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Abstract
In this paper, we achieve a modular and fairly concise presentation

of the semantic ideas that lie behind the multiplicative-additive fragment
of indexed linear logic. We generalize the basic definition of its syntax,
utilizing objects of appropriate categories, referred to as “loci”, in place
of sets of resources. We prove that this generalized proof system enjoys
cut-elimination. We then present its semantics, exploiting the notion of
categorical fibration. We interpret formulae defined under a loci as ele-
ments of its fiber. We observe that, while multiplicative connectives (i.e.,
the star-autonomous structure) are confined to each fiber, the additives
(i.e., the product and coproduct structures) live within the entire fibra-
tion. Finally, we build various examples of categorical models for our
system.

1 Introduction
Indexed Linear Logic (IndLL) has been introduced by Bucciarelli and Ehrhard [3,
4] as a syntactic counterpart to some aspects of linear logic relational semantics.
The semantic analysis brought to the discovery that one could define an exten-
sion of linear logic, where formulae and proofs depends on a choice of resources.
A significant outcome of this extension is the capability to disregard this choice
and recover standard linear logic formulae and proofs. Intuitively, an indexed
formula can be understood as an indexed family of elements that live in the
relational interpretation of its underlying linear logic formula.

The present paper, together with its sequel, are an attempt to modularize
and model IndLL, twenty years after. Since the initial publications on the topic,
a number of logics have undergone modularization, that is, they have been de-
fined with respect to some external algebraic structure. This structure provides
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means for analysis and/or inference, but is irrelevant from a purely logical per-
spective. Examples of such logics include type systems with graded monads
and/or graded exponentials [11, 9], which are structurally similar to indexed
linear logic. However, these systems are deficient in two key areas:

1. The ability to analyse computational resources.

2. The capacity to capture the structure of LL-additives, that correspond to
algebraic data types in functional languages.

Relations between Resources: towards relational abstraction. As
shown recently [14], type system with graded exponentials [2, 12] can be con-
sidered as a higher order variant of non-relational and backward imperative
abstract interpretations. Specifically, it has been shown that the second can be
simulated within the first-order fragment of the first. The backward restriction,
which arises from the utilization of graded comonads rather than graded mon-
ads, is not a significant limitation. However, the non-relational restriction is
critical for many practical uses of abstract interpretation such as the so called
polyhedral interpretation (that use linear inequations between variables).

At higher order, this absence of relations is even more restrictive, as the
scope of relations is much more varied. In our work, we are interested in a
specific kind of relation: one that would bind differently each occurrence of the
same argument/result.

To give some intuition about the shortcomings of graded systems that we
aim to address, we discuss a particular example. Consider the higher order sum
function that takes a function f on integers, an integer n and sum each f(n).
One can bound the number of times the function is called and the size of the
integer, but this has to be done separately so that, the type of our program
would be something like !≤3(N≤3 → N) →!1N≤3 → N which says that given
an integer bounded by 3 you use your function at most 3 times over integers
bounded by 3, and you can do this for every n in place of 3. Of course, we
can have a polymorphic version ∀n, !≤n(N≤n → N)→!1N≤n → N. In our work,
we focus on an orthogonal generalization that consists in bounding differently
each usage of f . In this case, we would like to say that given an integer n the
function is used n times, one for each i ≤ n: ∀n, !i∈[1...n](Nn → N)→!1N≤n → N.
This kind of analysis could be useful, for example, to quantify the speedup of a
memoized function call (i.e., from Call-by-Need).

Solving this kind of issues is one of our long-term goals, and we believe that
they can be properly addressed by means of indexed exponentials. This is one
the main sources for our interest in indexed linear logic.

Additive Behaviour: recovering Seely isomorphism. In BLL gen-
eralizations, additives are treated by forced over/under approximation. For
example, in a list structure we cannot distinguish the behaviour of the first el-
ement from the others. This is often acceptable for coarse analyses but critical
for fined grained ones. In Indexed linear logic, the additives are central and their
structure has to be respected. This is, to our knowledge, a unique trait among
logics offering an access to the quantitative behaviour of the typed program.

Additives are crucial to treat algebraic data types, but also for reasoning
on integers or even Booleans. Over-approximations of the additive “or” means
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that our analysis will always take the sup when treating conditionals, which is
unsatisfactory. Over-approximations of the additive “and” is even worst: if one
use one component of a tuple and then another, the tuple is considered used
twice.

From a purely linear logic point-of-view, disregarding additives is also dan-
gerous. Seely isomorphisms !A⊗!B ≃!(A & B) are indeed crucial to properly
understand the subtleties of the linear structure.

IndLL: a logic of Intersection Types. Introduced in the early 2000’s
to study sequentiality, indexed linear logic (IndLL) [3, 4] was never investigated
structurally despite its most fundamental property: it is equivalent to uniform
intersection types [7]. By uniform we mean intersection types that are refinement
of a same formula of linear logic (or the same simple type when restricted to
the λ-calculus). Hence, Intersections are only allowed between types of the
same ‘shape’. The main interest, for us, is that this uniform restriction allows
intersection types to be presented as a logic system contained in IndLL, as shown
in [7]. This restriction to “uniform” intersection types can be simply understood
as focusing on typed programming languages. Here the “intersection type” is
considered a posteriori or à la Curry, while the “simple types” of programs
are considered a posteriori or à la Church. Our generalization of the indexed
system could then produce a modular notion of uniform intersection types. This
would lead to a purely logical and remarkably general approach to intersection
types, that is quite different in nature from the others known approaches in the
literature, such as [16, 21]. Howvever, the proper development of this line of
research needs the exponential structure, hence we leave these speculations to
future work.

Main Results Following Bucciarelli and Ehrhard’s original presentation
choice of IndLL, in the present paper we are only investigating its multiplicative-
additive fragment. The work that we perform here has to be thought of as
propedeutic to the proper handling of the indexed exponential structure. Our
system is parametric on the choice of an appropriate extensive category, here-
after called category of loci. This means that, for each category of loci I we have
a different indexed linear logic, that we call MAIndILL.

We choose to maintain the focus of the paper on the comparison with linear
logic and its traditional models. We hope that these links will motivate our con-
struction, justify our definition of models, but also allow to further the analysis
and refinement of existing models.

Structure Section 2 aims make our work as self-contained as possible and
can be skipped by the reader who has enough categorical background. The real
article begin with Section 3 which gives a gentle presentation of our work. It
is followed by the necessary technical presentation of our modular logic and its
categorical semantics in Section 4. The remaining two sections present some
concrete models, or more precisely, some general methods to build models. In-
deed, since the logic is parametric on the choice of I, a particular model only
make sense for a given choice; to fully appreciate the parametricity of our con-
struction, we then present two general ways to produce categorical semantics
for our systems.
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2 Categorical Preliminaries
In this section we recall some categorical notions that are crucial for our work.

Notations and Conventions Given a category C and morphisms f ∈
C(A, B), g ∈ C(B, C), we denote as f ; g their composition. Given a cocartesian
monoidal category (C, +, 0), we use the notations ρ : A ≃ 0 + A, λ : A ≃ A + 0,
init : 0→ A, ι1 : A→ A + B, ι2 : B → A + B and ∇ : A + A→ A for the usual
natural transformations of cocartesian categories.

Extensivity Intuitively, an extensive category is a category with finite
coproducts (+, 0) where the injections can be tracked along all morphisms in a
coherent way, i.e., where, for any f : X → Y1 + Y2, there is a decomposition of
X and f as appropriate coproducts.
Definition 2.1 (Extensive category [6]). Let (C, +, 0) be a cocartesian category
where 0 is initial. An extensive category is such a category C in which pullbacks
of finite coproduct injections along arbitrary morphisms g exist, and for which,
in any commutative diagram:

X Y Z

A A + B B
ι1 ι2

f g h

the two squares are pullbacks if and only if the top row is a coproduct diagram.
In this case, Y = X + Z and we use the notation g|A := f and g|B := h.
Notice that this implies that 0 is strict (i.e., the only morphism targeting 0 is
the identity).

Example 2.2. The following are extensive categories:

• the category FinSet of finite sets and functions,

• the category Set of all sets and functions,

• the category Graph of graphs and graph morphisms,

• the category Top of topological spaces and continuous functions,

• the initial category 1 with a sole object and a sole morphism,

• the thin category 2 with two objects and a unique non-id morphism between
the two objects.

Star-Autonomous Categories Star-autonomous categories are wildly
accepted as categorical semantics for classical multiplicative linear logic (MLL).
Definition 2.3 (Star-Autonomous Category). A star-autonomous category is
a symmetric monoidal closed category (C,⊗, 1,⊸) with a contravariant functor
(−)⊥ : C⊥ → C that is weakly involutive (A⊥)⊥ ≃ A, and such that A ⊸ B =
(A ⊗ B⊥)⊥. We denote as StAut the category of star-autonomous categories
and structure-preserving functors.
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We use the following notation for the closed structure:

C(A⊗B, C) ≃ C(A, B ⊸ C)

cur(−)

uncur(−)

.

Definition 2.4 (Models of MALL). A model of MALL consists of a star-autonomous
category (C, 1,⊗, (−)⊥) equipped with a cartesian product structure (0,⊕). The
category MALL of models of linear logic is given by ∗-autonomous categories and
structure-preserving functors.

Fibrations and the Grothendieck Construction We denote as Cat
the category of small categories and functors. We now introduce the crucial
notion for our semantic investigations, that is categorical fibrations.

Definition 2.5 (Grothendieck Construction). Given a functor L : Cop → Cat
from a category C to Cat. The Grothendieck construction for L is defined by:

• a category
∫

L :

– whose objects are the pairs ob
(∫

L
)

= (X ∈ ob(I) , A ∈ ob(LX)),
– whose morphisms are pairs

(∫
L
)

((X, A), (Y, B)) = (f ∈ I(X, Y ), ϕ ∈
LX(A, LfB))

• a functor pL :
∫

L→ I defined by the first projection.

The Grothendieck opconstruction for L gives an opfibration defined by:

• a category
∫
L, called the category of elements of L,

– whose objects are the pairs ob
( ∫

L
)

= (X ∈ ob(I) , A ∈ ob(LX)),
– whose morphisms are pairs

( ∫
L
)

((X, A), (Y, B)) = (f ∈ I(Y, X), ϕ ∈
LY (LfA, B))

• a functor pL :
∫
L→ Iop defined by the first projection.

We call fibration the pair category plus projection obtained from the Grothendieck
construction. The category LX ∈ Cat is called the fiber of X. Fibrations are
generally (and equivalently) defined as a pair (C, p : C→ I) where I-morphisms
have cartesian liftings in C, but we will always construct them from a functor. In
what follows, we perform Grothendieck constructions on functors L : Cop → StAut,
meaning that we formally consider the postcomposition with the forgetful func-
tor from StAut to Cat.

Enriched Structures We introduce some notions of poset-enriched cate-
gory theory, that we exploit in the construction of models for IndLL.

Definition 2.6 (Poset-Enriched Category). A Poset-enriched category is a cat-
egory C plus, for every objects A, B ∈ ob(C), a partial order on C(A, B) making
the composition

_; _ : C(A, B)× C(B, C)→ C(A, C)
monotonic. We write Cop for the Poset-enriched category obtained by inverting
the homset Cop(A, B) = C(B, A) but not the order.
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Definition 2.7 (Compact Closed Poset-Enriched Category). A (strict) compact
closed poset enriched category is a symmetric monoidal poset-enriched category
in which all objects have duals. Spelling out, it consists of the following data:

• a Poset-enriched category C,

• an object 1 ∈ ob(C) and a Poset-enriched functor _⊗_ : C× C→ C (i.e.,
a functor monotonic on morphisms) satisfying associativity, symmetry and
unity diagrams,

• for each object A ∈ ob(C), a dual object A⊥ and two morphisms µA ∈
C(1, A⊗A⊥) and ϵA ∈ C(A⊥ ⊗A, 1), satisfying additional axioms.

3 From Indexed Linear Logic to Fibrations
In order to balance the incoming technical sections, we first give an informal
presentation of indexed linear logic and how it does relate to the categorical
notion of fibration.

An indexed formula intuitively consists of a version of a standard LL formula
that is defined only in a given domain of resources, that we call its locus. In
the original formulation of indexed LL, loci are sets. To say that a formula A
is defined under a locus X, we write X ⊩ A, notice that we allow the same
formula to be defined under different loci.1 Loci do not change the structure
of formulae, which shall respect the standard linear logic grammar. From an
indexed formula A, we can naturally obtain a standard linear logic formula,
that we denote as A, and that we are just refining. A semantic intuition behind
the syntax is the following: an indexed formula A corresponds to a family of
elements of the relational interpretation of its underlying LL formula, indexed
over a locus X, i.e. to a function JAK : X → JAKRel.

Proofs are defined by structural induction, adapting the standard rules of
linear logic. The most important aspect of the deductive system is that formulae
that appear in the same sequent have to be defined under the same locus: for
this reason we write A ⊢X B, meaning that both A and B are defined under X.
Again, an indexed proof π of conclusion A ⊢X B is the refinement of a standard
proof π of conclusion A ⊢ B.

Semantically, an indexed proof is a choice of correct approximations for its
underlying LL proof. To make this more explicit, consider an indexed proof π
with conclusion A⊢X B. We know that JAK : X → JAKRel and JBK : X → JBKRel.
The indexed proof stands for all pairs ⟨JAK (x), JBK (x)⟩ ∈ JπKRel ⊆ JAKRel ×
JBKRel, that are pointed by the same object x ∈ X. Hence the interpretation
JπK can be seen as a subset of JπKRel . It is the subset of executions of the
programs for which the choice of indexes given by A and B is coherent.

The semantic construction we sketched is rooted in the relational interpre-
tation, and it is at the foundation of the original work on indexed linear logic
[3, 4]. However, if we step back for a moment and look at this system from
a more abstract angle, we may be able to extract a general framework that is
independent from the particular case of sets and relation: One could imagine to
introduce an arbitrary category of loci I, whose objects can be used as resource
domain of a modular generalization of indexed linear logic. The main property

1This is not the case in the original IndLL.
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that this category has to bear turns out to be extensivity (Definition 2.1), which
grants the proper syntactical handling of the additive structure, as we shall see
in detail in the next section.

The semantic intuition we discussed above can then be fruitfully recast in
the following categorical way. If we take a locus X ∈ I, clearly we can consider
L(X) as the “universe” where all the formulae A s.t. X ⊩ A “live”. Since in
this paper we are not considering LL exponential, L(X) can be identified with a
star-autonomous category, i.e. with a model of multiplicative linear logic. In the
relational setting described above, the objects of L(X) would just be functions
X → JAKRel, s.t. X ⊩ A. Morphisms r ∈ JA ⊢X BK of L(X) should then be
relations r ∈ JA ⊢ BKRel that are coherent with the interpretation of indexed
formulae in the sense we just discussed.

From a more abstract point of view, we are close enough to give to L the
structure of a functor between the category of loci and the category of star-
autonomous categories and monoidal functors. The only element that we are
missing are the functors Lf between the categories LX and LY for each mor-
phism f between loci. Those functors are syntactically used everywhere in the
definition of the original indexed linear logic. They do not correspond to logi-
cal operators, but to rewritings that traverse the syntax of formulae to modify
indexes. In this respect, they are similar to the negation operator (−)⊥ of LL.

The given of such a functor L : Iop → StAut is the same as that one of
an appropriate categorical fibration. We can define its corresponding fibration∫

L → I, where
∫

L is the category of elements of L, whose objects are pairs
(X, A ∈ L(X)) for X ∈ I. This is the well-known Grothendieck construction
(Definition 2.5) and the projection

∫
L→ I satisfies the properties of a fibration.

For what concerns our point-of-view, this means that the our logic lives in
two coherent universes at the same time: that of the fibers L(X) in which we
interpret formulae, and that of the whole fibration

∫
L. We will see that, while

multiplicative connectives mirror the star-autonomous structure of fibers, the
additives connectives mirror, in the fibers, the structure of (co)limits pertaining
to the (op)fibration. Section 4.1 will detail this new and intriguing way to think
about additives.

4 MAIndILL
Definition 4.1 (Index Structures). An index structure is given by an exten-
sive category (I, +, 0) called the category of loci and by a contravariant functor
atom : I→ Set where elements of

⋃
X∈ob(I) atom(X) are called atoms.

The definition of the category of loci can be relaxed from cartesian to semi-
cartesian coproduct, such as injections:

Definition 4.2 (Semi-extensive category of loci). A semi-extensive category is
a monoidal category with an initial object and the extensiveness property.

The definition of indexed structure can be relaxed to accept a semi-extensive
category of loci.

This happen, in particular, when one restricts itself to monomorphic mor-
phisms between loci:
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Proposition 1. If a category I is extensive, then mono (() I), the sub-category
of monomorphisms, is semi-extensive.

Proof. • If f, g are mono, then f + g : X + Y → X ′ + Y ′ is mono thus the
monoidality is preserved: for any h, h′ : Z → X + Y such that h; (f +
g) = h′; (f + g), by extensivity, h = h|X + h|Y and h′ = h′

|X + h′
|Y thus

h|X ; f = h′
|X ; f and h|Y ; g = h′

|Y ; g, which implies that h|X = h′
|X and

h|Y = h′
|Y hence f and g are mono.

• The terminal arrows termA are monos thus the semi-caresian structure is
preserved.

• Pullbacks along monos are monos, thus the extensivity is preserved.

Definition 4.3 (Formulae). Given an index structure I, the formulae of MAIndILL
are given by the following inductive grammar:

a ∈
⋃

X∈ob(I)

atom(X)

A, B ::= a | a⊥ | 1 | ⊥ | 0 | ⊤ | A⊗B | A ` B | A X⊕Y B | A X&Y B

We will sometimes drop the annotations under the additive connectives, just
writing A⊕B and A & B. Formulae are defined under a locus X ∈ ob(I), with
the following deductive system:

a ∈ atom(X)
X ⊩ a

a ∈ atom(X)
X ⊩ a⊥

X ⊩ 1
X ⊩ A X ⊩ B

X ⊩ A⊗B X ⊩ ⊥
X ⊩ A X ⊩ B

X ⊩ A ` B

0 ⊩ 0
X ⊩ A Y ⊩ B
X + Y ⊩ A X⊕Y B 0 ⊩ ⊤

X ⊩ A Y ⊩ B
X + Y ⊩ A X&Y B

In the following, when we deal with MAIndILL we implicitly assume that we
are given a category of loci I. Given an indexed formula A, we can retrieve
a formula of standard MALL just by ‘forgetting’ the indexes. We denote that
formula as A.

Example 4.4. The index structure of the original indexed linear logic, hereby
called MAIndSetLL, is given by:

• the extensive category Set of set and function,

• a contravariant functor of atoms given by atom(X) := {f | f : X → Y , for some Y ∈
Set}, the functions of domain X, and atom(f)(a) = a ◦ f , the precompo-
sition.

Notice that the atoms are chosen arbitrarily as they where not given in the orig-
inal paper. The only requirement is for them to be coherent with the semantics.2

Arguably, the original indexed linear logic is MAIndInjLL which is indexed
over Inj = mono (() Set), but this is just a restriction to the “useful part” as
shown bellow.

2Here, we choose to allow an atom per point in the second semantics.
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Definition 4.5 (Negation). As usual, we can define the negation inductively
on formulae:

(a⊥)⊥ := a 1⊥ := ⊥ ⊤⊥ := 0 (A⊗B)⊥ := A⊥ ` B⊥ (A X&Y B)⊥ := A⊥
X⊕Y B⊥

⊥⊥ := 1 0⊥ := ⊤ (A ` B)⊥ := A⊥ ⊗B⊥ (A X⊕Y B)⊥ := A⊥
X&Y B⊥.

So that
X ⊩ A⇔ X ⊩ A⊥.

Definition 4.6 (Morphisms Action on Formulae). Similarly, we can define
X ⊩ f(A), the action of f on A, inductively on Y ⊩ A for any f ∈ I(X, Y ).
The action simply commutes with the multiplicative structure:

f(a) := atom(f)(a) f(1) := 1 f(A⊗B) := f(A)⊗ f(B)
f(a⊥) := f(a)⊥ f(⊥) := ⊥ f(A ` B) := f(A) ` f(B).

The additive units are trivial since id0 is the only f : 0→ 0 by extensivity; and
the additive operators use the extensive pullbacks f|Y1 and f|Y2 of f ∈ I(X, Y1 +
Y2) along the injections.

id0(⊤) := ⊤ f(A X1
&X2

B) := f|Y1(A)
f−1(Y1)&f−1(Y2)f|Y2(B)

id0(0) := 0 f(A X1
⊕X2

B) := f|Y1(A)
f−1(Y1)⊕f−1(Y2)f|Y2(B).

Lemma 4.7 (Right Action). The action on formulae is contravariant:

idX(A) = A and f(g(A)) = (g; f)(A) .

Sequents are defined under an explicit locus X that have to be in the domain
of each of its formulae. In addition, we quotient the set of sequents by usual
interchange laws.

Definition 4.8 (Sequents). Sequents are shaped Γ ⊢X ∆ for Γ, ∆ sequences of
formulae A such that X ⊩ A. They are considered up-to structural exchanges
and symmetries:

Γ1, Γ2 ⊢X ∆1, A, ∆2 ≡ Γ1, A⊥, Γ2 ⊢X ∆1, ∆2

Γ ⊢X ∆ ≡ Γ, 1 ⊢X ∆.

Definition 4.9 (Proofs). The proof system is defined inductively as follows:
a ∈ atom(X)

a ⊢X a

Γ ⊢X A A ⊢X ∆
Γ ⊢X ∆

⊢X1
Γ ⊢X A ∆ ⊢X B

Γ, ∆ ⊢X A⊗B

Γ ⊢X A, B

Γ ⊢X A ` B

0 ⊩ Γ
Γ ⊢0 ⊤

ι1(Γ) ⊢X A ι2(Γ) ⊢Y B

Γ ⊢X+Y A & B

Γ ⊢X A 0 ⊩ B

Γ ⊢X A X⊕0B

Γ ⊢X B 0 ⊩ A

Γ ⊢X A 0⊕XB

Given an indexed proof π of Γ⊢X A we can retrieve a MALL proof of conclusion
Γ ⊢ A, just by ‘forgetting’ the indexes. We denote that proof as π.

Lemma 4.10. The identity is an admissible rule, i.e.,for any formula A there
is a proof of

X ⊩ A
A ⊢X A

9



Proof. It the standard proof by induction on X ⊢ A, using (A⊥⊢X A⊥) ≡ (A⊢X A)
to bypass half the cases:

• if a ∈ atom(X)
X ⊩ a

, we have a ∈ atom(X)
a ⊢X a

• if X ⊩ 1 , since (1 ⊢X 1) ≡ (⊢X1), we have
1 ⊢X 1

• if X ⊩ A X ⊩ B
X ⊩ A⊗B

, we have X ⊩ A
A ⊢X A

X ⊩ B
B ⊢X B

A, B ⊢X A⊗B

A⊗B ⊢X A⊗B

• 0 ⊩ ⊤
⊤ ⊢0 ⊤

• if X ⊩ A Y ⊩ B
X + Y ⊩ A & B

, recall that ι1(A & B) = A & init(B), thus
X ⊩ A
A ⊢X A 0 ⊩ init(B)

A & init(B) ⊢X A

Y ⊩ B
B ⊢Y B 0 ⊩ init(A)

init(A) & B ⊢Y B

A & B ⊢X+Y A & B

In addition, the action, below, transports identity proofs into identity proofs.

Definition 4.11 (Morphisms Action on Proofs). For any f ∈ I(X, Y ) and proof
π of Γ ⊢Y ∆, we inductively define the proof f(π) of f(γ) ⊢X f(δ), the action of
f on π.

f

(
a ∈ atom(Y )

a ⊢Y a

)
:=

f(a) ∈ atom(X)
⊢Xf(a)

f

( π1

Γ ⊢Y A

π2

A ⊢Y ∆
Γ ⊢Y ∆

)
:=

f(π1)
f(Γ) ⊢X (A)

f(π2)
f(A) ⊢X f(∆)

f(Γ) ⊢X f(∆)

f

(
⊢Y 1

)
:= ⊢X1

f

( π1

Γ ⊢Y A

π2

∆ ⊢Y B

Γ, ∆ ⊢Y A ⊗ B

)
:=

f(π1)
f(Γ) ⊢X f(A)

f(π2)
f(∆) ⊢X f(B)

f(Γ), f(∆) ⊢X f(A) ⊗ f(B)

f

( π
Γ ⊢Y A, B

Γ ⊢Y A ` B

)
:=

f(π)
f(Γ) ⊢X f(A), f(B)

f(Γ) ⊢X f(A) ` f(B)
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id0

(
0 ⊩ Γ
Γ ⊢0 ⊤

)
:= 0 ⊩ Γ

id0(Γ) ⊢0 ⊤

f

 π1

ι1(Γ) ⊢Y1
A

π2

ι2(Γ) ⊢Y2
B

Γ ⊢Y1+Y2
A & B

 :=
f|Y1 (π1)

ι1(f(Γ)) ⊢f−1(Y1) f|Y1 (A)
f|Y2 (π2)

ι2(f(Γ)) ⊢f−1(Y2) f|Y2 (B)
f(Γ) ⊢X f|Y1 (A)

f−1(Y1)&f−1(Y2)f|Y2 (B)

f

( π
Γ ⊢Y A 0 ⊩ B

Γ ⊢Y A Y ⊕0B

)
:=

f(π)
f(Γ) ⊢X f(A) 0 ⊩ B

f(Γ) ⊢X f(A) X⊕0B

since f|Y = f and f|0 = id0

f

( π
Γ ⊢Y B 0 ⊩ A

Γ ⊢Y A 0⊕Y B

)
:=

f(π)
f(Γ) ⊢X f(B) 0 ⊩ A

f(Γ) ⊢X A 0⊕Xf(B)

Definition 4.12 (Cut-elimination). MAIndILL have a cut-elimination proce-
dure. This procedure is a decoration of LL cut-elimination.

Non-commutation rules:
π1

Γ ⊢X A

π2

∆ ⊢X B

Γ, ∆ ⊢X A ⊗ B

π3

A, B ⊢X Ξ
A ⊗ B ⊢X Ξ

Γ, ∆ ⊢X Ξ

⇝
π1

Γ ⊢X A

π2

∆ ⊢X B

π3

A, B ⊢X Ξ
A, ∆ ⊢X Ξ

Γ, ∆ ⊢X Ξ
π1

Ξ ⊢X A 0 ⊩ B

Ξ ⊢X A X⊕0B

π2

A ⊢X ι1(Γ)
π3

B ⊢0 ι2(Γ)
A X⊕0B ⊢X Γ

Ξ ⊢X+0 Γ

⇝
π1

Ξ ⊢X+0 A

ρ(π2)
ρ(A) ⊢X+0 Γ

Ξ ⊢X+0 Γ
π1

Ξ ⊢0+Y B 0 ⊩ A

Ξ ⊢0+Y A 0⊕Y B

π2

A ⊢0 ι1(Γ)
π3

B ⊢Y ι2(Γ)
A 0⊕Y B ⊢0+Y Γ

Ξ ⊢0+Y Γ

⇝
π1

Ξ ⊢0+Y A

λ(π2)
A ⊢0+Y λ(Γ)

Ξ ⊢0+Y Γ

Non-trivial commutation rules:
0 ⊩ Γ, A

0 ⊢0 Γ, A

π1

A ⊢0 Ξ
0 ⊢0 Ξ, Γ

⇝
0 ⊩ Ξ, Γ
0 ⊢0 Ξ, Γ

viable since A ⊢0 Ξ implies 0 ⊩ Ξ

π1

B ⊢X ι1(Γ), ι1(A)
π2

C ⊢Y ι2(Γ), ι2(A)
B X⊕Y C ⊢X+Y Γ, A

π3

A ⊢X+Y Ξ
B X⊕Y C ⊢X+Y Γ, Ξ

⇝

π1

B ⊢X ι1(Γ), ι1(A)
ι1(π3)

ι1(A) ⊢X ι1(Ξ)
B ⊢X ι1(Γ), ι1(Ξ)

π2

C ⊢X ι2(Γ), ι2(A)
ι2(π3)

ι2(A) ⊢Y ι2(Ξ)
C ⊢Y ι2(Γ), ι2(Ξ)

B X⊕Y C ⊢X+Y Γ, Ξ
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Trivial commutation rules:

π1

Ξ ⊢X a

a ∈ atom(X)
a ⊢X a

Ξ ⊢X a

⇝
π1

Ξ ⊢X a

π1

Ξ ⊢X ⊥ ⊥⊢X
Ξ⊢X

⇝
π1

Ξ⊢X

π1

Ξ ⊢X A

π2

Γ, A ⊢X B

π3

∆ ⊢X C

Γ, A, ∆ ⊢X B ⊗ C

Ξ, Γ, ∆ ⊢X B ⊗ C

⇝

π1

Ξ ⊢X A

π2

Γ, A ⊢X B

Ξ, Γ ⊢X B

π3

∆ ⊢X C

Ξ, Γ, ∆ ⊢X B ⊗ C

π1

Ξ ⊢X A

π2

Γ ⊢X B

π3

∆, A ⊢X C

Γ, ∆, A ⊢X B ⊗ C

Ξ, Γ, ∆ ⊢X B ⊗ C

⇝
π2

Γ ⊢X B

π1

Ξ ⊢X A

π3

∆ ⊢X C

Ξ, ∆ ⊢X C

Ξ, Γ, ∆ ⊢X B ⊗ C

π1

Ξ ⊢X A

π2

Γ, A ⊢X B, C

Γ, A ⊢X B ` C

Ξ, Γ ⊢X B ` C

⇝

π1

Ξ ⊢X A

π2

Γ, A ⊢X B, C

Ξ, Γ, A ⊢X B, C

Ξ, Γ ⊢X B ` C

π1

Ξ ⊢X A

π2

Γ, A ⊢X B 0 ⊩ C

Γ, A ⊢X B X⊕0C

Γ, Ξ ⊢X B X⊕0C

⇝

π1

Ξ ⊢X A

π2

Γ, A ⊢X B

Γ, Ξ ⊢X B 0 ⊩ C

Γ, Ξ ⊢X B X⊕0C

π1

Ξ ⊢X A

π2

Γ, A ⊢X C 0 ⊩ B

Γ, A ⊢X B 0⊕XC

Γ, Ξ ⊢X B 0⊕XC

⇝

π1

Ξ ⊢X A

π2

Γ, A ⊢X C

Γ, Ξ ⊢X C 0 ⊩ B

Γ, Ξ ⊢X B 0⊕XC

In addition, we add3 absorbing rules for the ex falso quodlibet:
0 ⊩ Γ, A

0 ⊢0 Γ, A

π1

0 ⊢0 ∆, B

0 ⊢0 Γ, ∆, A ⊗ B

⇝
0 ⊩ Γ, ∆, A ⊗ B

0 ⊢0 Γ, ∆, A ⊗ B

0 ⊩ Γ, A, B

0 ⊢0 Γ, A, B

0 ⊢0 Γ, A ` B

⇝
0 ⊩ A ` B

0 ⊢0 Γ, A ` B

0 ⊩ Γ, A

0 ⊢0 Γ, A

0 ⊩ Γ, B

0 ⊢0 Γ, B

0 ⊢0 Γ, A & B

⇝
0 ⊩ Γ, A & B

0 ⊢0 ΓA & B

0 ⊩ Γ, A

0 ⊢0 Γ, A 0 ⊩ B

0 ⊢0 Γ, A 0⊕0B

⇝
0 ⊩ Γ, A 0⊕0B

0 ⊢0 Γ, A 0⊕0B

0 ⊩ A

0 ⊩ Γ, B

0 ⊢0 Γ, B

0 ⊢0 Γ, A 0⊕0B

⇝
0 ⊩ Γ, A 0⊕0B

0 ⊢0 Γ, A 0⊕0B

Proposition 2. The forgetful mapping from MAIndILL to MALL preserves im-
portant structure:

3Necessary to make the syntactical model an actual model
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• Proofs and cut-elimination procedure, when we forget about indexes, are
those of MALL.

• When restrict to proofs under the locus 0, we have a bijection between
MAIndILL and MALL proofs.

• This is a forward and backward simulation, i.e., for any proof π of MAIndILL,
if π1 ⇝ π (resp. π ⇝ π2) in MALL, then there is a unique π′

1 (resp. a
unique π′

2) such that π′
1 ⇝ π and π′

1 = π1 (resp. π ⇝ π′
2 and π′

2 = π2).

4.1 Categorical Models
We now introduce the categorical semantics for our system. Our construction
will be parametric on the choice of an appropriate category of loci, which we
assume as given.

Definition 4.13 (Model of MAIndILL). A model of MAIndILL is given by

1. a functor L : Iop → StAut

2. where the fibration
∫

L is a cocartesian monoidal fibration, spelling it out:

•
∫

L has a cocartesian structure (⊕, 0, init,∇),
• the forgetful functor pL :

∫
L→ I is cocartesian, i.e., pL(0) = 0,

pL((X, A)⊕ (Y, B)) = X + Y and pL((f, m)⊕ (g, n)) = f + g,
• the coproduct ⊕ preserves cartesian arrows, i.e., for all f : I(X, X ′),

g : I(Y, Y ′) and A : LY ,

(f, idLX
LfA)⊕ (g, idLY

LgB) = (f + g, idL(X+Y )
L(f+g)(A⊕B)) .

Formulae and proofs should be interpreted as objects and morphisms of the
fiber of their locus. The additive structure however consists of operations defined
on the whole fibration, i.e., on objects and morphisms of possibly different fibers.
We will show that, for X ⊩ A and Y ⊩ B, one can see A & B as an element of
the fiber L(X + Y ), hence validating the expected interpretation.

Remark 4.14. We use the following notation for the image of additives through
the Grothendieck construction:

•
(
0,0 : L(0)

)
:= 0,

• for any two objects (X, A), (Y, B) ∈
∫

L, we set(
X + Y, A X⊕Y B : L(X + Y )

)
:= (X, A)⊕ (Y, B)

and for any two fiber morphisms m : LX1(A1, B1), n : LX2(A2, B2), we
set

(id, m X1
⊕X2

n : L(X1 + X2)(A1 X1
⊕X2

A2, B1 X1
⊕X2

B2)) := (id, m) X1
⊕X2

(id, n) .

Lemma 4.15. _ X⊕Y _ : L(X)× L(Y )→ L(X + Y ) is a functor.
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Proof. (ID) Let A ∈ LX, B ∈ LY , we will show that idA X⊕Y idB = idA
X

⊕Y B :
by definition, (idX+Y , idA X⊕Y idB : A X⊕Y B → A X⊕Y B) := (idX , A)⊕(idY , B) =
id(X+Y,A

X
⊕Y B) = (idX+Y , idA

X
⊕Y B) (Composition) Let m,∈ L(X)(A1, B1), m,∈

L(X)(B1, C1), n ∈ L(Y )(A2, B2), n′ ∈ L(Y )(B2, C2), we will show that
(m X⊕Y n); (m′

X⊕Y n′) = (m; m′) X⊕Y (n; n′).
By definition

m⊕ n = (id, m)⊕ (id, n)

m′ ⊕ n′ = (id, m′)⊕ (id, n′)

m; m′ ⊕L n; n′ = (id, m; m′)⊕ (id, n; n′)

By functoriality of the coproduct ⊕, we can conclude.

Lemma 4.16. For any f ∈ I(X, Y + Z), there is the equality of functor:

L(f + g)(_ Y⊕Z_) = Lf(_)
f−1(Y )⊕f−1(Z)Lg(_) (1)

and the following equality holds in
∫

L:

(f, m)⊕ (g, n) = (f + g, m⊕ n) (2)

Proof. First we are proving 2:

(f, m)⊕ (g, n) =
(
(id, m); (f, id)

)
⊕
(
(id, n); (g; id)

)
=
(
(id, m)⊕ (id, n)

)
;
(
(f, id)⊕ (g; id)

)
=
(
(id, m)⊕ (id, n)

)
;
(
f + g, id

)
⊕ preserves Cart. arrows

=
(
id, m⊕ n

)
;
(
f + g, id

)
def ⊕

= (f + g, m⊕ n)

Now, remark that (f, idLfA) :
∫

L((X1, LfA), (Y1, A)) and (g, idLgB) :
∫

L((X2, LgB), (Y2, B)),
thus

(f, idLfA)⊕ (g, idLgB) :
∫

L((X1 + X2, LfA⊕ LgB), (Y1 + Y2, A⊕B))

Which means that:

idLfA ⊕ idLgB : L(X1 + X2)(LfA⊕ LgB, L(f + g)(A⊕B))

But ⊕ preserves cartesian arrows, thus idLfA ⊕ idLgB = idLfA⊕LfB .

Lemma 4.17.
ιL
i,L(f1)(A1),L(f2)(A2) = L(fi)(ιL

i,A1,A2
)

Proof. We will only show that ιL
1,L(f)(A),L(g)(B) = L(f)(ιL

i,A,B), the other side
being symmetric.
we have that ιL

1,LfA,LgB : LX(LfA, LιI
1(LfA⊕ LgB)) and

Lf(ιL
1,A,B) : LX(LfA, LfLιI

1(A⊕B)).
We have to show that the targets are identical: LfLιI

1 = L(ιI
1; f) = L((f +

g); ιI
1) = LιI

1L(f + g) and we get the identity by applying Lemma 4.16.
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In addition, we have to prove the equality, for this we will work in
∫

L:

(f ; ιI
1 , Lf(ιL

1 )) = (f, idLfA); ι1,(Y,A),(Y ′,B)

= ι1,(X,LfA),(X′,LgB); ((f, idLfA)⊕ (g, idLgB)) nat of ι

= ι1,(X,LfA),(X′,LgB); (f + g, idLfA⊕LgB)) preserv. Cart. arrows
= (ιI

1; (f + g) , ιL
1 ; LιI

1(id)) = (ιI
1; (f + g) , ιL

1 )

Since the operator X⊕Y is not a coproduct in the fibers, we need to prove
that the co-pairing is surjective.
Lemma 4.18 (Surjective copairing). For any X, Y ∈ ob(I), there is a unique
natural transformation

σA : Lι1A X⊕Y Lι2A→ A

in L(X + Y ) such that ιL
1 ; Lι1σA = idLX

Lι1A and ιL
2 ; Lι1σA = idLY

Lι2A.

Proof. We have (X, Lι1A), (Y, Lι2A) : ob
(∫

L
)
, thus (X, Lι1A)⊕(Y, Lι2A) : ob

(∫
L
)
,

and we know that (X, Lι1A)⊕ (Y, Lι2A) = (X +I Y, Lι1A⊕Lι2A) by definition
of X⊕Y .
In addition, we have u := (ι1, idLX

ι1A) : (X, ι1A)→ (X + Y, A) and v := (ι2, idLY
ι2A) : (Y, ι2A)→ (X + Y, A),

thus there is [u, v] : (X +I Y, Lι1A⊕ Lι2A)→ (X + Y, A) so that ι1; [u, v] = u
and ι2; [u, v] = v. From the last equalities, and the cartesian-ness of pL, we ob-
tain that pL([u, v]) = [ι1, ι2] = idX+Y and thus [u, v] = (idX+Y , σA : L(X + Y )(Lι1A⊕ Lι2A, A)),
the unicity of σA comes from that of [u, v].

Using the preservation of cartesian arrows by the fibrational coproduct gives
that

σA = L(ιI
1 + ιI

2)(∇L
A)

which proves the naturality.

The surjective copairing is nothing else than the projection of the codiagonal
in the fibers. However, it is arguably more “fundamental” as we can define such
a transformation even when the Loci category I have no co-diagonal (i.e., when
it is only semi-cocartesian).
Lemma 4.19. For any f : I(X, Y + Z):

σLfA = LfσA

Proof. The type is correct as

L(f)(Lι1A⊕ Lι2A) = Lf|Y Lι1A⊕ Lf|ZLι2B by lemma 4.16
= Lι1LfA⊕ Lι2LfB

The naturality is immediate and we have the equation

ιL
1 ; Lι1LfσA = ιL

1 ; Lf|Y Lι1σA

= Lf(ιL
1 ; Lι1σA)

= Lf id
= id

which, together with its symmetric version and the unicity of σ, proves the
statement.
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In the case of a semi-extensive category of loci, it is possible to generalize
the notion of model by requiring as axioms the lemmas 4.18 and 4.19.

Definition 4.20 (Relaxation to semi-extensivity).
A model of MAIndILL for a semi-extensive category of loci I is given by

1. a functor L : Iop → StAut

2. where the Grothendieck fibration
∫

L is a semi-cocartesian monoidal fibra-
tion, spelling out:

•
∫

L has semi-cocartesian coproducts (⊕, 0, init),
• the forgetful functor pL :

∫
L→ I is monoidal, i.e., pL(0) = 0, pL((X, A)⊕

(Y, B)) = X + Y and pL((f, m)⊕ (g, n)) = f + g,
• the coproduct ⊕ preserves cartesian arrows, i.e., for all f : I(X, X ′),

g : I(Y, Y ′) and A : LY ,

(f, idLX
LfA)⊕ (g, idLY

LgB) = (f + g, idL(X+Y )
L(f+g)(A⊕B)) .

3. the co-pairing is surjective: For any X, Y ∈ ob(I), there is a natural trans-
formation

σA : L(X + Y )(Lι1A⊕ Lι2A, A)

such that ιL
1 ; Lι1σA = idLX

Lι1A, ιL
2 ; Lι1σA = idLY

Lι2A and for any f , LfσA =
σLfA.

4. As for the previous version, we require atoms to be interpreted by targets
of L:

∀a ∈ atom(X),∀f ∈ I(X, Y ), JaK ∈ ob(L(X)) , Jf(a)K = L(f)(JaK)

Lemma 4.21. If I is extensive, then the two definitions of models are equivalent
with ∇L

A = σL∇I(A).

Proposition 3 (Refinment of a model). The restriction L|mono(I) of a model
L : I→ StAut to mono (I) is a model of the calculus indexed over the semi-
extensive category of loci mono (I).

Models of MAIndLL vs models of MALL We now show that any indexed
model “contains” a model of MALL inside the fiber of 0, which corresponds to
erase all index-annotations in the logic.

Proposition 4. Let I be a category of loci and L : Iop → StAut a model of
MAIndILL. Then L0 is a model of MALL.

Proof. The category L0 ∈ ob(StAut) is star autonomous by definition. The
coproduct is defined by:

• restricted to L0, the sum _ 0⊕0_ : L0× L0→ L(0 + 0) = L0 is a monoidal
product on L0 which unit is 0L : L0,

• initI is defined over L0 and ∇I over L(0 + 0) = L0, and they respect the
required coproduct diagrams (same for the injections).
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A star-autonomous with coproducts also has products by duality, which con-
clude our proof.

This inclusion is even an equivalence when restricted to models of MAInd1LL,
which is expected as MAInd1LL is exactly MALL as a logic.

Proposition 5. Models of MALL correspond exactly to models of MAInd1LL,
where 1 is the terminal category.

Proof. If C is a model of MALL, then the constant functor (∗ 7→ C) : 1Cat → StAut
is a model of MAInd1LL.

Products We now prove that the structure consisting of ⊤L := (0L)⊥

and _ & _ := (_⊥ ⊕ _⊥) determines a cartesian product on the opfibration of
L. We recall that the opfibration of a functor L : Iop → StAut is given by the
category

∫
L with the same objects as

∫
L, but, as morphisms from (X, A) to

(Y, B) above f : B → A, the morphisms of LY (FfA, B), and as projection the
contravariant projection qL (see Definition 2.5). This remark will ease the tech-
nical developments of the following sections. First, we show that the opfibration
behaves well wrt orthogonality.

Proposition 6. For L : Iop → StAut we have that
(∫

L
)op =

∫
(−)op ◦ L.

Using this equality and the negation−⊥ on the fibers, we obtain the following
contravariant isomorphism of categories:

Lemma 4.22. For any L : Iop → StAut,
(∫

L
)op ⊥∼=

∫
L.

The former isomorphism leads to a possible rephrasing of the second require-
ment of Definition 4.13.

Lemma 4.23. Given L : Iop → StAut, the following are equivalent:

• (
∫

L, pL) is a cocartesian monoidal fibration,

• (
∫
L, qL) is a cartesian monoidal fibration.

Lemma 4.24. Let (I, 0, +) be a category of loci with cartesian products, and
L : Iop → StAut a model of MALL indexed over I.

Then (
∫

L,
∫
L) is a dialogue chirality with L0 as continuation category [17].

Proof. The monoidal product is defined in
∫

L and
∫
L using [22, p. 12.7] by:

• (X, A)⊗
∫

L (Y, B) := (X×Y, Lπ1A⊗L(X×Y ) Lπ2B) and 1
∫

L := (1, 1L1),

• (X, A)⊗
∫
L (Y, B) := (X×Y, Lπ1A`L(X×Y ) Lπ2B), and 1

∫
L := (1,⊥L1).

The monoidal equivalence of category (−)∗,∗ (−) :
∫

L ≃ (
∫
L)op is defined using

(−)⊥:

• (X, A)∗ = (X, A⊥) and (f, ϕ)∗ = (f, ϕ⊥)

• ∗(X, A) = (X, A⊥) and ∗(f, ϕ) = (f, ϕ⊥)

The adjunction (λ ⊣ ρ) is defined by:
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• λ(X, A) = (0, LinitA) and λ(f, ϕ) = (id0, Linitϕ)

• ρ(X, A) = (0, LinitA) and ρ(f, ϕ) = (id0, Linitϕ)

• ηA = (init, idLinitA) and ϵA = (init, idLinitA)

As a dialog category with products in one side and coproducts in the other,
this chirality constitute a model of tensorial logic with products and coproduct
(or, equivalently, a polarized MALL with a non-involutive negation).

4.2 Interpretation
In this section we define the interpretation of indexed formulae and proofs. Let
I be an indexed structure, and L : I→ StAut a model of MAIndILL.

Definition 4.25 (Interpretation of Formulae). Formulae under a locus X are
interpreted by objects of L(X):

• We assume that the interpretation of atoms JaKX lives in the fibers:

∀a ∈ atom(X),∀f ∈ I(X, Y ), JaKX ∈ ob(L(X)) , Jf(a)KX = L(f)(JaKX).

• The negation is interpreted by the duality of the target:

JA⊥KX := JAK⊥
X .

• The multiplicatives are interpreted as usual:

JA⊗BKX := JAKX ⊗L(X) JBKX J1KX := 1L(X).

• The additives are the projection of the fibrational coproduct:

JA X⊕Y BKX+Y := JAKX X⊕Y JBKY J0K0 := 0L.

For readability, we often omits the locus X of the interpretation of formulae.

Lemma 4.26 (Interpretation of Actions).
For any f ∈ I(X, Y ) and Y ⊩ A, Jf(A)KX = LfJAKY .

Proof. The cases of the product and coproduct exploits lemma 4.16 :

Jf(A⊕B)K = Jf|X(A)⊕ f|Y (B)K
= Jf|X(A)K⊕ Jf|Y (B)K
= L(f|X)JAK⊕ L(f|Y )JBK
= L(f|X + f|Y )(JAK⊕ JBK) lemma 4.16
= Lf(JAK⊕ JBK)

Jf(1)K = Jid0(1)K = Lid0J1K because id0 is the only morphism targeting 0.

Definition 4.27 (Interpretation of Sequents).
A sequent over the locus X is interpreted as the corresponding homset of LX:q
A1, ..., An ⊢X B1, ..., Bk

y
:= LX (

⊗
JAiK,

˙
JBiK)
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Lemma 4.28. The equivalence relations on sequences are interpreted by natural
bijections of homsets:

q
Γ1, Γ2 ⊢X ∆1, A, ∆2

y
≃

q
Γ1, A⊥, Γ2 ⊢X ∆1, ∆2

y q
Γ ⊢X ∆

y
≃

q
Γ, 1 ⊢X ∆

y

Definition 4.29 (Interpretation of Proofs).
Proofs π of a sequent Γ ⊢X ∆ interpreted as morphisms JπK ∈

q
Γ ⊢X ∆K.

s
a ∈ atom(X)

a ⊢X a

{
:= idL(X)

JaKX
: LX(JaKX , JaKX)

u

v
π1

Γ ⊢X A

π2

A ⊢X ∆
Γ ⊢X ∆

}

~ := Jπ1KX ; Jπ2KX : LX(JΓKX , J∆KX)

s

⊢X1

{
:= idLX

1 : LX(J1KX , J1KX)
u

v
π1

Γ ⊢X A

π2

∆ ⊢X B

Γ, ∆ ⊢X A ⊗ B

}

~ := Jπ1KX ⊗ Jπ2KX : LX(JΓKX ⊗ J∆KX , JAKX ⊗ JBKX)

u

v
π

Γ ⊢X A, B

Γ ⊢X A ` B

}

~ := JπKX : LX(JΓKX , (JAK⊥
X ⊗ JBK⊥

X)⊥)

s
0 ⊩ Γ
0 ⊢0 Γ

{
:= initL

JΓK : L0(0L, JΓK)
u

v
π1

A ⊢X ι1(Γ)
π2

B ⊢Y ι2(Γ)
A X⊕Y B ⊢X+Y Γ

}

~ := (Jπ1K X⊕Y Jπ2K); σ : L(X + Y )(JAK X⊕Y JBK, JΓK)

u

v
π

Γ ⊢X A 0 ⊩ B

Γ ⊢X A X⊕0B

}

~ := JπK; ι2,JBK : LX(JΓK, JAK X⊕0JBK)

u

v
π

Γ ⊢X B 0 ⊩ A

Γ ⊢X A 0⊕XB

}

~ := JπKX ; ι2,JBK : LX(JΓKX , JAK0 0⊕XJBKX)

Notice that the second one use the surjectiveness σ of the co-pairing from
lemma 4.18.

Theorem 4.30 (Soundness wrt Morphisms Action).
For any f : X → Y and any proof π of Γ ⊢Y ∆, Jf(π)K = LfJπK.
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Proof. Easy cases:
s

f(a) ∈ atom(X)
⊢Xf(a)

{
= idLX

Jf(a)KX

= idLX
Lf(JaKX )

= Lf(idLY
JaKY

)

= Lf

(s
a ∈ atom(Y )

⊢Y a

{)
u

w
v

f(π1)
f(Γ) ⊢X (A)

f(π2)
f(A) ⊢X f(∆)

f(Γ) ⊢X f(∆)

}

�
~ = Jf(π1)KX ; Jf(π2)KX

= LfJπ1KY ; LfJπ2KY

= Lf(Jπ1KY ; Jπ2KY )

= Lf

u

v
π1

Γ ⊢Y A

π2
A ⊢Y ∆

Γ ⊢Y ∆

}

~


s

⊢X1

{
= idLX

1

= idLX
Lf1

= Lf(idLY
1 )

= Lf

(s

⊢X1

{)
u

w
v

f(π1)
f(Γ) ⊢X f(A)

f(π2)
f(∆) ⊢X f(B)

f(Γ), f(∆) ⊢X f(A)⊗ f(B)

}

�
~ = Jf(π1)K⊗ Jf(π2)K

= LfJπ1K⊗ LfJπ2K
= Lf(Jπ1K⊗ Jπ2K)

= Lf

u

v
π1

Γ ⊢Y A

π2
∆ ⊢Y B

Γ, ∆ ⊢Y A⊗B

}

~


u

w
v

f(π)
f(Γ) ⊢X f(A), f(B)

f(Γ) ⊢X f(A) ` f(B)

}

�
~ = Jf(π)K

= LfJπK

= Lf

u

v
π

Γ ⊢Y A, B

Γ ⊢Y A ` B

}

~


s

0 ⊩ Γ
0 ⊢0 id0(Γ)

{
= initL

JΓK

= Lid0(initL
JΓK)

= Lid0

(s
0 ⊩ Γ
0 ⊢0 Γ

{)
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Difficult cases:
u

w
v

f|Y (π1)
f|Y (A) ⊢f−1(X) ι1(f(Γ))

f|Z(π2)
f|Z(B) ⊢f−1(Y ) ι2(f(Γ))

f|Y (A)⊕ f|Z(B) ⊢X f(Γ)

}

�
~

= (Jf|Y (π1)Kf−1(X) ⊕ Jf|Z(π2)Kf−1(Z)); σJf(Γ)K

= (L(f|Y )Jπ1KX ⊕ L(f|Z)Jπ2KY ); σLfJΓK

= Lf(Jπ1KX ⊕ Jπ2KY ); σLfJΓK by lemma 4.16
= Lf(Jπ1KX ⊕ Jπ2KY ); LfσJΓK by lemma 4.19
= Lf((Jπ1KX ⊕ Jπ2KY ); σJΓK)

= Lf

u

v
π1

A ⊢X ι1(Γ)
π2

B ⊢Y ι2(Γ)
A⊕B ⊢Y +Z Γ

}

~


u

w
v

f(π)
f(Γ) ⊢X f(A) 0 ⊩ B

f(Γ) ⊢X f(A)⊕B

}

�
~ = Jf(π)K; ιL

1,Jf(A)K,JBK

= LfJπK; ιL
1,LfJAK,JBK

= LfJπK; ιL
1,L(f|X )JAK,L(f|0)JBK

= LfJπK; Lf(ιL
1,JAK,JBK) by lemma 4.17

= Lf(JπK; ιL
1,JAK,JBK)

= Lf

u

v
π

Γ ⊢Y A 0 ⊩ B

Γ ⊢X A 0⊕BB

}

~



Theorem 4.31 (Soundness wrt Cut-Elimination).
For any π1⇝ π2, Jπ1K = Jπ2K.

Proof. Non-commutation rules:
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u

ww
v

π1

Γ ⊢X A

π2

∆ ⊢X B

Γ, ∆ ⊢X A ⊗ B

π3

A, B ⊢X Ξ
A ⊗ B ⊢X Ξ

Γ, ∆ ⊢X Ξ

}

��
~ = (Jπ1K⊗Kπ2K); Jπ3K

= (Jπ1K ⊗ idK∆KX
); ((idKAKX

⊗Kπ2K); Jπ3K)

=

u

ww
v

π1

Γ ⊢X A

π2

∆ ⊢X B

π3

A, B ⊢X Ξ
A, ∆ ⊢X Ξ

Γ, ∆ ⊢X Ξ

}

��
~

u

www
v

π1

Ξ ⊢X+0 A 0 ⊩ B

Ξ ⊢X+0 A X⊕0B

π2

A ⊢X ι1(Γ)
π3

B ⊢0 ι2(Γ)
A X⊕0B ⊢X+0 Γ

Ξ ⊢X+0 Γ

}

���
~

= Jπ1K; ι2,JBK; (Jπ2K X⊕0Jπ3K); σ

= Jπ1K; LρJπ2K; ι2,JBK; σ (up to iso
= Jπ1K; LρJπ2K lemma 4.18

=

u

w
v

π1

Ξ ⊢X+0 A

ρ(π2)
ρ(A) ⊢X+0 Γ

Ξ ⊢X+0 Γ

}

�
~

Plus the symmetric (same proof).
Non-trivial commutation rules:

u

v
0 ⊩ Γ, A

0 ⊢0 Γ, A
π

A ⊢0 Ξ
0 ⊢0 Ξ, Γ

}

~ = initJΓK0`JAK0 ; (idJΓK0 ` JπK)

= initJΓK0`JΞK0 nat. of init

=
s

0 ⊩ Γ, Ξ
⊤ ⊢0 Γ, Ξ

{

(Jπ1K⊕ Jπ2K); σ; (idJΓKX+Y
` Jπ3K) = (Jπ1K⊕ Jπ2K); (Lι1(idJΓKX+Y

` Jπ3K)⊕ Lι2(idJΓKX+Y
` Jπ3K)); σ nat. of σ

= (Jπ1K⊕ Jπ2K); ((Lι1idJΓKX+Y
` Lι1Jπ3K)⊕ (Lι2idJΓKX+Y

` Lι2Jπ3K)); σ Lιi ∈ StAut(_, _)
= (Jπ1K⊕ Jπ2K); ((idLι1JΓKX+Y

` Lι1Jπ3K)⊕ (idLι2JΓKX+Y
` Lι2Jπ3K)); σ

= ((Jπ1K; (idLι1JΓKX+Y
` Lι1Jπ3K))⊕ (Jπ2K; (idLι2JΓKX+Y

` Lι2Jπ3K))); σ

5 Syntactical model
Let I a loci category, i.e., a semi extensive category.

We call syntactical model, the model:

• whose *-autonomous fibers LX are defined by:

– ob(LX) are the formulae A such that X ⊩ A,
– LX(A, B) are the proof of the sequents A1, ..., An ⊢X B1, ..., Bk where

A = A1 ⊗ · · · ⊗ An and B = B1 ` · · · ` Bk and with the quotients
over the smallest relation containing:

∗ the cut-elimination ⇝,
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∗ the application4 of the right introduction of ` (or equivalently
the left introduction of ⊗).

– the identities are given by the proofs of A ⊢ A of Lemma 4.10,
– the composition is the cut rule.
– the *-autonomous structure is standard.

• whose functors Lf : LY → LX between fibers are defined by the mor-
phisms action: LfA = f(A) and Lfπ = f(π).

• whose semi-coartesian fibration is defined by:

– initial element: 0 := (0I, 0)
– coproduct of objects: (X, A)⊕ (Y, B) := (X + Y, A⊕B)
– coproduct of morphisms:(

f,
π1

A ⊢W f(C)

)⊕(
g,

π2
B ⊢X g(D)

)
:=

f + g,

π1
A ⊢W f(C)

π2
B ⊢X g(D)

A⊕B ⊢W +X (f + g)(C ⊕D)


which is correct since
(f + g)(C ⊕D) = (f + g)|Y (C)⊕ (f + g)|Z(D) = f(C)⊕ g(D),

– preservation of cartesian arrows:(
f,

id
f(A) ⊢W f(A)

)⊕(
g,

id
g(B) ⊢X g(B)

)
=

f + g,

id
f(A) ⊢W f(A)

id
g(B) ⊢X g(B)

A⊕B ⊢W +X (f + g)(A⊕B)


which second member is the definition of the identity proof over
f(A)⊕g(B) = (f +g)(A⊕B) according to the proof of Lemma 4.10.

– functoriality of the coproduct:
∗ identity:(

idW ,
id

A ⊢W A

)⊕(
idX ,

id
B ⊢X B

)
=

idW +X ,
id

A ⊢W A
id

B ⊢X B

A⊕B ⊢W +X A⊕B


which second member is the definition of the identity proof over
A⊕B according to the proof of Lemma 4.10.

∗ composition: it uses one step of cut elimination(
f + g,

π1
A ⊢W f(C)

π2
B ⊢X g(D)

A ⊕ B ⊢W +X f(C) ⊕ g(D)

)
;

(
f′ + g′,

π′
1

C ⊢Y f′(D)

π′
2

D ⊢Z g′(F )

C ⊕ D ⊢Y +Z f′(E) ⊕ g′(F )

)

=

((f; f′) + (g; g′)),

π1
A ⊢W f(C)

π2
B ⊢X g(D)

A ⊕ B ⊢W +X f(C) ⊕ g(D)

f(π′
1)

f(C) ⊢W f(f′(D))

g(π′
2)

g(D) ⊢X g(g′(F ))

f(C) ⊕ g(D) ⊢W +X f(f′(E)) ⊕ g(g′(F ))

A ⊕ B ⊢W +X f(f′(E)) ⊕ g(g′(F ))


4This additional quotient is standard and correspond to the restriction to monoidal cate-

gories rather than multicategories that are less “standard”.
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⇝

((f; f′) + (g; g′)),

π1
A ⊢W f(C)

f(π′
1)

f(C) ⊢W f(f′(D))

A ⊢W f(f′(E))

π2
B ⊢X g(D)

g(π′
2)

g(D) ⊢X g(g′(F ))

B ⊢X g(g′(F ))

A ⊕ B ⊢W +X f(f′(E)) ⊕ g(g′(F ))


= ((f, π1) ⊕ (f′, π′

1)); ((g, π2) ⊕ (g′, π′
2))

– ι1 :=

ιI
1,

id
A ⊢X A 0 ⊩ init(B)

A ⊢X A⊕ init(B)

 which is natural:ιI
1,

id
A ⊢X A 0 ⊩ init(B)

A ⊢X A⊕ init(B)

 ;

f + id,

π1
A ⊢X f(C)

id
B ⊢Y B

A⊕B ⊢X+Y f(C)⊕B



=

ιI
1; (f + id),

id
A ⊢X A 0 ⊩ init(B)

A ⊢X A⊕ init(B)

π1
A ⊢X f(C)

id
init(B) ⊢0 init(B)

A⊕ init(B) ⊢X f(C)⊕ init(B)
A ⊢X f(C)⊕ init(B)



⇝

(f ; ιI
1),

id
A ⊢X A

π1
A ⊢X f(C)

A ⊢X f(C) 0 ⊩ init(B)
A ⊢X f(C)⊕ init(B)


⇝∗

(f ; ιI
1),

π1
A ⊢X f(C) 0 ⊩ init(B)

A ⊢X f(C)⊕ init(B)


⇝∗

(f ; ιI
1), π1

A ⊢X f(C)

id
f(C) ⊢X f(C) 0 ⊩ init(B)

f(C) ⊢X f(C)⊕ init(B)
A ⊢X f(C)⊕ init(B)


=
(

f,
π1

A ⊢X f(C)

)
;

ιI
1,

id
C ⊢Z f(C) 0 ⊩ init(B)

C ⊢Z C ⊕ init(B)


– idem for ι2

– init
∫

L :=
(

initI
1,

0 ⊩ init(A)
0 ⊢0 init(A)

)
which

∗ is natural :
(

initI
1,

0 ⊩ init(A)
0 ⊢0 init(A)

)
;
(

f,
π1

A ⊢X f(C)

)

=

(initI
1; f),

0 ⊩ init(A)
0 ⊢0 init(A)

init(π1)
init(A) ⊢0 init(f(C))

0 ⊢0 init(f(C))


=

(initI
1),

0 ⊩ init(A)
0 ⊢0 init(A)

init(π1)
init(A) ⊢0 init(C)

0 ⊢0 init(C)


⇝

(
(initI

1), 0 ⊩ init(C)
0 ⊢0 init(C)

)
∗ and universal as the only cut-free proof of 0⊢0 A is the left intro-

duction of 0.

• with a surjective co-pairing:
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– σ =
id

ι1(A) ⊢X ι1(A)
id

ι2(A) ⊢Y ι2(A)
ι1(A)⊕ ι2(A) ⊢X+Y A

is natural

– it is surjective:
id

ι1(A) ⊢X ι1(A) 0 ⊩ init(A)
ι1(A) ⊢X ι1(A)⊕ init(A)

id
ι1(A) ⊢X ι1(A)

init(id)
init(A) ⊢0 init(A)

ι1(A)⊕ init(A) ⊢X ι1(A)
ι1(A) ⊢X ι1(A)

⇝
id

ι1(A) ⊢X ι1(A)
id

ι1(A) ⊢X ι1(A)
ι1(A) ⊢X ι1(A)

⇝∗ id
ι1(A) ⊢X ι1(A)

– it is preserved by fibrational functors:

LfσA =
f|W (id)

f|W (ι1(A)) ⊢W f|W (ι1(A))
f|Z(id)

f|Z(ι2(A)) ⊢Z f|Y (ι2(A))
f|X(ι1(A))⊕ f|Y ι2(A) ⊢W +Z f(A)

=
id

ι1(f(A)) ⊢W ι1(f(A))
id

ι2(f(A)) ⊢Z ι2(f(A))
ι1(f(A))⊕ ι2(f(A)) ⊢W +Z f(A)

For a given I this model should be the initial model of MAIndILL, for a good
notion of category of models.

6 Generating Models by Free Coproducts
We introduce a general semantic construction rooted in the notion of coproduct
completion of categories.

It is tempting to consider a provable sequent A⊢X B of MAIndSetLL, for X ∈
Set, as a set {ιx(A) ⊢ ιx(B) | x ∈ X} of provable sequents of MALL, intuitively
representing all possible behaviors of programs by selecting conditionals non-
deterministically.

From a semantic perspective, this corresponds to the coproduct completion,
which takes a model C of MALL and add all coproducts to get a category C̄
which determines a fibration over some L : Set→ StAut.

6.1 A relational model for MAIndSetLL
The functor L : Setop → StAut defined as

• for X ∈ Set, L(X) :=
∏

X Rel is the category of X-indexed sets of sets
(as objects of Rel) and pointwise relations,

• and for f ∈ Set(X, Y ), the functor L(f) is given by L(f)((Ay)y∈Y ) :=
(Af(x))x∈X and L(f)((ry)y∈Y ) := (rf(x))x∈X .

We can verify that L(X) = RelX , as a product of star-autonomous cat-
egories, is a star-autonomous category, with 1L(X) := (1)x∈X , (Ax)x∈X ⊗
(Bx)x∈X := (Ax ⊗ Bx)x∈X , and (Ax)⊥

x∈X := (A⊥
x )x∈X . Similarly, L(f) triv-

ially preserves the star-autonomous structure.
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The Grothendieck construction
∫

L is given by

• as objects the pairs (X, (Ax)x∈X) for X ∈ Set and each Ax ∈ Set,

• as morphisms from (X, (Ax)x∈X) to (Y, (By)y∈Y ), the pairs (f, (rx)x∈X)
for f : X → Y and each rx ⊆ Ax ×Bf(x).

The cartesian coproduct on
∫

L is given by:

0 := (∅, ()), (X, (Ax)x∈X)⊕ (Y, (By)y∈Y ) := (X ⊎ Y, (Ax)x∈X(By)y∈Y )

with

init(X,(Ax)x) := (initSet
X , ()),

∇(X,(Ax)x∈X ) := ((i, x) 7→ x, (idRel
Ax

)(i,x)∈X⊎X)
ι1,(X,(Ax)x∈X ),(Y,(By)y∈Y ) := (x 7→ (1, x), ({(a, (1, a)) | a ∈ Ax})x∈X)

which is preserved by the projection functor pL :
∫

L→Set defined as pL(X, (Ax)x∈X) := X
and pL(f, (rx)x∈X := f .

The coproduct preserves cartesian arrows:

(f1, (idRel
A1,f1(x)

)x∈X1)⊕ (f2, (idRel
A2,f2(x)

)x∈X2) = (f1 + f2, (idRel
A1,f1(x)

)x∈X1(idRel
A2,f2(x)

)x∈X2)

= (f1 + f2, (idRel
Ai,fi(x)

)(i,x)∈X1⊎X2)

= (f1 + f2, (idRel
A(f1+f2)(i,x)

)(i,x)∈X1⊎X2)

Remains to fix and verify the interpretation atoms:

Ja : X → AK := ({a(x)})x∈X Jf(a)K = ({a(f(x))})x∈X = LfJaK

6.2 The general construction
Definition 6.1 (Coproduct completion). Let C a category, we consider the
Coproduct completion of C, C, that can be presented as follows.

• ob
(
C
)

:= {(I, (Xi)i∈I) | I ∈ Set, Xi ∈ ob(C)} are the indexed subsets of
ob(C).

• C((I, (Xi)i∈I), (J, (Yj)j∈J)) = {(f, (gi)i∈I) | f : Set(I, J), gi : C(Xi, Yf(i))}.

• The composition law is the pointwise composition, and the identity mor-
phisms is the evident one, i.e., id = (id, (id)i) and (f, (gi)i∈I); (f ′, (g′

i)i∈J))((f ; f ′), (gi; g′
f(i))i∈I).

The category C is cocartesian monoidal, with coproducts given by set unions:

(I, (X1,i)i∈I)⊕ (J, (X2,i)i∈J) := (I ⊎ J, (Xn,i)(n,i)∈I⊕J)

with the obvious functoriality and the injections:

ιk,(I1,(X1,i)i∈I1 ),(I2,(X2,i)i∈I2 ) = (ιSet
k,I1,I2

, (idXk,i
)i∈Ik

).

Lemma 6.2 ([5]). Any free coproduct completion is an extensive category.

Definition 6.3 (MAIndILL). Any category I together with a functor atom : Iop → Set
can be freely completed into an index structure, given by:
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• the coproduct completion I of I,

• a contravariant functor of atoms given by atom(I, (Xi)i∈I) :=
∏

i∈I atom(Xi),
and atom(f, (gi)i∈I) = ((yj)j∈J) 7→ (atom(gi)(yf(i)))i∈I .

Theorem 6.4 (Models via Coproduct Completion). Let I be a category and
atom : Iop → Set a functor, so that MAIndILL is an indexed logic.

Any functor L : I→ StAut together with an interpretation J.KX : atom(X)→ ob(L(X))
such that Jf(a)K = Lf(JaK), can be completed into a model of MAIndILL by

L(I, (Xi)i∈I) :=
∏
i∈I

L(Xi)

L(f, (gi)i∈I)((yj)j∈J) := (Lgi(yf(i))i∈I)

Proof. Since StAut has all coproducts, the only thing to show is that
∫

L is a
cocartesian monoidal fibration:

• The category
∫

L is the free coproduct completion of
∫

L, thus it has
coproducts, and the preservation of cartesian arrows is immediate.

• The projection preserves coproducts by functoriality of the free coproduct
completion from Cat to CartCatop, the category of cocartesian categories
and cocartesian functors.

This construction has clear limitations. The main one is that L̄0 is always
the trivial category with one object and one morphism, thus we can’t use it to
support our claim that any model of indexed linear logics contains a meaningful
model of LL. Another limitation is the size and/or lack of structure of Ī.

7 Generating Models by Unfolding Compact Closed
Models of MALL

We now present a more informative semantics of MAIndILL that comes from
compact closed models of MALL. We first discuss the case of the relational
model, being at the same time at the origin of indexed linear logic itself and
a widely studied model. Then we generalize our construction to appropriate
compact closed models of MALL, that have an underlying structure which recalls
the category of sets and relations.

7.1 A Relational Model for MAIndSetLL
We consider the case where I = Set. Given, X ∈ Set, We want to build LX as
an appropriate star-autonomous category. We proceed as follows. The functor
L : Setop → StAut defined as

• for X ∈ Set, LX is defined as:

– ob(LX) := {(A, A) | A ∈ Set, A ∈ Set(X, A)}, by abuse of notation,
we will often write A for the pair (A, A),
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– LX(A, B) := {m ∈ Rel(A, B) | ∀x ∈ X, (A(x), B(x)) ∈ m}.
– Composition and identities are those of Rel. indeed, if for all x ∈ X,

(A(x), B(x)) ∈ m and (B(x), C(x)) ∈ n, a fortiori (A(x), C(x)) ∈
(m; n), similarly, (A(x), A(x)) ∈ idRel

X .

• For f ∈ Set(X, Y ), the functor Lf is given by precomposition: Lf(A, A) :=
(A, (f ; A)) and Lf(m) := m.

Remark 7.1. We use the notation A to recall the basic intuition behind the
original indexed linear logic construction, namely that formulae X ⊩ A cor-
responds to functions A : X → JAKRel, where A stands for the standard linear
logic formula we can obtain from A and JAKRel is its relational interpretation.
Obviously, JAKRel is just a set.
Proposition 7. For any set X, the category LX is compact closed (and thus
star-autonomous).
Proof. We detail the compact closed structure.

• The tensor product is defined as

(A⊗B)(x) := (A(x), B(x)) ∈ A×B m⊗ n := m⊗Rel n.

We have to verify that for all x ∈ X, ((A ⊗ B)(x), (A′ ⊗ B′)(x)) =
((A(x), B(x)), (A′(x), B′(x)) ∈ (m ⊗ n) knowing that (A(x), A′(x)) ∈ m
and (B(x), B′(x)) ∈ m, which is immediate.

• The terminal object is 1(x) := ∗ ∈ {∗}.

• The dual A⊥ of an object A is simply defined as A⊥ := A (as in Rel).

• The µA : LX(1, A×A⊥) and ϵA : LX(A⊥ ×A, 1)] are defined as those of
Rel:

µA := µRel
A ϵA := ϵRel

A .

• All diagrams are automatically respected since the structure we defined is
preserved by the forgetful functor to Rel, which is already compact closed.

Remark 7.2. The Grothendieck construction
∫

L is defined as follows.
• ob

(∫
L
)

= {(X, A, A) | A ∈ Set(X, A)} = mor (Set).

•
∫

L((X, A, A), (Y, B, B)) = {(f, m) | f : X→Y , m∈Rel(A, B),∀x∈X, (A(x), B(f(x)))∈m}.
This category has a cocartesian monoidal structure, defined as follows.

• The coproduct and initial object are given by

A⊕B := A⊕Set B (f, m)⊕ (g, n) := (f ⊕Set g, m⊕Rel n) 0 := id∅

initX,A,A = (initSet
X , ∅) ιi,A1,A2 = (ιSet

i , ιRel
i ).

Since the coproduct of Set is that of Rel restricted to Set, everything
works as routine.

• The projection is obviously cartesian. The cartesian arrows are preserved
since the second projection on arrows targets the coproduct of Rel which
is a functor:
(f, id)⊕ (g, id) := (f ⊕Set g, id⊕Rel id) = (f ⊕ g, id).
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7.2 The General Construction
We now extend the former construction from the relational case to a more
general setting. From a poset-enriched model C of MALL with appropriate
structure, we can construct a non trivial model of MAIndILL for some index
category I.
Definition 7.3 (Category with Linear Relations). We call category with linear
relations a category I equipped with:

1. a relation equipment (C,−∗,−∗) [22], spelling this out :

• A poset-enriched category C. A functor ∗ : I→ C that is bijective on
objects and locally fully faithful.

• For each arrow f ∈ I(X, Y ), an arrow f∗ ∈ C(Y, X) that is a right
adjoint of f∗, i.e., such that f∗; f∗ ≤ idY and f∗; f∗ ≥ idY .

2. a compact closed structure (⊗,−⊥, µ, ϵ) and a biproduct (+, 0, ∇, ∆, init, term)
making C a compact closed model of MALL.

3. A coproduct (+, 0, init,∇) on I inherited from the biproduct of C:

X+IY = X+CY, 0I = 0C, init∗ = init, ∇∗ = ∇ init∗ = term, ∇∗ = ∆.

4. An involutive functor _op : I→ I such that

Xop = X⊥, (fop)∗ = (f∗)⊥, (fop)∗ = (f∗)⊥.

5. A cartesian product (+, 0, term, ∆) on I inherited from the tensor product
of C:

X ×I Y = X ×C Y, 1I = 1C.

6. A monoidal natural transformation αX : X → Xop such that:

αX ; αXop = idX α∗ = uncur1,X,Xop(term∗
Xop ; ∆Xop∗).

Example 7.4. The category Rel is obviously a category with linear relations.
Another example is given by the category Polr, of preorders and monotonic
relations. In particular, from this category one can define the Scott semantics
of linear logic [8]. Another example is given by the category Span(Set), whose
objects are sets and morphisms F : A p→ B are spans of sets, i.e., pairs of func-
tions A← X → B for some set X.

Definition 7.5. For any object X ∈ I, let C∧X be the following category:
• objects: A ∈ I(X, A)

• morphisms: C∧X(A, B) are morphisms m ∈ C(A, B) such that

X

A Bpm

pA∗

p B∗
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The identity is the identity of C since A∗; A∗ ≥ idA, and the composition likewise
since idX ≥ B∗; B∗.

X

A Ap

pA∗

p A∗

X X

A B Cpm pn

pA∗

pB∗pB∗

p C∗

p

Lemma 7.6. For any X ∈ IC, (C∧X, ⟨_, _⟩, term) is a monoidal category.

Proof. Inherited from the 2-monoidality of × in C:

X

X ×X X ×X

A1 ×A2 B1 ×B2

p

p

∆∗
X p (∆X )∗

p
m1 × m2

p

(A1 × A2)∗ = A∗
1 × A∗

2 p (B1 × B2)∗ = (B1)∗ × (B2)∗

⊢

(m1 : A1 → B1) × (m2 : A2 → B2)

Lemma 7.7. We have an orthogonality C• : C∧X → C∧Xop
defined as follow:

A• := (αX ; Aop) : X → Aop

m• := m⊥ : C∧X(B•, A•)

Proof. The definition is correct, i.e., if m : C∧X(A, B) then m⊥ : C∧X(B•, A•):

X

Xop Xop

Bop Aop

p

p

α∗
X p (αX )∗

pm⊥

p

(Bop)∗ = (B∗)⊥

p (Aop)∗ = (A∗)⊥

⊢

(m : A → B)⊥
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where the bottom 2-cell is obtained by reversing the 2-cell of m : A→ B.
The preservation of the identity and composition are inherited from those of the
functor −⊥ in C. The involution comes from the involutions of α and −op.

Corollary 7.8. For any X ∈ IC, (C∧X,×, 1,−•, µ, ϵ)) is a compact closed
category.

Proof. The dualizing morphisms are given by µL = µC : A• ×A→ 1 and ϵL =
ϵC : 1→ A×A•:

X ×X

1× (X ×X)
X

1×X

X⊥ ×X

A⊥ ×X

1× 1

X⊥ × (X ×X)

(X⊥ ×X⊥)× (X ×X)

(X⊥ ×X)× (X⊥ ×X)

1

A⊥ ×A 1

p term∗
X⊥ × id

p ∆
X⊥∗ × id
p ∼

p
µX × id

p
µX×X

p µ1

p λ

p
1 × ∆∗

p 1 × term∗

p µ1

p
µX

pα∗ × id p α∗ × id

p

p∆∗

p term∗

p
µA

p

(Aop × A)∗

p

p

idAop × A∗
p
p idAop × A∗

p (A∗)⊥ × idX

p
Lemma 7.9. C∧− : Iop

C → StAut is a functor defined, on arrows, as the pre-
composition functor, i.e., for f : X → Y :

C∧f(A) := f ; A and C∧f(m) := m so that
X

Y Y

A B

p

p
f∗

p f∗

p
m

pA∗
p B∗

Remark 7.10. The Grothendieck construction on C∧− determines the cate-
gory

∫
C∧−, whose objects are morphisms A : X → A, for A ∈ C. Morphisms

from A : X → A to B : Y → B are pairs (f : X → Y , m : A p→ B) such that
A∗; f∗; G∗ ⇒ m.

Lemma 7.11.
∫
C∧− is cocartesian with:

(X, A)⊕(Y, B) := (X+Y, A+B : X + Y → A + B) (f, m)⊕(g, n) := (f +g, m+n)

0 := (0, id0) initX,A := (init
Map(C)
X , initC

A) ∇X,A := (∇Map(C)
X , ∇C

A).

Proof. • _⊕_ well defined and functorial :
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– if m ≥ A∗; f∗; B∗ and n ≥ A′∗; g∗; B′
∗ then m + n ≥ (A∗; f∗; B∗) +

(A′∗; g∗; B′
∗) = (A + A′)∗(f + g; B + B′)∗.

– (id, id)⊕ (id, id) = (id, id) by definition,
– ((f, m)⊕(g, n)); ((f ′, m′)⊕(g′, n′)) = ((f +g); (f ′ +g′), (m+n); (m′ +

n′)) = ((f ; f ′)+(g; g′), (m; m′)+(n; n′)) = ((f, m); (f ′, m′))⊕((g, n); (g′, n′))

• 0 is initial since initX,A always exist and is unique by unicity of initC
A.

• The other diagrams are obtained directly from the co-cartesian structures
of I and C.

Theorem 7.12. C∧− is a model of MAIndILL .

8 Variants of MAIndLL inspired from their se-
mantics

Our semantics may be a bit abstract, but it is in fact very simple. And this
simplicity allows us to change small conditions and consider the corresponding
logics. Notice that our notion of “variants” here is orthogonal to the notion of
modularity relative to the categories of loci, in fact each of the variations below
are modular relatively to the same categories of loci (or variants of those).

8.1 MAIndILL logics
A natural variant to look at is the functors L : I→ SMCC targeting symmetric
monoidal closed categories rather than *-autonomous categories.

Everything works the same way, and we obtain models for the obvious in-
tuitionistic restrictions of MAIndLL, excepts for the &: Lemma 4.23 being only
true if we force the ⊥ in the SMCCs, we need to force the opfibration

∫
L to be

cartesian.

8.2 IndLJ logics
Similarly, we can look at functors L : I→ CCC targeting cartesian closed cate-
gories rather than *-autonomous categories.

In this case, as above the opfibration
∫
L will need to be cartesian. In

addition, despite having two products, the external product & and the internal
product ⊗, those products are identified in the category L0.

Notice also that if I has products, then
∫

L will have products by externali-
sation of the internal products [22, p. 12.7].

8.3 Getting rid of extensivity
We can also have variations on the extensivity of I. Indeed, the extensivity,
contrary to the existence of finite coproducts, is a syntactical condition here as
it has no utility to define the model. Its interest only lies in defining f(A⊕B)
correctly.

The extensiveness is just one of many ways to define f(A⊕B), Another way
would be to add an operator letf and define f(A ⊕ B) as letf (A ⊕ B). We
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call functor such an operator as this will correspond to the notion of functor we
will define in the exponential generalization.

This is, in a way, what is done in [23]. This is also what happens when
slicing a model of MALL.

8.4 MABLL
The solution above, consisting in using a multifunctor letf for any f is quite
extreme. In a lot of cases, we can restrict ourselves to only a few of them, this
is what happens, for example, if I has biproducts, in this case, we can define
f(A⊕B) as letδ(f(π1(A))⊕ f(π2(B))).

But if I has biproducts, then the external coproducts of
∫

L can be internal-
ized in the fibers [22] and it is equivalent to consider a logic with products and
coproducts in every fiber and only monomorphic actions. This is can thus be
generalized in considering weakenable indexes that do not interact with opera-
tors (excepts for atoms/constants). Such a situation appears when considering
additives in logics like BLL [13] or with graded exponentials [2].

8.5 Merging with separation logics ?
Finally, another simple variation one can consider is to require more properties
on the fibration.

In particular, it seems natural to require the opfibration
∫
L to not only be

cartesian, but also closed. In addition, we require the adjunction isomorphisms
Λ :

∫
L(U, V ⇒W ) ≃

∫
L(U & V, W ) to preserve fibers, i.e., that Λ(id, ϕ) = (id, ϕ′).

Using this preservation of fibers, we get the derivation:

Γ & B ⊢X+Y C

Γ ⊢X B −* C

The issue comes with the domain of definition, indeed, B −* C is defined over
a certain X such that Y ⊩ B and X + Y ⊩ C, while there can be several such
X. Nonetheless, the structures seems to be a reminiscent of what happens in
separation logic5, except that we inverse cartesian and monoidal products. This
inversion is easy to discard, by removing the Cartesian constraint of & in

∫
L

and adding one for ⊗ in each fiber.

9 Conclusion
Related Work Our work should be compared to Licata, Shulman and

Riley’s [15] where they present a logic living, like ours, in the fibers of a fibration
over an appropriate category. However, their ‘index category’ is representing
constrains over the resource usage and/or allowed operator, making their logic
extremely different in nature from ours.

From a syntactic perspective, in addition to the original papers of Ehrhard
and Bucciarelli [3, 4], we should mention Breuvart’s Thesis [1] and to a recent
article from Fukihara and Katsumata [10], both of which aim to modularize
bounded linear logic, which is close enough to IndLL.

5Though, not with BI logic which erase heap-dependency the way LL erase loci dependency
of IndLL.
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From a semantics perspective, we can relate to Melliès and Zeilberger’s func-
torial interpretation of separation logic [19, Section 5]. They see the bunch
product ∗ of separation logic as a monoidal product of op-fibration. However,
they place the logic in the op-fibration Rather than tracking it back in the fibers
like we do. This is because they consider (bi)fibrations over calculus, while we
consider those over invariants, so that functions naturally live in fibers. Other
works from the authors [20, 18] are also relevant.

Summary and future works We gave a presentation of MALL with in-
dexes that tracks the additive structure. We have seen that the rules of our
logic can be modular with respect to a choice of category I of loci, encompass-
ing the multiplicative-additive fragment of the original indexed linear logic, the
standard MALL, but also many other instances.

We defined a categorical semantics for our system that makes explicit how
the connectives of indexed logics live in at least two different worlds: the fibers
and the fibration itself. We believe that this study can be extended to other
kinds of logics and that results of total or partial internalization of the properties
of fibrations should correspond to new syntactic constructors of indexed logics.

However, applications of such logic are hardly imaginable as the only interac-
tion between formulae and loci are the atoms, which are so constraint that they
can’t represent much more that an unknown formula. In order to understand
the potential of such system, we need another kind of operators that allows to
arbitrary change the locus of a formula.

In the incoming sequel of this paper, we treat a particular example of such an
operator: the indexed exponentials. The exponentials !uA of IndLL are indexed
by a function u similar to that of graded exponentials, except that those have a
source X and target Y in I, and, in term of semantics, !u is a functor from LY
to LX, a priori different from any of the functorial actions Lf .

We formalize this by requiring the loci category to be the vertical restriction
of a (thin) double category which horizontal restriction would be the category in-
dexes of our exponentials. This presentation, albeit quite synthetic and elegant,
carries new challenges, both semantic (definition of double fibration and ax-
iomatisation of Seely isomorphisms) and syntactic (definition of actions f(!uA)
and subtyping). That is why we chose to split the work in half and address
separately the simpler issues of the multiplicative-additive fragment.
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