples of graphs either have
the same number of copies of G inside, or both have more than q(G,m1,m2 − 1) copies
of G, so Duplicator wins by induction.

Lemma 4.3 (Proposition 7.5 from [16]). For every m, the relation ≡m has finitely many
equivalence classes.

Call a(m) the number of classes of ≡m and let A1, . . . , Aa(m) denote representatives
of each class.

Proof of Proposition 4.1. Define Ωm as follows: take q(Ai,m) disjoint copies of Ai, for i
ranging in {1, . . . , a(m)}. We show that Ωm is either a forbidden or a sufficient subgraph
for φ. for every graph G, we have G ≡m Ai for one i in {1, . . . , a(m)}. Hence Ωm⊔G ≡m

Ωm ⊔ Ai: in the MSO-Ehrenfeucht-Fräısé game between those graphs, Duplicator can
apply its winning strategies separately in Ωm and in G/Ai. Consequently, adding G to
Ωm is equivalent to adding a [q(Ai,m) + 1]th copy of Ai to Ωm. By definition of q in
Lemma 4.2, the resulting graph is equivalent to Ωm. As a conclusion, Ωm ≡m Ωm ⊔ G,
and whether it is a model of φ or not does not depend on G.

5 Pumping models of arborescent sentences

A boundaried graph is a digraph G endowed with an additional specific sequence P =
(p0, . . . , pk−1) of distinct nodes of G, called ports. The set of vertices, of edges and of
ports of a boundaried graph G are denoted by V (G), E(G) and P (G) respectively. If

11

G and G′ denote boundaried graphs with the same number of ports, then G ⊕ G′ (“G
glued to G′”) is defined as the graph G ⊔G′ where the ith port of G is merged with the
ith port of G′.

A k-biboundaried graph, or k-graph for short, is a digraph G endowed with two
sequences of k ports: the primary ports, denoted by P1(G), and the secondary ports,
denoted by P2(G). (So we have |P1(G)| = |P2(G)| = k.) For two such graphs G
and G′, write G ⊕ G′ for G ⊔ G′ where P2(G) is identified with P1(G

′). Moreover,
set P1(G ⊕ G

′) = P1(G) and P2(G ⊕ G
′) = P2(G

′). Note that P1(G) and P2(G) may
intersect. Now let Γ = {Gi}i∈I be a finite family of k-graphs; if w is a nonempty word
over alphabet I, then define ∆Γ(w) by induction over the length of w as follows:

∆Γ(w1) = Gw1
, ∆Γ(w1 . . . wn) = ∆Γ(w1 . . . wn−1)⊕Gwn

.

See Figure 5.1—although the possibility that P1 and P2 intersect is not shown on that
figure.

Proposition 5.1. Let φ denote an MSO sentence and k an integer. If φ has infinitely
many models of treewidth k, then there exists a triple of k-graphs Γ = {G1, G2, G3} such
that ∆Γ(2 · 1n · 3) is a model of φ for every integer n.

For the remainder of this section, we prove Proposition 5.1. Fix a sentence φ and an
integer k.

Definition 5.2. Let G, G′ be k-graphs. We write G ∼ G′ if and only if for every k-graph
H, we have:

G⊕H |= φ ⇐⇒ G′ ⊕H |= φ.

Of course this depends on φ and k, but they have been fixed for this section. Call Σ the
set of equivalence classes of ∼.

Lemma 5.3 (Theorem 13.1.1 from [23]). The set Σ of equivalence classes of ∼ is finite.

Definition 5.4. Let G denote a k-graph with a k-tree decomposition T . For a node v
of T , let S(v) denote the largest subtree of T rooted in v. Call N (v) the boundaried
graph consisting of the subgraph of G spanned by

⋃

u∈S(v)B(u) and whose set of ports
is B(v). Finally, call C(v) the equivalence class of N (v) for the relation ∼. When the
tree to which v belongs is unclear, we write ST (v), NT (v) and CT (v) to specify it.

Observe that any tree decomposition of any graph can be viewed as a Σ-labeled tree:
label each node v with C(v) instead of a bag. We say that the Σ-labeled tree corresponds
to the tree decomposition. The following remark is an immediate consequence of the
definition of ∼.

Remark 5.5. Let G denote a graph with a k-tree decomposition T , and v the root of
T . Whether G |= φ or not depends only on CT (v).

12

Gwn

P2(Gwn−1
) = P1(Gwn

)

Gwn−1

P2(Gwn−2
) = P1(Gwn−1

)

Gwn−2

...

Gw2

P2(Gw1
) = P1(Gw2

)

Gw1

Figure 5.1: Illustration of ∆

•

Twn

•

Twn−1

Twn−2

...

•

Tw2

Tw1

Figure 5.2: Illustration of Λ

A Σ-labeled tree is positive if it corresponds to the decomposition of a model of φ.
A given Σ-labeled tree might correspond to decompositions of several different graphs,
but Remark 5.5 ensures that they are either all models, or all countermodels. The next
definition applies both to tree decompositions and to Σ-labeled trees.

Definition 5.6. Let T denote a tree, v a node of T , and T ′ another tree. Write T [S(v)←
T ′] for the tree obtained by replacing the largest subtree of T rooted in v with T ′. If v
is a leaf of T , then write T ⊕v T

′ for the tree T [S(v) ← T ′]. When no confusion arises,
we may drop the subscript and write T ⊕ T ′.

Now let T = {Ti}i∈I denote a finite family of trees, each with a pointed leaf, and w
a finite, nonempty word over alphabet I. Define ΛT by induction over the length of w:

ΛT (w1) = Tw1
, ΛT (w1 . . . wn) = ΛT (w1 . . . wn−1)⊕ Twn

,

where the pointed leaf of the result is inherited from Tw1
or Twn

, respectively. See
Figure 5.2.

Lemma 5.7. Let G denote a model of φ with a k-tree decomposition T , and H a graph
with a k-tree decomposition U whose root is called u. If v is a node of T such that
CT (v) = CU (u) then T [S(v)← U], viewed as a Σ-labeled tree, is positive.

Proof. Let T1 denote T \ (ST (v) − {v}) and T2 denote ST (v). Call G1 and G2 the
subgraphs of G spanned by the nodes in all the bags of T1 and T2, respectively, and set

13

P (G1) = P (G2) = B(v). Observe that G = G1 ⊕G2. Make H a boundaried graph by
setting P (H) = B(u). The relation CU (u) = CT (v) implies that NU(u) ∼ NT (v), in other
terms H ∼ G2, so by definition of ∼ we have G = G1⊕G2 |= φ ⇐⇒ G1⊕H |= φ (recall
that ⊕ is symmetric on boundaried graphs). Hence G1 ⊕ H is a model of φ. Observe
that T [S(v) ← U] corresponds to a tree decomposition of G1 ⊕ H and the lemma is
proved.

Remark 5.8. Let Γ = {Gi}i∈I a collection of k-graphs and T = {Ti}i∈I a collection of
Σ-labeled trees, both indexed by the same finite set I. Suppose that for every i, the tree
Ti corresponds to a decomposition of Gi such that the root’s bag is P1(Gi) and there
is a leaf whose bag is P2(Gi). Make that leaf the pointed leaf of Ti. Then, for every
nonempty word w over alphabet I, the tree ΛT (w) corresponds to a decomposition of
∆Γ(w). As an illustration of this remark, we could say that the bags of the bold nodes
in Figure 5.2 are the nodes in hatched areas in Figure 5.1.

Recall that in a digraph (and in particular in a tree), the degree of a node is the sum
of its in-degree and its out-degree.

Lemma 5.9. If a graph G has a k-tree decomposition with n nodes, then it has a k-tree
decomposition of degree 3 with at least n nodes.

Proof. Split any node with more than 3 neighbors in the tree into a chain of nodes.

Proof of Proposition 5.1. The sentence φ has models with k-tree decompositions having
arbitrarily high numbers of nodes. By Lemma 5.9, there is a sequence (Mi)i∈N of models
and a sequence (Di)i∈N of respective k-tree decompositions, such that Di has depth at
least i. View the Di’s as Σ-labeled trees. By Lemma 5.3 the set Σ of values for C(·) is
finite; let n = |Σ| + 1, so that any Σ-labeled path of length n contains two nodes with
the same label. In particular, the model Mn has a tree decomposition Dn containing a
path of length n, thus two nodes v and v′ such that C(v) = C(v′). Suppose without loss
of generality that v has lesser depth than v′ and let (see Figure 5.3):

T1 = S(v) \ (S(v
′)− {v′}), T2 = Dn \ (S(v) − {v}), T3 = S(v

′).

Define the graphs G1, G2 and G3 as the induced subgraphs of Mn spanned by all the
bags of T1, T2 and T3, respectively. Set P2(G2) = P1(G1) = B(v) and P2(G1) =
P1(G3) = B(v′); choose arbitrarily P1(G2) and P2(G3). Let Γ = (G1, G2, G3) and T =
(T1, T2, T3), so that by Remark 5.8, the tree ΛT (2 ·1m ·3) corresponds to a decomposition
of ∆Γ(2·1m ·3) for every m. Since C(v) = C(v′), Lemma 5.7 implies that for every integer
m, the tree ΛT (2 · 1m · 3) is positive. Therefore ∆Γ(2 · 1m · 3) is a model of φ.

Remark 5.10. Note that in Proposition 5.1, graphs G1, G2 and G3 are constant so the
family of graphs of the form ∆Γ(2 · 1n · 3) for n ≥ 1 is of bounded pathwidth. Therefore it
holds that an MSO formula has infinitely many models models among bounded treewidth
graphs if and only if it does among bounded pathwidth ones.

14

T2
•v

T1
•v′

T3

Dn
→

T2

T1

T1

T1

T3

Figure 5.3: Proof of Proposition 5.1.

6 A reduction from φ-Dynamics to SAT

In all this section, for any biboundaried graph G, assume that V (G) = {0, . . . , |G| − 1}
and for a node u of G, write G(u) the set {v : (u, v) ∈ E(G)}. Thus, P1(G), P2(G) and
G(u) are all subsets of {0, . . . , |G| − 1}.

Proposition 6.1. Fix an MSO sentence φ. Let k be an integer and Γ = {G0, G1, G2, G3}
four k-graphs such that:

(i) |G0| = |G1|;
(ii) P1(G0) ∩ P2(G0) = P1(G1) ∩ P2(G1); and
(iii) for every p in P1(G0) ∩ P2(G0), we have G0(p) = G1(p).

Suppose that, for every word w over alphabet {0, 1}, we have ∆Γ(2 · w · 3) |= φ if and
only if w contains letter 0. Then φ-dynamics is NP-hard, even if we restrict to inputs
with bounded non-determinism.

Definition 6.2. If S is an instance of SAT with s variables, then S is the word of length
2s such that Si is 1 if S(i) is false, and 0 if S(i) is true (viewing the binary expansion of
i as a Boolean assignment for S).

Lemma 6.3. Let S be an instance of SAT with s variables, k an integer and Γ =
{G0, G1, G2, G3} four k-graphs satisfying Conditions (i)–(iii) of Proposition 6.1. Then,
there is an integer c and an automata network F such that

GF = ∆Γ(2 · S · 1c · 3),

that can be computed in polynomial time given S (the Gi are considered constant).

Proof. The proof is in two steps. The first step only gives the configuration space and
the global transition relation of F . It does not explain how these transitions are realized
by an automata network, nor how Boolean circuits for that network may be produced
in polynomial time: that is deferred to the second step.

15

First step. For now, let c be an arbitrary positive or null integer. (We will need to
perform some form of padding in the second step and c will be that amount of padding;
it remains unspecified in the first step.) If G is a biboundaried graph, define:

P ′
1(G) = P1(G) \ P2(G), P ′

2(G) = P2(G) \ P1(G), P ′
3(G) = P1(G) ∩ P2(G).

The rationale is that we will need to handle ports that are in P1(G)∩P2(G) as a special
case later. By Conditions (i) and (ii), we have |P ′

1(G1)| = |P
′
1(G0)| = |P

′
2(G1)| =

|P ′
2(G0)|; call k

′ that quantity. We also have |P ′
3(G1)| = |P

′
3(G0)|; call k

′′ that quantity.
Observe that k = k′ + k′′.

Recall that for any k-graph G, we assume that V (G) = {0, . . . , |G| − 1}. Intu-
itively, we want to arrange things so that P1(G) is at the beginning of the interval (i.e.,
{0, . . . , k−1}) and P2(G) at the end of the interval (i.e., {|G|−k, . . . , |G|−1}), so that it
becomes easy to merge vertices when computing a gluing (⊕) operation—see Figure 6.1.
Things are unfortunately not that simple: we need to account for the possibility that
P1(G) ∩ P2(G) 6= ∅. Thus we will put P ′

1 at the beginning, P ′
3 at the end, and P ′

2 just
before P ′

3. The only exception is in G3: we put P
′
3 just after P ′

1, for reasons that we will
explain later on. Formally speaking, for i = 0, 1, 2, assume without loss of generality
that:

P ′
1(Gi) = (0, . . . , k′ − 1), P ′

2(Gi) = (|Gi| − k, . . . , |Gi| − k
′′ − 1), P ′

3(Gi) = (|Gi| − k
′′, . . . , |Gi| − 1),

P ′
1(G3) = (0, . . . , k′ − 1), P ′

2(G3) = (|G3| − k
′, . . . , |G3| − 1), P ′

3(G3) = (k′, . . . , k − 1).

Define the quantities:

n1 = |G1| − k = |G0| − k, n2 = |G2| − k, n3 = |G3|.

The configuration space of F is {0, . . . , n2 + (2s + c) · n1 + n3 − 1}: see Figure 6.1 for a
picture of its organization. The initial segment is the (unique) copy of G2, followed by
2s + c copies of G0 or G1, followed by the (unique) copy of G3. Those copies overlap
to account for the merged vertices between all those graphs. Let ℓ = 2s + c − 1 be the
index of the last copy of G0 or G1. For q in {−1, 0, . . . , 2s + c}, define (see the following
paragraph for intuition):

δq0(r) = δq1(r) =

{

n2 + q · n1 + r if r ∈ {0, . . . , |G1| − k
′′ − 1},

n2 + ℓ · n1 + r if r ∈ {|G1| − k
′′, . . . , |G1| − 1};

(6.1)

δq2(r) =

{

r if r ∈ {0, . . . , |G2| − k
′′ − 1},

δℓ1(r) + |G1| − |G2| if r ∈ {|G2| − k
′′, . . . , |G2| − 1};

(6.2)

δq3(r) = n2 + (2s + c) · n1 + r.(6.3)

The functions δ map integers to integers, but we implicitly extend them to sets of inte-
gers, elementwise. Intuitively, δqj (r) refers to the rth node of a copy of Gj in Figure 6.1,
i.e., in the configuration space of F . There is only one copy of G2 and one of G3, so if
j = 2, 3, this is unambiguous. But there are many (precisely 2s + c) copies of G0 and

16

G1, and whether a given graph is G0 or G1 will change according to S; therefore, the
superscript q is used to specify which copy of G0 (or G1) we are targeting. It will be
convenient to write δq2 and δq3 even though they do not depend on q.

Now the only difficulty resides in the k′′ ports common to all occurrences of G0 and
G1—which are also common to the copy of G2 and the copy of G3, by construction.
They are “physically” located after the last copy of G0 or G1, which has index ℓ. There
is a special case in Equations (6.1) and (6.2) to redirect any edges going into these nodes
to the proper location. The graph G3 is organized so that elements of P ′

3(G3) are already
at the right place. The edges going out of those nodes are handled later on.

We are now ready to give the global transition function F , from the configuration
space to itself. Recall that F is nondeterministic, so the value of F (x) is a set.

• If x < n2, then set:

(6.4) F (x) = (δ02 ◦G2)(x).

• If x− n2 < (2s + c) · n1, then by Euclidean division let q, r be such that x− n2 =
q ·n1+r, with r ∈ {0, . . . , n1−1}. Let i and j denote S(q−1) and S(q) respectively.
However if q = 0, then set i = 2 instead; if q − 1 (respectively q) is 2s or higher,
then set i (respectively j) to 1 instead. Set:

(6.5) F (x) =

{

(δqj ◦Gj)(r) ⊔ (δq−1
i ◦Gi)(r + ni) if r ∈ {0, . . . , k′ − 1},

(δqj ◦Gj)(r) otherwise.

• Otherwise, n2 + (2s + c) · n1 ≤ x, so let q = 2s + c and r = x− (n2 + (2s + c) · n1).
Let i = S(2s − 1) if c = 0 and i = 1 otherwise, and set:
(6.6)

F (x) =

(δ03 ◦G3)(r) ⊔ (δq−1
i ◦Gi)(r + n1) if 0 ≤ r < k′,

(δ03 ◦G3)(r) ⊔ (δ02 ◦G2)(r + n2)
⊔ℓ

t=0(δ
t
1 ◦G1)(r + n1) if k′ ≤ r < k,

(δ03 ◦G3)(r) otherwise.

Observe that GF is, by construction, ∆Γ(2·S·1c·3). Assume, for the sake of the discussion,
that S(0) evaluates to true and S(1) to false, so the first two graphs after G2 are G0,
then G1. Those two graphs share k′ vertices that they do not share with any other Gj in
the construction. Those vertices are “physically” located at nodes {0, . . . , k′ − 1} of the
copy of G1. The edges from G0 going into those shared nodes naturally point correctly,
because the last k′ nodes of G0 are identified with the first k′ nodes of G1 (both are, by
definition, encoded by n2+n1+ {0, . . . , k

′− 1} in the global dynamics—see the overlaps
in Figure 6.1). The edges going out of those shared nodes into G0 are realized by the
first case in Equation (6.5). The same reasoning goes for S(1) and S(2), and so on.

As explained previously, there are k′′ nodes that are shared by all the copies of
G0, G1, G2, G3 in the dynamics. The edges going into those nodes were handled in the
definition of δqj ; the edges going out of those nodes are handled by the second case of
Equation (6.6). That case assumes that all copies of G0 and G1 in the dynamics are in
fact copies of G1; this yields the desired results by Condition (iii).

17

k′′
G2

G0
G1

G0

. . .
G1

G3

0 n2

n2 + k′ = |G2| − k
′′

n2 + n1

n2 + n1 + k′ = n2 + |G0| − k
′′

n2 + 2n1

n2 + n1 + |G1| − k
′′

n2 + (2s + c− 1) · n1

n2 + (2s + c) · n1

Figure 6.1: Proof of Lemma 6.3, a representation of {0, . . . , n2+(2s+ c) ·n1 +n3−1} as
the configuration space of F . The gray area (k′′) is actually common to all the graphs.

Second step. We have a configuration space and a transition relation; we want an
automata network that realizes them. First, we determine (in polynomial time) the
number of automata of F and the alphabet of each automaton. This process fixes the
value of c, which does no harm, because the previous step worked for arbitrary values
of c.

Let p = n2 + n3 and d = gcd(p, n1); write p = p′ · d and n1 = n′ · d for coprime
integers p′, n′. Find an integer t such that p ≤ 2t and gcd(s + t, ϕ(n′)) = 1, where
ϕ denotes Euler’s totient and s is the number of Boolean variables of S. To do so,
let t′ = s/ gcd(s, ϕ(n′)), so that t′ and ϕ(n′) have no common prime factors. Then let
t′′ denote a power of t′ that exceeds s + ⌈log2 p⌉ (compute it by successive squarings).
Finally, take t = t′′ − s.

Since gcd(p′, n′) = 1, we can use Algorithm 17.1 from [22] to find an integer e ≥ 1
such that es+t ≡ p′ mod n′. For the rest of the proof, assume that e ≥ 2: indeed, if
e = 1, then p′ ≡ 1 mod n′, so by Euler’s formula we can choose e = p′ϕ(n

′) instead.
Since Algorithm 17.1 from [22] runs in polynomial time and p′, n′ are constants, we can
find e and t in polynomial time. (Recall that s is the number of variables of S, our input,
so we can consider that s is given in unary.)

The automata network F has one node over alphabet {0, . . . , d− 1} and s+ t nodes
over alphabet {0, . . . , e − 1}. Its configuration space has d · es+t elements. Since 2 ≤ e,
we have 2s ≤ es and p ≤ 2t ≤ et; moreover we have es+t ≡ p′ mod n′, so there is an
integer c ≥ 0 such that d · es+t = p+ (2s + c) · n.

Now that we have the right number of configurations, it is easy to produce in poly-
nomial time the Boolean circuits for F : they read the current configuration as an integer
and apply the rules from the first step of this proof. The Gi are considered constant,
and the only part that depends on S merely evaluates S. Moreover, each configuration
requires at most two evaluations of S to compute the set of successors (in Equation 6.5,
for the values of i and j). This concludes the proof.

Proof of Proposition 6.1. Immediate consequence of Lemma 6.3: given an instance S
of SAT, compute in polynomial time the corresponding automata network F , and ask
φ-dynamics on that F . Moreover, the transition graphs of such automata networks are

18

(H, copied from G1)

•

•••

•

•••

•

•••

•

•••

•

•••

•

•••

•

•••

P1(G1) ∩ P2(G1)

Ωm

Figure 6.2: Representation of G0 in the proof of Theorem 3.1.

all of the form ∆Γ(w) for a fixed set of finite graphs Γ so they have a bounded degree,
meaning that the constructed automata networks have bounded non-determinism.

Proof of Theorem 3.1. Let φ denote an arborescent MSO sentence with m quantifiers.
By Proposition 4.1, the graph Ωm is either forbidden or sufficient for φ. Assume that Ωm

is forbidden for φ and prove that φ-dynamics is NP-hard. (If it was sufficient, then con-
sider ¬φ instead—this would yield that φ-dynamics is coNP-hard.) By Proposition 5.1,
there exist a triple of graphs Γ = (G1, G2, G3) such that ∆Γ(2 · 1n · 3) is a model of φ for
every integer n. Let H denote the subgraph of G1 spanned by:

[P1(G1) ∩ P2(G1)]
⋃

{j : ∃i ∈ P1(G1) ∩ P2(G1), (i, j) ∈ E(G1)}

and G0 = H ⊔ Ωm (see Figure 6.2). Let G′
1 =

⊕n
i=1G1, where n is the smallest integer

such that |G′
1| ≥ |G0|. Finally, let G′

0 denote G0 with enough isolated nodes added so
that |G′

0| = |G
′
1|. It is possible to reorder the nodes of G′

0, G
′
1 and add ports so that

the quadruple Γ′ = (G′
0, G

′
1, G2, G3) satisfies all the conditions of Proposition 6.1. This

concludes the proof of the theorem.

Remark 6.4. Note that the constructed automata networks are such that all nodes
except one have the same alphabet. The proof of Lemma 6.3 is as close as we could get
to a proof working for automata networks with constant uniform alphabet, which is the
most usual setting in the literature. We have no idea how to close the gap to fit this
setting.

7 Nonarborescent formulae

In this section, we explore what happens when the arborescence condition in Theorem 3.1
is negated.

First, if φ is an MSO sentence with finitely many models or with finitely many
countermodels, then it is not arborescent. But in this case, we can test φ in constant
time. Indeed, if φ has finitely many models, then there are finitely many automata
networks whose dynamics satisfy φ (because we assume that Boolean circuits are never
bigger than their transition tables). So testing φ amounts to testing whether the input
belongs to a fixed list, which can be done in constant time: any input larger than the

19

largest element of the list can immediately be rejected without further computation. We
call such sentences trivial.

More interestingly, the question “is GF a clique?” is expressible in first order, hence in
MSO, but is both nonarborescent and nontrivial. It is easy to show that this question is
coNP-hard: given an instance S of SAT with s variables, make a network with s Boolean
automata that views its own configuration as an assignement for S and evaluates it. If
it finds “false”, then each automaton can choose nondeterministically either to change
state or to remain in the same state. If it finds “true”, then all automata are required
to stay in the same state. The transition graph of that network is a clique if and only
if all assignments for S evaluate to false. Producing Boolean circuits which evaluate a
given instance of SAT is easily done in polynomial time, which concludes the reduction.

It is tempting to conjecture that for every nontrivial MSO formula φ, the problem
φ-Dynamics is either NP- or coNP-hard. The next theorem shows that this conjecture
is unlikely to hold.

Definition 7.1 (Definition 1 from [24]). A set M of integers is robust if and only if:

∀k,∃ℓ ≥ 2 : {ℓ, ℓ+ 1, . . . , ℓk} ⊂M.

This implies that M is infinite.

We denote by UNSAT the complement of SAT (i.e. CNF formulae that are not
satisfiable).

Theorem 7.2. There is a nontrivial first-order sentence ψ such that, if either SAT or
UNSAT reduces to ψ-Dynamics, then there is a polynomial-time algorithm solving SAT
for a robust set of sizes of instances.

According to Proposition 8 and Theorem 12 of [24], our Theorem 7.2 implies:

Corollary 7.3. Let ψ be given by Theorem 7.2. If either SAT or UNSAT reduces to
ψ-Dynamics, then any problem in the polynomial hierarchy can be solved in polynomial
time on a robust set of sizes of instances.

The rest of this section is a proof of Theorem 7.2. For now, let ψ be an arbitrary
first-order sentence, and f a polynomial reduction from either SAT or UNSAT to ψ-
Dynamics.

Definition 7.4. Let P be a polynomial and n a positive integer. The reduction f is
P -meager in n if and only if for every instance S of SAT with size n, we have:

|f(S)| ≤ log P (n).

The set of values in which f is P -meager is called the P -meagerness set of f .

Let P denote a polynomial. If f is P -meager in some integer n, then all instances of
SAT with size n are mapped to networks whose transition graphs have O(P (n)) vertices.
Indeed, the transition graph is exponentially large in the network description. Besides,
we can test ψ on a graph G in time polynomial in |G|, the degree of the polynomial
being the quantifier rank of ψ (recall that ψ is a first-order sentence). Therefore:

20

Lemma 7.5. Assume that f is a reduction as before and let P be a polynomial. There
is a polynomial-time algorithm that solves SAT on all instance sizes that are in the
P -meagerness set of f .

Proof. Given an instance S of SAT with size n, compute the network f(S) in polynomial
time; call G its transition graph. We can compute the size of G from f(S) in polynomial
time, because we have the list of nodes and the state set of each node. If |G| > P (n),
then return whatever answer: f is not P -meager in n anyway. Otherwise compute G
itself, which can be done in polynomial time since |G| ≤ P (n), and evaluate ψ on G,
which can also be done in polynomial time (the final answer is negated if reduction f is
from UNSAT instead of SAT).

Lemma 7.6. Let f be a reduction as before and P be a polynomial. If f has a nonrobust
P -meagerness set then, for every integer d ≥ 1, either:

(i) f produces a model of ψ whose size is not in N
(d) = {nd : n ∈ N}; or

(ii) there exists an increasing primitive-recursive sequence µ such that µ(n)d is the size
of a model of ψ for each n.

Proof. By hypothesis there is an integer k such that, for every ℓ ≥ 2, there is at least
one value among ℓ, ℓ + 1, . . . , ℓk in which f is not P -meager. Observe that if P ′ is the
polynomial giving the execution time of f , then f produces networks whose transition
graphs have size at most 2P

′(n) with n the size of the SAT or UNSAT instance. Let
t : N→ N be a primitive recursive function such that, for every n:

(7.1) t(n+ 1) > max{2P
′(t(n)), t(n)k}.

Moreover since the meagerness set of f is nonrobust, we can additionally choose t such
that f is not P -meager in t(n), for every n. (Starting from a function t that satisfies
Equation (7.1), given n, it is possible to enumerate all values t(n), t(n) + 1, . . . , t(n)k

and to find the one for which f is not P -meager. That computation can be done in a
primitive recursive fashion.)

For every n, let us pass to f a positive instance of SAT with size t(n) (or a negative
instance if reduction f is from UNSAT instead of SAT); the result is a sequence of
automata networks, (α(n))n∈N. This sequence can be made primitive recursive because
t and f are. Call β(n) the transition graph of α(n); since f is a reduction and we passed
positive instances of SAT to it, the graph β(n) is a model of ψ. By non-P -meagerness
of f in t(n), we can furthermore compute the instances of SAT such that:

P (t(n)) ≤ |β(n)|,

in a primitive recursive fashion (simply by enumerating propositional formulae of size
t(n)). Also, considering that P ′ is the running time of f , that a transition graph is at
most exponential in the size of the network, and Equation (7.1), we have:

|β(n)| ≤ 2P
′(t(n)) < t(n+ 1).

21

Since P (t(n)) ≤ |β(n)| < P (t(n+ 1)), the sequence |β(n)| is increasing in n.
Moreover for every d ≥ 1, there is an n0 such that for every n ≥ n0, we have |β(n+

2)|1/d > |β(n)|1/d (as |β(n + 2)| > 2P
′(|β(n)|)). If |β(n)|1/d is not an integer for some n

then the reduction f produces a model of ψ whose size is not in N
(d) and the lemma

follows. Otherwise, we define the map µ : N → N by µ(n) = |β(2(n + n0))|
1/d; by the

previous inequality µ is an increasing map. Finally, since α(n) is primitive recursive in
n, so is β(n) and so is µ(n). The lemma follows because by construction µ(n)d is always
the size of a model of φ.

Definition 7.7. The spectrum of ψ is the set of sizes of models of ψ. In symbols:

Spec(ψ) = {|G| : G |= ψ}.

See [21] for a survey about this notion.
A function h : N→ N is time-constructible if and only if there is a Turing machine

that, for every n, halts in exatly h(n) steps on input n written in binary.

Lemma 7.8. For every time-constructible function h, there exist a first-order sentence
ψh and an integer d such that Spec(ψh) = Im(h)(d), where Im(h)(d) = {nd : n ∈ Im(h)}.

Proof. By [7, Theorem 4.5] and [8, Theorem 3], we just have to prove that Im(h) is a
NEXPTIME language. Given n, the algorithm guesses a word u of length at most n,
runs h on input u and checks that it halts in n steps exactly. If n ∈ Im(h) then there is
u such that h(u) = n and |u| ≤ n because the machine cannot read more than n input
symbols within n steps.

Lemma 7.9. There is a first-order sentence ψ and an integer d such that, for every
increasing primitive-recursive function R, we have:

(7.2) Im(R)(d) 6⊆ Spec(ψ) ⊆ N
(d).

Proof. Let (Rn)n∈N be a computable enumeration of increasing primitive-recursive func-
tions. (To construct one, start from a computable enumeration of primitive-recursive
functions (R′

n)n∈N and change R′
n into Rn as follows: Rn : i 7→ max{Rn(i−1)+1, R′

n(i)}.
This transformation is computable and leaves increasing functions unchanged, so it hits
all of them.)

For every integer n, define the set:

(7.3) E(n) = {Ri(j) : 0 ≤ i, j ≤ n},

and let h denote an increasing time-constructible function such that:

(7.4) h(n) > maxE(n),

for instance, h may explicitly compute maxE(n) and spend that many steps idling by
decreasing a counter.

22

Let us show that for every n, there exists an element in Im(Rn) \ Im(h). The set
{h(0), . . . , h(n− 1)} cannot contain {Rn(0), . . . , Rn(n)} because Rn is injective (since it
is increasing). So there is an element i of {0, . . . , n} such that Rn(i) does not belong
to {h(0), . . . , h(n − 1)}. We have Rn(i) < h(n) by Equations (7.3)–(7.4); since h is
increasing, Rn(i) is not in Im(h). The existence of desired formula ψ follows from
Lemma 7.8.

Proof of Theorem 7.2. Let ψ and d be given by Lemma 7.9 and assume that f is a
polynomial reduction from either SAT or UNSAT to ψ-Dynamics. Both the spectrum
of ψ and its complement are infinite, so ψ is nontrivial. If there exists some polynomial
P such that f has a robust meagerness set, then by Lemma 7.5 there exists a polynomial-
time algorithm solving SAT on a robust set of instance sizes. Otherwise, since Spec(ψ) ⊆
N
(d), Lemma 7.6 implies that there is an increasing primitive-recursive map µ such that,

for every n, the quantity µ(n)d is the size of a model of ψ. But then, by Lemma 7.9, one
of those sizes will not be contained in the spectrum of ψ: a contradiction.

Discussion and Future work

One could consider different parametrizations of φ-Dynamics. Let us first point out
that parametrization by the size or quantification rank of the formula fails. The formula
∃x : F (x, x) expresses the property: “F has at least one fixed point.” That question is
NP-hard: given an instance S of SAT, produce an AN with |S| Boolean automata that
evaluates its own configuration on S; if it finds “true”, nothing changes; if it finds “false”,
it transitions to the next configuration (in lexicographic order). The formula above is
virtually the smallest possible by any reasonable parameterization of logic formulae, so
there is no hope to get fixed-parameter tractability if the parameter concerns the formula.
Moreover, in this reduction every transition graph produced is either a huge cycle or a
sequence of paths ending in loops. This implies that they all have treewidth 1, so
parameterization by the treewidths of transition graphs also fails: we have NP-difficulty
even when the treewidth is guaranteed to be at most 1.

Another relevant parameter, when taking the automata networks point of view, is
the size of the alphabets Qv used at each nodes. For instance, as it is usually the
case in the automata networks literature, one could consider φ-dynamics restricted to
automata networks where all nodes share the same alphabet of size q. Our reduction
in Lemma 6.3 fails in this settings as it produces automata networks with possibly two
different alphabet sizes among their nodes. We do not know whether our main theorem
holds for a fixed alphabet, but it is interesting to note that some formulae become trivial
when fixing the alphabet: for instance, a formula asking that each configuration belong
to a cycle of length two has no model with a ternary alphabet.

On the other hand, it remains to fully characterize which nonarborescent MSO sen-
tences yield an NP- or coNP-hard problem, and what happens with those that do not.
In particular, Theorem 7.2 does not say whether the formula φ has a polynomial-time
solvable φ-Dynamics problem. We do not know whether it could be the case for some

23

φ under reasonable complexity assumptions.
It would be interesting to have average-case difficulty rather than worst-case diffi-

culty, e.g., to show that “draw a configuration at random and check whether it is a fixed
point” is not a good algorithm to find fixed points in general. In the same vein, general
hardness results on probabilistic automata network would also be welcome.

Finally, let us recall that the main result of this paper do not hold when restricting to
some natural families of automata networks and using other input representation than
circuits: for instance threshold automata networks or automata networks of bounded
degree can be naturally described as labeled graphs. In such cases, arborescent formulae
can have a polynomial-time φ-Dynamics problem, like “being a constant function”. It
would be interesting to understand what properties become tractable in these natural
restrictions (which are often considered in the literature) and which fragment of MSO
remains intractable.

Acknowledgments

The authors are very grateful to Édouard Bonnet (LIP, France) for the proof of Propo-
sition 4.1.

References

[1] H. G. Rice. “Classes of Recursively Enumerable Sets and Their Decision Prob-
lems”. In: Transactions of the American Mathematical Society 74 (1953), pp. 358–
366.

[2] B. Elspas. “The theory of autonomous linear sequential networks”. In: IRE Trans.
Circ. Theory 6 (1959), pp. 45–60.

[3] S. W. Golomb. Shift Register Sequences. Holden-Day Inc., 1967.

[4] S. A. Kauffman. “Metabolic stability and epigenesis in randomly constructed ge-
netic nets”. In: Journal of Theoretical Biology 22 (1969), pp. 437–467.

[5] P. Cull. “Linear analysis of switching nets”. In: Biol. Cybernet. 8 (1971), pp. 31–39.

[6] R. Thomas. “Boolean formalization of genetic control circuits”. In: Journal of
Theoretical Biology 42 (1973), pp. 563–585.

[7] N. Jones and A. Selman. “Turing Machines and the Spectra of First-Order For-
mulas”. In: J. Symb. Log. 39.1 (1974), pp. 139–150.

[8] R. Fagin. “A spectrum hierarchy”. In: Zeitschrift für mathematische Logik und
Grundlagen der Mathematik 21 (1975), pp. 123–134.

[9] F. Robert. Discrete Iterations: A Metric Study. Springer Verlag, 1986.

[10] B. Courcelle. “The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs”. In: Information and Computation 85.1 (1990), pp. 12–75.

24

[11] E. Goles and S. Martinez. Neural and Automata Networks: Dynamical Behavior
and Applications. Kluwer Academic Publishers, 1990.

[12] J. Kari. “Rice’s theorem for the limit sets of cellular automata”. In: Theoretical
Computer Science 127 (1994), pp. 229–254.

[13] D. Thieffry and R. Thomas. “Dynamical behaviour of biological regulatory net-
works – II. Immunity control in bacteriophage lambda”. In: Bull. Math. Biol. 57
(1995), pp. 277–297.

[14] L. Mendoza and E. R. Alvarez-Buylla. “Dynamics of the genetic regulatory network
for Arabidopsis thaliana flower morphogenesis”. In: J. Theoret. Biol. 193 (1998),
pp. 307–319.

[15] C. Espinosa-Soto, P. Padilla-Longoria, and E. R. Alvarez-Buylla. “A gene regula-
tory network model for cell-fate determination during Arabidopsis thaliana flower
development that is robust and recovers experimental gene expression profiles”.
In: The Plant Cell 16 (2004), pp. 2923–2939.

[16] L. Libkin. Elements of Finite Model Theory. Springer, 2004. isbn: 978-3-540-21202-
7.

[17] J. Aracena. “Maximum number of fixed points in regulatory Boolean networks”.
In: Bull. Math. Biol. 70 (2008), pp. 1398–1409.

[18] G. Karlebach and R. Shamir. “Modelling and analysis of gene regulatory net-
works”. In: Nature Rev. Mol. Cell Biol. 9 (2008), pp. 770–780.

[19] A. Richard. “Local negative circuits and fixed points in non-expansive Boolean
networks”. In: Discr. Appl. Math. 159 (2011), pp. 1085–1093.

[20] J. Demongeot, M. Noual, and S. Sené. “Combinatorics of Boolean automata cir-
cuits dynamics”. In: Discr. Appl. Math. 160 (2012), pp. 398–415.

[21] A. Durand et al. “Fifty years of the spectrum problem: survey and new results”.
In: Bull. Symb. Log. 18.4 (2012), pp. 505–553.

[22] J. H. Silverman. A friendly introduction to number theory. 4th edition. Pearson
Education, 2012. isbn: 978-0-321-81619-1.

[23] R. Downey and M. Fellows. Fundamentals of Parameterized Complexity. Springer-
Verlag London, 2013. isbn: 978-1-4471-5558-4.

[24] L. Fortnow and R. Santhanam. “Robust simulations and significant separations”.
In: Inform. and Comput. 256 (2017), pp. 149–159.

[25] J. Demongeot and S. Sené. “About block-parallel Boolean networks: a position
paper”. In: Nat. Comput. 19.1 (2020), pp. 5–13.

[26] G. Gamard et al. “Rice-like theorems for automata networks”. In: Proceedings of
the 38th Symposium on Theoretical Aspects of Computer Science. Ed. by M. Bläser
and B. Monmege. Vol. 187. LIPICs. Saarbrücken, Germany, 2021, pp. 8:1–8:15.

25

	Introduction
	Definitions
	Statement of the main result and proof outline
	A graph saturating all sentences of fixed quantifier rank
	Pumping models of arborescent sentences
	A reduction from -Dynamics to SAT
	Nonarborescent formulae

