
Graphical Abstract
Comprehensive correlation for the prediction of the heat transfer through a single
droplet in dropwise condensation regime

Jérémie Lethuillier, Marc Miscevic, Pascal Lavieille, Stéphane Blanco, Christophe Coustet,
Frédéric Topin

-2 0 2 4 6
Log[Bi]0.0

0.2

0.4

0.6

0.8

1.0

� / �0

Q ~20°

Q ~170°

Q ~140°

Local 

Accurate Expression of Thermal Resistance

Bi =10000
Q ~120°

Local Temperature Field



Highlights
Comprehensive correlation for the prediction of the heat transfer through a single
droplet in dropwise condensation regime

Jérémie Lethuillier, Marc Miscevic, Pascal Lavieille, Stéphane Blanco, Christophe Coustet,
Frédéric Topin

• Available laws lead to huge discrepancies when they are compared to each other;

• Elements of the mesh must be smaller than the inverse of the local Biot number;

• An unbiased correlation is provided to calculate the conduction thermal resistance;

• In dropwise condensation this law is valid whatever the Biot number and contact angle.
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Abstract

Numerical simulations have been performed to determine the conduction heat transfer in a
sessile droplet for a large range of dynamic contact angle θ and Biot number Bi. The substrate
is set at a constant and uniform temperature, while a convective heat transfer is set at the liquid-
vapor interface. In such a configuration, the heat flux is concentrated in the triple line region,
so that numerical results can become inaccurate as the Biot number increases. A reference
case in which the heat flux can be determined analytically has thus be established to derive an
empirical criterion on the local mesh refining needed to obtain accurate numerical results. To
consolidate the results obtained with a finite elements code, calculations have been performed
with a completely independent tool using Monte Carlo method on a set of cases. A correlation
has then been derived from the numerical results data with a maximum deviation of less than
4% in the considered range of θ and Bi, that covers conditions encountered in all the studies
dealing with dropwise condensation of pure vapor. Comparisons with other laws available in
literature have then been performed, evidencing some important discrepancies.

Keywords: Heat transfer, thermal resistance, sessile drop, numerical simulation, correlation,
dropwise condensation

1. Introduction

1.1. General considerations about the modeling of dropwise condensation
Condensation is commonly encountered in many situations both in nature (cloud, mist,...)

or applications (heat exchangers, HVAC, ...) and could occurs either on cold surface or directly
in gas phases. Two regimes are distinguished on surface condensation. The first one is filmwise
condensation ; in that regime, the condensates form a continuous film that covers the cold
substrate. In the second regime, i.e. dropwise regime, the condensates form small droplets
separated from each other. The latter regime can appear in some portions of space and/or
time, but is often reported in literature as difficult to maintain on an extended surface during
long time. Droplet condensation is commonly reported in 2 situations (see. e.g. [1]): the direct
contact condensation, and the dropwise condensation, first analyzed by Schmidt et al. [2],
usually observed when vapor condensates on a hydrophobic surface. As dropwise condensation
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is a very efficient condensation regime -compared to filmwise one- from heat transfer point of
view it has generated a lot of scientific and industrial interest (see e.g. [3, 4, 5, 6]) ; yet the
different processes composing dropwise condensation, involving the nucleation, the growth of a
single droplet and its coalescence with the neighboring droplets are still not fully understood.
Indeed, heat transfer coefficients up to few hundreds of thousands of W.m−2.K−1 are often
reported in literature as discussed in Lethuillier et al. [7] for example. The main explanation
for such a high value of the heat transfer coefficient is related to the very low characteristic
dimensions of the droplets present on the substrate, leading to small values of the thermal
resistances of each of these droplets. To predict the heat transfer rate, it is thus mandatory to
determine the drop-size distribution, as well as the heat flux through each droplet belonging to
a given size class.
Since the seventies, two approaches have been developed to predict the drop-size distribution.
The first one based on population balance theory was initially developed by Wen and Jer [8].
They proposed to relate the cardinal of a given droplet size class to the number of droplets
entering and exiting this class because of their growth, as well as the number of droplets
disappearing from the class due to the sweeping of the substrate by the biggest droplets.

The resulting differential balance equation is then:

d(G(R)n(R))

dR
+
n(R)

τ
= 0 (1)

where R is the curvature radius, G(R) = dR
dt

is the growth rate, n(R) is the drop-size distribution
and τ is the renewal characteristic time defined as the ratio between the sweeping rate and the
substrate area. The growth rate G(R) can be expressed from a simple energy balance, assuming
quasi-static process, as:

G(R) =
Qd

ρlLlvπR2(2− 3 cos θ + cos3 θ)
(2)

The heat rate Qd is evaluated from a heat transfer model through a single drop, as discussed
in details in the following.
The second approach that have been developed to determine the drop-size distribution consists
in following each drop during its lifecycle and is usually named "Individual Based Modelling".
Due to the number of drops to be tracked, strong assumptions must be made to ensure accept-
able computation times. In particular, all processes are generally considered quasi-statics and
the drop birth as well as the coalescence events are supposed instantaneous. Although these
strong assumptions, the implementation of individual based modelling has been demonstrated
many times to be in good agreement with size distribution data available in literature regard-
ing drop radii greater than few microns (see e.g. [7, 9, 10]). Unfortunately, as no reference
data exist for the size distribution of the smaller drops, the distribution obtained with such an
individual based model (as well as the one obtained with population balance approach) has not
yet been validated. Moreover, it must be highlighted that the size distributions of small drops
obtained respectively with individual-based and population-based models can be very different.
This point has been emphasized in a previous work [7], showing that discrepancies up to two
orders of magnitude can be obtained in the drop-size distribution value according to the used
approach.
Whatever the model of the drop-size distribution, the heat rate through a single droplet must
be expressed according to the various parameters of the considered configuration. One can cite
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the wettability of the substrate, the wall subcooling, the physical properties of the working
fluid, the interfacial heat transfer coefficient, etc. A short review of the main works related
to the prediction of the thermal resistance of a sessile droplet is briefly summarized in the
following section.

1.2. Droplet thermal resistance
For pure vapor, as considered in the following, Le Fevre and Rose [11] were the first to

propose to breakdown the temperature jump between saturated vapor at Tsat and substrate’s
wall at Tw into 4 different terms corresponding respectively to:

• the temperature jump due to the heat conduction through the coating, at the surface of
the solid substrate;

• the temperature jump due to the heat conduction through the liquid within the drop;

• the temperature jump due to the liquid-vapor interfacial thermal resistance;

• the temperature jump due to the effect of the curvature on the saturation conditions.

The imposed temperature difference Tsat − Tw can then be expressed as:

Tsat − Tw = Qd ×
Rth,coat +Rth +Rth,i

1− Rmin

R

(3)

where the denominator (1− Rmin

R
) corresponds to the effect of the curvature on the modification

of the saturation conditions.
Commonly used expressions of thermal resistances Rth,coat, Rth and Rth,i can be found in [7].
The expression of the effect of the coating appears to be quite reliable and is usually expressed
as :

Rth,coat =
δcoat

kcoatπR2sin2θ
(4)

with δcoat the thickness of the coating, kcoat the thermal conductivity and θ the dynamic contact
angle.
On the other hand, there still exists an uncertainty on the evaluation of the interfacial thermal
resistance. This latter is generally expressed as :

Rth,i =
1

2πR2hi(1− cosθ)
(5)

With hi the heat transfer coefficient at the liquid-vapor interface, deduced from the kinetic
model of Schrage [12] and reported in [13] as :

hi =
2f

2− f
1√

2πRvTsat

ρvh
2
lv

Tsat
(1− Psat

2ρvhlv
) (6)

where hlv is the latent heat of vaporisation, Rv is the mass ideal gas constant of the vapor,
ρv is the vapor density and f is the condensation coefficient. This latter corresponds to the
ratio between the rate of molecules that cross the liquid-vapor interface and the total rate
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of molecules that hit the interface. This relation is often reported in dropwise condensation
literature without the term psat

2ρvLlv
[14, 15], which is quite reasonable for saturation pressure

equal or less than normal atmospheric pressure. It should be noticed that in this expression,
the condensation coefficient f is poorly documented. An important work remains thus to be
done on the accurate prediction of this coefficient as a function of the various parameters
(pressure, concentration of non-condensable gas, etc.) [7, 13].
Regarding the thermal resistance of the liquid within the drop (whose accurate prediction is the
main goal of the present work), one of the most widely used expression is the one derived by Kim
and Kim [16]. To establish this expression, the authors considered hydrophobic coatings, and
postulated that each isotherm within the droplet is a sphere segment passing by the triple line.
They then expressed the maximum distance between two consecutive isotherms and assumed
that the average distance between two isotherms is half of this maximum distance. Finally
by integrating the expression of the temperature difference between liquid-vapor interface and
substrate’s wall, they proposed the following thermal resistance due to heat conduction through
the drop:

Rth =
θ

4πRkl sin θ
(7)

Where kl is the thermal conductivity of the liquid.

It must be noticed that this expression aims to predict the conduction thermal resistance when
two Dirichlet boundary conditions are imposed, respectively at the foot of the drop and at the
interface. This assumption is justified for the extreme contrast cases : i) when the interfacial
heat transfer coefficient is infinite (Rth,i << Rth) and ii) when the interfacial transfer becomes
so limiting that the drop becomes fairly isothermal at the wall temperature (Rth,i >> Rth).
In order to take into account the variation of Rth with the Biot number, Chavan et al. [14]
numerically simulated the conduction heat transfer through a single droplet on an hydrophobic
or superhydrophobic substrate with a convective exchange between interface and vapor and
a prescribed temperature on the substrate. They used COMSOL finite element software to
solve the 2-D axisymmetric case. Using the calculated temperature field and heat transfer rate
across the drop they derived a droplet Nusselt number correlation by fitting the numerical
results. From this expression, it can be deduced that the thermal resistance due to conduction
in the droplet is expressed as, for dynamic contact angles θ in the range [90°;170°]:

Rth =
1

klR sin θNu
− 1

hi 2πR2(1− cos θ)
(8)

with:
Nu = 3 θ0.65 (Bi sin θ)0.83 + 0.007 θ5.1 (Bi sin θ)−0.23 if Bi sin θ < 0.5 (9)

Nu = 0.29 θ2.24 (Bi sin θ)−0.17 + 3.33 θ−0.3 (Bi sin θ)0.72 if 0.5 < Bi sin θ ≤ 2 (10)

Nu = 5.76 e−0.28 θ
0.68

ln(1 + 5 (Bi sin θ)0.82− 2.79 (Bi sin θ)0.83) if 2 < Bi sin θ ≤ 105 (11)

where Bi is the Biot number defined as Bi = hiR
kl

.
Another recent and widely used expression for the conduction thermal resistance within a
sessile droplet is the one proposed by Adhikari et al. [15] that aims to extend the validity
range -compared to Chavan et al. correlation - to hydrophilic configurations. They also used
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a numerical approach to determine the temperature field inside a droplet along with the heat
transfer rate crossing it for a wide range of Biot number (10−4 ≤ Bi ≤ 103) and contact angle
(10◦ ≤ θ ≤ 170◦) using the ANSYS thermal module. They then derived a correlation between
Bi, the dynamic contact angle θ and the global thermal resistance Rth,g, this latter being the
sum of the resistance due to the conduction in the liquid and the interfacial resistance. The
expression of Rth that can be deduced from their global thermal resistance is then, for θ in the
range 50◦ ≤ θ ≤ 130◦ and 10−4 < Bi < 103:

Rth =
1

πR2 sin2 θ

(
f(Bi, θ)R

kl
+

1

2hi

)
− 1

hi 2πR2(1− cos θ)
(12)

with

f(Bi, θ) = 0.2160 +
0.7278

Bi
+

(
0.001465− 0.008086

Bi

)
× θ − 0.1012× log10(Bi)

− 0.01378× log2
10(Bi) + 0.007361× log3

10(Bi) (13)

With a such a definition, the scaling factor f(Bi, θ) can become negative for small values of
the Biot number in hydrophobic configuration.
Several remarks can be made regarding this correlation:

• At atmospheric pressure, the value of the interfacial heat transfer coefficient is often
reported to be 15.7 106W.m−2.K−1. In this case, a Biot number of 1000 corresponds to a
curvature radius of about 100µm. The correlation proposed by Adhikari et al. can then
not be used with confidence for droplets with curvature radius higher than 100 µm;

• For high value of the Biot number, the heat flux is concentrated on the triple line region.
The convergence of the grid is then difficult to reach. This point will be discussed in
details in the following.

1.3. Summary and main aims of the present work
So, whatever the approach (individual-based model or population balance model) used to

predict the global heat transfer during dropwise condensation process, the conduction thermal
resistance within the liquid of a single drop must be accurately predicted. Generally, one of the
three most often used correlations available in literature is chosen, i.e., the one of Kim and Kim
[16], Chavan et al. [14] or Adhikari et al. [15]. However, as it will be illustrated in the following,
important discrepancies exist between the results given by these three correlations according
to the configuration considered. Moreover, none of these correlations can be used alone with
confidence for contact angle ranging from superhydrophilic to superhydrophobic situations, nor
with Biot number varying over the full range encountered during dropwise condensation regime
i.e. [10−4 , 105].
Thus, the main objective of this work is to provide a robust expression for the conduction
thermal resistance Rth that can be used with confidence for all the conditions encountered in
dropwise condensation. For that purpose, numerical simulations of heat transfer in a single
droplet have been done for dynamic contact angle varying from 20° to 170° and Biot number
varying from 10−4 to 105. A particular attention has been paid to the numerical precision,
by comparing the results to both an analytical reference case and to the results given by a
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dedicated numerical tool based on Monte Carlo method. Based on this analysis, an empirical
criterion on the local mesh size has been established to ensure a good precision of the numerical
results.

2. Physical model and numerical considerations

In order to calculate the thermal resistance by conduction through the liquid within a single
drop, a simple quasi-static thermal model has been numerically set. The physical model that
has been used, and described hereafter, is widely used in literature, as for instance in the work
by Chavan et al [14] or Adhikari et al. [15]. Our study covers the combined domains of validity
of these previous studies in terms of Biot and dynamic contact angle. We used basically the
same set of assumptions (recalled below) considering heat transfer than in these previous works,
so we will not repeat here the justifications of such assumptions.
The drop is 2D-axisymmetric in the (r,z) plane. In steady state, considering pure conduction
heat transfer across the drop the energy equation reduces to Laplace equation:

∂2T

∂z2
+

1

r

∂T

∂r
+
∂2T

∂r2
= 0 (14)

A constant and uniform temperature is imposed at the foot of the drop, while a convective heat
transfer is imposed between the liquid-vapor interface and the vapor at T∞. This heat transfer
coefficient corresponds to the interfacial heat transfer coefficient hi appearing in the interface
thermal resistance Rth,i = 1

hiSi
. It is evaluated using Equation 6. As already mentioned in the

Introduction, accurate prediction of hi remains challenging as it is a function of the condensa-
tion coefficient which may vary by several orders of magnitude according to the experimental
configuration (in particular according to the pressure and the non-condensable gas fraction).
So, a huge range of variation will be considered in the following to cover as much as possible
all possible cases.
The boundary conditions can then be expressed as (considering the normal ~n at the interface
directed toward the vapor):

T (z = 0) = Tw (15)

hi (T (r = R)− T∞) = −kl
∂T

∂n
(16)

Equations (14), (15) and (16) can be written in a non-dimensional form considering the
following changes of variables:

r∗ =
r

R
; z∗ =

z

R
; ξ =

T − Tw
T∞ − Tw

(17)

We then obtain for the energy equation:

∂2ξ

∂z∗2
+

1

r∗
∂ξ

∂r∗
+
∂2ξ

∂r∗2
= 0 (18)

And for the boundary conditions:

ξw = 0 (19)

Bi (1− ξ) =
∂ξ

∂n∗
(20)
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where Bi = hiR
kl

is the Biot number.
To numerically solve the energy equation (18) along with boundary conditions (19) and (20),
some precautions must be taken on the meshing as the heat flux may be concentrated on a very
small region. This point is discussed in details in the following section.

2.1. Numerical considerations and data reduction
The system has to be solved for each dynamic contact angle that defines the drop geometry

and for a large range of Biot number in order to generate a result database that covers all the
potential applications. We used the Wolfram Mathematica Finite Element Method solver to
solve the stationary axisymmetric non-dimensional Laplace equation (18). An adapted mesh
was created for each case with a particular care taken to generate a mesh structured correctly
to capture the temperature and heat flux fields (see Figure 1). The number of elements varies
from about 50 000 up to 1 800 000 according to the contact angle and Biot number. We used
second order elements (mainly triangles but also quadrilateral elements). The mesh quality
(computed so that for regular polygons it is equal to 1 and for degenerate polygons is equal
to zero) is set to "maximal" and the meshing routine will try for the best quality that can be
achieved. We set the working precision to machine precision (24 digits), while the accuracy
goal (absolute precision) was set to 16 digits. The "Pardiso" direct solver that is optimized for
speed and memory efficiency has been used. A fully detailed description of the method, the
solver, the implementation, as well as several validation cases can be found in [17]. To ensure a
good quality of the solution, the heat flux conservation was systematically checked. A specific
attention has been paid on the heat flux spatial distribution near the triple line and the mesh
has been locally refined to this end.

Zoo
m

Zo
om

Figure 1: Example of a drop mesh for an dynamic angle of 120° ; the symmetry axis is the left one. It is an
unstructured mesh composed of 281466 2nd order triangle elements. The smallest element near the triple line
has here a typical size of 10−4R (this value is about 1

Bi for all the calculations).

The average interface temperature ξi was then calculated by simple integration of the local
temperature on the interface. The total heat transfer rate Ψ across the (non-dimensional) drop
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was then determined in three ways, i.e. by integration of the conduction heat flux along the
wall, by integration of the conduction heat flux below the interface, and by integration of the
convection heat flux above the interface:

Ψ =

∫
α

−kl
∂ξ

∂n∗
dS∗ with α = i or w (21)

=

∫
i
Bi (ξi − 1) dS∗ = Bi S∗i

(
ξi − 1

)
(22)

Considering Equation 22 for the non-dimensional heat transfer rate, the non-dimensional
thermal resistance by conduction in the liquid is simply expressed as:

Rth =
ξi
Ψ

(23)

The dimensional thermal resistance (K/W) is easily deduced :

Rth =
Rth

klR
(24)

It is well known that finite element method converge toward the exact solution of conduction

Bi=0.0001 Bi=10000 

Champ de température adimensionnée.

Répartition  du flux de chaleur. 

Bi=0.0001

Bi=10000

Figure 2: Examples of non-dimensional temperature field (ξ) calculated for a dynamic contact angle of 135°
and two values of Biot number (10−4 and 104). As indicated by the isotherm shape, the heat flux is more
concentrated near the triple line at high Biot number.

equation for a sufficient fine mesh. Also, the spatial domain should be discretized with a suf-
ficient accuracy to avoid geometrical errors. We choose to use second order elements to mesh
the sphere segment, thus even for relatively large element the interface shape will be captured.
Examples of non-dimensional temperature field (ξ) are reported on Fig. 2 in the case of a dy-
namic contact angle θ = 135° and two different Biot numbers (Bi = 10−4 and Bi = 104). The
temperature fields appear quite different in the two configurations.
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h(x)

y0
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yi

T (-)
y (-)
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(a) (b)

Figure 3: Configuration of the reference case. The local heat flux in such a configuration can be determined
analytically and is thus used to check the numerical results precision. b) Example of temperature field obtained
with the finite elements tool when imposing h(β) accordingly to Equation (26) with x0 = 0.972R sin θ, θ = 60°
and θcorner = 63°.

In order to construct a mesh that leads to precise enough data for the final aim of the simu-
lation, the point is not only to evaluate the solution error (temperature, global heat transfer
rate conservation) according to the element size but also to ensure the quality of the derived
quantities that will be used in the analysis. Since the heat flux is localized mainly in the
vicinity of the triple line, the temperature gradient is concentrated in an area whose size de-
creases sharply with increasing Biot. So, this extremely sharp spatial distribution of the heat
flux, associated with the axisymmetric geometry of the drop, induces a significant difficulty
in determining a size (or rather a field of sizes) of meshes suitable for guaranteeing the qual-
ity of the solution and particularly the exact calculation of the heat fluxes and heat transfer
rate. We thus defined a reference case, solved it and obtained an explicit algebraic solution (see
Appendix). It was used to derive a criterion on the mesh element size leading to an accurate so-
lution. This reference case and the obtained mesh criterion are detailed in the following section.

2.2. Mesh element size criterion for accurate numerical solution
To define the reference case, let us consider first two isothermal planes at temperature Tsat

and Tw, forming a corner of angle θcorner. Due to symmetry considerations, the isotherms in
this corner are straight lines passing through the origin (Figure 3.a):

T (x, y) =
Tsat − Tw
θcorner

arctan
(y
x

)
+ Tw (25)

Let us now consider a virtual 2D droplet of radius R and contact angle θ in this corner, the
center of this virtual drop being placed at (x0, y0) from the origin of the corner. This virtual
droplet has then its footprint at uniform temperature Tw and can be considered as exchanging
heat with the plane at Tsat with an apparent heat transfer coefficient h which varies along
the interface of the drop. So, h has to be determined locally so that the temperature field in
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the drop is identical to the one in the corner. The resulting expression of h on the interface
according to the angular position β around the drop center is (cf. Appendix):

h(β) =
akl

(
x0

yi
xi
− y0

)
Rxi

(
1 +

y2i
x2i

)(
Tsat − Tw − a arctan

(
yi
xi

)) (26)

with :
a =

Tsat − Tw
θcorner

(27)

and
xi = R cos β + x0, yi = R sin β + y0, y0 = −Rcosθ (28)

Both local heat flux in the zone x0 − R sin(θ) ≤ x ≤ x0 + R sin(θ) and heat transfer rate
through the drop can be easily deduced:

q(x) = −akl
x

(29)

Q = a ln

(
x0 +R sin(θ)

x0 −R sin(θ)

)
(30)

The interesting point is that playing with the center abscissa x0 and the angle θcorner we can
both obtain more or less sharp heat flux distribution and very high local values of the Biot
number.
We reported in Table 1 the heat transfer rate calculated using finite element code as well as
the one given by Equation (30). We chose x0 so that x0−R sin θ

R
is in the range [0.01; 10] leading

to a maximum local Biot number (defined as h(β)R
kl

) in the left corner varying between 2 · 102

and 2 · 105, the latter corresponding to almost the worst case encountered in dropwise con-
densation. Calculations have been realized for both hydrophilic and hydrophobic situations,
i.e., for θ = 60° (θcorner = 63°) and θ = 130° (θcorner = 132°). An example of the temperature
field obtained with the finite elements code is reported on Figure 3.b in the case θ = 60°. The
isotherms obtained numerically are straight lines as expected, and are well superposed to the
isotherms obtained analytically.
From general point of view, the meshing requirements are function of the geometry, the bound-
ary conditions and the numerical method. To check the convergence, several meshes have been
used, each of them being characterized by the size of the smallest element in the triple line
vicinity. As it can be seen in Table 1, a good agreement between numerical results and analyti-
cal ones is obtained when the non-dimensional size of the element is less than the inverse of the
local Biot number. This rule, even if it is specific to the present case, has been found to remain
true whatever the values of x0, θcorner and θ. It is worth noting that such a dependence of the
mesh element to the local Biot number is not surprising as the local heat flux is a function of
the inverse of the local abscissa. So, to capture the right value of the heat flux, element size of
the mesh has to vary accordingly.
It can be noticed that the chosen mesh requirement in literature fall in line with our proposed
criterion. For example, in their mesh convergence analysis, Chavan et al. [14] (see S2 of their
supplementary material) remarked that mesh size has to be smaller than R/100 for a Biot
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(Size of the Q/(λR∆T ) Q/(λR∆T ) Relative
θ θcorner Bimax smallest element)/R FE analytic deviation (%)
60° 63° 211.2 2.70 · 10−4 5.4467 5.4467 0.00
60° 63° 2135.6 6.85 · 10−5 7.54466 7.54285 0.02
60° 63° 23757.4 3.37 · 10−5 9.79803 9.73298 0.67
60° 63° 101827 3.44 · 10−5 11.1804 11.0565 1.12
60° 63° 213839 3.65 · 10−5 12.1979 11.7313 3.98
130° 132° 280.0 2.27 · 10−4 2.59957 2.59956 0.00
130° 132° 2866.5 7.02 · 10−5 3.60461 3.60000 0.13
130° 132° 31931.3 1.10 · 10−5 4.64803 4.64529 0.06
130° 132° 136875 6.83 · 10−6 5.17683 5.27697 -1.90
130° 132° 287446 7.03 · 10−6 5.77299 5.59902 3.11

Table 1: Non-dimensional heat transfer rate through the 2D droplet obtained with the finite elements (FE) code
and with Equation 30 for 2 dynamic contact angles (60° and 130°). The reported Biot number is the maximum
local value of h(β)Rkl

with h(β) calculated using Equation 26.

number of 100 in order to achieve mesh convergence. Although these studies were carried out
following the best practice in the domain (mesh convergence analysis, comparison with avail-
able data, convergence criteria ....), the tests were carried out for an average representative Biot
number (an usual procedure efficient for the majority of problems) and not for the maximal
one. The specific spatial distribution of the interfacial heat transfer rate that becomes more
and more localized and peaked with increasing Bi induced inaccuracies in the produced results.
Indeed, when the element size is too big compared to the peak width, a significant part of the
total heat transfer is missed without any clear indication on the convergence criteria. The
difference between two consecutive meshes can thus be small while both values are far from
the exact solution. In other words, the calculated heat transfer rate can remain appreciably
constant on a rather large range of mesh size without being completely converged.
It thus appears that determining precise solutions (heat transfer and temperature on the in-
terface) is more complicated than what one might suppose based on an usual good practice
in numerical modeling. We also performed several preliminary tests with finite volume and
finite element methods using commercial software to facilitate pre- and post-processing (Wol-
fram Mathematica and Siemens Starccm+) and compared the obtained results. As expected,
we observed excellent agreement between all codes for low and moderate Biot values. Using
sufficiently refined meshes (depending on the method and the used software), similar data were
produced using all methods even for high Biot ; however we also have observed that in some
cases all the codes gave similar results for a given refinement level but finally converged to a
different solution upon further refinement.
We decided to carry out the systematic study using the finite element method in the Math-
ematica environment, developed a specific mesh strategy and, set up a calculation module to
obtain reference data and to confirm the precision of our solutions.
So, the developed meshing algorithm uses a size function that defines a local element size (either
a length or an area) as a function of the coordinates of the element center, enforces an "accuracy
goal constraint" on the node placement along the boundaries and simultaneously maximizes the
mesh quality. The resulting mesh structure is as follow (see figure 1) : the smallest element size
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near the triple line is about 1
Bi
, and grows roughly inversely with the distance to this point. In

addition, a layer of fine meshes is created in the vicinity of the interface for heat flux accuracy
calculation and post-processing purposes.
Consequently, to validate the accuracy of the solution on this tricky problem and when using
such a meshing algorithm, an adhoc code has been developed using a completely different nu-
merical approach (i.e. Monte Carlo) in order to produce a reference set of data. This code is
detailed in the next section.

2.3. Confrontation with an independent tool based on Monte Carlo method
Statistical methods for solving the diffusion equation were initiated in the 1950s from the

concomitant development of Monte Carlo methods and the work of Feynmann and Kac who
established the link between parabolic partial differential equations and stochastic processes
[18, 19]. The idea is to define the quantity of interest (here the temperature) as the expectation
of random processes, which is numerically evaluated by an average over samples of random walk
paths. The result becomes closer to the expected value as the number of samples is increased
[20, 21, 22].
Walk on Sphere (WoS) methods [23, 24, 25] are directly part of this story, but in the simpler
case where the diffusion equation is stationary and homogeneous (Laplace equation), it is pos-
sible to directly build the algorithmic idea from the properties of harmonic functions. This
property states that the temperature at any point is equal to the average of the temperatures
on any sphere included in the domain and centered around the point.
Adding the idea of double randomization (central concept in Monte Carlo methods) [26], allows
the construction of random walk paths by successively sampling positions on spheres of any
radius. Typically, in our case, to evaluate the temperature at a given point, we construct a
large sample of paths (each of them is a succession of segments of different sizes and directions)
that start from this point and end on boundaries where the temperature is known. The average
of the temperatures obtained at the end of the paths is an unbiased estimator of the desired
temperature. Recently, various works have extended the field of application to coupled heat
transfers in complex geometry due to both theoretical advances on physical formulations and
considerable computing progress on ray tracing capabilities from the image synthesis commu-
nity [27, 28, 29].
In the present work we use the classical WoS method which consists in always choosing the
largest sphere entirely included in the domain (its radius is the smallest distance to the bound-
ary). The boundary is reached when the location sampled on the sphere is at a distance lower
than a numerical parameter ε. An important property of this method is that the number of
successive spheres required to reach the boundary increases only as the logarithm of 1

ε
[30].

Thus it is possible to choose values of ε close to the precision of computer representation of
floating point numbers, which results in introducing almost no approximation due to this pa-
rameter (the ratio of epsilon to the characteristic dimension of the domain is in our case always
lower than 10−8).
In our configuration, if the random walk reaches the foot of the drop, the dimensionless temper-
ature given by equation 19 is retained (here 0). On the other hand, the boundary condition at
the liquid-vapor interface given by equation 20 requires a particular treatment which introduces
a new numerical parameter. Approximating normal derivative of the equation 20 by a finite
difference, it is straightforward to write the non-dimensional temperature at the interface as an
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expectation:

ξI = P ξ∞ + (1− P ) ξδI

where ξ∞ = 1, P = Bi δI
Bi δI+1

and ξδI is the temperature of the point on the normal line at
a distance δI from the interface. Thus, when the path reaches the liquid-vapor interface, with
probability P it ends in the vapor and the weight is the corresponding dimensionless temperature
(here 1), and with probability (1-P) the path continues in the drop from the reinjection position
(defined by the numerical parameter δI).

dI

x1

x2

x3

x4

x5
e

e

Figure 4: Walk on Sphere Illustration. A random walk path connecting the centers of the spheres ~xi is repre-
sented by a blue line. After a reinjection the point ~x1 is at a distance δI from the liquid-vapor interface and
the last point of the path ~x5 is at a distance from the wall smaller than ε.

The numerical re-injection parameter δI must be as small as possible to ensure that the
temperature gradient at the interface is well represented. This is especially important near the
triple line with high Biot values, as the gradient can then be huge. As a consequence, when
the re-injection takes place near the triple line region, the re-injection parameter is gradually
decreased towards ε in an empirical way. Additionally, if the distance of the foot of the drop is
lower than 2× ε, the parameter is set to the exact distance of the foot of the drop (so that the
re-injection reaches it). All the simulations are done after having checked that the influence of
this parameter on the results is no longer perceptible (δI is then typically 100× ε).

The calculation of the flux given by equation 22, simply requires an additional integration
in Monte Carlo to evaluate the average temperature on the liquid vapor interface. Since the
flux is mostly concentrated around the triple line for large values of the Biot number, it could
be interesting, for a further evolution of the method, to set up a sampling strategy to decrease
the variance of the estimator (which will directly decrease the computation time).

The software used for the Monte Carlo computations, namely "Droplet", is available online
as a git repository [31] and is distributed under the GPLv3+ license. It is a C program which
is based on the Star-Engine, a free development environment that is developed by Méso-Star
[32] and whose main purpose is to help engineers and researchers to develop Monte Carlo
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simulation software. Star-Engine is made of several libraries, each one focused on a single
functionality following an Unix-inspired philosophy (random numbers generation, 2D and 3D
complex geometry ray-tracing and sampling, mesh I/O, mesh generation, scattering functions,
volume ray-tracing, unstructured volume data management, . . . ). The Star-Engine can be
freely downloaded [33].

Monte Carlo Finite elements
θ Bi Ψmin −Ψmax Median Number Ψ

(confidence of 99.7%) value of samples
20° 0.0001 3.789 · 10−5 − 3.789 · 10−5 3.789 · 10−5 105 3.789 · 10−5

20° 0.1024 0.03865− 0.03869 0.03867 105 0.03868
20° 104.86 12.314− 12.363 12.339 5 · 106 12.334
20° 107374 53.956− 54.0821 54.0191 5 · 109 54.071
70° 0.0001 4.133 · 10−4 − 4.135 · 10−4 4.134 · 10−4 104 4.134 · 10−4

70° 0.1024 0.4052− 0.4075 0.4064 5 · 106 0.4056
70° 104.86 20.843− 21.025 20.934 107 20.959
70° 107374 53.970− 54.2635 54.117 1010 54.233
120° 0.0001 9.415 · 10−4 − 9.427 · 10−4 9.421 · 10−4 104 9.423 · 10−4

120° 0.1024 0.8078− 0.8145 0.81115 105 0.8106
120° 104.86 13.314− 13.531 13.4225 107 13.455
120° 107374 30.802− 31.138 30.97 1010 31.115
170° 0.0001 1.244 · 10−3 − 1.245 · 10−3 1.2445 · 10−3 104 1.244 · 10−3

170° 0.1024 0.4482− 0.4598 0.454 105 0.4523
170° 104.86 1.6728− 1.7361 1.70445 2 · 107 1.699
170° 107374 4.006− 4.146 4.076 1010 4.074

Table 2: Non-dimensional heat transfer rate obtained with the finite elements code and with the Monte-Carlo
method for 4 dynamic contact angles (20°, 70°, 120° and 170°) and 4 Biot numbers 10−4× (1, 210, 220 and 230).
The number of samples for MC computations is chosen as a compromise between standard deviation, which
decreases as the square root of the number of samples, and computation time. Compatibility between the two
approaches is systematically satisfied.

In its current version, the "Droplet" software main characteristics are:

• It is dedicated to the droplet problem discussed in this paper and has been carefully
validated against the reference case "corner" described on figure 3 for which exact solution
is available. In all the tested configurations representative of the Biot numbers of the
problem (locally up to 2 · 105) we calculated the temperature on several points on the
interface as well as the global heat flux (surface probe). The number of samples was
adjusted until the relative standard deviation σ

χ
on the estimate value χ was less than

0.1%. The exact value χexact (eq. 25 for the temperature or eq. 30 for the heat flux) is
then found in the range ±3σ around the estimate value χ.

• Geometric computations are analytic (not approximated with a mesh) and all computa-
tions are carried out in double precision,
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• "Droplet" is a command-line tool and its parameters can be modified through dedicated
command-line options.

As illustrated by table 2, the two numerical approaches are in excellent agreement. This
hereby confirms the validity of the numerical results and allows us to confidently use the data
set to generate an accurate correlation in order to predict the droplet heat transfer in various
conditions. At low Biot, the heat transfer rate increases with contact angle -i.e., the interface
area- as the heat flux is roughly homogeneous in the droplet while at high Biot it decreases (on
the presented range) as it is mostly proportional to the triple line length.

3. Correlation for the conduction thermal resistance of the drop

The thermal resistance of the droplet was deduced from the interface average temperature
(calculated by integration of the local temperature, see Eq. 22) and the total heat transfer
across the droplet. To produce accurate data, the procedure described above regarding the
meshing and the convergence criteria was carried out for 61 contact angles ranging linearly
from 20° up to 170° and for 31 Biot numbers distributed exponentially from 10−4 up to 105 in
order to spread the 1891 data points over a range exceeding the physically accessible one. The
contact angle range covers the whole possible situations from hydrophylic cases to hydrophobic
ones. The Biot range corresponds to water droplets radii up to few millimeters at atmospheric
pressure (i.e. when the condensation coefficient is set to 1 when calculating hi). For illustration
purpose, we reported in Table 3 the drop curvature radius and the heat transfer coefficient values
in the case of water at atmospheric pressure for different Biot numbers. If the condensation
coefficient f is set to 1 (corresponding to the maximal value of hi = 15.7 · 106 Wm−2K−1), for
Bi in the range 10−4 the curvature radius of the drop would be non-physically small. Similarly,
for a 1nm radius drop, values of Bi above 0.25 could not be obtained as it would implies a heat
transfer coefficient greater than the maximal physical value.

The variations of the dimensionless conduction thermal resistance ratio Rth/Rth,0 obtained

R (m) for two hi (W.m−2.K−1) hi (W.m−2.K−1) for two R (m)
Biot hi = 15.7 · 106 (f=1) hi = 4.03 · 105 (f=0.05) R=10−9 R=10−3

0.0001 1.54 · 10−10 6.2 · 103 6.2 · 10−2

0.1 3.95 · 10−9 1.54 · 10−7 6.2 · 106 6.2 · 101

100 3.95 · 10−6 1.54 · 10−4 6.2 · 104

100000 3.95 · 10−3 0.154

Table 3: Considering water as a working fluid kl ≈ 0.62 Wm−1K−1 varying Bi from 10−4 up to 105 is obtained
by varying the product hiR. The greyed cells correspond to non-physically obtainable values.

from numerical data are reported on Figure 5 as a function of log10(Bi). For each dynamic
contact angle θ, Rth,0 is the dimensionless thermal resistance for the lowest Bi value -i.e., for
Bi = 10−4-. Each curve corresponds to a single dynamic contact angle ; the resistance ratio
decreases with contact angle up to about 145° and then increases significantly. This trend is
mostly apparent for 1 < Bi < 104 ; outside of this range the variations versus contact angle
are very small. It can be noticed from this figure that Rth/Rth,0 remains almost constant and
equal to 1 when Bi is smaller than 10−2 whatever the contact angle. This behavior can be
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Figure 5: Reduced thermal resistance versus log10(Bi) for all tested dynamic contact angles : all the curves
present a similar sigmoidal step shape

explained as follows: when Bi is small, the conduction thermal resistance is small compared
to the interfacial resistance. So, the heat transfer rate is mainly controlled by the convective
effects, and the Biot number value has no more influence. For higher values of Bi, i.e., for Bi
varying from 10−2 to 105, Rth/Rth,0 decreases in a nearly sigmoidal manner. As Bi increases,
conduction thermal resistance becomes more and more predominant. The heat flux is then
increasingly concentrated in the triple line region and the heat transfer rate becomes strongly
correlated to the triple line length.
As all curves present the same shape, we propose to fit them by a simple sum of hyperbolic
tangent functions of Biot in which the 5 parameters (ζi) depend only on the contact angle.
The best fit for each contact angle was obtained using the Mathematica nonlinear fit algorithm
along with the ζi expressions:

• For Bi ≤ 10−2

Rth =
ζ0ζ4
kR

(31)

• For 10−2 < Bi < 105

Rth =
ζ0
kR

[tanh {ζ1 − log10(Bi)} − tanh {ζ2 + ζ3 log10(Bi)}+ ζ4] (32)
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Figure 6: Reduced thermal resistance versus dynamic contact angle for all tested Biot numbers : all the curves
present a similar more or less pronounced asymetric "U" shape ; the minimum is close to 145°.

where ζ0...ζ4 are function of θ expressed as a :

ζi =
6∑
j=0

aijθ
j + bi tan

(
θ

2

)
(33)

The values of constants aij and bi are reported in Table 4. Examples of the variations of the
dimensionless thermal resistances Rth obtained using this correlation as a function of the Bi
number are reported on Figure 7 for 4 different contact angles. The symbols correspond to
the numerical calculations. The adequacy appears very good whatever the Bi number and the
contact angle. The comparisons between results obtained with Equations 31-33 and numerical
data are reported on Figure 8 for all the considered configurations. As it can be seen on this
figure, all data agree within ±4%. For most of the points the agreement is within about 1%.
The highest discrepancy is obtained for the lowest values of the thermal resistance, thus for
the highest Biot numbers and contact angles, where it reaches 4%. This was expected as it
corresponds to the cases for which the heat flux is the most concentrated in the triple line
vicinity.

As described in the introduction, 3 correlations from the literature are mainly used. They
present different validity domains in terms of Biot numbers and contact angle ranges. For
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Figure 7: Non dimensional thermal resistance : Illustration of the good agreement between correlation values
(lines) and original data (dots) for 4 dynamic contact angles.
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Figure 8: Non-dimensional thermal resistance (see eq. 23) : correlation values as a function of numerical ones
for dynamic contact angle varying from 20° up to 170° and Biot numbers ranging from 10−4 up to 105 ; all the
1891 points lies in the range ±4% and the average difference is about 1.5%.
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ζi → ζ0 ζ1 ζ2 ζ3 ζ4
ai0 0.019944575 2.87624 -2.19022 0.414464 2.1726808
ai1 -0.015866575 -3.00749 2.65388 -0.35213 -0.950956
ai2 0.00149794 1.89873 -1.96457 0.322101 2.414324
ai3 0 -0.645073 0.735545 -0.0938014 -2.231196
ai4 0 0.087902 -0.107307 -0.031516 0.983096
ai5 0 0 0 0.0237513 -0.2044184
ai6 0 0 0 -0.00367889 0.01565884
bi 0.03313825 0.0215536 0 0 0

Table 4: Values of constants aij and bi in Equation (33).

example, Chavan et al. [14] law is only valid for hydrophobic situations, Kim and Kim [16]
model is independent of Biot numbers and Adhikari et al. [15] correlation is proposed only
for Bi < 103. In the following comparison, we will nevertheless plot the literature correlations
over the full range used in the present study for comparison purpose and we will use dashed
line when the curves are plotted outside of the validity range defined by the authors. Note as
already explained that Chavan et al. as well as Adhikari et al. works report only the global
thermal resistance -i.e. the sum of the one due to the conduction in the liquid and the interfacial
one- and that we extract the droplet conduction resistance from their data. We thus conduct
the comparison both in terms of global and conduction thermal resistances.

Figures 9.a and 9.b illustrate the deviation of the literature correlations to the present
work for an hydrophilic situation. The first remark is that one could observe very important
discrepancies. Secondly each these laws are usable only to some limited cases (either in terms
of Bi or of dynamic contact angles). As expected, the Chavan law is clearly not applicable
because the extrapolation of Equations 9-11 is not valid for contact angles smaller than 90°.
On Figure 9.a Kim and Kim and Adhikari et al. global thermal resistances fairly agree with
our data for Biot number up to one and remain applicable for Biot numbers smaller than 10
and 1000 respectively. For higher values of Biot number the discrepancies increase sharply.
This is due to the imprecise estimation of the conduction thermal resistance as illustrated on
Figure 9.b. As previously mentioned the insufficient meshing in Adhikari et al. work leads to a
wrong estimation of the heat flux and thus induces an important bias on thermal resistance at
high Biot numbers. For Bi < 1 the conduction resistance is negligible compared to the global
one and thus extracting it from the global resistance is hazardous. This can explain the huge
discrepancies observed. For hydrophilic situation the Adhikari law does not produce accurate
results also for intermediate Biot numbers, while it gives rather good results at 90° and usable
ones for hydrophobic situations (figures 9.d and f).
The model of Kim and Kim predicts accurately the conduction resistance for the small Biot
numbers while it is clearly not applicable for Bi > 10 for all contact angles. This is probably due
to the respective validity of the 2 main assumptions of this model: the interface is an isotherm,
and the distance between 2 consecutive isotherms is half the distance on the symmetry axis.
Similar comments can be derived for intermediate contact angle i.e. (90 °, see Figure 9.c and
9.d) and high contact angle (135° see Figures 9.e and 9.f). For θ = 90°, Adhikari et al. obtain
accurate results for both the global and conduction thermal resistances up to Bi = 1000. This
was as expected as this contact angle is taken as reference in the definition of their scaling
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Figure 9: Relative deviation of the literature correlations to the present work for both global (i.e., liquid +
interfacial) (left) and liquid (right) thermal resistances: (a and b) θ = 45°; (c and d) θ = 90°; (e and f) θ = 135°.
Thin dashed lines indicate that the correlation has been used outside of the validity range announced by the
authors. Blue curves Kim and Kim [16], Red curves Chavan et al. [14], Black curves Adhikari et al. [15]. The
Chavan et al. and Adhikari et al. liquid thermal resistances have been calculated as the difference between the
global one and the interfacial one using respectively equations 8 and 12 along with equation 6 to evaluate the
heat transfer coefficient.
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factor (see Equation 13). For θ = 135°, Chavan et al. works give acceptable results for both
resistances when Bi > 0.1 while for smaller Bi values the discrepancies diverge. To summarize,
literature correlations can be used for the evaluation of the conduction thermal resistance for
the following cases:

• Kim and Kim : only for Bi ≤ 1

• Chavan et al. : Bi ≥ 0.1 and θ ≥ 90°

• Adhikari et al. : 0.1 < Bi < 1000 and θ ≥ 90°

While all work correctly on a limited range none of them could be used in a generic manner.
The correlation proposed in this work appears thus useful for modelling dropwise condensation
whatever the configuration.

4. Conclusion

The problem of the heat transfer through a sessile droplet on an isothermal substrate may
appear simple. However, from numerical point of view when using finite elements code, it
involves drastic problem of precision as the heat flux is concentrated on a very small region
near the triple line. By considering a reference case whose exact analytical solution is known
and by comparing the results with an independent tool based on Monte Carlo method, it
has been shown that the size of the mesh elements in the region of the triple line must be
less than the inverse of the local Biot number in order to obtain good precision. Using this
criterion, calculations of the conduction thermal resistance in the liquid has been done for
dynamic contact angles varying from 20° to 170° and Biot number in the range 10−4− 105. An
analytical regression law has then been derived that fits the numerical results with a maximum
deviation of±4% and an average one of about±1.5%. This law can thus be used with confidence
when modeling dropwise condensation on hydrophilic, hydrophobic or heterogeneous wettability
surface. Finally, comparisons with similar laws available in literature have been done. According
to the configuration, i.e., contact angle and Biot number values, important discrepancies have
been highlighted.
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Appendix A. 2D heat transfer reference case "Corner"

To define our 2D reference case, let us consider first two isothermal planes at temperature
Tsat and Tw, forming a corner of angle θcorner. Due to symmetry considerations, the isotherms
in this corner are straight lines passing through the origin (Figure 3.a):

T (x, y) = a arctan
(y
x

)
+ Tw (A.1)
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with:
a =

Tsat − Tw
θcorner

(A.2)

The temperature gradient is thus obtained by simple derivation:

~grad(T ) =
a

x(1 + y2

x2
)

(
−y
x
~ex + ~ey

)
(A.3)

The resulting expression of the coordinates of any point on the interface i according to the
angular position β around the drop center is:

xi = R cos β + x0, yi = R sin β + y0 (A.4)

The normal to the liquid-vapor interface is:

~ni =
xi − x0
R

~ex +
yi − y0
R

~ey (A.5)

So, the conduction heat flux at the interface can be expressed as:

q = −kl
(

~grad(T ).~n
)
i

= −
akl

(
x0

yi
xi
− y0

)
Rxi

(
1 +

y2i
x2i

) (A.6)

This heat flux can also be expressed using Newton’s law:

q = −h(β)(Tsat − Ti) = −h(β)

(
Tsat − Tw − a arctan

(
yi
xi

))
(A.7)

The local heat transfer coefficient h(β) is thus finally:

h(β) =
akl

(
x0

yi
xi
− y0

)
Rxi

(
1 +

y2i
x2i

)(
Tsat − Tw − a arctan

(
yi
xi

)) (A.8)
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