
HAL Id: hal-03978730
https://hal.science/hal-03978730v1

Preprint submitted on 8 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robustness of Neural Networks Based on MIP
Optimization

Ramzi Ben Mhenni, Mohamed Ibn Khedher, Stéphane Canu

To cite this version:
Ramzi Ben Mhenni, Mohamed Ibn Khedher, Stéphane Canu. Robustness of Neural Networks Based
on MIP Optimization. 2023. �hal-03978730�

https://hal.science/hal-03978730v1
https://hal.archives-ouvertes.fr

Robustness of Neural Networks Based on MIP Optimization

Ramzi Ben Mhenni1, Mohamed Ibn Khedher1 and Stéphane Canu2

1IRT - SystemX, 8 Avenue de la Vauve, 91120 Palaiseau, France
2INSA Rouen Normandie, 685 Avenue de Universite 76800 Rouen, France

{ramzi.ben-mhenni, mohamed.ibn-khedher}@irt-systemx.fr, stephane.canu@insa-rouen.fr

Keywords:
Neural network, Adversarial attack, Mixed Integer Programming, Branch-and-Bound algorithm.

Abstract:
Even though Deep Learning methods have demonstrated their efficiency, they do not currently
provide the expected security guarantees. They are known to be vulnerable to adversarial attacks
where malicious perturbed inputs lead to erroneous model outputs. The success of Deep Learn-
ing and its potential use in many safety-critical applications has motivated research on formal
verification of Neural Network models. A possible way to find the minimal optimal perturbation
that change the model decision (adversarial attack) is to transform the problem, with the help
of binary variables and the classical bigM formulation, into a Mixed Integer Program (MIP). In
this paper, we propose a global optimization approach to get the optimal perturbation using a
dedicated branch-and-bound algorithm. A specific tree search strategy is built based on greedy
forward selection algorithms. We show that each subproblem involved at a given node can be
evaluated via a specific convex optimization problem with box constraints and without binary
variables, for which an active-set algorithm is used. Our method is more efficient than the generic
MIP solver Gurobi and the state-of-the-art method for MIPs such as MIPverify.

1 Introduction

Evaluating Robustness to adversarial exam-
ples is a very active research field in Deep Learn-
ing, which aims at finding an adversarial attack
a P RN "–perturbed inputs vector that are very
similar to some regular input but for which the
output is radically different [Szegedy et al., 2014]–
", approximating original data vector x P RN .
This problem can be tackled through the mini-
mization of the least-squares approximation er-
ror constrained by the change in the model deci-
sion [Carlini and Wagner, 2017].

min
a

dpa ´ xq s.t.

#

maxi‰ypfipaqq ą fypxq

a P Xvalid

where dp´,´q denote a distance metric that
measures the perceptual similarity between two
input images and ypxq is the true label of the
input x.

To evaluate the robustness of a neural net-
work, several approaches are proposed in the state

of the art, that can be grouped according to the
formulation of the problem into: feasibility, op-
timization and reachability problems. A feasi-
bility problem consists in converting the neural
network to a feasibility problem for the existence
of a counter-example [Katz et al., 2017, Ehlers,
2017, Bunel et al., 2018]. The reachability ap-
proach based consists in computing all the reach-
able set by the neural network and given the input
dataset. Then, it checks if this set verify the de-
sired constraints [Xiang et al., 2018,Gehr et al.,
2018,Xiang et al., 2018]. Generally, the reachable
dataset is computed by approximation. Finally,
the optimization approaches consist in computing
the maximum perturbation that can be applied to
input data without changing the decision of the
neural network [Tjeng et al., 2019,Lomuscio and
Maganti, 2017]. Our approach lies in the opti-
mization based approaches.

In this paper, we build a dedicated branch-
and-bound algorithm for this problem. One key
element in our work relies on showing that each
node evaluation involved in the search tree can
be performed through the optimization of con-

vex problem without binary variables and we
build a specific tree-search exploration strategy.
Section 2 describes the branch-and-bound algo-
rithm principle, details our implementation strat-
egy and links the node evaluation. Then, nu-
merical results are given in Section 3, where the
running time of the proposed implementation is
compared to the MIP resolution with the Gurobi
solver. A conclusion and directions for future
work are finally given in Section 4.

1.1 Formulating Robustness as a
Mixed Integer Program (MIP)

In this paper, we are focusing on Feed-Forward
Neural Network where each neuron in a layer is
connected with all the neurons in the previous
layer. To simplify the process, we take a simple
example of a network with one hidden layer. The
problem can be written as follows:

min
a,h,ĥ

dpa ´ xq s.t.

$

’

’

’

&

’

’

’

%

h “ Wa ` βw

ĥ “ maxph, 0q

s “ Vĥ ` βv

si ď sy

Formulating ReLU : Let ĥ “ maxph, 0q and
´M ď h ď M . There are three possibilities for
the phase of the ReLU. If ĥ “ 0, we say that
such a unit is stably inactive. Similarly, if h “ ĥ,
we say that such a unit is stably active. Other-
wise, the unit is unstable. For unstable units, we
introduce an indicator decision variable b witch
indicates if the ReLU is active or not:

bi “

#

1 ReLu is active
0 ReLu not active

Then, Evaluating Robustness problem is formu-
lating as a Mixed Integer Program:

P : min
a,h,ĥ,b

dpa´xq s.t.

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

b P t0, 1u

h “ Wa ` βw

ĥ ě h ; ĥ ě 0

ĥ ď Mb

ĥ ď h ` Mp1 ´ bq

s “ Vĥ ` βv

si ď sy

2 Branch-and-bound exploration

The branch-and-bound principle [Wolsey,
1998] relies on alternating between a separation

step and an evaluation step. The first one con-
sists in dividing a difficult problem into disjoint
subproblems which are easier to solve, building a
binary search tree. In our case, each separation
corresponds to the decision: bkj

“ 1 or bkj
“ 0,

for some variable bkj
to be defined (see Figure 1).

At node i, decisions have been made concerning

0

1 4

2 3 5 6

bk0 “ 1 bk0 “ 0

bk1 “ 1 bk1 “ 0 bk4 “ 1 bk4 “ 0

Figure 1: Separation step in a binary search tree:
each node corresponding to the optimization problem
Ppnq, is divided into two children nodes obtaining by
constraining one variable to be zero or non-zero.

the nullity of some variables: variables indexed
by S1 are non-zero, those indexed by S0 are zero
(and therefore are removed from the optimization
problem) and decisions must still be made con-
cerning the remaining undetermined variables, in-
dexed by S̄.

The evaluation of node i of the search tree is
based on the computation of a lower bound on
Ppiq, let say z

piq
ℓ witch is obtained by the contin-

uous Relaxation of the binary Variables:

PRpiq
: min
a,h,ĥ,b

dpa´xq s.t.

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

b P r0, 1s

h “ Wa ` βw

ĥ ě h ; ĥ ě 0

ĥ ď Mub

ĥ ď h ´ Mlp1 ´ bq

s “ Vĥ ` βv

si ď sy

The continuous Relaxation PRpiq will indicates
if node i can contain an optimal solution. More
precisely, let zU denote the best known value of
the objective function in P at a current step of
the procedure—which is an upper bound on the
optimal value. If z

piq
ℓ ě zU , then the node can

be pruned. Otherwise, this node is separated into
two subproblems according to some new decision:
bkj

“ 1 or bkj
“ 0? The practical efficiency

mostly depends on the tightness of the computed
bounds (evaluation step) and on the branching
and exploration strategies that are implemented
(branching step).

2.1 Evaluation step

Lower bound and convex relaxation. At
any node i of the search tree, a lower bound on
Ppiq is obtained by solving PRpiq. Indeed, thanks
to the box constraint }h}8 ď M and convexity
property, one has therefore the continuous relax-
ation PRpiq is equivalent to Rpiq.

PRpiq
ðñ Rpiq

with

Rpiq : min
a,h,ĥ

dpa ´ xq s.t.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

h “ Wa ` βw

ĥ ě h ; ĥ ě 0

ĥ ď h`M
2

s “ Vĥ ` βv

si ď sy

Since both problems are defined on the same fea-
sible domain, tĥ ě h ; ĥ ě 0 ; ĥ ď h`M

2 u is a
convex relaxation of the constraint ĥ “ maxph, 0q

(see. figure 2). Let us remark that this well-
known result (the continuous, convex, relaxation
of the ReLu) is only valid under additional bound-
edness assumptions on the solution space, such as
the box constraints that were introduced in prob-
lem P.

´M M

ĥk

hk

Figure 2: The tightest linear convex relaxation.

2.2 Branching rules and
exploration strategy

The branching rule selects the index j of the vari-
able which is used in order to subdivide problem
Ppiq (see Figure 1). We propose to exploit the so-
lution of Rpiq, by selecting the variable with the
highest absolute value in the minimizer:

j “ argmax
nPS̄

ĥpiq
n .

This choice aims at selecting first the variables
which are more likely to be nonzero at the optimal
solution.

Pp0q

Pp1q

bj0 “ 1

Pp3q

bj1 “ 1

Pp4q

bj1 “ 0

Pp2q

bj0 “ 0

Pp5q

bj2 “ 1

Pp6q

bj2 “ 0

We use depth-first search, and our branching
rule is based on selecting the binary variable, say
bi, with the highest value in the solution of the
relaxed problem. We branch up first, that is, we
first explore the branch corresponding to the deci-
sion bi “ 1. This strategy, similar to the principle
of greedy forward selection algorithms [Mhenni
et al., 2020], aims at activating first the most
prominent nonzero variables in xni

‰ 0, therefore
focusing on quickly finding satisfactory feasible
solutions and subsequent upper bounds of good
quality. Our proposed implementation is summa-
rized in Algorithm 1, where L contains the queue
of subproblems and px denotes the best known
solution along the exploration. The Branch-and-

0. Initialization: L Ð{Pp0q}; zU “ `8 ; pa :“ 0.

1. Optimality: if L“H, then return the optimal
solution â.

2. Node selection: choose a subproblem i P L
by depth-first search and remove it from L.

3. Node evaluation: compute z
piq
ℓ .

4. Pruning:

• If zpiq
ℓ ě zU , prune node i and return to step 1.

• If zpiq
ℓ ă zU :

– If bRpiq P t0, 1u, then zU Ð z
piq
ℓ and pa Ð aRpiq.

Prune node i and return to step 1.

5. Branching: subdivide node i by (2.2) and add
the two subproblems to L.

Algorithm 1: Branch-and-bound algorithm
for P.

Bound algorithm converge to the global minimum
in a finite number of steps. In the worst case,
an exhaustive search is done (no node could be
pruned).

B&BHOMEMIPGurobi MIPVerify
T Nds F T Nds F T Nds F
35 1800 4 27 - 4 7 1200 4

Table 1: Computational efficiency for robutness prob-
lems averaged over 100 instances. Computing time
(T) number of explored nodes (Nds) and number of
instances that did not terminate in 1 000 s (F).

3 Performance Evaluation

We now evaluate the computational perfor-
mance of our branch-and-bound strategy us-
ing Cplex MIP solver. We name this algo-
rithm B&BHOME. Computing times are com-
pared with the Gurobi Mixed quadratic program-
ming solver (named MIPGurobi) 1 and MIPVerify

2.
All methods are run on a UNIX machine equipped
with 32Go RAM and with four Intel Core i7 cen-
tral processing units clocked at 2.6 GHz. For each
instance, the running time is limited to 1 000 s.
Note that we only focus here on the computa-
tional efficiency of algorithms which are guaran-
teed to find the global optimum P; due to the
lack of space we do not compare the obtained so-
lutions to that of standard, suboptimal methods.

In order to evaluate the behavior of our
method regarding the complexity of the model,
we have varied the number of hidden layers from
1 to 4 (i.e. from 150 to 600 activation ReLU
functions). Results averaged over 100 instances
of each problem are given in Table 1 and Fig-
ure 3. B&BHOME is much faster then MIPGurobi
and MIPVerify revealing the efficiency of our strat-
egy. Most of all, we observe that the most impor-
tant improvement achieved by B&BHOME is due
to the efficiency of our continuous relaxation: the
computing time per node with the proposed for-
mulation is at least 4 times smaller than that of
MIPGurobi. Even with this improvement, the re-
sults in Figure 4 show the limit of our approach
especially when the number of ReLU in the model
increases. We can see that the complexity in-
creases exponentially and becomes unfeasible in
a reasonable time for complex models.

4 Conclusion

In this paper, we proposed a branch-and-
bound algorithm which is able to find exactly

1https://www.gurobi.com/
2https://vtjeng.com/MIPVerify.jl/latest/

Figure 3: Computational Time for robutness prob-
lems averaged over 100 instances according to the in-
tensity of the attack (maximum disturbance allowed
in infinite norm)

Figure 4: Computing time (Minutes) for robutness
problems as a function of the number of ReLU in the
model, average over 10 instances.

the optimal attack. We have shown that such
problems could benefit from dedicated resolution
methods. Our algorithm outperforms Gurobi,
which is considered as one of the best MIP solvers.
The proposed exploration strategy exploits the
sparsity of the searched solution, by preferring
the activation of nonzero variables in the de-
cision tree, conjugated with depth-first search.
Moreover, evaluation of each node by contin-
uous relaxation was recast as a specific con-
vex problem without binary variables. Follow-
ing the same principle, further works may in-
clude the building of more efficient relaxations,
involving Lagrangian relaxation and specific cut-
ting planes [Wolsey, 1998] for may also improve
the quality of lower bounds computed at each
node. But unfortunately even with this
improvement, the results show the limit of
our approach especially when the number
of ReLU in the model increases and we are
still far from using large indistrual models.

REFERENCES

[Bunel et al., 2018] Bunel, R., Turkaslan, I.,
Torr, P. H., Kohli, P., and Kumar, M. P.
(2018). A unified view of piecewise linear neu-
ral network verification. In Proceedings of the
32Nd International Conference on Neural In-
formation Processing Systems, NIPS’18, pages
4795–4804, USA. Curran Associates Inc.

[Carlini and Wagner, 2017] Carlini, N. and Wag-
ner, D. (2017). Towards Evaluating the
Robustness of Neural Networks. Number:
arXiv:1608.04644 arXiv:1608.04644 [cs].

[Ehlers, 2017] Ehlers, R. (2017). Formal verifi-
cation of piece-wise linear feed-forward neural
networks. CoRR, abs/1705.01320.

[Gehr et al., 2018] Gehr, T., Mirman, M.,
Drachsler-Cohen, D., Tsankov, P., Chaudhuri,
S., and Vechev, M. (2018). Ai 2: Safety and
robustness certification of neural networks
with abstract interpretation. In Security and
Privacy (SP), 2018 IEEE Symposium on.

[Katz et al., 2017] Katz, G., Barrett, C. W., Dill,
D. L., Julian, K., and Kochenderfer, M. J.
(2017). Reluplex: An efficient SMT solver for
verifying deep neural networks. In Computer
Aided Verification - 29th International Con-
ference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part I, pages 97–117.

[Lomuscio and Maganti, 2017] Lomuscio, A. and
Maganti, L. (2017). An approach to reacha-
bility analysis for feed-forward relu neural net-
works. CoRR, abs/1706.07351.

[Mhenni et al., 2020] Mhenni, R. B., Bour-
guignon, S., and Idier, J. (2020). A greedy
sparse approximation algorithm based on l1-
norm selection rules. In ICASSP 2020 - 2020
IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
5390–5394.

[Szegedy et al., 2014] Szegedy, C., Zaremba, W.,
Sutskever, I., Bruna, J., Erhan, D., Good-
fellow, I., and Fergus, R. (2014). Intrigu-
ing properties of neural networks. Number:
arXiv:1312.6199 arXiv:1312.6199 [cs].

[Tjeng et al., 2019] Tjeng, V., Xiao, K. Y., and
Tedrake, R. (2019). Evaluating robustness
of neural networks with mixed integer pro-
gramming. In 7th International Conference
on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

[Wolsey, 1998] Wolsey, L. A. (1998). Integer Pro-
gramming. Wiley, New York, NY, USA.

[Xiang et al., 2018] Xiang, W., Tran, H., and
Johnson, T. T. (2018). Output reachable set
estimation and verification for multilayer neu-
ral networks. IEEE Transactions on Neural
Networks and Learning Systems, 29(11):5777–
5783.

[Xiang et al., 2018] Xiang, W., Tran, H.-D., and
Johnson, T. T. (2018). Reachable set computa-
tion and safety verification for neural networks
with relu activations. In Submission.

