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TD5: Teleportation of continuous variables states

N. Fabre∗

February 8, 2023

1 Introduction

The continuous-variable teleportation protocol is a quantum communication protocol that allows for the trans-
mission of a continuous quantum state, such as the amplitude or phase of a light beam, from one location to
another. The continuous variable teleportation is deterministic, but will lead to the distorsion of the state due
to the finite squeezing of the EPR state, contrary to the discrete variable teleportation which is probabilistic but
does not distort the output state. CV-teleportation protocol is a building block of many quantum information
protocols, and can be used for instance to share information between different users [1], and in quantum repeater
architecture [2].

2 Description of the protocol

In what follows, we describe the continuous variables teleportation protocol through the evolution of the opera-
tors (Heisenberg) and the wavefunction (Schrödinger). A nice introduction on the topic, along with some codes
can be found in https://strawberryfields.ai/photonics/demos/run_teleportation.html.

2.1 Ideal protocol

(1) We start from an initial EPR state shared by Alice and Bob. The wave function can be written as:
|ψ⟩ =

∫
dx |x⟩b |x⟩c. Write the nullifiers of the state, corresponding to the set of operators which possess the

EPR state as an eigenvector with the zero eigenvalue. The EPR state is the simplest CV cluster state: represent
it.

(2) The continuous state to be teleported will be noted |ψ⟩ =
∫
ψ(x)dx |x⟩a. The equivalent of the Bell

measurement for the continuous variables encoding is performed, consisting of a beam-splitter mixing between
one mode of the EPR and the mode of the wavefunction to transmit, concluded by two homodyne detections
in orthogonal directions.

• Write the quadrature operators after the output of the beam-splitter x̂± and p̂±. We remind that a
beam-splitter performs the unitary operation:

Û |x1, x2⟩ab =
∣∣∣∣x1 + x2√

2
,
x1 − x2√

2

〉
+−

(1)

Write the output wavefunction state.

• Homodyne detections consist of projections |x⟩ ⟨x| in the mode − and |p⟩ ⟨p| in the mode +. Write the
collapsed wavefunction and the quadratures operators x̂c, p̂c.

(3) The teleported state has a correctable error. What remains to be done for Alice (classical communication),
and subsequently for Bob? What is the fidelity of the teleportation protocol F = ⟨ψ| ρ̂ |ψ⟩?
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2.2 Real protocol

Physical CV states do not have a infinite amount of squeezing, as it would require an infinite amount of energy
to produce them. To take into account the finite quadrature width of the states, the state to be teleported
and the EPR state, one can employ the Wigner phase space representation of the state, as it was done in
[3]. The consequence of the finite squeezing will lead to a distorted teleported state. For instance, the fidelity
F = ⟨ψ| ρ̂out |ψ⟩ of the teleported coherent state |ψ⟩ = |βin⟩ can be cast as [5]:

F =
2

σQ
exp(− 2

σQ
|βout − βin|2) (2)

where σQ =
√
(1 + σx

in)(1 + σp
in), where:

σx
in = σp

in = g2 +
1

2
e2r(1− g)2 +

1

2
e−2r(1 + g)2 (3)

σQ is the variance of the teleported state, and σx,p are the variance along the x and p. quadratures. r is the
squeezing factor of the EPR state and g is the gain factor of the classical channels.

(2) What is the limit r → ∞?

(3) What other factors can limit the fidelity of the teleportation?

We now define other important bounds of the fidelity.

[No-cloning limit F = 2/3] Alice sends a quantum state to Bob, but Bob wants the guarantee that Alice
does not keep for her a better (less noisy) copy of the quantum state. Surpassing the no-cloning limit guarantees
that the teleported state is the best remaining copy of the input state. Copying the state two times will lead to
a fidelity of 2/3, that we will show now. This is a security argument limit, in the perfect spirit of other attacks
that were defined during the course. For a reference, see [4].

(4) The cloner or duplicator has one input mode and two output modes. Starting from the two orthogonal
quadratures Xin, Pin:

X̂a = gaxX̂in + β̂ax , P̂a = gapP̂in + β̂ap (4)

X̂b = gbxX̂in + β̂bx , P̂b = gbpP̂in + β̂bp (5)

In what transformation it looks like? Can you interpret the terms gax and β̂ax?

(5) Write the inequality verified by the product ∆β̂ax∆β̂ap.

[Classical teleportation F = 1/2]
The best achievable value for the fidelity without using entanglement for the coherent state input is F = 1/2.
It corresponds to the case where an infinite number of copies of the state is performed, and corresponds to a
classical measurement. More details can be found in [4].

The state-of-the-art CV teleportation is described in [5], and a fidelity of F = 0.905 ± 0.2 was reported.
In practice, many other obstacles must be reached, such as the phase stabilization between different quantum
photonic fields.
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Figure 1: Quantum circuit of the continuous variable teleportation.

A Correction

A.1 Heisenberg picture:

The nullifiers can be written as:
x̂a − x̂b = p̂a + p̂b = 0 (6)

Alice combines the input mode with one of the mode of the EPR state. The output quadratures mode can be
written as:

x̂± =
1√
2
(x̂a ± x̂in), p̂± =

1√
2
(p̂a ± p̂in) (7)

Alice then performed two homodyne detections, measuring the quadrature x in the mode +, and the quadrature
p in the mode -. The obtained outcome are noted x−, p−, the collapse is:

x̂a = âin +
√
2x−, p̂a = −p̂in +

√
2p̂+ (8)

Due to the EPR property, the nullifier relations, Bob’s quadrature are projected

x̂b = âin +
√
2x−, p̂b = p̂in −

√
2p̂+ (9)

Classical communication: Alice communicates the outcome that she obtained...

Conditional displacement: ... so that Bob then performs the displaced operation to correct the state:

x̂′b = x̂b −
√
2x− = x̂in p̂

′
b = p̂b +

√
2x− = p̂in (10)

The fidelity of the teleportation is then one. The quantum circuit of the teleportation is represented in Fig.A.1.

A.2 Schrondinger picture

Starting by mixing the EPR state |ψ⟩ =
∫
dx2 |x2⟩b |−x2⟩c with the state of interest |ψ⟩in =

∫
ψ(x1) |x1⟩ dx1,

into a balanced beam-splitter

|ψ⟩ =
∫∫

dx1dx2ψ(x1)

∣∣∣∣x1 + x2√
2

〉
a

∣∣∣∣x1 − x2√
2

〉
b

|−x2⟩c (11)

Two homodyne detection are performed in the two spatial ports, the final state is

|ψ′⟩c = a ⟨x−|b ⟨p+|ψ⟩ = eip+x−

∫
dx1ψ(x1)e

ip+

√
2x1

∣∣∣x1 −√
2x−

〉
c

(12)

The displacement operators are:

D̂(x) = eip̂x , D̂(x) |x′⟩ = |x′ − x⟩ (13)

D̂(p) = e−ix̂p , D̂(p) |x′⟩ = e−ipx′
|x′⟩ (14)

Then, by applying the displacement operators, we obtain the initial state:

D̂(
√
2p+)D̂(−

√
2x−) |ψ′⟩c = |ψ⟩in (15)

with a non-relevant global phase. The fidelity of the state is one because the EPR state are infinitively squeezed.
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A.3 Finite squeezing case

The calculation of the output wavefunction can be dealt with the wavefunction or the Wigner representation
[3]. The physical EPR state can be written as

|ψ⟩ =
∫∫

ψEPR(x2, x3)dx2dx3 |x2⟩b |x3⟩c (16)

where:
ψEPR(x2, x3) = e−(x2+x3)

2/4σ2
+e−(x2−x3)

2/4σ2
− . (17)

where σ+ ≪ σ− for an anti-correlated state. After the homodyne detection, the state can be written as:

|ψ′⟩c =
∫∫

dx1dx3ψ(x1)ψEPR(
√
2x− − x1, x3) |x1⟩a . (18)

One has to perform the integration over x3, which will lead to a supplementary function in x1 that will distort
the state. With Gaussian states, the calculation is straightforward. The fidelity can be written as:

F = |⟨ψ|ψ′⟩|2 =

∣∣∣∣∫∫ dx1dx3|ψ(x1)|2ψEPR(
√
2x− − x1, x3)

∣∣∣∣2. (19)

B Non-cloning limit

From [4, 5]. For the relation Eq.(4) takes inspiration from a non-conserving energy beam-splitter (the copying
is costly), with nothing (the vacuum) at one of the input port. Since the creation and annihilation between
different modes commute, we then have [X̂a, P̂b] = 0, the commutators between the noise operators are:

[β̂ax, β̂bp] = −gaxgbp[X̂in, P̂in] (20)

The Robertson inequality can be cast as

∆β̂ax∆β̂bp ≥ 1

2

∣∣∣⟨[β̂ax, β̂bp]⟩∣∣∣ (21)

Thus, we have

∆β̂ax∆β̂bp ≥ 1

4
|gaxgbp| (22)

1/4 is the vacuum’s noise variance. We can define the variances of the equivalent input noises are:

Nix = (
∆β̂ix
|gix|

)2 , Nip = (
∆β̂ip
|gip|

)2 (23)

And the symmetric inequalities can be obtained:

NaxNbp ≥ 1

8
, NbxNap ≥ 1

8
(24)

If a coherent state is perfectly copied βout = βin (used of an ideal EPR state) and the gains are unity, then the
fidelity of the teleportation is:

F =
2√

(1 + 4Nx)(1 + 4Np)
(25)

The fidelity is maximized when Nax = Nbp = Nbx = Nap = 1/4 and takes the value is 2/3 which is an effect of
the fluctuation of the vacuum.
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