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A Strict Constrained Superposition Calculus for
Graphs

Rachid Echahed, Mnacho Echenim, Mehdi Mhalla, and Nicolas Peltier

Université Grenoble Alpes, LIG, CNRS, Inria, Grenoble INP, F-38000 Grenoble,
France

Abstract. We propose a superposition-based proof procedure to reason
on equational first order formulas defined over graphs. First, we introduce
the considered graphs that are directed labeled graphs with lists of roots
standing for pins or interfaces for replacements. Then the syntax and
semantics of the considered logic are defined. The formulas at hand are
clause sets built on equations and disequations on graphs. Afterwards, a
sound and complete proof procedure is provided, and redundancy criteria
are introduced to dismiss useless clauses and improve the efficiency of
the procedure. In a first step, a set of inferences rules is provided in the
case of uninterpreted labels. In a second step, the proposed rules are
lifted to take into account labels defined as terms interpreted in some
arbitrary theory. Particular formulas of interest are Horn clauses, for
which stronger redundancy criteria can be devised. Essential differences
with the usual term superposition calculus are emphasized.

1 Introduction

Graphs are ubiquitous structures in computer science. They are used to model
several notions such as data, program runs (transition systems), networks, soft-
ware and hardware architectures. They are also often used as foundational struc-
tures to model knowledge or data bases, cognitive or intelligent systems as well as
physical, chemical or biological phenomena. They constitute, in addition, the ba-
sis of operational research or combinatorics. Graphs are, definitely, fundamental
structures for modelling, computing and reasoning. Graph transformations have
been studied since the early 70’s [30]. Some of their applications can be found in
[17, 19]. In the literature, one can distinguish two main streams of approaches for
graph transformation, namely the algebraic approaches [16, 13] where category
theory is used to define structure transformations in a very abstract and elegant
way and the algorithmic approaches where graph transformations are defined by
means of the actual algorithms involved in the transformations [21, 14].

During the last decade, a very interesting application of graph transforma-
tions has emerged in the area of quantum models of computation, see e.g., the
calculi ZX [12], ZH [4], ZW [25] or PBS [11]. In these calculi, one can spec-
ify quantum algorithms using particular graphs and can make some equational
reasoning on them to verify correctness of quantum algorithms, see e.g. the



Quantomatic tool [26]. In such situations, making automated equational reason-
ing over graphs is very desirable even though equational theories over graphs are
not recursively enumerable in general (see e.g. [8]).

The superposition calculus [2] is one of the most successful automated proof
procedures which handles equational theories (on terms) which is being actually
implemented in various theorem provers such as Vampire [29], Spass [33], or
E [31]. The calculus operates on finite sets of equational clauses. It is defined
as a set of inference rules, which deduce new clauses from previous ones. To
prune the search space, strong restrictions (based on term orderings and literal
selection functions) are imposed on the inferences, and redundancy criteria are
provided to detect and dismiss useless clauses. The rules are applied until a con-
tradiction (i.e., the empty clause) is derived or until the set is saturated, i.e.,
no further non-redundant clause may be deduced. The calculus is refutationally
complete, in the sense that it is able to derive a contradiction from any unsatis-
fiable clause set. In a recent work [15], we proposed a superposition calculus for
testing the unsatisfiability of sets of equations and disequations between graphs
whose shapes are inspired by those used in the ZX calculus, where nodes are
labeled by first-order (uninterpreted) terms. In the present paper we extend this
work in several directions: (i) We tackle full clauses, i.e., disjunctions of equa-
tions and disequations. This extension turned out to be much more difficult
than we initially expected, due to the fact that no reduction order exists on the
considered graphs (see Examples 20 and 23), which complicates the complete-
ness proof. We introduce redundancy criteria that cover some usual deletion and
simplification rules. (ii) We lift the obtained calculus into a constrained calculus
operating on graphs labeled by terms interpreted in some base theory. The pro-
cedure is a semi-decision procedure for unsatisfiability if the underlying theory
is (semi) decidable and compact. (iii) We consider a slightly different class of
graphs, where multi-edges are allowed. The new framework has the advantage
of being both more general and simpler, and it also improves the efficiency of
the calculus (more precisely for the computation of “merges” between graphs,
see Remark 10).

Why defining a graph superposition calculus is difficult. We wish to
emphasize some important differences between term and graph superposition.
(i) It is well-known that term rewrite systems that are terminating and in which
all critical pairs are joinable are confluent. This property plays a key rôle in the
completeness proof of the superposition calculus. However, such a property does
not hold for graph rewrite systems, and, worse, confluence is undecidable for
terminating graph rewrite rules (if confluence is meant modulo isomorphism).
As it is done in [15] we overcome this issue by considering a special class of
graphs, for which the above property holds. This class is obtained by restricting
the way graphs can be composed and replaced, using a sequence of distinguished
nodes in the graphs, called roots. (ii) The usual superposition calculus is based
on the use of a reduction order, i.e., a well-founded order on terms that is total
on ground terms and closed under instantiation and embedding. Unfortunately



no such order exists for graphs in general (see Example 20). Thus the model
construction algorithm used to establish refutational completeness must cope
with non terminating systems (indeed, since a ground equation g ≈ h cannot
always be oriented, one must consider both rules: g→ h and h→ g, which entails
that the system does not terminate). Confluence is harder to establish for non
terminating systems and we need to devise a new confluence criterion. (iii) The
usual redundancy criterion of [2] (where a clause is considered redundant if it is
implied by smaller clauses) does not apply to graphs. For instance the conclusion
of an inference may be strictly bigger than all the premises (see Example 22).
This is due to the fact that two graphs may overlap without one of them being
included in the other. Such a behavior cannot be avoided, since, as proven in [15,
Theorem 45], satisfiability is undecidable for sets of ground equational clauses
defined on graphs (whereas it is well known to be decidable for standard ground
clauses based on terms), thus superposition cannot terminate on ground graphs.
Furthermore, we show (see Example 23) that the calculus is – rather surpris-
ingly – not compatible with tautology deletion in general (tautology deletion is
possible for Horn clauses).

Related work. The graphs we are considering are intended to capture (pos-
sibly cyclic) circuit shaped structures such as those used in the ZX or related
calculi. They are close to hypergraphs with interfaces as used in some papers
(see, e.g. [6]) where the roots or interfaces are used in the gluing process while
transforming a graph. We follow an algorithmic approach when transforming the
graphs. This approach eases the completeness proofs of the proposed superposi-
tion calculus. However, the performed graph transformations used in the present
paper can be encoded as simple double pushout (DPO) [20] steps of the form
L←− Roots −→ R with some additional constraints on matched subgraphs. It is
also a particular case of DPOI steps (DPO with interfaces) where the roots play
the rôle of the interfaces [6]. Automated reasoning in presence of graph structures
is not an easy task in general. Several authors did tackle this problem and one
can distinguish different approaches in the literature. Variants of Hoare-like cal-
culi have been proposed for the verification of graph transformation systems see,
e.g., [24, 27, 7, 9]. Likewise, model checking procedures have also been devised in
presence of graph structures see, e.g. [28, 32]. In these works, a dynamic logic un-
derlying program execution is assumed. In addition, a dedicated logic is used to
express graph properties to be proven. Other techniques have been used to prove
graph equivalences such as bisimulation [18] or normalization using terminating
and confuent graph rewriting systems [10]. In the paper at hand, we are rather
concerned by a refutational proof technique based on superposition dedicated to
a class of graphs. Thus our proof procedure departs from all the aforementioned
works. To our knowledge, only the report [23] presents a refutational procedure
dedicated to ZX diagrams which is close to ours. However, the authors use the
classical superposition calculus [2] over first-order terms and provide a trans-
lation from the considered graphs to first-order terms. Such translation needs
the use of additional axioms encoding some graph properties such as associativ-



ity and commutativity of graph constructor operations. Such additional axioms
are useless in our framework. The class of graph rewriting systems handled in
our proof procedure are not necessarily terminating and thus we had to devise
new criteria to ensure their (ground) confluence instead of using joinability of
pre-critical pairs as done in [5].

The paper is organized as follows. Section 2 introduces some basic notations
and defines the considered graphs and the operations used over them. In Section 3
the syntax and semantics of the formulas are introduced. In Section 4, a first
set of inference rules is defined to test the satisfiability of sets of clauses where
graphs are endowed with uninterpreted labels and its completeness is established
modulo a redundancy criterion that captures usual deletion or simplification
rules (such as subsumption). In Section 5 the obtained calculus is lifted to graphs
labeled with terms that can be interpreted in some arbitrary theory and possibly
containing variables. Completeness is guaranteed if the theory is semi-decidable
and compact. This last calculus is proven complete and an enhanced redundancy
test is proposed. Concluding remarks are given in Section 6. Proofs can be found
in the appendix.

2 Graphs and Graph Operations

We briefly review some usual definitions and notations. For any partial function
f , we denote by dom(f) the domain of f . If f and g are partial functions,
we write f(x) = g(x) to state that either x ̸∈ dom(f) ∪ dom(g) or that x ∈
dom(f)∩ dom(g) and the images of x by f and g are identical. Given a multiset
m and an element e, m(e) denotes the multiplicity of e in m. For all multisets m1

and m2, we denote by m1+m2 and m1−m2 the sum and difference of m1 and m2,
respectively. We write m1 ⊑ m2 to state that m1 is included in m2. A multiset
containing exactly the elements e1, . . . , en is written {e1, . . . , en}. We denote by
m1⊔m2 the union of m1 and m2 (i.e., the minimal multiset containing m1 and m2)
defined as follows: for all elements e, (m1 ⊔ m2)(e) = max(m1(e),m2(e)). Finite
sequences may sometimes be identified with sets if the order is not important,
e.g., if y = (y1, . . . , yn), we may write x ∈ y to state that x = yi, for some
i = 1, . . . , n. We recall that a preorder is a binary relation that is reflexive and
transitive. Any preorder ≤ may be associated with a strict order < defined as
follows: x < y ⇐⇒ (x ≤ y ∧ y ̸≤ x).

The graphs we consider are directed, labeled graphs enriched with a sequence
of distinguished nodes, called roots:

Definition 1. Let N be a countably infinite set of nodes and let L be a set of
labels, disjoint from N . An L-graph g is a tuple ⟨N, E, R, L⟩, where:
– N ⊆ N is a finite set of nodes in N , called vertices or nodes;
– E is a finite multiset of pairs in N ×N , called edges;
– R is a sequence of nodes in N , with no repetition, called the roots of g;
– L is a function mapping every node in N \R to a label in L.



The components N , E, R and L of a graph g are denoted by Ng, Eg, Rg and

Lg, respectively. We denote by N̂g the set of nodes α ∈ Ng that do not occur in
Rg. The profile of a graph g, written pr(g), is the length of Rg.

Example 2. The L-graph g with Ng = {ρ1, α, β}, Eg = {(ρ1, α), (ρ1, β), (α, β)},
Rg = (ρ1), dom(Lg) = {α, β}, Lg(α) = 0 and Lg(β) = 1 is depicted graphically
as follows:

ρ1

α : 0 β : 1

We write α : ℓ to state that a node named α is labeled by
ℓ. In many cases, the names of the non-root nodes will
be irrelevant, and will thus be omitted. When possible,
root nodes will be named ρ1, ρ2, ρ3,. . . in this order.

In the following, L-graphs will be considered up to a renaming of nodes. More
precisely, the isomorphism relation on L-graphs is defined as follows.

Definition 3. An N -renaming µ is an injective mapping from N to N . It is
extended to any L-graph g by replacing every occurrence of a node α by µ(α). In
particular, the function Lµ(g) is defined as follows: Lµ(g)(α) = ℓ iff Lg(β) = ℓ
for some β ∈ Ng such that µ(β) = α (Lµ(g) is well-defined since µ is injective).
We write g ≡ h if h = µ(g), for some N -renaming µ. It is easy to check that ≡
is an equivalence relation. Two L-graphs g, h such that g ≡ h are isomorphic.

The following result is straightforward to prove:

Proposition 4. If g is an L-graph and µ is an N -renaming then µ(g) is an
L-graph such that Fµ(g) = µ(Fg), for F ∈ {N,E,R,L}, and pr(µ(g)) = pr(g).

2.1 Subgraphs and Replacement

We define the notion of a subgraph. The definition is slightly stronger than the
usual one in graph theory because it imposes that only nodes that are roots in
the subgraph can be connected to a node outside the subgraph. These roots can
be viewed as an “interface” which restricts the way graphs may be connected
and composed.

Definition 5 (Subgraph). A graph h is a subgraph of g (written h ≤g g) if

Nh ⊆ Ng, Eh ⊑ Eg, N̂h ⊆ N̂g, Lh(α) = Lg(α) for all α ∈ N̂h and if a node α

occurs in an edge in Eg − Eh then α ̸∈ N̂h.

Example 6. Consider the L-graphs h, i, j and k with respective roots (α, β), (β),
(α) and (ρ1), defined as follows:

h: α β i: α : 1 β j: α β : 1 k: ρ1

α : 0 β : 1

The L-graph h is a subgraph of the L-graph g from Example 2, but i, j and
k are not. Indeed, α has different labels in g and i; g contains an edge between
ρ1 and β that does not occur in j and β is not a root node in j; and Eg − Ek

contains the edge (α, β) between nodes that are not roots in k.



The replacement operation is defined in a natural way: all vertices and edges
occurring from the replaced subgraph are deleted and replaced by those in the
replacing graph (we assume that the considered graphs share the same roots).

Definition 7 (Subgraph replacement). Let g be an L-graph and let h be a

subgraph of g. An L-graph i is substitutable for h in g if Ri = Rh and Ng∩N̂i = ∅.
If i is substitutable for h in g, then we denote by g{h← i} (the L-graph obtained
by replacing h by i in g) the tuple ⟨N ′, E′, R′, L′⟩, where:
– N ′ def

= (Ng \Nh)∪Ni. Note that since Ri = Rh we have N ′ = (Ng \ N̂h)∪ N̂i.

– E′ def
= (Eg − Eh) + Ei.

– R′ def
= Rg.

– L′(α)
def
=

{
Lg(α) if α ∈ Ng \ N̂i

Li(α) if α ∈ N̂i

for all α ∈ N ′ \R′.

Example 8. Let i′ be the L-graph with root (α, β) defined below. Using the L-
graphs g and h from Examples 2 and 6, we get the following L-graph g{h← i′}
(the edge (α, β) occurs twice because it occurs both in Ei′ and in Eg − Eh):

i′ = α β

γ : 0

g{h← i′} = ρ1

α : 0 β : 1

γ : 0

The notation g{h ← i} is extended to the case where pr(i) = pr(h) as

follows: g{h ← i} def
= g{h ← i′}, where i′ is any L-graph substitutable for h in g

such that i ≡ i′. Thus the replacement operation possibly involves a renaming
step, to avoid conflicts on the names of the nodes. (Proposition 46 in Appendix
B ensures that the result does not depend on the renaming, up to isomorphism).
The next proposition states a straightforward property of subgraph replacement:

Proposition 9. Let g, h, i, j be L-graphs, where i ≤g h ≤g g and pr(i) = pr(j).
Then g{h← h{i← j}} ≡ g{i← j}.

Remark 10. Note that Proposition 9 would not hold if edges were defined as sets
and not as multisets. For instance, consider L-graphs g, h with two root nodes
ρ1, ρ2, where g contains an edge (ρ1, ρ2) and h contains no edges. If edges are
taken as sets then we get g{h ← g} = g and g{g ← h} = h, whereas g{h ←
h} = g. In our previous work [15], this problem was overcome by restricting
ourselves to induced subgraphs (which prevents the replacement of h by g in g),
but this causes a combinatorial explosion in the definition of the calculus: when
one “merges” two subgraphs, it is necessary to add every possible combination of
edges connecting a root of the first L-graph to a root of the second one, yielding
exponentially many solutions w.r.t. the number of roots (see [15, Definition 30]).
Such a behavior is avoided in the new framework.



We now introduce a notion of orthogonality between graphs. The intuition is
that two L-graphs will be considered orthogonal if they share no edges and no
nodes other than roots.

Definition 11 (Orthogonal graphs). Let g be an L-graph. Two subgraphs

h and i of g are orthogonal in g, or simply orthogonal, if N̂h ∩ N̂i = ∅ and
Eh + Ei ⊑ Eg.

Note that h and i may share root nodes. Proposition 12 states that the result of
the replacement of two orthogonal subgraphs does not depend on the order in
which the L-graphs are considered.

Proposition 12. Let g be an L-graph, and let h1, h2 be orthogonal subgraphs
of g. For all L-graphs i1, i2 of respective profiles pr(h1) and pr(h2), h2 and h1
are subgraphs of g{h1 ← i1} and g{h2 ← i2}, respectively, and g{h1 ← i1}{h2 ←
i2} ≡ g{h2 ← i2}{h1 ← i1}.

2.2 Graph Merging

Intuitively, a merge of two L-graphs g1 and g2 denotes any minimal L-graph
containing all vertices, labels and edges in g1 and g2. More formally:

Definition 13. A merge of two L-graphs g1 and g2 is an L-graph h such that:
(i) gi ≤g h, for all i = 1, 2; (ii) Nh = Ng1

∪ Ng2
, Eh = Eg1

⊔ Eg2
and N̂h =

N̂g1 ∪ N̂g2 ; (iii) for all i = 1, 2 and for all α ∈ N̂gi , Lh(α) = Lgi(α).

Note that in contrast to [15, Definition 30], the merge contains no node and
edge other than those occurring in g1 or g2. Moreover, the multiplicity of edges
is minimal (Eh is defined as Eg1

⊔Eg2
instead of Eg1

+Eg2
). It is easy to check

that a merge of g1, g2 exists iff Lg1(α) = Lg2(α) holds for all α ∈ N̂g1 ∩ N̂g2
.

Moreover, all the merges are equal up to a permutation of their roots.

Example 14. Consider the following L-graphs g and h below of respective roots
(ρ1, ρ2) and (ρ2, ρ3), where the nodes α, β, γ are labeled by 0, 1 and 2, respec-
tively. These L-graphs admit the following merge i, of root (ρ1, ρ2, ρ3):

g : ρ1 ρ2

α : 0 β : 1

h : ρ2 ρ3

β : 1 γ : 2

i : ρ1 ρ2 ρ3

α : 0 β : 1 γ : 2

Example 15. Let g, h, i and j be the L-graphs, defined as follows:

g: γ : 1

α

β

h: α

β : 2

δ : 3

i: γ : 0

α

j: δ : 0

γ : 1

α



The L-graph g has roots (α, β) and h, i, j have roots (α). Then g and h admit

the following merge, of root (α): γ : 1 α β : 2 δ : 3

In contrast, g and i admit no merge (since γ has different labels in the two
graphs), and neither do g and j (due to the edge connecting the non-root node
γ to δ, that is outside of g).

Lemma 16. Let g be an L-graph and let h, i be subgraphs of g. Then h and i
admit a merge j, and for all merges j of h and i we have j ≤g g.

3 An Equational Logic on Graphs

We now define equational clauses built on L-graphs and their semantics.

Definition 17. An equation is an unordered pair written g ≈ h, where g, h are
L-graphs such that Rg = Rh. A literal is either an equation (positive literal)
or the negation of an equation, written g ̸≈ h (negative literal). A clause is a
disjunction of literals. The disjunction may be empty, in which case the clause
is written □. A clause is Horn if it contains at most one positive literal. A set
of clauses is Horn if it contains only Horn clauses.

Note that we assume for technical convenience that the two members of
an equation share the same roots. N -renamings µ are extended to equations,

literals and clauses in a straightforward way: µ(g ≈ h)
def
= µ(g) ≈ µ(h), µ(g ̸≈

h)
def
= µ(g) ̸≈ µ(h) and µ(C ∨ D)

def
= µ(C) ∨ µ(D). The relation ≡ is extended

accordingly.
Sets of clauses built on L-graphs will be interpreted w.r.t. a congruence on

L-graphs. Graph congruences are defined in same way as for terms, except that
we also assume that they are closed under isomorphism.

Definition 18 (Graph Congruence). A binary relation ▷◁ on L-graphs is
closed under isomorphisms if i ▷◁ h when g ▷◁ h and g ≡ i. It is closed under
embeddings if h ▷◁ i entails g{h ← i} ▷◁ g. A congruence is an equivalence
relation on L-graphs that is closed under isomorphisms and embeddings.

Definition 19. A congruence ∼ validates an expression E (written ∼|= E) iff
one of the following conditions holds: (i) E is an equation g ≈ h and g ∼ h;
(ii) E is a literal g ̸≈ h and g ̸∼ h; (iii) E is a clause C and ∼ validates at least
one literal in C; (iv) E is a set of clauses Γ and ∼ validates all the clauses in
Γ . A congruence ∼ is a model of E if ∼|= E. An expression is satisfiable if it
admits a model and unsatisfiable otherwise. A tautology is a clause that is true
in all congruences.

4 Superposition Calculus with Uninterpreted Labels

We define a superposition calculus for testing the satisfiability of sets of clauses.
This calculus is strict (see, e.g., [3]) in the sense that it does not use the equational



factorization rule (as defined in [2]), but uses instead the standard factorization
rule that unifies both members of two equations. This choice is motivated by the
fact that, as shown in Example 23, graph superposition is not compatible with
tautology deletion (except when the clauses are Horn). Since tautology deletion
is disabled for non-Horn clauses, equational factorization is not needed anyway.
Selection functions are not considered, since they are not compatible with the
redundancy criterion.

The usual superposition calculus [2] is parameterized by a reduction order,
i.e., an order on terms that is well-founded, total on ground terms, and closed
under substitutions and embeddings. In the case of L-graphs, no such order
possibly exists, if we also add the natural requirement that the order must be
closed under renamings, as evidenced by the following example:

Example 20. Assume that an order < exists, satisfying the following properties:
< is well-founded, closed under isomorphisms and embeddings, and total up to
isomorphism (i.e., if g ̸≡ h then either g < h or h < g). Consider the L-graphs g
and h with roots (ρ1, ρ2, ρ3, ρ4) and containing no labels, as well as the L-graphs
i, j with an empty sequence of roots, where all nodes are labeled by 0:

g : ρ1 ρ2

ρ3 ρ4

h : ρ1 ρ2

ρ3 ρ4

i : ρ1 : 0 ρ2 : 0

ρ3 : 0 ρ4 : 0

j : ρ1 : 0 ρ2 : 0

ρ3 : 0 ρ4 : 0

It is clear that g ̸≡ h. Indeed, if µ(g) = h holds for some N -renaming µ, then
µ(Rg) = Rh, i.e., µ((ρ1, ρ2, ρ3, ρ4)) = (ρ1, ρ2, ρ3, ρ4), which entails that µ is the
identity on these nodes. Thus we cannot have µ(Eg) = Eh, as the first root
(ρ1) is connected to the third root (ρ3) in g and to the fourth one (ρ4) in h.
Consequently, we have either g < h or h < g. Now we also have g ≤g i and
h ≤g j, and it is easy to check that i{g← h} = j and j{h← g} = i. Thus we have
either i < j or j < i. But since Ri = Rj = () we have i ≡ j: indeed, if µ(ρ1) = ρ1,
µ(ρ2) = ρ2, µ(ρ3) = ρ4 and µ(ρ4) = ρ3, then µ(i) = j.

We thus slightly relax the requirement of having a reduction order, and con-
sider instead a pre-order < on L-graphs, that is well-founded, closed under iso-
morphisms and embeddings, and contains ≤g. We write g < h if g ≤ h and h ̸≤ g,
and we write g ≃ h if g ≤ h and h ≤ g. We also assume that the equivalence
classes of ≃ are finite, up to isomorphism. It is clear that such pre-orders exist,
for instance, the pre-order: g ≤ h ⇐⇒ card(Ng) ≤ card(Nh) fulfills the above
properties.

Similarly to the usual superposition calculus, we associate every literal L

with a multiset defined as follows: mset(g ̸≈ h)
def
= {{g, h}} and mset(g ≈ h)

def
=

{{g},{h}}. For every clause C = L1∨· · ·∨Ln, we define:mset(C)
def
= {mset(Li) |

i = 1, . . . , n}. Any order or preorder ▷ on L-graphs may then be extended into
an order on clauses as follows: C ▷ D ⇐⇒ mset(C) ▷m mset(D), where ▷m
denotes the multiset extension of ▷ (note that ▷m is also a (pre)order). A literal



L is <-maximal in a clause C if there is no literal L′ ∈ C such that L′ > L. An L-
graph g is <-maximal in a literal L if L contains no L-graph g′ such that g′ > g.
A literal L is eligible in a clause C if L is a <-maximal literal in C. Intuitively,
eligible literals are those that may be considered for performing inferences. For
instance, given a clause (g ≈ h)∨(i ≈ j), if (g ≈ h) > (i ≈ j), then g ≈ h is eligible
but not i ≈ j. Consequently the inference rules (as defined in Section 4.1) will
be allowed to replace g by h using the equation g ≈ h (provided g ̸< h) but not,
e.g., i by j (this restricts the number of inferences and prune the search space).
Non eligible literals are simply attached to the conclusion of the inference but
they play no active role until they (eventually) become eligible.

4.1 Inference Rules

The Superposition calculus SC is defined by the following rules: Sp+ (positive
superposition), Sp− (negative superposition), R (Reflection) and F (Factoring).
The rules and their side conditions are very similar to those of the usual (ground)
superposition calculus, except for the use of the merging operation for positive
superposition. To simplify notations, the rules are defined modulo isomorphims,
which means that one has to find a renaming of the premises such that the
considered rule applies (this can be done using standard algorithms for finding
graph homomorphisms). For instance, with this convention, the Reflection rule
R actually removes all equations of the form g ̸≈ h, with g ≡ h.

Sp+ :
g1 ≈ h1 ∨ C1 g2 ≈ h2 ∨ C2

i{g1 ← h1} ≈ i{g2 ← h2} ∨ C1 ∨ C2

where:

1. i is a merge of g1 and g2, and g1, g2 are not orthogonal;
2. gi ≈ hi is eligible in gi ≈ hi ∨ Ci for i = 1, 2.
3. gi ̸< hi for i = 1, 2.

The non-orthogonality condition is the analogous of the non-variable condition
of the usual calculus, it dismisses trivial replacements.

Sp− :
g ≈ h ∨ C i ̸≈ j ∨D
i{g← h} ̸≈ j ∨ C ∨D

where:

1. g ≤g i;
2. g ≈ h and i ̸≈ j are eligible in g ≈ h ∨ C and i ̸≈ j ∨D, respectively.
3. g ̸< h and i ̸< j.

F :
g ≈ h ∨ g ≈ h ∨ C

g ≈ h ∨ C if g ≈ h is eligible in g ≈ h ∨ g ≈ h ∨ C.

R :
g ̸≈ g ∨ C

C
if g ̸≈ g is eligible in g ̸≈ g ∨ C.



Lemma 21. The rules Sp+, Sp−, F and R are sound, i.e., for all congruences
∼ and for all clauses C deducible from a set of premises Γ , we have ∼|= Γ =⇒
∼|= C.

4.2 Redundancy

In the usual superposition calculus [2], a clause is redundant if all its ground in-
stances are entailed by smaller clauses (w.r.t. the considered order). Such clauses
can be deleted without threatening refutational completeness, which reduces the
search space. In our context, such a definition cannot be used, because one of
the inference rules –namely Sp+– may generate clauses that are strictly larger
than the premises (hence such clauses would be considered as redundant if the
usual criterion were to be used).

Example 22. Consider the clauses: g ≈ h and i ≈ j, where g, h, i, j are L-graphs
with root (ρ1) that are defined as follows:

g: ρ1 0 h: ρ1 1 i: 0 ρ1 j: 2 ρ1

The L-graphs g and i admit the following merge (of root (ρ1)): 0 ρ1 0

Therefore, rule Sp+ applies, yielding g′ ≈ g′′, where:

g′: 0 ρ1 1 g′′: 2 ρ1 0

If L-graphs are ordered according to their number of nodes, then we have (g′ ≈
g′′) > (g ≈ h) and (g′ ≈ g′′) > (i ≈ j).

Worse, the calculus is actually incomplete if tautologies are deleted, as shown
in the following example.

Example 23. Consider the L-graphs g1, g2 and g3 with roots (ρ1, ρ2, ρ3):

g1: ρ1

ρ2ρ3

g2: ρ1

ρ2ρ3

g3: ρ1

ρ2ρ3

Let ġi denote the graph obtained from gi by adding one additional non root
node α distinct from ρ1, ρ2, ρ3, with some arbitrary (but fixed) label, e.g., 0.
Assume that the graphs are ordered by the number of nodes, so that ġi > gj ,
ġi ≃ ġj and gi ≃ gj (for all i, j ∈ {1, 2, 3}). Let Γ = {ġ1 ≈ g2 ∨ ġ2 ≈ g3 ∨
ġ3 ≈ g1, ġ1 ̸≈ g2 ∨ ġ2 ̸≈ g3 ∨ ġ3 ̸≈ g1}. Intuitively, every equation ġi ≈ gj
where (i, j) ∈ {(1, 2), (2, 3), (3, 1)} states that the semantics of the graph is



preserved when the isolated node is deleted and the graph is rotated by 90
degrees clockwise, for each possible position of the loop. Since the graphs are
invariant by rotation, all these transformations are actually equivalent. It is
easy to check that every clause that can be generated from Γ by applying the
negative superposition rule from the first clause into the second clause contains
two complementary literals (i.e. two literals of the form ġi ≈ gj and ġi ̸≈ gj)
hence is a tautology. Moreover, the clauses obtained by superposition using the
first clause only either are subsumed by the first clause (if the superposition
rule is applied on two different literals) or contains a literal gi ≈ gi (hence is a
tautology). The equational factorization rule (as defined in [2]) does not apply
since ġi and ġj are not isomorphic if i ̸= j. However, consider the L-graphs g′i, ġ′i
which contain the same nodes and edges as gi and ġi respectively, but with roots
(ρ2, ρ3, ρ1). It is clear that g′2 ≡ g1 and g′3 ≡ g2, so that ġ1 ≈ g2 |= ġ′2 ≈ g′3.
However, ġ′2 ≤g ġ2 and ġ2{ġ′2 ← g′3} = g3, thus ġ1 ≈ g2 |= ġ2 ≈ g3. By a similar
reasoning, we may show that ġ2 ≈ g3 |= ġ3 ≈ g1 and ġ3 ≈ g1 |= ġ1 ≈ g2, so that
the equations ġ1 ≈ g2, ġ2 ≈ g3, and ġ3 ≈ g1, are actually pairwise equivalent,
which entails that Γ is unsatisfiable. However, □ cannot be derived from Γ if
the clauses containing complementary literals are discarded.

Thus, the conditions that ensure that a clause is redundant must be stronger
than those of the usual superposition calculus. The definition proposed below
covers usual deletion rules such as subsumption. Actually, two different criteria
will be used, namely non-strict and strict redundancy, depending on whether the
considered clauses are Horn or not. Indeed, in the former case a slightly less re-
strictive definition can be used, which permits the deletion of (some) tautological
clauses.

Definition 24. Let C,D be two clauses and let Γ be a set of clauses. We say that
C is subsumed by D and write C ≥sub D if C = D ∨C ′, up to associativity and
commutativity of ∨ and isomorphism. We write C →Γ D (C demodulates to D
w.r.t. Γ ) if C is of the form g ▷◁ h∨E (with ▷◁∈ {≈, ̸≈}), D = g{i← j} ▷◁ h∨E,
and there exists a clause F ∈ Γ such that F = (i ≈ j) ∨ F ′, with F ′ ≤sub E,
i > j, F ′ < (i ≈ j) and (i ≈ j) < (g ▷◁ h).

The set of clauses that are redundant w.r.t. a set of clauses Γ is defined
inductively as follows. A clause C is redundant w.r.t. Γ iff one of the following
conditions holds: (1) C contains two literals g1 ≈ g2 and g′1 ̸≈ g′2, with gi ≡ g′i for
i = 1, 2; (2) C contains a literal of the form g ≈ h with g ≡ h; (3) C ≥sub D, for
some D ∈ Γ ; (4) C →Γ D and D is redundant. The set of strictly redundant
ground clauses is defined in a similar way, except that Item 1 is removed.

Intuitively, the conditions ensuring that C demodulates to D in Definition 24
are meant to ensure that D may be deduced from C by applying the rule Sp+ or
Sp− using the clause F (with D < C and F < C) and that {D}∪Γ is equivalent
to {C} ∪ Γ . In particular, the condition F ′ ≤sub E ensures that all the literals
added by the inference already occur in C.



Definition 25. A set of clauses Γ is saturated (resp. strictly saturated) if every
clause that can be deduced from premises in Γ using one of the rules of SC (in
one step) is redundant (resp. strictly redundant) w.r.t. Γ .

We prove that SC is refutationally complete. We actually establish two com-
pleteness results, the first one for general clauses and the second one for Horn
clauses. The latter is stronger since it uses the weaker non-strict saturatedness
criterion instead of strict saturatedness.

Theorem 26. Let Γ be a set of clauses. If □ ̸∈ Γ and Γ is strictly saturated or
both Horn and saturated then Γ is satisfiable.

5 A Constrained Graph Superposition Calculus

We now lift the calculus SC defined in Section 4 into a constrained calculus.
The goal is to handle graphs labeled by terms interpreted in some arbitrary the-
ory, and possibly containing variables. To this aim, we attach constraints to the
clauses, which are formulas interpreted in the considered theory, asserting condi-
tions on the labels. Such constraints will be updated when inference rules will be
applied, by asserting the conditions that are required by the rule applications.

5.1 Constrained Clauses

Let V be a countably infinite set of variables and let Σ be a set of function
symbols1. Each symbol f in Σ is associated with a unique arity #(f). We denote
by T the set of terms built inductively as usual on V and Σ, and by C the set
of first-order formulas, called constraints, built inductively as usual on atoms of
the form t

.
= s, where t, s ∈ T using the logical connectives ∨,∧,¬,⇒,⇔, the

quantifiers ∃,∀ and two logical constants ⊥ and ⊤.
A substitution σ is a function mapping all variables x to a term xσ. The

domain dom(σ) of σ is the set of variables x such that xσ ̸= x. For every term
or formula e, we denote by eσ the term or formula obtained from e by replacing
every (free) variable x by xσ. A term is ground if it contains no variables, and a
substitution σ is ground if xσ is ground for all x ∈ dom(σ).
T -graphs are L-graphs with labels in T . A T -clause is a clause defined on

T -graphs. Substitutions are extended to T -graphs and T -clauses as follows. For
every T -graph g, we denote by gσ the T -graph such that: Fgσ = Fg for all

F ∈ {N,E,R} and Lgσ(α) = Lg(α)σ, for all α ∈ N̂g. Then: (g ≈ h)σ
def
= gσ ≈ hσ,

(g ̸≈ h)σ
def
= gσ ̸≈ hσ and (C ∨D)σ

def
= Cσ ∨Dσ. A T -graph g is ground if for all

α ∈ N̂g, Lg(α) is ground. A T -clause is ground if all the T -graphs occurring in
it are ground. For every expression (term, T -graph, constraint or T -clause) E,
we denote by V(E) the set of variables (freely) occurring in E.

Definition 27. A constrained clause (or c-clause) is a pair [C | ϕ], where C is
a T -clause and ϕ ∈ C.
1 As usual, predicates may be encoded as functions.



Let I be some fixed set of first-order interpretations on the signature Σ. For
all I ∈ I, we denote by dom(I) the domain of I and by f I the interpretation
of the function f (with f ∈ Σ). For every ground term t and for all I ∈ I,
we denote by [t]I the value of t in I, inductively defined as usual. To simplify
notations, we assume that for every I ∈ I and for every e ∈ dom(I), there exists
a ground term t such that [t]I = e.

The satisfiability relation |= relating interpretations in I and constraints in
C is defined as usual, where

.
= is interpreted as the identity, and ⊥ and ⊤ are

interpreted as false and true, respectively. We write ϕ |=I ψ if the implication
I |= ϕσ =⇒ I |= ψσ holds for all I ∈ I and for all ground substitutions
of domain V(ϕ) ∪ V(ψ); and ϕ ≡I ψ iff ϕ |=I ψ and ψ |=I ϕ. For any set of
constraints, we write I |= S iff I |= ϕ for all ϕ ∈ S. For any constraint (or set of
constraints) ϕ, if there exists a ground substitution σ with domain V(ϕ) and an
interpretation I ∈ I such that I |= ϕσ, then ϕ is I-satisfiable (and I-unsatisfiable
otherwise). For instance, the fixed set of first-order interpretations may be the
set I1 of first-order interpretations on Σ that satisfy the above condition on
the domain (this is not restrictive provided there are infinitely many ground
terms), in which case I-satisfiability is simply the standard satisfiability in first-
order clausal logic, or the set IN of interpretations of domain N interpreting the
functions 0, 1,+ as usual. We say that I is compact if for every I-unsatisfiable
set of constraints S there exists a finite set S′ ⊆ S such that S′ is I-unsatisfiable.
It is well-known that I1 is compact [22] and that IN is not compact2.

Any ground T -graph may be transformed into a dom(I)-graph by replacing
the labels by their interpretations in I. More formally:

Definition 28. For all I ∈ I and for all ground T -graphs g we denote by [g]I

the graph such that F[g]I = Fg for all F ∈ {N,E,R} and L[g]I (α) = [Lg(α)]
I ,

for all α ∈ N̂g. For every ground T -clause C, we denote by [C]I the clause
obtained from C by replacing every T -graph g by [g]I . For all sets of c-clauses
Γ , we denote by [Γ ]I the set of clauses of the form [Cσ]I , where C ∈ Γ and σ
is a substitution mapping every variable in C to a ground term.

Note that by definition, all the labels of [g]I are elements of the domain of I.
Proposition 29 follows immediately from Definition 28.

Proposition 29. Let g, h be T -graphs, let I ∈ I and let σ be a ground substi-
tution with domain V(g) ∪ V(h). If g ≡ h then [gσ]I ≡ [hσ]I .

Definition 30. An I-interpretation is a pair (I,∼), where I ∈ I and ∼ is
a congruence on dom(I)-graphs. An I-interpretation (I,∼) validates a set of
c-clauses Γ (written (I,∼) |= Γ ) if ∼|= [Γ ]I .

5.2 Lifting the Calculus

In the constrained calculus, the equality of labels will not be checked when an
inference rule is applied. Instead, the corresponding conditions will be extracted

2 For instance, the set {n .
= i | i ∈ N} is unsatisfiable if n is interpreted as a natural

number, but admits no finite unsatisfiable subset.



from the considered graphs and added to the constraints of the conclusion. We
first introduce a relation stating that two T -graphs are identical up to their
labels. This relation is parameterized by a constraint that asserts conditions on
the labels ensuring that the graphs are identical (modulo I).

Definition 31. Let g, h be two T -graphs and let ϕ ∈ C. We write g =ϕ h if Ng =
Nh, Eg = Eh, Rg = Rh, and ϕ =

∧
α∈N̂g

(Lg(α)
.
= Lh(α)) (up to associativity

and commutativity of ∧).

Example 32. Consider the T -graphs g and h below, of root (ρ1). We have g =ϕ h,
with ϕ = (x

.
= 0 ∧ 0

.
= y).

g: ρ1

α :xβ :0

h: ρ1

α :0β :y

Every relation between T -graphs or T -clauses may be adapted in a similar
way, keeping the conditions on the nodes, edges and roots, and asserting con-
ditions ensuring that the label of every given node is unique (up to equality
modulo I). Definitions 33 and 34 lift the subgraph and subsumption relations,
respectively:

Definition 33. We write h ≤gϕ g if Nh ⊆ Ng; Eh ⊑ Eg; every node α ∈ Nh

occurring in Rg also occurs in Rh; if α ∈ Nh occurs in an edge in Eg \ Eh

then α ∈ Rh, and ϕ =
∧
α∈N̂h

Lh(α)
.
= Lg(α). The notation g{h ← i} may

be extended to the case where h ≤gϕ g (following Definition 7). Orthogonality is
extended accordingly (as it does not depend on labels).

Definition 34. We write C ≤sub
ϕ D if C and D are respectively of the form

(up to associativity and commutativity of ∨ and isomorphism):
∨n
i=1 gi ▷◁i hi,

and
∨n
i=1 g

′
i ▷◁i h′i ∨ D′, with gi =ϕi

g′i, hi =ψi
h′i (for all i = 1, . . . , n) and

ϕ =
∧n
i=1(ϕi ∧ ψi).

The notion of a merge is extended analogously:

Definition 35. A ϕ-merge of two T -graphs g1 and g2 is a T -graph h such that:
– Nh = Ng1 ∪Ng2 , Eh = Eg1 ⊔ Eg2 , and N̂h = N̂g1 ∪ N̂g2 .

– For every node α ∈ N̂h, we have Lh(α) = Lgi
(α), for some (arbitrarily

chosen) i = 1, 2 such that Lgi(α) is defined.
– ϕ =

∧
α∈N̂g1∩N̂g2

Lg1(α)
.
= Lg2(α).

We now lift the order relation. Let ≤I (for I ∈ I) be a family of well-
founded preorders on dom(I)-T -graphs that are closed under isomorphisms and
embeddings and contain ≤g. Let ≤ϕ (for ϕ ∈ C) be a family of pre-orders on
T -graphs satisfying the following conditions: g >ϕ h =⇒ g >ψ h, for all
constraints ϕ, ψ such that ψ |=I ϕ, and (I |= ϕ ∧ g >ϕ h) =⇒ [g]I >I [h]

I . The
simplest solution in practice is to order T -graphs according to their number of



nodes, in which case the order does not depend on I or ϕ: g ≤I h ⇐⇒ g ≤ϕ
h ⇐⇒ card(Ng) ≤ card(Nh). However, our framework is meant to be general
enough to cope with orders that take labels into account.

A literal L is maximal in a c-clause [C | ϕ] if there is no literal L′ ∈ C such
that L′ >ϕ L. It is eligible in a c-clause [C | ϕ] if L is a >ϕ-maximal literal in C.

We are now in the position to define the constrained inference rules. As for
the rules in Section 4.1, they apply modulo isomorphism. We assume as for
the standard resolution or superposition calculus that the premises share no
variables. In every rule, the conclusion inherits the constraints of the premises
together with additional conditions on the labels which makes the inference
valid. In all rules, the eligibility condition is tested after adding all the constraints
enabling the inference, as this yields the most restrictive condition, thus reducing
the branching factor.

Sp+ :
[g1 ≈ h1 ∨ C1 | ϕ1] [g2 ≈ h2 ∨ C2 | ϕ2]

[i{g1 ← h1} ≈ i{g2 ← h2} ∨ C1 ∨ C2 | ϕ1 ∧ ϕ2 ∧ ψ]

where:

1. i is a ψ-merge of g1 and g2 and g1 and g2 are not orthogonal;

2. gi ≈ hi is eligible in [gi ≈ hi ∨ Ci | ϕ1 ∧ ϕ2 ∧ ψ] (for all i = 1, 2);

3. gi ̸<ϕ1∧ϕ2∧ψ hi (for all i = 1, 2).

Sp− :
[g ≈ h ∨ C | ϕ] [i ̸≈ j ∨D | ψ]

[i{g← h} ̸≈ j ∨ C ∨D | ϕ ∧ ψ ∧ ξ]

where:

1. g ≤gξ i (note that ξ is uniquely defined by Definition 33);

2. g ≈ h and i ̸≈ j are eligible in [g ≈ h∨C | ϕ∧ψ∧ξ] and [i ̸≈ j∨D | ϕ∧ψ∧ξ],
respectively;

3. g ̸<ϕ∧ψ∧ξ h and i ̸<ϕ∧ψ∧ξ j.

F :
[g ≈ h ∨ g′ ≈ h′ ∨ C | ϕ]
[g ≈ h ∨ C | ϕ ∧ ψ ∧ ψ′]

where g ≈ h is eligible in [g ≈ h∨ g′ ≈ h′ ∨C | ϕ∧ψ∧ψ′], g =ψ g′, and h =ψ′ h′.

R :
[g ̸≈ h ∨ C | ϕ]
[C | ϕ ∧ ψ]

where g ̸≈ h is eligible in [g ̸≈ h ∨ C | ϕ ∧ ψ] and g =ψ h.



5.3 Soundness and Refutational Completeness

We establish the soundness and completeness of the constrained calculus, by
lifting the corresponding properties for the base calculus. Note that semi decid-
ability holds only if the base theory is semi-decidable3 and compact (otherwise
it is easy to see that unsatisfiability is not semi-decidable in general).

Lemma 36. The rules Sp+, Sp−, F and R (applied on c-clauses) are sound, i.e.,
for all I-interpretations (I,∼) and for all c-clauses [C | ϕ] deducible for a set of
premises Γ , we have (I,∼) |= Γ =⇒ (I,∼) |= [C | ϕ].

The redundancy criterion may be lifted as follows:

Definition 37. A c-clause [C | ϕ] is (strictly) I-redundant in a set of c-clauses
Γ if for all ground substitutions σ of domain V(C)∪V(ϕ) and for all I ∈ I such
that I |= ϕσ, the clause [Cσ]I is (strictly) redundant in [Γ ]I .

A set of c-clauses Γ is (strictly) saturated if every c-clause that is deducible
from Γ by the rules above is (strictly) I-redundant in Γ .

Theorem 38. Let Γ be a set of c-clauses. If Γ is unsatisfiable and strictly
saturated or Horn and saturated, then Γ contains a set of c-clauses {[□ | ϕI ] |
I ∈ I} such that for every I ∈ I, I |= ∃xI .ϕi, with xI = V(ϕI). If, moreover,
I is compact, then Γ contains a finite set of c-clauses {[□ | ϕi] | i = 1, . . . , n}
such that

∧n
i=1 ¬(∃x.ϕi) is I-unsatisfiable, with xi = V(ϕi).

5.4 Redundancy Testing

The redundancy criterion in Definition 37 is very general, but it may be difficult
to test in practice. We thus introduce a second notion of redundancy, defined
directly on constrained clauses, that is stronger and easier to decide.

Definition 39. Let [C | ϕ], [D | ψ] be two clauses and let Γ be a set of clauses.
Let x and y be the vectors of variables occurring in [C | ϕ] and [D | ψ], respec-
tively (we assume by renaming that x and y share no variable).

We say that [C | ϕ] is subsumed by [D | ψ] and we write [C | ϕ] ≥sub [D | ψ]
if there exists ξ ∈ C such that D ≤sub

ξ C and ϕ |=I ∃y.(ψ ∧ ξ).
We write [C | ϕ]→Γ [D | ψ] ([C | ϕ] demodulates to [D | ψ] w.r.t. Γ ) if C

is of the form g ▷◁ h ∨ E, D = g{i ← j} ▷◁ h ∨ E, and there exists a c-clause
[F | ξ] ∈ Γ (with free variables z) such that F = (i ≈ j)∨F ′, i ≤gξ′ g, F ′ ≤sub

ξ′′ E,
ϕ |=I ∃y.∃z.(ψ ∧ ξ ∧ ξ′ ∧ ξ′′), i >ξ j, F ′ <ξ (i ≈ j) and (i ≈ j) <ξ (g ▷◁ h).

A c-clause [C | ϕ] is redundant w.r.t. Γ iff one of the following conditions
holds: (1) ∃x.ϕ is I-unsatisfiable, with x = V(ϕ). (2) C contains two literals
g1 ≈ g2 and g′1 ̸≈ g′2, with gi =ϕi

g′i, and ϕ |=I ϕi (for all i = 1, 2); (3) C
contains a literal of the form g ≈ h with g =ψ h and ϕ |=I ψ; (4) [C | ϕ] ≥sub

[D | ψ], for some [D | ψ] ∈ Γ ; (5) [C | ϕ]→Γ [D | ψ] and [D | ψ] is redundant.
The notion of strictly redundant c-clause is defined in a similar way, removing
Item 2.
3 in the sense that there exists a semi-decision procedure to check whether a formula
in C is unsatisfiable.



Example 40. Consider the following T -graphs, of root ():

g: α : x β : y h: α : 0 β : z + 1 i: 0

We have g ≈ i ≤sub
ϕ h ≈ i, with ϕ = (x

.
= 0 ∧ y .

= z + 1 ∧ 0
.
= 0). Thus, if I

only contains the standard model of Presburger arithmetic, then [g ≈ i | y ̸≈ 0]
subsumes [h ≈ i | ⊤].

The following lemma states the relation between the new notion of redun-
dancy and I-redundancy (as defined in Definition 37).

Lemma 41. Let Γ be a set of c-clauses. If [C | ϕ] is (strictly) redundant w.r.t.
Γ then it is (strictly) I-redundant w.r.t. Γ .

Remark 42. By the previous definitions, checking whether a given c-clause is
(strictly) redundant involves testing the validity of entailments of the form
ϕ |=I ∃y.ψ, which may be infeasible in practice (for instance the problem is
undecidable if I contains all interpretations). Stronger conditions may be used
instead, e.g., one may check whether there exists a substitution σ such that ϕ is
of the form ψσ ∧ ψ, which is decidable.

6 Conclusion

We devised a constrained superposition calculus to test the satisfiability of sets
of clauses defined over graphs. Its soundness and refutational completeness was
established, modulo a redundancy criterion that captures the usual deletion and
simplification rules: subsumption, demodulation, deletion of clauses with trivial
equations and – in the case of Horn clauses only – deletion of clauses containing
complementary literals. The considered structures are rooted directed labeled
graphs, which are general enough to capture most existing equational graph
theories, such as those developed for quantum circuits. In contrast to [15], the
calculus is able to handle disjunctions as well as interpreted labels, and in con-
trast to [23], our solution avoids any encoding of graphs into terms, by defining
inference rules operating directly on graphs.

From a practical point of view, it would be interesting to get more general
redundancy criteria, to reduce the branching factor and improve the efficiency
of the procedure. In particular, is it possible to define a version of the calculus
in which tautology deletion is allowed, even for non Horn clauses? As evidenced
by Example 23, this would require to define a new equational factorization rule,
allowing for non trivial superposition inferences within a single clause.

Another interesting issue is to add variables denoting not only labels, but also
graphs. This would allow for instance to synthesize graphs satisfying some prop-
erties. As graphs can be viewed as functions with multiple inputs and outputs
(denoted by the roots) such an addition would yield a second order logic.



Finally, it would be interesting to identify fragments for which the calcu-
lus terminates, ensuring decidability of the satisfiability problem. In contrast to
terms, the calculus does not terminate (and the satisfiability problem is unde-
cidable) for ground unit clauses [15], hence strong restrictions on the shape of
the graphs are required to ensure termination.
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A Some Results On Sets and Multisets

We state two useful propositions about sets and multisets.

Proposition 43. Let S, S1, S2, T1, T2 be sets such that S1∪S2 ⊆ S, T1∩S2 ⊆ T2
and T2 ∩ S1 ⊆ T1. Then ((S \ S1) ∪ T1) \ S2) ∪ T2 = ((S \ S2) ∪ T2) \ S1) ∪ T1.

Proof. By symmetry, it is sufficient to prove that ((S \ S1) ∪ T1) \ S2) ∪ T2 ⊆
((S \S2)∪T2)\S1)∪T1. Let e ∈ ((S \S1)∪T1)\S2)∪T2. We distinguish several
cases.
– If e ∈ S and e ̸∈ S1∪S2, then by definition e ∈ (S\S2), thus e ∈ ((S\S2)∪T2)

and e ∈ ((S \ S2) ∪ T2) \ S1) ∪ T1.
– If e ∈ T1 and e ̸∈ S2 then it is clear that e ∈ ((S \ S2) ∪ T2) \ S1) ∪ T1.
– Now assume that e ∈ T2. If e ̸∈ S1 then e ∈ ((S \ S2) ∪ T2) \ S1) ∪ T1.

Otherwise, we have e ∈ T2 ∩ S1, thus by hypothesis e ∈ T1 and we deduce
that e ∈ ((S \ S2) ∪ T2) \ S1) ∪ T1.

Proposition 44. Let M,M1, N1,M2, N2 be multisets, with M1 + M2 ⊑ M .
Then:

((M −M1) +N1)−M2) +N2 = ((M −M2) +N2)−M1) +N1

Proof. Let e be an element, and let i ∈ {1, 2} and j def
= 3 − i. First assume that

e ̸∈M . Then (M−Mi)(e) =Mj(e) = 0, thus ((M−Mi)+Ni)−Mj)(e) = Ni(e)
and ((M −Mi) +Ni)−Mj) +Nj)(e) = Ni(e) +Nj(e).

Now assume that e ∈M . Then (M −Mi)(e) =M(e)−Mi(e) because Mi ⊑
M , and ((M − Mi) + Ni) = M(e) + Ni(e) − Mi(e). Since M1 + M2 ⊑ M ,
we have M(e) −Mi(e) ≥ Mj(e), and therefore ((M −Mi) + Ni) −Mj)(e) =
M(e) +Ni(e) −Mi(e) −Mj(e). Therefore ((M −Mi) +Ni) −Mj) +Nj)(e) =
M(e) +Ni(e) +Nj(e)−Mi(e)−Mj(e).

In both cases, we have (((M −M1) +N1)−M2) +N2)(e) = (((M −M2) +
N2)−M1) +N1)(e).

B Some Results on Graph Transformations

Proposition 45. Let g be an L-graph and let h be a subgraph of g. If i is sub-
stitutable for h in g then g{h← i} is an L-graph.

Proof. Let g′ = g{h ← i}. We have to check that the nodes occurring in edges

and as roots of g′ are all in Ng′ , that dom(Lg′) = N̂g′ and that Lg′(N̂g′) ⊆ L.
Consider a node α occurring in an edge in Eg′ . Then either α occurs in an edge
from Ei, in which case α ∈ Ni ⊆ Ng′ , or α occurs in an edge from Eg − Eh. In
the latter case, if α ̸∈ Nh then α ∈ Ng \Nh ⊆ Ng′ . Otherwise, since h ≤g g, by
Definition 5 we must have α ∈ Rh = Ri, so that α ∈ Ni ⊆ Ng′ . Now consider
a node α ∈ Rg′ = Rg. Then either α ̸∈ Nh, in which case α ∈ Ng′ , or (because

N̂h ⊆ N̂g) α ∈ Rh = Ri ⊆ Ng′ .



Let α ∈ dom(Lg′), we distinguish two cases. If α ∈ N̂i, then Lg′(α) ∈ L and

α ̸∈ Ri = Rh, which entails by Definition 5 that α ̸∈ Rg = Rg′ , thus α ∈ N̂g′ .

Otherwise, we must have α ∈ N̂g, so that Lg′(α) ∈ L and α ̸∈ Rg = Rg′ .

The following proposition states that subgraph replacement is compatible
with the isomorphism relation.

Proposition 46. Let g be an L-graph and let h be a subgraph of g. If i and i′

are both substitutable for h in g and i ≡ i′ then g{h← i} ≡ g{h← i′}.

Proof. Let µ′ be an N -renaming such that µ′(i) = i′. Then we have µ′(Ri) =
Ri′ = Rh = Ri. Since Ng ∩ (Ni ∪ Ni′) = ∅, there exists an N -renaming µ such

that µ(α) = µ′(α) for all α ∈ N̂i and µ(α) = α for all α ∈ Ng. Then µ(g) = g and
µ(i) = i′, and it is straightforward to verify that µ(g{h← i}) = µ(g{h← i′}).

C On the Completeness of the Ground Calculus

C.1 A Confluence Criterion for Graph Rewriting

In this section, we introduce some notions that will be used to represent models
of satisfiable sets. If → is a binary relation, then we denote by →∗ its reflexive
and transitive closure, and we write x →0|1 y if either x = y or x → y. A
relation is confluent (resp. locally confluent) if for all triples (x, y, z) such that
x →∗ y and x →∗ z, (resp. x → y and x → z) there exists u such that y →∗ u
and z →∗ u. It is subcommutative if for all triples (x, y, z) such that x → y
and x → z, there exists u such that y →0|1 u and z →0|1 u. It is well-known
that every well-founded binary relation that is locally confluent is confluent and
that every (possibly non well-founded) binary relation that is subcommutative
is confluent (see [1, Lemma 2.7.4]). Building on these results, we now devise a
new confluence criterion.

Definition 47. A relation → is ≤-subcommutative if →⊆≥ and for all triples
(x, y1, y2) such that x → y1 and x → y2, there exists u such that for every
i = 1, 2, either yi →0|1 u or there exists v < x such that yi → v and v →∗ u.

Lemma 48. Let ≤ be a total preorder and let < be the associated strict order.
If → is ≤-subcommutative and < is well-founded then → is confluent.

Proof. Assume that→ is not confluent, and let x be a minimal (w.r.t. ≤) element
such that x→∗ yi holds for i = 1, 2, and for every u, at least one yi →∗ u does
not hold. Let ↪→ be the relation defined as follows: x′ ↪→ y ⇐⇒ x′ ≤ x∧ (x′ →
y ∨ ∃z.(z < x ∧ x′ → z ∧ z →∗ y)). We have x ↪→∗ yi for i = 1, 2, since x→∗ yi,
and→⊆≥. By construction ↪→⊆→∗, hence ↪→∗⊆→∗ and there is no u such that
yi ↪→∗ u holds for i = 1, 2. Consequently, ↪→ is not confluent. We prove that
↪→ is subcommutative, which yields a contradiction. Consider x′, y′i such that
x′ ↪→ y′i, for all i = 1, 2, we prove that there exists u such that y′i ↪→0|1 u. By
definition of ↪→, we have x′ ≤ x and for i = 1, 2 either x′ → y′i or there exists



xi < x such that x′ → xi →∗ y′i. If x
′ < x, then by minimality of x, there exists

u such that y′i →∗ u, for all i = 1, 2. Since →⊆≥ and x > x′, we deduce that
y′i ≤ x′ < x, so that all the elements in the derivation from y′i to u are strictly
smaller than x, and therefore y′i ↪→0|1 u.

We now assume that x′ ̸< x, i.e., that x′ ≥ x, which entails that x and x′

are in the same equivalence class of the relation induced by the preorder ≤. We
distinguish several cases.
– If x′ → yi holds for all i = 1, 2, then, since → is ≤-subcommutative by

hypothesis, there exists u such that for every i = 1, 2, either y′i →0|1 u, or
there exists vi < x′ such that y′i → vi and vi →∗ u. Since y′i ≤ x′ ≤ x, this
entails that for every i = 1, 2 y′i ↪→0|1 u.

– Assume that x′ → y′1 and x′ → x2 →∗ y′2, where x2 < x. Since → is ≤-
subcommutative, we deduce as in the previous case that there exists u′ such
that y′1 ↪→0|1 u′ and x2 ↪→0|1 u′. This entails that x2 →∗ u′ and x2 →∗ y′2,
and by minimality of x, since x2 < x, we deduce that there exists u′′ such
that u′ →∗ u′′ and y′2 →∗ u′′. We have y′1 ↪→ u′ →∗ u′′ and y′2 →∗ u′′. Since
→⊆≥, all the elements in the derivation from y′2 to u′′ are smaller than y′2,
hence strictly smaller than x2 < x, thus we get y′2 ↪→0|1 u′′. Now consider the
derivation from y′1 to u′′. If y′1 = u′′ then y′1 ↪→0|1 u′′. If y′1 → z1 →∗ u′, for
some z1 < x, then we have y′1 ↪→ u′′ and the proof is completed. Otherwise,
by definition of ↪→, we must have y′1 → u′ →∗ u′′, and since →⊆≥ we have
u′ ≤ x2 < x. Thus y′1 ↪→ u′′ also holds in this case.

– The case where x→ y′2 and x→ x1 →∗ y′1 is symmetric.
– Assume that x′ → xi →∗ y′i holds for all i = 1, 2, with xi < x. Since →

is ≤-subcommutative, we deduce as in the previous cases that there exists
u′ such that xi ↪→0|1 u′ for all i = 1, 2, which entails that xi →∗ u′. By
minimality of x, we deduce that there exist ui (for all i = 1, 2) such that
u′ →∗ ui and y

′
i →∗ ui. Since→⊆≥ we have u′ ≤ xi < x, and by using again

the minimality of x, we deduce that there exists u such that ui →∗ u (for
i = 1, 2), so that y′i →∗ u. Since y′i ≤ xi < x, this entails that y′i ↪→0|1 u.

Definition 49. For every set of literals S, we denote by→S the relation defined
as follows: g →S h iff S contains an equation i ≈ j (modulo isomorphism) such
that i ≥ j and h = g{i← j}. We write g ↓S h if there exists an L-graph i such that
g→∗

S i and h→∗
S i. If C and D are clauses, we write C →S D if C = (g ▷◁ h)∨E

(with ▷◁∈ {≈, ̸≈}), D = (g′ ▷◁ h) ∨ E, and g→S g′.

Note that →S is not well-founded.

Proposition 50. For every set of literals S, →S is closed under isomorphisms
and embeddings.

Proof. Immediate.

With a slight abuse of notations, we shall consider →S as a relation between
≡-equivalence classes of L-graphs (e.g., we assume that g →∗

S h if g ≡ h). We
now introduce two useful restrictions of the relation →S .



Definition 51. We write h→S|g i if h→S i, h ≤ g and i ≤ g; and h→S|<g i if
h→S i and g > i.

Intuitively, →S|g is the restriction of →S to graphs that are smaller or equal
to g (w.r.t. ≤), while →S|<g considers only reductions yielding a graph that is
strictly smaller than g.

C.2 Model Construction

To establish refutational completeness, we show that a model can be constructed
for every (strictly) saturated set of clauses. We shall consider either strictly sat-
urated sets of arbitrary clauses, or saturated sets of Horn clauses, the difference
being that in the latter case, clauses containing two complementary literals can
be dismissed as redundant. For the sake of conciseness, the two cases will be
handled simultaneously, as both constructions follow the same pattern and only
differ at some key points. We consider a pre-order ⪯ on L-graphs satisfying the
following conditions:

1. ⪯ is total;
2. the associated strict order ≺ is well-founded;
3. ≤⊆⪯;
4. g ⪯ h ∧ h ⪯ g =⇒ g ≡ h.

Note that ≺ is not required to be closed under embeddings, since by Example 20
no such order would possibly exist. It is easy to check that ≺ exists: it suffices
for example to extend the relation < by ordering the L-graphs occurring in the
same equivalence classes of ≃ arbitrarily. Since these equivalence classes contain
finitely many elements and < is well-founded by hypothesis, ≺ is well-founded.

We use sets of equations to represent interpretations. The satisfiability rela-
tion is defined in the following way (note it does not in general satisfy the law
of excluded middle, i.e., we may have S ̸|=Γ g ≈ h and S ̸|=Γ g ̸≈ h, if the
considered set of clauses is not Horn):

Definition 52. Let S be a set of equations and let Γ be a set of clauses. We
write S |=Γ E if and only if one of the following conditions holds:

1. E is a negative literal g ̸≈ h and g ̸↓S h.
2. E is a positive literal g ≈ h, Γ is Horn and g ↓S h.
3. E is a positive literal g ≈ h, and one of the following holds: (i) g ≡ h;

(ii) g ≈ h ∈ S; (iii) S contains an equation i ≈ j such that (i ≈ j) < (g ≈ h),
j < i, i ≤g g and S |=Γ g{i← j} ≈ h.

4. E is a clause and contains a literal L such that S |=Γ L.
5. E is set of clauses and for all C ∈ E, S |=Γ C.

We associate every set of clauses Γ with a set of equations EΓ as follows:

Definition 53. Let Γ be a set of clauses. For every equation g ≈ h, we have
g ≈ h ∈ EΓ iff Γ contains a clause C = g ≈ h ∨D with:



– g ≈ h ≻ D;
– EΓ ̸|=Γ D.

Observe that EΓ is well-defined, since the condition EΓ ̸|=Γ D only depends
on the equations in EΓ that are strictly ≺-smaller than g ≈ h. Indeed, for all
literals i ▷◁ j occurring in D, two cases may occur:
– ▷◁ is ≈, and in this case Γ cannot be Horn, hence by definition of |=Γ the

condition EΓ ̸|=Γ i ≈ j depends only on the equations in EΓ that are ≺-
smaller than i ≈ j ≺ g ≈ h.

– ▷◁ is ̸≈ and (i ̸≈ j) ̸> (g ≈ h) (otherwise g ≈ h ̸≻ D). By definition of the
function mset() and of the order < on literals, this entails that the L-graphs
i, j are both <-smaller than g and h, so that all the L-graphs occurring in any
derivation i→∗

EΓ
k or j→∗

EΓ
k are also <-smaller than g and h. Consequently,

the condition EΓ ̸|=Γ i ≈ j , that is equivalent to i ̸↓EΓ
j, depends only on

equations in EΓ that are ≺-smaller than g ≈ h.

Definition 54. For every set of clauses Γ , we denote by Ω(Γ ) the set of L-
graphs g such that for all L-graphs h < g, →EΓ |h is confluent.

Definition 55. For every L-graph g and for every set of clauses C, we write
g≫ C iff for every L in C, L ̸> (g ≈ g). For every set of clauses Γ , we denote
by Γg the set of clauses C ∈ Γ such that g≫ C.

Note that by definition of the order on literals, if g ≫ C then the negative
(resp. positive) literals in C contain no L-graph h such that g ≤ h (resp. g < h).

Proposition 56. If S |=Γ h1 ≈ h2, g ≫ (h1 ≈ h2) and S is not Horn, then
there exist L-graphs i1, i2 such that hi →∗

S|<g ii for i = 1, 2 and either i1 ≡ i2 or
i1 ≈ i2 ∈ S.

Proof. By a straightforward induction on the relation |=Γ , using Condition 3 in
Definition 52.

Lemma 57. Let ⊴ be any ordering on literals such that < ⊆ ⊴, extended to
clauses using the multiset extension. Let Γ be a set of clauses, let g ∈ Ω(Γ ) and
let C be a clause such that g≫ C and EΓ ̸|=Γ C. If C is strictly redundant w.r.t.
Γ then Γ contains a clause E ⊴C such that EΓ ̸|=Γ E. Moreover, if Γ is Horn,
the same property holds if C is redundant.

Proof. We establish the two results simultaneously, by induction on the set of
strictly redundant (resp. redundant) clauses. We distinguish several cases, fol-
lowing Definition 24. The first item is specific to the case of redundant and Horn
clauses, the other items are shared.

1. Assume that C contains two literals g1 ≈ g2 and g′1 ̸≈ g′2, with gi ≡ g′i for
i = 1, 2. Since EΓ ̸|=Γ C, we must have EΓ ̸|=Γ g1 ≈ g2 and EΓ ̸|=Γ g′1 ̸≈ g′2.
The latter statement is equivalent to g′1 ↓EΓ

g′2. This case is specific to the
case where C is redundant, hence by the hypothesis of the lemma, S must be
Horn, thus by definition of |=Γ , the former statement entails that g1 ̸↓EΓ

g2.
Since →EΓ

is closed under isomorphisms (Proposition 50), we deduce that
g′1 ̸↓EΓ

g′2 a contradiction.



2. Assume C contains a literal of the form g′ ≈ h with g′ ≡ h. Then EΓ |=Γ
g′ ≈ h by Definition 52, thus EΓ |=Γ C, which contradicts the hypothesis of
the lemma.

3. Assume C ≥sub D, for some D ∈ Γ . We have EΓ ̸|=Γ C, hence, by definition
of |=Γ , necessarily EΓ ̸|=Γ D. By the induction hypothesis, Γ contains a
clause E such that E⊴D and EΓ ̸|=Γ E. Since C ≥sub D necessarily C⊵D,
hence E ⊴ C and the proof is completed.

4. Assume C →Γ D and D is strictly redundant (resp. redundant). Since C →Γ

D, C and D are respectively of the form (g′ ▷◁ h) ∨ C ′ and (g′{i ← j} ▷◁
h) ∨ C ′, where ▷◁∈ {≈, ̸≈}, i > j and (g′ ▷◁ h) > (i ≈ j). Furthermore, Γ
contains a clause F = (i ≈ j) ∨ F ′, with F ′ < (i ≈ j) and F ′ ≤sub C ′. Since
EΓ ̸|=Γ C we deduce that EΓ ̸|=Γ C ′, thus EΓ ̸|=Γ F ′, so that (i ≈ j) ∈ EΓ
(because F ′ < i ≈ j). Since ≥ is closed under embeddings and i > j, we
have g′ > g′{i ← j}, so that g′ ⊵ g′{i ← j} and C ⊵ D. Thus g ≫ D. If
EΓ ̸|=Γ D, then, by the induction hypothesis, Γ contains a clause E such
that E⊴D⊴C and EΓ ̸|=Γ E, thus the proof is completed. Now, we assume
that EΓ |=Γ D and we derive a contradiction. Since EΓ ̸|=Γ C ′, necessarily
EΓ |=Γ (g′{i← j} ▷◁ h). We distinguish several cases.
– If ▷◁= ̸≈ then since g≫ C, we must have g > g′ and g > h. By definition

of Ω(g), this entails that →EΓ |g′ is confluent. Also, since EΓ ̸|=Γ C, by
definition of |=Γ we have g′ ↓EΓ

h, so that g′ ↔∗
EΓ |g′ h (because h ≤ g′

and →EΓ
⊆≥). Since (i ≈ j) ∈ EΓ and i > j we have g′ →EΓ

g′{i ← j}.
We deduce that g′{i ← j} ↔∗

EΓ |g′ h, and since →EΓ |g′ is confluent, this

entails that g′{i ← j} ↓EΓ
h, which contradicts the fact that EΓ |=Γ

g′{i← j} ̸≈ h.
– If ▷◁=≈ and Γ is Horn, then by Definition 52, g′{i ← j} ↓EΓ

h. Since
(i ≈ j) ∈ EΓ and i > j we have g′ →EΓ

g′{i ← j}, thus g′ ↓EΓ
h, which

contradicts the fact that EΓ ̸|=Γ C.
– If ▷◁=≈ and Γ is not Horn, then since EΓ ̸|=Γ C, we have EΓ ̸|=Γ g′ ≈ h.

Since i ≈ j ∈ EΓ , (i ≈ j) < (g′ ≈ h) and j < i, this entails in particular
that EΓ ̸|=Γ g′{i← j} ≈ h.

Lemma 58. Let Γ be a set of clauses such that Γ is strictly saturated or both
Horn and saturated, and □ ̸∈ Γ . If g ∈ Ω(Γ ) then EΓ |=Γ Γg.

Proof. For every negative literal L = (h ̸≈ i) such that h ↓EΓ
i we denote by

π(L) the minimal (w.r.t. the multiset extension of the usual order on natural
numbers) unordered pair of natural numbers {n,m} such that there exists an
L-graph j with h →n

EΓ
j and i →m

EΓ
j. If h ↓EΓ

i does not hold or if L is positive
then π(L) is defined as {0, 0}. We define a strict order ▷ on literals as follows:
L ▷ M iff one of the following conditions holds: (i) L > M ; (ii) L ≃ M and
π(L) > π(M); (iii) L ≃M , π(L) = π(M) and L ≻M . The order ▷ is extended to
clauses using the multiset extension. Since < and ≺ are well-founded, it is easy
to check that ▷ is a well-founded strict order that is total on clauses. Assume
that EΓ ̸|=Γ Γg and let C be the ▷-minimal clause in Γg such that EΓ ̸|=Γ C.
Since by hypothesis □ ̸∈ Γ , C cannot be empty, hence must be of the form



L∨D, where L is ≺-maximal in C. Note that this entails that L is eligible in C
because <⊆≺. We distinguish several cases.
– Assume that L is positive. If L ≻ D, then since EΓ ̸|=Γ C we must have
EΓ ̸|=Γ D hence L ∈ EΓ , by definition of EΓ . This entails that EΓ |= L,
hence EΓ |= C, which contradicts our assumption. Consequently, L ̸≻ D,
and since L is ≺-maximal in C and ⪯ is total, this implies that D contains a
literal L′ such that L′ ≡ L. By renaming (since the rules are defined modulo
isomorphism), we may assume that D = L∨E. Then the rule F applies and
generates the clause L ∨ E. We have L ∨ E ◁ L ∨ L ∨ E = C, and since
EΓ ̸|=Γ C, necessarily EΓ ̸|=Γ L ∨ E. As Γ is strictly saturated (resp. Horn
and saturated), L ∨ E must be strictly redundant (resp. redundant) in Γ .
Moreover, g≫ L∨E, since g≫ C. By Lemma 57, we deduce that Γ contains
a clause C ′ such that C ′ ⊴ L ∨ E and EΓ ̸|=Γ C ′. As L ∨ E ◁ C, we have
C ′ ◁ C, which contradicts the minimality of C.

– Assume that L is a negative literal of the form h ̸≈ h′, with h ≡ h′. By
renaming, we assume that h′ = h. Then the rule R applies, yielding the con-
clusion D. Since EΓ ̸|=Γ C = L ∨D, it is clear that EΓ ̸|=Γ D. Furthermore,
g ≫ D because g ≫ C. By Lemma 57, EΓ contains a clause E such that
EΓ ̸|=Γ E and E ⊴D ◁ C, which contradicts the minimality of C.

– Assume that L is a negative literal h ̸≈ i, with h ̸≡ i. Since ≺ is total on
L-graphs , we may assume by symmetry that h ≻ i, which entails that h ̸< i.
Since EΓ ̸|=Γ L, necessarily h ↓EΓ

i by Definition 52, so that π(L) = {n,m}
with either n > 0 or m > 0 (because h ̸≡ i). By definition, we have h→n

EΓ
j

and i→m
EΓ

j, for some L-graph j. We distinguish two cases.

• Assume that n > 0. Then we have h →EΓ
h′ →n−1

EΓ
j, and by definition

h′ is of the form h{k ← k′}, where k′ ≤ k and k ≈ k′ ∈ EΓ . This entails
that EΓ contains a clause of the form (k ≈ k′) ∨E, where EΓ ̸|=Γ E, and
k ≈ k′ ≻ E. Hence, in particular, k ≈ k′ ̸< E. Then the rule Sp− applies
from (k ≈ k′) ∨ E into C, yielding the conclusion (h{k ← k′} ̸≈ i) ∨ D.
Since k ≥ k′ and ≥ is closed under embeddings, we deduce that L ≥
(h{k ← k′} ≈ i), Now EΓ ̸|=Γ (h{k ← k′} ̸≈ i) ∨D because h′ ↓EΓ

i, and
by definition of π, we have π(h{k ← k′} ≈ i) = {n − 1,m} < {n,m}.
Thus L ▷ (h{k ← k′} ≈ i) and therefore C ▷ (h{k ← k′} ̸≈ i) ∨ D). The
latter property entails that g≫ (h{k← k′} ̸≈ i)∨D), and by Lemma 57,
Γ contains a clause E ⊴ (h{k ← k′} ̸≈ i) ∨D) ◁ C such that EΓ ̸|=Γ E.
This contradicts the minimality of C.

• If n = 0 then i →EΓ
h, thus i ≥ h and i ̸< g. Then i is <-maximal in L

and we may apply the same reasoning as in the previous case.

Corollary 59. Let Γ be a set of clauses such that Γ is either strictly saturated
or both Horn and saturated, and □ ̸∈ Γ . If g ∈ Ω(Γ ), g ≫ C and C is strictly
redundant w.r.t. Γ then EΓ |=Γ C. Furthermore, if Γ is Horn, the same property
holds when C is redundant.

Proof. The result is an immediate consequence of Lemmata 57 and 58.



Lemma 60. Let Γ be a set of clauses and let g ∈ Ω(Γ ). Let (h ≈ i) ∨ C be
a clause such that g ≫ (h ≈ i) ∨ C and EΓ ̸|=Γ C. If Γ is not Horn and
(h ≈ i)∨C is strictly redundant w.r.t. Γ then there exist L-graphs h′ and i′ such
that h →∗

EΓ |<g h′, i →∗
EΓ |<g i′ and either h′ ≡ i′ or h′ ≈ i′ ∈ EΓ . The same

property holds if Γ is Horn, C is negative and (h ≈ i)∨C is redundant w.r.t. Γ .

Proof. By Corollary 59 we have EΓ |=Γ (h ≈ i) ∨C. Since by hypothesis EΓ ̸|=Γ
C, necessarily EΓ |=Γ (h ≈ i). If Γ is not Horn, then this entails by Proposition 56
that the L-graphs h′, i′ satisfying the property of the lemma exist. Now, assume
that Γ is Horn, which entails by hypothesis that C is negative. The proof is
by induction on the set of redundant clauses. By definition of the relation |=Γ
(in the Horn case), we have h ↓EΓ

i, hence there exists an L-graph g′ such that
h →∗

EΓ
g′ and i →∗

EΓ
g′. If g > h and g > i, this entails (as →EΓ

⊆≥) that
h→∗

EΓ |<g g′ and i→∗
EΓ |<g g′, hence the proof is completed. We now assume that

either g ≤ h or g ≤ i. Since g≫ (h ≈ i)∨C, and C is negative, all the L-graphs
occurring in C are >-smaller than g. By definition of the order on literals, this
entails that (h ≈ i) > C. We distinguish several cases, following Definition 24.
– Assume that (h ≈ i) ∨ C contains two literals g1 ≈ g2 and g′1 ̸≈ g′2 with

gi ≡ g′i (for all i = 1, 2). If (g1 ≈ g2) and (g′1 ̸≈ g′2) both occur in C, then we
get a contradiction with the hypothesis EΓ ̸|=Γ C, as it is done in the proof
of Lemma 57 (first item). Otherwise, we must have (g′1 ̸≈ g′2) > (g1 ≈ g2), by
definition of the order on literals, which contradicts the fact that h ≈ i > C.

– Assume that (h ≈ i)∨C contains a literal g′ ≈ g′′, with g′ ≡ g′′. If (h ≈ i) =
(g′ ≈ g′′) then h ≡ i, hence the proof is completed (with h′ = h and i′ = i).
Otherwise g′ ≈ g′′ occurs in C, and EΓ |=Γ g′ ≈ g′′ by definition of |=Γ , thus
EΓ |=Γ C, which contradicts the hypothesis of the lemma.

– Assume that (h ≈ i) ∨ C ≥sub D, with D ∈ EΓ . If D ≤sub C, then we get
EΓ ̸|=Γ D (since EΓ ̸|=Γ C), which contradicts Lemma 58. Otherwise, D is
of the form h ≈ i ∨ C ′ with C ′ ≤sub C. We deduce that EΓ ̸|=Γ C ′ which,
as (h ≈ i) > C, entails, by definition of EΓ , that h ≈ i ∈ EΓ . This completes
the proof, with h′ = h and i′ = i.

– Assume that (h ≈ i) ∨ C →Γ D, and that D is redundant w.r.t. Γ . By
definition (h ≈ i) ∨ C and D are respectively of the forms j1 ≈ j2 ∨ C ′ and
j1{k1 ← k2} ≈ j2 ∨ C ′, and Γ contains a clause k ≈ k′ ∨ E with k > k′,
(k ≈ k′) > E′ and E ≤sub C ′.
If (h ≈ i) ̸= (j1 ≈ j2), then we have D = (h ≈ i) ∨D′, with D′ < D < h ≈ i,
so that g≫ D, and we can prove, as it is done in the proof of Lemma 58, that
EΓ ̸|=Γ D′. Then the proof follows by the induction hypothesis. Now assume
that (h ≈ i) = (j1 ≈ j2). By symmetry, we only consider the case where
h = j1 and i = j2. Note that we have C ′ = C in this case, thus E ≤sub C,
and therefore EΓ ̸|=Γ E. This entails, by definition of EΓ , that k ≈ k′ ∈ EΓ .
Since j1{k1 ← k2} ≈ j2 < h ≈ i, we have g≫ D. By the induction hypothesis,
there exist h′, i′ such that j1{k1 ← k2} →∗

Γ |<g h′ and i →∗
Γ |<g i′ and either

h′ ≡ i′ or h′ ≈ i′ ∈ EΓ . This entails that h→∗
Γ |<g h′ (since g ≥ h, k ≈ k′ ∈ EΓ

and k > k′) hence the proof is completed.



Lemma 61. Let Γ be a set of clauses. Assume that Γ is strictly saturated or
both Horn and saturated, and that □ ̸∈ Γ . If g ∈ Ω(Γ ) then →EΓ |g is confluent.

Proof. We prove that →EΓ |g is ≥-subcommutative, which entails the result by
Lemma 48. Let h, h1, h2 be L-graphs such that h→EΓ |g hi for i = 1, 2. Note that
this entails that g ≥ h and g ≥ hi. We have to prove that there exists a L-graph
h′ such that for all i = 1, 2, either hi →0|1

EΓ |g h′ or hi →EΓ |g h′i →∗
EΓ |g h′ for some

L-graph h′i with h′i < h. By definition, there exist equations ii ≈ ji in EΓ such
that hi = h{ii ← ji} and ii ≥ ji.

– Assume that i1 and i2 are orthogonal in h. By Proposition 12, we deduce that
hi{ij ← jj} = hj{ii ← ji}, for all (i, j) ∈ {(1, 2), (2, 1)}. Let h′ = h1{i2 ← j2}.
By definition, we have hi →EΓ

h′ for i = 1, 2, and hi →EΓ |g h′ since→EΓ
⊆≥.

Hence the proof is completed.
– Now, assume that i1 and i2 are not orthogonal. By Lemma 16, i1 and i2

admit a merge i, and i ≤g g. By definition of EΓ , Γ contains clauses of the
form ii ≈ ji ∨ Ci, with EΓ ̸|=Γ Ci for i = 1, 2 and (ii ≈ ji) ≻ Ci, so that
(ii ≈ ji) ̸< Ci (since <⊆≺). Therefore ii ≈ ji is eligible in ii ≈ ji ∨ Ci
and (as i1 and i2 are not orthogonal) the rule Sp+ applies, yielding D =
i{i1 ← j1} ≈ i{i2 ← j2} ∨ C1 ∨ C2. As Γ is strictly saturated (resp. Horn
and saturated), D must be strictly redundant (resp. redundant). Note that
i ≫ D, since i ≥ ii for i = 1, 2. Since EΓ ̸|=Γ Ci, this entails by Lemma 60
that there exist L-graphs ki (for i = 1, 2) such that i{ii ← ji} →∗

EΓ |<i ki and
either k1 ≡ k2 or k1 ≈ k2 ∈ EΓ . Assume by symmetry that k1 ≥ k2. We get

i{i1 ← j1} →∗
EΓ |<i k1 →0|1

EΓ
k2, furthermore, if the length of the derivation

from i{i1 ← j1} to k2 is strictly greater than 1, then the second L-graph
in the derivation is necessarily strictly >-smaller than i, by definition of
→EΓ |<i. Similarly, if the length of the derivation from i{i2 ← j2} to k2 is
strictly greater than 1, then the second L-graph in the derivation is strictly
>-smaller than i. Since →EΓ

is closed under embeddings, this entails that
for every i = 1, 2: h{i ← i{ii ← ji}} →∗

EΓ
h{i ← k2}. By Proposition 9,

h{i ← i{ii ← ji}} = h{ii ← ji} = hi. Moreover, if the derivation from hi
to g{i ← k2} is of length strictly greater than 1, then the second L-graph
occurring in it must be strictly >-lower than h (since the subgraph i is
replaced by a strictly lower L-graph and > is closed under embeddings).
Thus the proof is completed (with h′ = g{i← k2}).

D Lifting

The following propositions state that the lifted relations satisfy the expected
properties:

Proposition 62. For all T -graphs g, h, for all I-interpretations I and for all
ground substitutions of domain V(g)∪V(h): [gσ]I = [hσ]I ⇐⇒ ∃ϕ.(g =ϕ h∧I |=
ϕσ).



Proposition 63. For all T -graphs g, h, for all I-interpretations I and for all
ground substitutions of domain V(g) ∪ V(h): [gσ]I ≤g [hσ]I ⇐⇒ ∃ϕ.(g ≤gϕ
h ∧ I |= ϕσ).

Proposition 64. Let g, h, i be T -graphs, let ϕ ∈ C and let I ∈ I. Let σ be a
ground substitution of domain V(g) ∪ V(h) ∪ V(i). If h ≤gϕ g and pr(h) = pr(i)

then: [g{h← i}σ]I = [gσ]I{[hσ]I ← [iσ]I}.

Proof. Let g1 = g{h ← i} and g2 = [gσ]I{[hσ]I ← [iσ]I}. We assume by re-

naming that the sets Ng, N̂h and N̂i are disjoint, and that Rh = Ri. As sub-
stitutions and interpretations affect only labels, we have F[jσ]I = Fj, for all

F ∈ {N,E,R, N̂} and for all T -graphs j. By Definition 7, we get Ng2
= (N[gσ]I \

N[hσ]I ) ∪ N[iσ]I = (Ng \ Nh) ∪ Ni = Ng1
= N[g1σ]I . Similarly, Eg2

= E[g1σ]I .
Moreover, still by Definition 7: Rg2 = R[gσ]I = Rg = Rg1 = R[g1σ]I . Finally,

consider a node α ∈ Ng2 . If α ∈ N̂[iσ]I = N̂i, we have: Lg2(α) = L[iσ]I (α) =

[Li(α)σ]
I = [Lg1

(α)σ]I = L[g1σ]I (α). Otherwise, we get Lg2
(α) = L[gσ]I (α) =

[Lg(α)σ]
I = [Lg1(α)σ]

I = L[g1σ]I (α).

Proposition 65. For all T -graphs g, h, for all I-interpretations I and for all
ground substitutions of domain V(g) ∪ V(h), [gσ]I and [hσ]I admit a merge i iff
g and h admit a ϕ-merge j such that I |= ϕσ.

Proof. Assume that i is a merge of [gσ]I and [hσ]I . Then: Ni = N[gσ]I ∪N[hσ]I =

Ng ∪Nh, Ei = E[gσ]I ⊔ E[hσ]I = Eg ⊔ Eh, N̂i = N̂[gσ]I ∪ N̂[hσ]I = N̂g ∪ N̂h, and

L[gσ]I (α) = L[hσ]I (α), for all α ∈ N̂g ∩ N̂h. Consequently, [Lgσ(α)]
I = [Lhσ(α)]

I ,

for all α ∈ N̂g ∩ N̂h. Let j the T -graph defined as follows: Fj = Fi for all

F ∈ {N,E,R, N̂}, and for all α ∈ N̂i, Lj(α) = Lg(α) if α ∈ N̂g, otherwise
Lg′(α) = Lh(α). Let ϕ =

∧
α∈N̂g∩N̂h

(Lg(α)
.
= Lh(α)). By construction, j is a

ϕ-merge of g and h, I |= ϕσ and [jσ]I = i. The converse is straightforward.

E On the Completeness of the Constrained Calculus

Proposition 66. Let L = g ▷◁ h be a literal, and let [C | ϕ] be a c-clause. Let
I ∈ I and let σ be a ground substitution of domain V(C) ∪ V(ϕ). If [Lσ]I is
eligible in [(L ∨ C)σ]I and I |= ϕσ, then L is eligible in [L ∨ C | ϕ].

Proof. By definition [Lσ]I is <I -maximal in [(L∨C)σ]I , and by definition of the
order <ϕ, since I |= ϕσ, L must be <ϕ-maximal in L ∨ C, so that L is eligible
in [L ∨ C | ϕ].

Lemma 67. Let Γ be a set of c-clauses. If Γ is (strictly) saturated then for
every I ∈ I, [Γ ]I is (strictly) saturated (w.r.t. the order <I).

Proof. Let C be a clause deducible from [Γ ]I by a single application of one of the
rules Sp+, Sp−, F or R. We show that C is (strictly) redundant w.r.t. [Γ ]I . We



provide the proof only for the rule Sp+, the other cases are handled in a similar
way. By definition, [Γ ]I contains premises gi ≈ hi∨Ci (for i = 1, 2), where every
literal gi ≈ hi is eligible in its clause, gi ̸<I hi, g1 and g2 are not orthogonal and
admit a merge g, and C = (g{g1 ← h1} ≈ g{g1 ← h1}) ∨ C1 ∨ C2. By definition
of [Γ ]I , this entails that Γ contains two c-clauses [g′i ≈ h′i∨C ′

i | ϕi] (for i = 1, 2),
with gi = [g′iσi]

I , hi = [h′iσi]
I , Ci = [C ′

iσi]
I and I |= ϕiσi (where σi is a ground

substitution of domain V(g′i) ∪ V(h′i) ∪ V(C ′
i) ∪ V(ϕi)). We may assume by α-

renaming that the c-clauses [g′i ≈ h′i∨C ′
i | ϕi] share no variable, and we denote by

σ the composition of σ1 and σ2. Since g is a merge of g1 and g2, by Proposition
65, there exists a ϕ-merge g′ of g′1 and g′2 such that [g′σ]I = g and I |= ϕσ. By
Proposition 66, g′i ≈ h′i is eligible in [g′i ≈ h′i∨C ′

i | ϕ1∧ϕ2∧ψ] (for all i = 1, 2). If
g′i <ϕ∧ϕ1∧ϕ2

h′i then we get (by definition of the order <ϕ∧ϕ1∧ϕ2
) [g′i]

I < [h′iσ]
I ,

i.e., gi < hi, which contradicts our assumption. Thus g′i ̸<ϕ∧ϕ1∧ϕ2 h′i. Since g1
and g2 are not orthogonal, g′1 and g′2 cannot be orthogonal (as the notion of
orthogonality does not depend on labels). Consequently, Sp+ applies, yielding:
C ′ = [g′{g′1 ← h′1} ≈ g′{g′2 ← h′2} ∨ C ′

1 ∨ C ′
2 | ϕ ∧ ϕ1 ∧ ϕ2]. Using Proposition

64, we get [g′{g′i ← h′i}σ]I = g{gi ← hi}, for all i = 1, 2, so that [C ′σ]I = C. By
Definition 37, this entails that C is (strictly) redundant w.r.t. [Γ ]I .


