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We establish the Kato-type smoothing property, i.e., global-in-time smoothing estimates with homogeneous weights, for the Schrödinger equation on Riemannian symmetric spaces of non-compact type and general rank. These form a rich class of manifolds with nonpositive sectional curvature and exponential volume growth at infinity, e.g., hyperbolic spaces. We achieve it by proving the Stein-Weiss inequality and the resolvent estimate of the corresponding Fourier multiplier, which are of independent interest. Moreover, we extend the comparison principles to symmetric spaces and deduce different types of smoothing properties for the wave equation, the Klein-Gordon equation, the relativistic and general orders Schrödinger equations. In particular, we observe that some smoothing properties, which are known to fail on the Euclidean plane, hold on the hyperbolic plane.

Introduction

A central topic in the area of analysis is to understand the influence of geometry on the behavior of solutions to the nonlinear evolution partial differential equations. Dispersive equations are well-known examples for their different phenomena on curved manifolds. In the study of nonlinear dispersive equations, there are two main tools: the Strichartz inequality and the smoothing property. Strichartz inequality usually means L p L q space-time mixed norm estimates, while smoothing properties are Sobolev L 2 space-time estimates. Both approaches rely on global analysis for solutions to the corresponding linearized equations.

Non-compact symmetric spaces are Riemannian manifolds with nonpositive sectional curvature. Because of their exponential growth at infinity and the validity of the Kunze-Stein phenomenon, there are better dispersive properties and then stronger Strichartz inequalities. Such phenomenon was first observed in real hyperbolic spaces, which are the simplest models of non-compact symmetric spaces of rank one, see [Fon97; Ion00; Ban07; AnPi09; IoSt09; MeTa11; APV12; AnPi14]. The generalization for arbitrary ranks is recently achieved in [AnZh23; AM-PVZ23]. On the other hand, on general compact manifolds, one has only local-in-time Strichartz inequalities with some loss of derivatives. See, for instance, [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations[END_REF][START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation[END_REF][START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF][START_REF] Gérard | Nonlinear Schrödinger equation on four-dimensional compact manifolds[END_REF].

Motivated by these interesting phenomena for the Strichartz inequality, we ask naturally that, as another primary tool in the study of dispersive equations, how the smoothing property works on non-compact symmetric spaces? The smoothing properties have been extensively studied in the Euclidean setting over the past three decades. See [Sjo87; CoSa88; Veg88; KaYa89; BeDe91; Wat91; BeKl92; Sim92; KPV98; Sug98; Wal02; Hos03; Sug03; Chi08; RuSu12; DAn15; RuSu16] and references therein. We will discuss some of these works in detail in the following subsections by comparing them with our results on symmetric spaces.

In the non-Euclidean backgrounds, there is also much literature on the local-in-time smoothing properties. See, for instance, [CKS95; Doi96; Doi00; Bur04; MMT08; Dat09; BGH10; ChWu13; ChMe14; BHS20]. The present paper focuses on the global-in-time smoothing properties, which are less known than the rich local-in-time theory. As highlighted in [START_REF] Rodnianski | Longtime decay estimates for the Schrödinger equation on manifolds[END_REF], the main difficulty is that, besides the semiclassical analysis in high frequency, one also requires a more detailed analysis in low and medium frequencies. In that paper, Rodnianski and Tao established the global-in-time smoothing estimate with inhomogeneous weights on asymptotically flat manifolds obeying the non-trapping condition. See also [START_REF] Bony | Low frequency resolvent estimates for long range perturbations of the Euclidean Laplacian[END_REF][START_REF] Vasy | Positive commutators at the bottom of the spectrum[END_REF][START_REF] Bouclet | Strichartz estimates on asymptotically hyperbolic manifolds[END_REF] for relevant estimates in this setting. Similar estimates with inhomogeneous weights were previously considered in symmetric spaces [START_REF] Kaizuka | Resolvent estimates on symmetric spaces of noncompact type[END_REF] and graded Lie groups [START_REF] Măntoiu | Resolvent estimates and smoothing for homogeneous partial differential operators on graded Lie groups[END_REF]. See also [START_REF] Lawrie | Local smoothing estimates for Schrödinger equations on hyperbolic space[END_REF][START_REF] Germain | Spectral projectors, resolvent, and Fourier restriction on the hyperbolic space[END_REF] for recent progress on other related problems in hyperbolic spaces, such as smoothing estimates for the Schrödinger equation with potentials or L p -estimates with p > 2.

In this paper, we begin by establishing the Kato-type smoothing properties, namely, globalin-time smoothing estimates with homogeneous weights for the Schrödinger equation. This is achieved by proving the resolvent estimate and the Stein-Weiss inequality, which are of independent interests as well. We emphasize that our setting does not enjoy the dilation property, hence the common rescaling method fails. Our second main result is to generalize the comparison principles from [START_REF] Ruzhansky | Smoothing properties of evolution equations via canonical transforms and comparison principle[END_REF] to non-compact symmetric spaces. This robust method allows us to deduce different types of smoothing properties for the wave equation, Klein-Gordon equation, and Schrödinger-type equations with general orders (even with some time-variable coefficients). In particular, we observe that some estimates which are known to fail on the Euclidean plane, hold on the hyperbolic plane. Most of our arguments rely on the harmonic analysis on Riemannian symmetric spaces.

For simplicity, from now on, a symmetric space always means the non-compact type, and the smoothing estimate refers to the global-in-time estimate. We will denote by ∆ the Laplace-Beltrami operator on an n-dimensional symmetric space X and by D its shifted Laplacian, see the following section for more details. To make the difference, let ∆ R N be the usual Laplacian in R N (N ≥ 2) and D x = (-i∂x 1 , ... , -i∂x N ). For x ∈ X or x ∈ R N , we denote by |x| the (geodesic) distance between x and the origin, and let x = (1+|x| 2 ) 1/2 . Throughout the paper, the notation a b between two positive expressions means that a ≤ Cb for some constants C > 0, and a b means a b a.

1.1. Smoothing estimates. Consider the free Schrödinger equation in R N :

(i∂ t + ∆ R N ) u(t, x) = 0, u(0, x) = u 0 (x), (1.1)
whose solution is given by u(t, x) = e it∆ R N u 0 (x). It is known that the solution operator e it∆ R N preserves the L 2 -norm for each fixed time t ∈ R. The smoothing property is a regularity improvement in the sense that, we could gain extra regularity (in comparison with the initial data) by integrating the solution to (1.1) in time. More precisely, the solution to (1.1) satisfies the smoothing property:

B(x, D x )u L 2 (Rt×R N ) u 0 L 2 (R N ) , (1.2) 
where B(x, D) is one of the following operators:

Type B(x, D) Regularity condition (I) |x| α-1 | D| α 1 -N 2 < α < 1 2 (II) x -s | D| 1 2 s > 1 2 (III) x -s D 1 2 s ≥ 1 (s > 1 if N = 2)
Table 1. Regularity conditions in R N (N ≥ 2) for the Schrödinger equation.

Restriction theorem and resolvent estimate (or their variants) are two main standard methods to deduce the above smoothing estimates. In [START_REF] Ruzhansky | Smoothing properties of evolution equations via canonical transforms and comparison principle[END_REF], the authors introduced two other tools: the canonical transform and the comparison principle. The first helps to simplify the smoothing estimate to some 1-dimensional estimates, and the latter allows one to transfer smoothing estimates among different equations. In this paper, we will deduce the Kato-type smoothing property by establishing the resolvent estimate, and widen its regularity range by proving the Stein-Weiss inequality. By extending the comparison principle to symmetric spaces, we deduce new smoothing estimates for wave and Klein-Gordon equations. 1.2. Statement of main results. Consider a non-compact symmetric space X = G/K of rank ≥ 1, where G and K are suitable Lie groups. Let n ≥ 2 and ν ≥ 3 be its manifold dimension and dimension at infinity (or pseudo-dimension, see Section 2 for more details about these notations). Let ∆ be the Laplace-Beltrami operator on X and denote by D 2 = -∆ -|ρ| 2 its shifted Laplacian. Here |ρ| 2 is the bottom of the L 2 spectrum of -∆ on X. We consider the natural Schrödinger equation

i∂ t u(t, x) + D 2 x u(t, x) = 0, t ∈ R, x ∈ X, u(0, x) = u 0 (x), (1.3) 
whose solution is given by u(t, x) = e itD 2 x u 0 (x). The first part of this article focuses on the following smoothing property.

Theorem 1.1 (Kato-type smoothing property). Let X be a symmetric space of dimension n ≥ 3 and pseudo-dimension ν ≥ 3. Suppose that 1 -min{ n 2 , ν 2 } < α < 1 2 . Then, the solution to the Schrödinger equation (1.3) satisfies the smoothing property

|x| α-1 D α x u L 2 (Rt×X) u 0 L 2 (X) . (1.4)
Moreover, if X is of dimension n = 2, then (1.4) holds for all -1 2 < α < 1 2 . Remark 1.2. The regularity condition in Theorem 1.1 is optimal in some special cases. For example, when G/K is a symmetric space with G complex, the manifold dimension n and the pseudo-dimension ν coincide, and the estimate (1.4) fails for any α ≤ 1 -ν 2 or α ≥ 1 2 , see Remark 3.10.

Remark 1.3. In Kato's theory, for a self-adjoint operator H in a separable Hilbert space H, one says that a densely-defined closed operator

A on H is H-smooth if | Im (H -ζ) -1 A * f, A * f | f 2 H , ∀ ζ ∈ C R.
Moreover, it is known that A is H-smooth if and only if the smoothing property

R dt Ae -itH f 2 H f 2 H
holds, see [START_REF] Kato | Wave operators and similarity for some non-selfadjoint operators[END_REF][START_REF] Kato | Some examples of smooth operators and the associated smoothing effect[END_REF]. Theorem 1.1 is equivalent to say that, for suitable α, the operator

|x| α-1 D α x is D 2 -smooth on X. In the 2-dimensional case, X = H 2 is a hyperbolic plane. It has rank = 1 and pseudo-dimension ν = 3. Theorem 1.1 shows that |x| α-1 D α is D 2 -smooth on H 2 for all -1 2 < α < 1 2 , while the operator |x| α-1 D α is (-∆ R 2 )-smooth on R 2 if and only if 0 < α < 1 2 .
It follows in particular that the weight |x| -1 is D 2 -smooth on H 2 . Note that the usual rescaling argument, which is used to establish the smoothing estimate with homogeneous weights in the Euclidean space, is not valid in the current setting. We require delicate and different analysis around or away from the origin. Our Theorem 1.1 is achieved by combining the following resolvent estimate and the Stein-Weiss inequality.

Theorem 1.4 (Resolvent estimate). Let X be a symmetric space of rank ≥ 1. Suppose that

-1 2 < α < 1 2 if = 1 and 1 -2 < α < 1 2 if ≥ 2. Then, for all f ∈ L 2 (X), we have sup ζ∈C R | Im(D 2α (D 2 -ζ) -1 f, f ) L 2 (X) | | • | 1-α f 2 L 2 (X) .
(1.5)

On symmetric spaces of higher rank ( ≥ 2), Theorem 1.4 shows that the smoothing property (1.4) holds when 1 -2 < α < 1 2 . We widen this regularity range to

1 -min{ n 2 , ν 2 } < α < 1 2
by proving the Stein-Weiss inequality on symmetric spaces. This inequality is known as the Hardy-Littlewood-Sobolev inequality with double weights, see [START_REF] Stein | Fractional integrals on n-dimensional Euclidean space[END_REF]. As an elementary tool in harmonic analysis, it has been extended to many other non-Euclidean settings, such as the Heisenberg group [START_REF] Han | Hardy-Littlewood-Sobolev and Stein-Weiss inequalities and integral systems on the Heisenberg group[END_REF], the Carnot group [START_REF] Guliyev | Stein-Weiss inequalities for the fractional integral operators in Carnot groups and applications[END_REF], and the homogeneous Lie group [START_REF] Kassymov | Hardy-Littlewood-Sobolev and Stein-Weiss inequalities on homogeneous Lie groups[END_REF]. Recall that these three settings enjoy the dilation property. On symmetric spaces, the L p -L q -boundedness of the operator (-∆ -|ρ| 2 + ξ 2 ) -σ/2 , with ξ ≥ 0 and Re σ ≥ 0, were progressively established in the 90s, see for instance [START_REF] Strichartz | Analysis of the Laplacian on the complete Riemannian manifold[END_REF][START_REF] Varopoulos | Analyse sur les espaces symétriques et les groupes de Lie[END_REF][START_REF] Lohoué | Estimées de type Hardy pour l'opérateur ∆+λ d'un espace symétrique de type non compact[END_REF][START_REF] Anker | Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces[END_REF][START_REF] Cowling | L p -L q estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces[END_REF]. We refer to [START_REF] Cowling | L p -L q estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces[END_REF] for a review of these works. See also [START_REF] Benguria | The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space[END_REF][START_REF] Mancini | On a semilinear elliptic equation in H n[END_REF][START_REF] Beckner | On Lie groups and hyperbolic symmetry-from Kunze-Stein phenomena to Riesz potentials[END_REF][START_REF] Li | Sharp Adams and Hardy-Adams inequalities of any fractional order on hyperbolic spaces of all dimensions[END_REF][START_REF] Beckner | Symmetry in Fourier analysis: Heisenberg group to Stein-Weiss integrals[END_REF] for studies on the best constant problem in real hyperbolic spaces. The authors in [START_REF] Kassymov | Functional inequalities on symmetric spaces of noncompact type and applications[END_REF] have recently established the Stein-Weiss inequality on symmetric spaces for the operator (-∆ -|ρ| 2 + ξ 2 ) -σ/2 , with ξ > 0 large enough. In that case, the corresponding convolution kernel provides additional exponential decay at infinity. Hence, their approach can not be applied in our limiting case where ξ = 0, which needs a more delicate analysis. The following theorem is an L 2 generalization of the Stein-Weiss inequality associated with the operator D -σ = (-∆ -|ρ| 2 ) -σ/2 on symmetric spaces.

Theorem 1.5 (Stein-Weiss inequality). Let X be a symmetric space of dimension n ≥ 2 and pseudo-dimension ν ≥ 3. Suppose that σ > 0 and γ 1 , γ 2 < min{ n 2 , ν 2 } satisfy σ = γ 1 + γ 2 . Then, for all f ∈ L 2 (X), we have

| • | -γ 1 D -σ f L 2 (X) | • | γ 2 f L 2 (X) .
(1.6)

Remark 1.6. The condition γ 1 + γ 2 = σ > 0 excludes the case where γ 1 = γ 2 = 0. Recall that the operator D -σ is not L 2 -bounded for any σ > 0, see for instance [START_REF] Lohoué | Estimées de type Hardy pour l'opérateur ∆+λ d'un espace symétrique de type non compact[END_REF]. When σ = 0, the inequality (1.6) holds if and only if γ 1 = γ 2 = 0.

Remark 1.7. Since the convolution kernel of D -σ behaves differently depending on whether it is close to or away from the origin, the manifold dimension and the pseudo-dimension both play essential roles, and the conditions γ 1 , γ 2 < min{ n 2 , ν 2 } in Theorem 1.5 are both necessary, see Remark 3.6. However, we observe from Theorem 1.4 that the smoothing property (1.4) holds in rank one for all 1 -ν 2 < α < 1 2 (ν = 3). In other words, its regularity range depends only on the pseudo-dimension, which is related to the vanishing order of the Plancherel measure at the origin. We conjecture that it would be the same case in general ranks, but it is difficult to reach by relying only on the Stein-Weiss inequality.

In the second part of this paper, we extend the comparison principles from [START_REF] Ruzhansky | Smoothing properties of evolution equations via canonical transforms and comparison principle[END_REF] to symmetric spaces, see Theorem 4.1 and Corollary 4.3. Based on the smoothing properties of the Schrödinger equation, we deduce different types of smoothing estimates for other equations. Let us start with the Schrödinger-type equations with general orders. Consider the Cauchy problem with order m > 0:

(i∂ t + D m x ) u(t, x) = 0, u(0, x) = u 0 (x), (1.7) 
whose solution is given by u(t, x) = e itD m x u 0 (x). The following result describes all three types of smoothing properties on symmetric spaces for the Schrödinger-type equation (1.7).

Theorem 1.8. Let X be a symmetric space of rank ≥ 1, dimension n ≥ 2 and pseudodimension ν ≥ 3. Suppose that m > 0 and A(x, D) is defined as in Table 2. Then A(x, D) is D m -smooth on X, namely, the solution to the Cauchy problem (1.7) satisfies the smoothing property:

A(x, D x ) u L 2 (Rt×X) u 0 L 2 (X) . (1.8) Type A(x, D) = 1 ≥ 2 (I) |x| α-m 2 D α m-3 2 < α < m-1 2 m-min{n,ν} 2 < α < m-1 2 (II) x -s D m-1 2 s > 1 2 and m > 0 (III) x -s D m-1 2 s ≥ m 2 and 1 < m < ν
Table 2. Regularity conditions on X for the Schrödinger-type equations with order m > 0.

Remark 1.9. In particular, we can write the above smoothing estimates in hyperbolic spaces H n as follows:

|x| α-m 2 D α x u L 2 (Rt×H n ) u 0 L 2 (H n ) , m-3 2 < α < m-1 2 and m > 0, x -s D m-1 2 x u L 2 (Rt×H n ) u 0 L 2 (H n ) , s > 1 2 and m > 0, x -s D x m-1 2 u L 2 (Rt×H n ) u 0 L 2 (H n ) ,
s ≥ m 2 and 1 < m < 3, where the regularity conditions depend only on the pseudo-dimension ν = 3.

Let us compare the regularity conditions on symmetric spaces with the ones in the Euclidean setting. Recall that B(x, D) is D m

x -smooth on R N if it belongs to one of the following: For the Schrödinger equation (m = 2) in R N , the Type (I) smoothing estimate was established by Kato and Yajima for 0 ≤ α < 1 2 when N ≥ 3 and 0 < α < 1 2 when N = 2, see [START_REF] Kato | Some examples of smooth operators and the associated smoothing effect[END_REF]. Sugimoto [START_REF] Sugimoto | Global smoothing properties of generalized Schrödinger equations[END_REF] extended their regularity range to 1 -N 2 < α < 1 2 for all N ≥ 2, which is sharp and clarifies why α = 0 must be excluded when N = 2. As a consequence, we know that |x| -1 is not (-∆ R 2 )-smooth on R 2 as we mentioned in Remark 1.3. In [RuSu12, Theorem 5.2], the authors obtained the Type (I) estimate in R N for all N ≥ 2 and m > 0 satisfying m-N 2 < α < m-1 2 , and pointed out that all the cases with different orders m are equivalent to each other according to the comparison principle. This is also the case on symmetric spaces.

Type B(x, D) Regularity condition in R N (I) |x| α-m 2 | D| α m-N 2 < α < m-1 2 and m > 0 (II) x -s | D| m-1 2 s > 1 2 and m > 0 (III) x -s D m-1 2 s ≥ m 2 and 1 < m < N (s > m 2 if N = 2)
Table 3. Regularity conditions on R N (N ≥ 2) for the Schrödinger-type equations with order m > 0.

The Type (II) smoothing estimate in R N (N ≥ 2) was proved in [START_REF] Ben-Artzi | Decay and regularity for the Schrödinger equation[END_REF] when m = 2 and in [START_REF] Chihara | Resolvent estimates related with a class of dispersive equations[END_REF] when m > 1. A simpler proof based on the canonical transform was given in [RuSu12, Theorem 5.1], where the authors showed that the type (II) estimate holds in fact for all m > 0. By extending the arguments carried out in [START_REF] Chihara | Resolvent estimates related with a class of dispersive equations[END_REF], Kaizuka proved this estimate on symmetric spaces for m > 1, see [START_REF] Kaizuka | Resolvent estimates on symmetric spaces of noncompact type[END_REF]. Using the comparison principle, we show that it holds for all m > 0 as in the Euclidean setting. Note that m = 1 is an important case corresponding to wave-type equations.

The Type (III) estimate has also been partially proved in [START_REF] Kaizuka | Resolvent estimates on symmetric spaces of noncompact type[END_REF]: the author showed that it holds on higher rank ( ≥ 2) symmetric spaces for all 1 < m < . As a consequence of our improved inhomogeneous Stein-Weiss inequality (Corollary 3.8), the Type (III) estimate holds in fact on general symmetric spaces in the full range 1 < m < ν. Note that this regularity condition is sharp and depends only on the pseudo-dimension ν. In particular, it indicates that

x -1 D 1/2 is D 2 -smooth on H 2 . Recall that x -s D 1/2 is (-∆ R 2 )-smooth on R 2 if and only if s > 1, see [KaYa89; Wal02; Chi08; RuSu12].
Based on the above smoothing properties of Schrödinger-type equations and using comparison principles, we deduce smoothing estimates for some time-degenerate and relativistic Schrödinger equations as well, see Section 4.3. Other noteworthy consequences of the comparison principles are the following smoothing properties of the wave and Klein-Gordon equations.

Theorem 1.10. Let X be a symmetric space of rank ≥ 1, dimension n ≥ 2 and pseudodimension ν ≥ 3. Consider the Cauchy problem

(∂ 2 t + D 2 x + ζ) u(t, x) = 0, u(0, x) = u 0 (x), ∂ t | t=0 u(t, x) = u 1 (x), (1.9)
which is the wave equation when ζ = 0 and the Klein-Gordon equation when

ζ > 0. Let s > 1 2 . Suppose that -1 < β < 0 when = 1 and 1 -min{ n 2 , ν 2 } < β < 1 2 when ≥ 2.
Then, the solution to the Cauchy problem (1.9) satisfies the following smoothing properties.

• (Wave equation) If ζ = 0 , we have

x -s u L 2 (Rt×X) u 0 L 2 (X) + D -1 x u 1 L 2 (X) , (1.10) |x| β-1 2 D β x u L 2 (Rt×X) u 0 L 2 (X) + D -1 x u 1 L 2 (X) .
(1.11)

• (Klein-Gordon equation) If ζ > 0, we have x -1 u L 2 (Rt×X) u 0 L 2 (X) + D -1 x u 1 L 2 (X) .
(1.12)

Remark 1.11. Smoothing properties of wave-type equations are well-known in the Euclidean setting, see for instance [START_REF] Ben-Artzi | Regularity and smoothing for some equations of evolution[END_REF][START_REF] Ruzhansky | Smoothing properties of evolution equations via canonical transforms and comparison principle[END_REF]. Since we deduce the above estimates from the Schrödinger equation, we observe different phenomena in 2-dimensional cases as well. On the one hand, the estimate (1.11) holds on H 2 for all -1 < β < 0, while a similar estimate holds on R 2 only for -1 2 < β < 0. On the other hand, an estimate such as (1.12) does not hold on R 2 unless one considers the weight x -s with s > 1 instead of x -1 . 1.3. Layout. This paper is organized as follows. After a short review of harmonic analysis on symmetric spaces, we prove the Stein-Weiss inequality and establish the smoothing properties of the Schrödinger equation in Section 3. In Section 4, we extend the comparison principles to symmetric spaces and deduce different types of smoothing properties for some other equations. Two technical lemmas are placed in Appendix.

Preliminaries

In this section, we review briefly harmonic analysis on Riemannian symmetric spaces of noncompact type. We adopt the standard notation and refer to [Hel78; Hel94; Hel00; GaVa88] for more details.

2.1. Non-compact symmetric spaces. Let G be a semisimple Lie group, connected, noncompact, with the finite center, and let K be a maximal compact subgroup of G. The homogeneous space X = G/K is a Riemannian symmetric space of non-compact type. Let g = k ⊕ p be the Cartan decomposition of the Lie algebra g of G. The Killing form of g induces a K-invariant inner product . , . on p and therefore a G-invariant Riemannian metric on X. Fix a maximal abelian subspace a in p. The rank of X is the dimension of a. We identify a with its dual a * by means of the inner product inherited from p. Let Σ ⊂ a be the root system of (g, a). Once a positive Weyl chamber a + ⊂ a has been selected, Σ + (resp. Σ + r or Σ + s ) denotes the corresponding set of positive roots (resp. positive reduced roots or simple roots). Let n be the dimension and ν be the dimension at infinity (or pseudo-dimension) of X:

n = + α∈Σ + m α and ν = + 2|Σ + r |, (2.1) 
where m α is the dimension of the positive root subspace g α . Notice that these two dimensions behave differently depending on the geometric structure of X. For example, ν = 3 while n ≥ 2 is arbitrary in rank one, ν = n if G is complex, and ν = 2n -> n when G is split.

Let n be the nilpotent Lie subalgebra of g associated to Σ + and let N = exp n be the corresponding Lie subgroup of G. We have decompositions

G = N (exp a) K (Iwasawa), G = K (exp a + ) K (Cartan).
On the one hand, we can write the Haar measure dg on G in the Cartan decomposition:

G dg f (g) = const. K dk 1 a + dg + α∈Σ + (sinh α, g + ) mα δ(g + ) K dk 2 f (k 1 (exp g + )k 2 ).
Notice that α, g + is nonnegative for every α ∈ Σ + and all g + ∈ a + . Let ρ ∈ a + be the half sum of all positive roots counted with their multiplicities:

ρ = 1 2 α∈Σ + m α α.
The density δ(g + ) satisfies

δ(g + ) α∈Σ + α, g + 1 + α, g + mα e 2ρ,g + |g + | n- if |g + | ≤ 1, e 2ρ,g + for all g + ∈ a + .
(2.2)

On the other hand, we can normalize the Haar measure dg such as

G dg f (g) = N dn a dA e -2ρ,A K dk f (n(exp A)k) (2.3)
where A = A(g) is the unique a-component of g in the Iwasawa decomposition.

2.2. Harmonic analysis on symmetric spaces. The harmonic analysis has been well developed on symmetric spaces. In the present paper, we shall need different types of transforms, such as the Helgason-Fourier transform F, the Harish-Chandra transform H, the Radon transform R, and the modified Radon transform J R. We review their definitions and basic properties in the following. Bearing in mind that the Cartan subspace a is an -dimensional flat submanifold of X, we denote by F a the classical Fourier transform:

F a f (λ) = a dH e -i λ,H f (H) and F -1 a g(H) = a dλ e i λ,H g(λ)
for suitable functions f and g on a.

2.2.1. Helgason-Fourier transform. Let f be a Schwarz function on X. Denote by M the centralizer of exp a in K and db a K-invariant normalized measure on B = K/M . The Helgason-Fourier transform and its inverse formula are defined by

Ff (λ, kM ) = G dg e -iλ+ρ,A(k -1 g) f (g) ∀ λ ∈ a, ∀ k ∈ K, (2.4) 
and

f (gK) = |W | -1 a dλ |c(λ)| -2 B db e iλ+ρ, A(k -1 g) Ff (λ, b), ∀ g ∈ G, (2.5) 
where W denotes the Weyl group associated to Σ, see for instance [Hel94, Ch.III]. Here |c(λ)| -2 is the so-called Plancherel density and can be expressed via the Gindikin-Karpelevič formula:

|c(λ)| -2 = α∈Σ + r |c α ( α, λ )| -2 , (2.6) 
where each Plancherel factor |c α (•)| -2 is explicitly defined by some Gamma functions and extends to an analytic function in a neighbourhood of the real axis, see [Hel00, Theorem 6.14, p.447]. Moreover, for every α ∈ Σ + r , the factor |c α (•)| -2 is a homogeneous differential symbol of order m α + m 2α and satisfies

|c α (r)| -2 |r| 2 (1 + |r|) mα+m 2α -2 ∀ r ∈ R. (2.7)
As a product of one-dimensional symbols, the Plancherel density |c(λ)| -2 is not a symbol on a in general:

|c(λ)| -2 |λ| ν- if |λ| ≤ 1, |∇ k a |c(λ)| -2 | |λ| n-if |λ| ≥ 1 and k ∈ N.
(2.8)

The Plancherel theorem states that the Helgason-Fourier transform F extends to an isometry of

L 2 (X) into L 2 (a × B, |W | -1 |c(λ)| -2 dλ db), see for instance [Hel94, Theorem 1.5, p.227]. 2.2.2. Harish-Chandra transform. A function f is called bi-K-invariant on X if f (k 1 gk 2 ) = f (g) for all k 1 , k 2 ∈ K and g ∈ G.
With such functions, the Helgason-Fourier transform (2.4) reduces to the Harish-Chandra transform

Hf (λ) = G dg ϕ -λ (g) f (g) ∀ λ ∈ a, ∀ f ∈ S(K\G/K), (2.9) 
where

ϕ λ (g) = K dk e iλ+ρ, A(kg)
is the elementary spherical function, see [Hel00, Theorem 4.3, p.418]. For every λ in a, the spherical function ϕ λ is bi-K-invariant and satisfies |ϕ λ | ≤ ϕ 0 , where

ϕ 0 (exp H) α∈Σ + r (1 + α, H ) e -ρ,H ∀ H ∈ a + .
(2.10)

Denote by S(a) W the subspace of W -invariant functions in the Schwartz space S(a). Then H is an isomorphism between S(K\G/K) and S(a) W . The inverse formula of the Harish-Chandra transform is given by

f (g) = const. a dλ |c(λ)| -2 ϕ λ (g) Hf (λ) ∀ g ∈ G, ∀ f ∈ S(K\G/K).
( 

Rf (H, kM ) = e -ρ,H N dn f (n(exp H)k) ∀ (H, kM ) ∈ a × B.
In other words, for all λ ∈ a and k ∈ K, we can write 

Ff (λ, kM ) = F a [Rf (•, kM )](λ) (2.
(λ)| -1 . The J R-transform is an isometry from L 2 (X) to L 2 (a × B, |W | -1 dH db)
. Indeed, by using the Plancherel formula with respect to F a and F, we have

J Rf L 2 (a×B, |W | -1 dH db) = |c(λ)| -1 F a Rf L 2 (a×B, |W | -1 dλ db) = Ff L 2 (a×B, |W | -1 |c(λ)| -2 dλ db) = f L 2 (X) .
In [Kai14, Proposition 3.1], the author proved that, for any σ > 0, the J R transform is a continuous map from L 2 (X, x 2σ dx) to L 2 (a × B, H 2σ dH db). The following lemma shows that similar continuity remains valid with homogeneous weights. Its proof is not so different from the original one, we include the details in Appendix for the sake of completeness.

Lemma 2.1. For any σ ≥ 0, we have

J Rf L 2 (a×B, |H| 2σ dH db) f L 2 (X, |x| 2σ dx) .
(2.13)

Kato-type smoothing property on symmetric spaces

In this section, we establish the Kato-type smoothing property for the Schrödinger equation on X. We start with the Stein-Weiss inequality, namely, Theorem 1.5. Together with the resolvent estimate Theorem 1.4, we deduce Theorem 1.1.

Stein-Weiss inequality. Recall the operator D

-σ = (-∆-|ρ| 2 ) -σ/2 where σ > 0. Notice that the balance condition σ = γ 1 + γ 2 with γ 1 , γ 2 < min{ n 2 , ν 2 } implies σ < min{n, ν}. Denote by k σ the bi-K-invariant convolution kernel of the operator D -σ , it satisfies k σ (x) |x| σ-n if |x| ≤ 1 and 0 < σ < n, |x| σ-ν ϕ 0 (x) if |x| ≥ 1 and 0 < σ < ν, (3.1) see [AnJi99, Theorem 4.2.2].
Then Theorem 1.5 is equivalent to the following proposition.

Proposition 3.1. Let X be a symmetric space of dimension n ≥ 2 and pseudo-dimension ν ≥ 3. Let σ > 0, γ 1 , γ 2 < min{ n 2 , ν 2 }, and σ = γ 1 + γ 2 . Then the operator T defined by

T f (x) = X dy |x| -γ 1 k σ (y -1 x) |y| -γ 2 f (y) (3.2) is bounded from L 2 (X) into L 2 (X).
Because of the contrasting behaviors of the convolution kernel, as well as the density volume, we shall need different arguments depending on whether |x| and |y| are small or large. Roughly saying, when |x| and |y| are both small, the density volumes grow polynomially. In this case, we extend a key lemma from [START_REF] Stein | Fractional integrals on n-dimensional Euclidean space[END_REF] to symmetric spaces. If |x| or |y| is large, the density volume grows exponentially, and we need to combine the dyadic decomposition with suitable Kunze-Stein phenomena. The proof of Proposition 3.1 is based on the following two lemmas. Lemma 3.2 (Kunze-Stein phenomena). Let g be a bi-K-invariant function in S(X). Then, for any f ∈ S(X), we have

g * f L 2 (X) gϕ 0 L 1 (X) f L 2 (X) , (3.3) 
and

g * f L 2 (X) g L 2 (X, x ν dx) f L 2 (X) .
(3.4)

Remark 3.3. These properties are consequences of Herz's principle (see [START_REF] Herz | Sur le phénomène de Kunze-Stein[END_REF]) with bi-Kinvariant functions. The inequality (3.3) follows by [START_REF] Cowling | Herz's "principe de majoration" and the Kunze-Stein phenomenon[END_REF], see also [START_REF] Anker | Schrödinger equations on Damek-Ricci spaces[END_REF][START_REF] Zhang | Wave equation on certain noncompact symmetric spaces[END_REF]. The weighted version (3.4) was previously stated in [Kai14, Corollary 2.6] for g ∈ L 2 (X, x σ dx) with σ > ν. Our lemma shows that such inequality remains valid in the critical case where σ = ν, provided that g is bi-K-invariant. In fact, the function g involves only the bi-K-invariant convolution kernel in our proof of the Stein-Weiss inequality, and this endpoint improvement is crucial.

Proof. According to Remark 3.3 and property (3.3), it is sufficient to show that

gϕ 0 L 1 (X) g L 2 (X, x ν dx) .
Let χ 0 ∈ C ∞ c (R + ) be a cut-off function such that supp χ 0 ⊂ [0, 1] and χ 0 = 1 on [0, 1 2 ]. For all x ∈ X, we denote by χ 0 (x) = χ 0 (|x|) and

χ j (x) = χ 0 (2 -j |x|) -χ 0 (2 -j+1 |x|) ∀ j ≥ 1,
which are all bi-K-invariant cut-off functions on X. For every j ≥ 1, χ j is compactly supported in {x ∈ X | 2 j-2 ≤ |x| ≤ 2 j }. In particular, we have j∈N χ j = 1 and

g L 2 (X, x ν dx) j∈N 2 νj χ 1/2 j g 2 L 2 (X) 1/2 ∀ g ∈ S(X).
By using the partition of unity and the Cauchy-Schwarz inequality, we have

gϕ 0 2 L 1 (X) j∈N X dx χ j (x) |g(x)| ϕ 0 (x) 2 ≤ j∈N X dx χ j (x) |g(x)| 2 X dx χ j (x) ϕ 2 0 (x) .
According to the density estimate (2.2) and estimate (2.10) of the ground spherical function, we obtain

X dx ( χ 0 (x) + χ 1 (x)) ϕ 2 0 (x) < +∞ and X dx χ j (x) ϕ 2 0 (x) 1≤|x + |≤2 j dx + δ(x + ) ϕ 2 0 (exp x + ) 2 j 1 dr r ν-+ -1 2 νj
for all j ≥ 2. We deduce that

gϕ 0 2 L 1 (X) j∈N 2 νj χ 1/2 j g 2 L 2 (X) g 2 L 2 (X, x ν dx) ,
which completes the proof of Lemma 3.2.

The next lemma extends [StWe58, Lemma 2.1] to symmetric spaces. Notice that the additional condition (3.5) appears naturally, since the growth of volume on symmetric spaces has different behaviors. We will include its detailed proof in Appendix.

Lemma 3.4 (Stein-Weiss lemma). Let K : R + × R + → R + be a homogeneous function of degree such that

+∞ 0 ds s 2 -1 K(1, s) < +∞.
Let κ 1 , κ 2 be two bi-K-invariant functions on G such that

κ j (exp x + ) δ 1/2 (x + ) = O(1) ∀ x ∈ G, ∀ j = 1, 2, (3.5) 
where x + ∈ a is the middle component of x in the Cartan decomposition. Then the operator

S : L 2 (G) → L 2 (G) defined by Sf (x) = κ 1 (x) G dy K(|x|, |y|) κ 2 (y) f (y) is bounded.
Now, let us turn to the proof of Proposition 3.1.

Proof of Proposition 3.1. We prove the L 2 -boundedness of T in different cases depending whether |x|, |y| and |y -1 x| are small or large. For k = 1, 2, ..., 7, we define

T k f (x) = X dy ψ k (x, y) |x| -γ 1 k σ (y -1 x) |y| -γ 2 f (y), (3.6) 
where ψ j (x, y) are suitable cut-off functions which will be specified in each case. Recall that χ 0 is a cut-off function compactly supported in [0, 1], and Case (i): if |x| and |y| are comparable. Let ψ 1 (x, y) = χ 0 ( |y| 4|x| )χ ∞ ( 2|y| |x| ). Then ψ 1 does not vanish when 1 4 ≤ |y| |x| ≤ 4 (see the red zone in Figure 1(A)). We decompose dyadically

χ 0 = 1 on [0, 1 2 ]. Denote by χ ∞ = 1 -χ 0 . O 2 |x| 2 |y| 1 4 ≤ |y| |x| ≤ 4 |y| |x| ≥ 2 |y| |x| ≤ 1 2 (A) Cases (i)
T 1 f 2 L 2 (X) = j∈Z {x∈X : 2 j ≤|x|≤2 j+1 } dx X dy ψ 1 (x, y) |x| -γ 1 k σ (y -1 x) |y| -γ 2 f (y) 2 . (3.7) Notice that 1 4 ≤ |y| |x| ≤ 4 and 2 j ≤ |x| ≤ 2 j+1 imply 2 j-2 ≤ |y| ≤ 2 j+3 and |y -1 x| ≤ 2 j+4 . Then we have |x| -γ 1 |y| -γ 2 2 -σj , provided that γ 1 + γ 2 = σ > 0. Hence T 1 f 2 L 2 (X) j∈Z 2 -2σj X dx X dy χ 0 ( |y| 2 j+4 ) χ ∞ ( |y| 2 j-2 ) χ 0 ( |y -1 x| 2 j+5 ) k σ (y -1 x) f (y) 2 = j∈Z 2 -2σj χ 0 ( |•| 2 j+4 ) χ ∞ ( |•| 2 j-2 ) f * χ 0 ( |•| 2 j+5 )k σ 2 L 2 (X) . (3.8)
we deduce from the Kunze-Stein phenomenon (3.3) that

χ 0 ( |•| 2 j+4 ) χ ∞ ( |•| 2 j-2 ) f * χ 0 ( |•| 2 j+5 )k σ L 2 (X) χ 0 ( |•| 2 j+4 ) χ ∞ ( |•| 2 j-2 ) f L 2 (X) χ 0 ( |•| 2 j+5 ) k σ ϕ 0 L 1 (X) .
(3.9)

According to the kernel estimate (3.1), the density estimate (2.2), and estimate (2.10) of the ground spherical function, we obtain, on the one hand,

χ 0 ( |•| 2 j+5 ) k σ ϕ 0 L 1 (X) |x + |≤1 dx + |x + | σ-n |x + | n-+ 1≤|x + |≤2 j+5 dx + |x + | σ-ν |x + | ν- = 2 j+5 0 dr r σ-1 2 σj (3.10)
provided that σ > 0 and j ≥ -4. On the other hand, if j < -4, we have similarly

χ 0 ( |•| 2 j+5 ) k σ ϕ 0 L 1 (X) |x + |≤2 j+5 dx + |x + | σ-n |x + | n- = 2 j+5 0 dr r σ-1 2 σj (3.11)
by using (3.1) and (2.2) again. We deduce from (3.8), (3.9), (3.10), and (3.11), that

T 1 f 2 L 2 (X) j∈Z {x∈X : 2 j ≤|x|≤2 j+1 } dx |f (x)| 2 = f 2 L 2 (X) (3.12) provided that γ 1 + γ 2 = σ > 0.
Case (ii): if |x| and |y| are not comparable, but both small. We denote by

ψ 2 (x, y) = χ 0 ( |x| 2 )χ 0 ( 2|y| |x| ) and ψ 3 (x, y) = χ 0 ( |y| 2 )χ ∞ ( |y| 4|x|
) two cut-off functions. Notice that supp ψ 2 ∪ supp ψ 3 corresponds to the blue zones in Figure 1(A). Since |y -1 x| is also small in this case, we know from (3.1) that,

T k f (x) X dy ψ k (x, y) |x| -γ 1 |y -1 x| σ-n |y| -γ 2 f (y)
with k = 2, 3.

On the one hand, when |y| |x| ≤ 1 2 , we have |y -1 x| ≥ |x| 2 and then

T 2 f (x) χ 0 ( |x| 2 ) |x| -n 2 κ 1 (x) X dy χ 0 ( 2|y| |x| ) |x| -γ 1 +σ-n+ n- 2 |y| -γ 2 + n- 2 K(|x|,|y|) χ 0 ( |y| 2 ) |y| -n 2 κ 2 (y) f (y)
provided that 0 < σ < n. Here, we observe that (-

γ 1 + σ -n + n- 2 ) + (-γ 2 + n- 2 ) = -, since γ 1 + γ 2 = σ, and χ 0 ( |z + | 2 ) |z + | -n 2 δ(z + ) 1 2 = O(1) ∀ z ∈ X,
according to (2.2). Moreover, we have

1 2 0 ds s 2 -1 s -γ 2 + n- 2 < +∞
provided that γ 2 < n 2 . We deduce from Lemma 3.4 that T 2 is L 2 -bounded. On the other hand, when |y| |x| ≥ 2, we have |y -1 x| ≥ |y| 2 and similarly

T 3 f (x) χ 0 ( |x| 2 ) |x| -n 2 X dy χ ∞ (|y|/4|x|) |x| -γ 1 + n- 2 |y| -γ 2 +σ-n+ n- 2 χ 0 ( |y| 2 ) |y| -n 2 f (y).
We deduce from the same argument that

T 3 is L 2 -bounded since ∞ 2 ds s 2 -1 s γ 1 -n+ n- 2 < ∞ provided that γ 1 < n 2 . Therefore, for all γ 1 , γ 2 < n 2 such that γ 1 + γ 2 = σ > 0, we have T k f L 2 (X) f L 2 (X) with k = 2, 3. (3.13)
Case (iii): if |x| and |y| are not comparable, and not both small or both large. We define

ψ 4 (x, y) = χ ∞ ( |y| 2 )χ 0 (2|x|) and ψ 5 (x, y) = χ ∞ ( |x| 2 )χ 0 (2|y|).
The support of ψ 4 (resp. ψ 5 ) corresponds to the blue (resp. red) shaded rectangle in Figure 1 Combining this estimate with the density estimates (2.2), we obtain

T 4 f (x) 2 L 2 (X) = X dx X dy ψ 4 (x, y) |x| -γ 1 k σ (y -1 x) |y| -γ 2 f (y) 2 X dx |x| -2γ 1 X dy ψ 2 4 (x, y) k 2 σ (y -1 x) |y| -2γ 2 f 2 L 2 (X) ,
where

X dy ψ 2 4 (x, y) k 2 σ (y -1 x) |y| -2γ 2 χ 0 (2|x|) a + dy + δ(y + ) χ ∞ ( |y + | 2 ) |y + | 2σ-ν--2γ 2 e -2 ρ,y + χ 0 (2|x|) +∞ 1 dr r 2γ 1 -ν-1 < +∞ , provided that γ 1 + γ 2 ≥ σ and γ 1 < ν 2 .
On the other hand, we have

X dx χ 0 (2|x|) |x| -2γ 1 |x + |≤ 1 2 dx + |x + | -2γ 1 |x + | n-< +∞,
provided that γ 1 < n 2 . Therefore, T 4 is L 2 -bounded. One can show the L 2 -boundedness of T 5 by using similar arguments.

Therefore, for all γ 1 , γ 2 < min{ n 2 , ν 2 } satisfying γ 1 + γ 2 ≥ σ > 0, we have

T k f L 2 (X) f L 2 (X)
with k = 4, 5.

(3.15)

Case (iv): if |x| and |y| are not comparable, but both large. In the last case, let us define ψ 6 (x, y) = χ ∞ ( |y| 4|x| ) χ ∞ (|x|) and ψ 7 (x, y) = χ 0 ( 2|y| |x| ) χ ∞ (|y|), see the non-shaded blue and red triangles in Figure 1(B) for zones corresponding to their supports. For any (x, y) ∈ supp ψ 6 , we have |y| |x| ≥ 2 and |x| ≥ 1 2 , which imply that |y| ≥ 1, |x| x , and |y| 2 < |y -1 x| < 3|y| 2 . Then, for any γ 1 , γ 2 < ν 2 satisfying γ 1 + γ 2 ≥ σ > 0, and for all (x, y) in the support of ψ 6 , we have

|x| -γ 1 |y| -γ 2 = x -ν 2 |y -1 x| ν 2 -σ |x| -γ 1 x ν 2 |y -1 x| σ-ν 2 |y| -γ 2 |y| -γ 1 + ν 2 +σ-ν 2 -γ 2 ≤ 1
.

Combining this inequality with the partition of unity defined in the proof of Lemma 3.2, we obtain

T 6 f (x) 2 L 2 (X) = X dx X dy ψ 6 (x, y) |x| -γ 1 k σ (y -1 x) |y| -γ 2 f (y) 2 X dx x -ν X dy ψ 6 (x, y) k σ (y -1 x) |y -1 x| ν 2 -σ f (y) 2 j∈N X dx x -ν X dy χ j (y) ψ 6 (x, y) k σ (y -1 x) |y -1 x| ν 2 -σ f (y) 2 .
Recall that for all y ∈ supp χ j ⊂ [2 j-2 , 2 j ] and (x, y) ∈ supp ψ 6 , we have χ 0 ( |y -1 x| 2 j+2 ) = 1 and χ ∞ (2|y -1 x|) = 1. We deduce from the duality of (3.4) that

T 6 f (x) 2 L 2 (X) j∈N 2 (ν-2σ)j X dx x -ν X dy χ 0 ( |y -1 x| 2 j+2 ) χ ∞ (2|y -1 x|) k σ (y -1 x) χ j (y) f (y) 2 = j∈N 2 (ν-2σ)j X dx x -ν ( χ j f ) * (χ 0 ( |•| 2 j+2 ) χ ∞ (2| • |) k σ ) 2 j∈N 2 (ν-2σ)j χ 0 ( |•| 2 j+2 ) χ ∞ (2| • |) k σ 2 L 2 (X) χ j f 2 L 2 (X) ,
where

χ 0 ( |•| 2 j+2 ) χ ∞ (2| • |) k σ 2 L 2 (X) X dx χ 0 ( |x| 2 j+2 ) χ ∞ (2|x|) |x| 2σ-2ν ϕ 2 0 (x) 1≤|x + |≤2 j dx + |x + | 2σ-ν- = 2 j 1 dr r 2σ-ν-1 2 (2σ-ν)j .
We finally obtain

T 6 f (x) 2 L 2 (X) j∈N χ j f 2 L 2 (X) f 2 L 2 (X) ,
provided that γ 1 , γ 2 < ν 2 and γ 1 + γ 2 ≥ σ > 0. We omit the similar proof for the operator T 7 and conclude that, for all γ 1 , γ 2 < ν

2 satisfying γ 1 + γ 2 ≥ σ > 0, T k f L 2 (X) f L 2 (X)
with k = 6, 7.

(3.16)

Conclusion: Since 1≤k≤7 supp ψ k covers X, we deduce, from (3.12), (3.13), (3.15), and (3.16) that

T f L 2 (X) 1≤k≤7 T k f L 2 (X) f L 2 (X)
provided that σ > 0, γ 1 , γ 2 < min{ n 2 , ν 2 }, and σ = γ 1 + γ 2 . Remark 3.5. If we assume that f is in addition bi-K-invariant in Theorem 1.5 and Proposition 3.1, the last two cases in the above proof will be simplified according to the following trick:

G dy ϕ 0 (y -1 x) f (y) = G dy f (y) K dk ϕ 0 (y -1 kx) = ϕ 0 (x) G dy ϕ 0 (y) f (y), (3.17)
since dk is a normalized measure on K and ϕ 0 is a spherical function. In fact, (3.17) implies that

T j (x) = X dx ψ k (x, y) |x| -γ 1 k σ (y -1 x) |y| -γ 2 f (y) ϕ 0 (x) X dx ψ k (x, y) |x| -γ 1 |y -1 x| σ-ν |y| -γ 2 ϕ 0 (y) f (y)
for each 4 ≤ k ≤ 7. Then we can conclude by using Lemma 3.4.

Remark 3.6. The regularity conditions γ 1 , γ 2 < min{ n 2 , ν 2 } in Theorem 1.5 are necessary. In the Euclidean setting, the necessity of conditions occurring in the Stein-Weiss inequality is well explained in the recent note [START_REF] Ngô | All conditions for Stein-Weiss inequalities are necessary[END_REF]. On symmetric spaces, the kernel k σ behaves differently depending on whether it is close to or away from the origin. Hence the manifold dimension and the pseudo-dimension both play essential roles. To check this, it is sufficient to show that, for any

γ 1 , γ 2 ≥ min{ n 2 , ν 2 }, the double integral X dx X dy |x| -γ 1 k σ (y -1 x) |y| -γ 2 f (y) 2 (3.18)
is not finite for x or y located in some specific regions. Let us define a subset of a + consisting of vectors away from the walls:

a 1 = {H ∈ a + | α, H |H|, ∀ α ∈ Σ + }.
Then, for any vector H ∈ a 1 , we have

δ(H) |H| n-if |H| is bounded from above, e 2ρ,H if |H| is bounded from below. • Let f be a cut-off function such that supp f = {y ∈ X | 1 4 ≤ |y| ≤ 1 2 }. Notice that, for all 0 < σ < n, |x| ≤ 1 2 , and 1 4 ≤ |y| ≤ 1 2 , we have k σ (y -1 x) |y -1 x| σ-n |y| σ-n
according to (3.1). Hence,

(3.18) {x ∈ K(exp a 1 )K | |x|≤ 1 2 } dx |x| -2γ 1 K(exp a 1 )K ∩ supp f dy |y| σ-n-γ 2 2 |x + |≤ 1 2 dx + |x + | -2γ 1 +n- 1 4 ≤|y + |≤ 1 2 dy + |y + | σ-γ 2 -2 = 1 2 0 dr r -2γ 1 +n-1 1 2 1 4 dr r σ-γ 2 -1 = const.
, where the first integral is not finite for any γ 1 ≥ n 2 . The necessity of γ 2 < n 2 can be handled in the same way.

• Let f be a bi-K-invariant cut-off function such that supp f = {y ∈ X | 1 2 ≤ |y| ≤ 1}. For all 0 < σ < ν, |x| ≥ 2, and 1 2 ≤ |y| ≤ 1, we have 1 ≤ |y -1 x| ≤ 2|x| and then k σ (y -1 x)

|y -1 x| σ-ν ϕ 0 (y -1 x) |x| σ-ν ϕ 0 (y -1 x)

according to (3.1) again. Since f is bi-K-invariant, we deduce from (3.17) and (2.10) that

(3.18) {x ∈ K(exp a 1 )K | |x|≥2} dx |x| -2γ 1 +2σ-2ν 1 2 ≤|y|≤1 dy |y| -γ 2 ϕ 0 (y -1 x) 2 = {x ∈ K(exp a 1 )K | |x|≥2} dx |x| 2γ 2 -2ν ϕ 2 0 (x) 1 2 ≤|y|≤1
dy |y| -γ 2 ϕ 0 (y)

2 = const. |x + |≥2 dx + |x + | 2γ 2 -ν-
which is not finite for any γ 2 ≥ ν 2 . Similarly, we can show that γ 1 < ν 2 is a necessary condition as well.

Remark 3.7. In the proof of Proposition 3.1, the condition γ 1 + γ 2 = σ is only required in the first two cases. In other two cases, it is sufficient to conclude with γ 1 + γ 2 ≥ σ. If we consider the inequality with inhomogeneous weights instead of the homogeneous ones, we can get rid of the analysis around the origin, then establish an inhomogeneous version of Stein-Weiss inequality with relaxed conditions γ 1 , γ 2 < ν 2 and γ 1 + γ 2 ≥ σ, see the following Corollary. This type of inequality has been considered in [START_REF] Kaizuka | Resolvent estimates on symmetric spaces of noncompact type[END_REF] for γ 1 +γ 2 > σ. The endpoint improvement here allows one to deduce straightforwardly the Type (III) smoothing estimate in the full regularity range, see Theorem 1.8 and [Kai14, Remark 4.1].

Corollary 3.8. Let σ > 0, γ 1 , γ 2 < ν 2 , and γ 1 + γ 2 ≥ σ. Then we have

• -γ 1 D -σ x f L 2 (X) • γ 2 f L 2 (X) . (3.19)
Proof. Let us show that the operator T : L 2 (X) → L 2 (X) defined by

T f (x) = X dy x -γ 1 k σ (y -1 x) y -γ 2 f (y)
is L 2 -bounded. On the one hand, if |x| and |y| are both large, then x -γ 1 y -γ 2 |x| -γ 1 |y| -γ 2 for any γ 1 , γ 2 ∈ R and we go back to cases (i) and (iv) in the proof of Proposition 3.1. Notice that in Case (i), if one considers the inhomogeneous weight x instead of the homogeneous one, it is sufficient to take j ∈ N instead of j ∈ Z in the dyadic decomposition (3.7), then conclude with relaxed condition γ 1 + γ 2 ≥ σ > 0, see (3.12) and (3.16). On the other hand, if |x| and |y| are both small, then |y -1 x| is also small and x -γ 1 y -γ 2 is bounded for any γ 1 , γ 2 ∈ R. By using the the Kunze-Stein phenomenon (3.3) and the kernel estimate (3.1), we obtain

X dx X dy χ 0 (|y -1 x|) k σ (y -1 x) f (y) 2 = (χ 0 k σ ) * f 2 L 2 (X) χ 0 k σ ϕ 0 2 L 1 (X) f 2 L 2 (X) (3.20)
where

χ 0 k σ ϕ 0 L 1 (X) |x + |≤1 dx |x + | σ-n |x + | n-< +∞ (3.21)
for any σ > 0.

In the remaining cases where |x| and |y| are not both small or both large, we go back to Case (iii) in the proof of Proposition 3.1. Notice that, in contrast to |x| -γ 1 , the inhomogeneous weight x -γ 1 has no contribution when |x| is small. Hence the condition γ 1 < n 2 is not required. Similarly, we can remove the condition γ 2 < n 2 as well when |y| is small. We deduce that T is L 2 -bounded, provided that γ 1 , γ 2 < ν 2 and γ 1 + γ 2 ≥ σ > 0.

3.2. Resolvent estimate and smoothing property. We prove in this part the resolvent estimate stated in Theorem 1.4. Combining it with the Stein-Weiss inequality Theorem 1.5, we deduce Theorem 1.1. As we mentioned in the introduction, the standard scaling argument carried out in [KaYa89; Sug03] fails in the present setting. We prove Theorem 1.4 along the lines in [Chi08; Kai14] with a more careful analysis around the origin, since we are considering the homogeneous weights. We will combine the improved L 2 -continuity of J R-transform (Lemma 2.1) with two estimates borrowing from the Euclidean Fourier analysis. Recall that a is an -dimensional flat submanifold of X. Let g be a reasonable function on a. Then we have the following.

• (Besov embedding) If = 1 and 1 2 < θ < 3 2 , we have

|g(λ 1 ) -g(λ 2 )| |λ 1 -λ 2 | θ-1 2 | • | θ F a g L 2 (a) ∀ λ 1 , λ 2 ∈ a. (3.22)
When θ = 1, the estimate (3.22) is the classical Morrey inequality. For other 1 2 < θ < 3 2 , it is sufficient to notice that the Hölder-Zygmund space with index

0 < θ -1 2 < 1 is the standard Besov space B θ-1/2 ∞∞ (a), which is embedded into B θ 22 (a). See, for instance, [Saw18, Sect. 2.2.2]. • (Fourier restriction theorem) If ≥ 2 and 1 2 < θ < 2 , we have |λ|= r dσ λ |(F a g)(λ)| 2 r 2θ-1 a dλ |λ| 2θ |g(λ)| 2 ∀ r > 0, (3.23) 
see for instance [START_REF] Bloom | Weighted spherical restriction theorems for the Fourier transform[END_REF]Theorem 5.6]. Here dσ λ denotes the usual surface measure.

Proof of Theorem 1.4. According to the Plancherel formula and the transform (2.12), we write

(D 2α (D 2 -ζ) -1 f, f ) L 2 (X) = |W | -1 B db a dλ |c(λ)| -2 |Ff (λ, b)| 2 |λ| 2α |λ| 2 -ζ ,
where

|c(λ)| -2 |Ff (λ, b)| 2 = |c(λ)| -1 F a [Rf (•, b)](λ) 2 = F a [J Rf (•, b)](λ) 2 ,
for all λ ∈ a and b ∈ B. When X is of rank = 1, by applying (3.22) with g(λ) = c(λ) -1 Ff (λ, B), λ 2 = 0 and θ = 1 -α, we have

|c(λ)| -2 |Ff (λ, B)| 2 |λ| 1-2α | • | 1-α J Rf (•, B) 2 L 2 (a) , provided that -1 2 < α < 1 2 .
When X is of rank ≥ 2, we use (3.23) with θ = 1 -α, and obtain

(D 2α (D 2 -ζ) -1 f, f ) L 2 (X) = |W | -1 B db +∞ 0 dr r 2α r 2 -ζ |λ|= r dσ λ F a [J Rf (•, b)](λ) 2 |W | -1 B db +∞ 0 dr r r 2 -ζ a dλ |λ| 2-2α J Rf (λ, b) 2 provided that 1 -2 < α < 1 2 .
Hence, for all ≥ 1, we have

| Im(D 2α (D 2 -ζ) -1 f, f ) L 2 (X) | J Rf 2 L 2 (a×B, |λ| 2-2α dλ db) Im +∞ 0 dr r r 2 -ζ f L 2 (X,|x| 2-2α dx) ,
where

Im +∞ 0 dr r r 2 -ζ ≤ 1 2 +∞ 0 ds | Im ζ| (s -Re ζ) 2 + (Im ζ) 2 ≤ π 2 ∀ ζ ∈ C R.
We conclude that, for suitable α,

| Im(D 2α (D 2 -ζ) -1 f, f ) L 2 (X) | f L 2 (X,|x| 2-2α dx) ,
according to Lemma 2.1.

Remark 3.9. We give here only an estimate for the imaginary part. According to Remark 1.3, this is enough to deduce the smoothness for the corresponding operator, namely, the smoothing property for the free Schrödinger equation. The real part estimate can be handled along the lines in [Chi08; Kai14], using the Stein-Weiss inequality (1.6) instead of theirs. This allows one to prove the so-called super-smoothness for the corresponding operator, see [START_REF] Kato | Wave operators and similarity for some non-selfadjoint operators[END_REF][START_REF] Kato | Some examples of smooth operators and the associated smoothing effect[END_REF].

Combining the resolvent estimate (1.4) with the Stein-Weiss inequality (1.6), we deduce our Theorem 1.1.

Proof of Theorem 1.1. According to Remark 1.3 and Theorem 1.4, we know that the smoothing property (1.4) holds for all -1 2 < α < 1 2 in rank one ( = 1) and 1 -2 < α < 1 2 in higher ranks ( ≥ 2). It remains for us to show that the smoothing property (1.4) remains valid for all 1 -min{ n 2 , ν 2 } < α ≤ 1 -2 when ≥ 2. Let 0 < ε < 1 2 be a small constant. We write

|x| α-1 D α x u L 2 (Rt×X) = |x| -(1-α) D -( 1 2 -ε-α) x D 1 2 -ε x u L 2 (Rt×X) where 1 2 -ε -α ≥ 2 -1 2 -ε > 2 -1 ≥ 0 and 1 -α < min{ n 2 , ν 2 
} fulfil conditions of the Stein-Weiss inequality (1.6). Hence, we obtain

|x| α-1 D α x u L 2 (Rt×X) |x| -1 2 -ε D 1 2 -ε x u L 2 (Rt×X) .
Notice that

|x| -1 2 -ε D 1 2 -ε x u L 2 (Rt×X) = |x| ( 1 2 -ε)-1 D 1 2 -ε x u L 2 (Rt×X) ,
where 1 -2 ≤ 0 < 1 2 -ε < 1 2 for all ≥ 2. We deduce that the smoothing property

|x| α-1 D α x u L 2 (Rt×X) u 0 L 2 (X)
remains valid for all 1 -min{ n 2 , ν 2 } < α ≤ 1 -2 when ≥ 2. We conclude that the smoothing property (1.4) holds for all 1 -min{ n 2 , ν 2 } < α < 1 2 in higher ranks. Remark 3.10. On symmetric spaces G/K where G is complex, the regularity condition in Theorem 1.1 is optimal, i.e., the smoothing property

|x| α-1 D α x u L 2 (Rt×X) u 0 L 2 (X)
cannot hold for any α ≤ 1 -ν 2 or α ≥ 1 2 . When G is complex, we can write the spherical Fourier transform (2.9) as

f (x) = const. ϕ 0 (x) p dλ Hf (λ) e -i λ,x ∀ f ∈ S(K\G/K),
where p is an n-dimensional flat space, see [Hel00, Theorem 4.7 and Theorem 9.1]. Let u 0 be a bi-K-invariant function such that its spherical Fourier transform is radial in p. Then

D α x e itD 2 x u 0 (x) = const. ϕ 0 (x) p dλ |λ| α e -it|λ| 2 (Hu 0 )(|λ|) e -i λ,x = const. ϕ 0 (x) ∞ 0 dr r α e -itr 2 (Hu 0 )(r) |λ|=r dσ λ e -i λ,x ,
where the inner integral is the modified Bessel function:

|λ|=r dσ λ e -i λ,x = r n 2 |x| 2-n 2 J n-2 2 (r|x|).
By making the change of variable r = √ s, we obtain

D α x e itD 2 x u 0 (x) = const. |x| 2-n 2 ϕ 0 (x) ∞ 0 ds e -its s α 2 + n 4 -1 2 (Hu 0 )( √ s) J n-2 2 ( √ s|x|).
Together with the Plancherel formula (in variable t), we deduce that when |x| → 0 and |x| -1/2 when |x| → ∞. Moreover, notice on the one hand that

|x| α-1 D α x e itD 2 u 0 2 L 2 (Rt×X) = const. X dx |x| 2α-n ϕ 2 0 (x) ∞ 0 ds s α+ n 2 -1 |(Hu 0 )( √ s)| 2 J n-2 2 ( √ s|x|) 2 = const. ∞ 0 ds s α+ n 2 -1 |(Hu 0 )( √ s)| 2 X dx |x| 2α-n ϕ 2 0 (x) J n-2 2 ( √ s|x|) 2 . ( 3 
{x ∈ K(exp a 1 )K | |x|≤1} dx |x| 2α-n ϕ 2 0 (x) |x| n-2 |x + |≤1 dx + |x + | 2α-2 |x| n- = 1 0 dr r 2α-2+n-1
which is finite if and only if α > 1 -n 2 . On the other hand,

{x ∈ K(exp a 1 )K | |x|≥1} dx |x| 2α-n ϕ 2 0 (x) |x| -1 |x + |≥1 dx + |x + | 2α-n+ν--1 = +∞ 1 dr r 2α-n+ν-2
which is finite provided that α < ν-n 2 + 1 2 . Here a 1 ⊂ a + is the subset consisting of vectors away from the walls, see Remark 3.6. Since n = ν in the case where G is complex, then the inner integral on the right hand side of (3.24) is finite if and only if 1 -ν 2 < α < 1 2 . Hence, when G is complex, the smoothing property (1.4) cannot hold for any α ≤ 1 -ν 2 or α ≥ 1 2 .

Comparison principle on symmetric spaces

Consider two evolution equations corresponding to operators a 1 (D x ) and a 2 (D x ):

(i∂ t + a 1 (D x )) u(t, x) = 0, u(0, x) = u 0 (x), and 
(i∂ t + a 2 (D x )) v(t, x) = 0, v(0, x) = v 0 (x),
whose solutions are given by u(t, x) = e ita 1 (Dx) u 0 (x) and v(t, x) = e ita 2 (Dx) v 0 (x). The comparison principle allows one to compare smoothing properties between these two different equations when the symbols of a 1 (D x ) and a 2 (D x ) satisfy certain relations. We extend this tool to symmetric spaces along the lines in [RuSu12, Theorem 2.5], since most of our arguments are made in the Cartan subspace a, which is an -dimensional flat submanifold of X.

Theorem 4.1 (First comparison principle). Let τ 1 , τ 2 be two continuous functions on R + . Let a 1 , a 2 ∈ C 1 (R + ) be real-valued and strictly monotone functions on the support of a measurable function χ on R + . If there exist some constants C > 0 such that two pairs of functions {τ 1 , a 1 } and {τ 2 , a 2 } fulfil the comparison condition

|τ 1 (r)| |a 1 (r)| 1/2 ≤ C |τ 2 (r)| |a 2 (r)| 1/2 (CC)
for all r ∈ supp χ satisfying a 1 (r) = 0 and a 2 (r) = 0, then for any measurable function ω on X, we have

ω(x) χ(D x ) τ 1 (D x ) e ita 1 (Dx) u 0 (x) L 2 (Rt×X) ≤ C ω(x) χ(D x ) τ 2 (D x ) e ita 2 (Dx) u 0 (x) L 2 (Rt×X) , (4.1) 
where the equality holds if (CC) holds with equality.

Remark 4.2. When functions a 1 and a 2 satisfy (CC) for all r ∈ R + , Theorem 4.1 and Corollary 4.3 hold globally without function χ. The reason to introduce such a function into the estimates is that the comparison relation between symbols may vary in different frequencies. This is the case for wave-type equations, see Corollary 4.4.

Proof. As usual, we assume that all the integrals below make sense, we perform calculation on the set a 1 (r) = 0, where the inverse of a 1 is differentiable. By using the inverse formula (2.5) of the Helgason-Fourier transform and polar coordinates, we write

χ(D x ) τ 1 (D x ) e ita 1 (Dx) u 0 (x) = |W | -1 a dλ |c(λ)| -2 (χτ 1 )(|λ|) e ita 1 (|λ|) B db e iλ+ρ, A(k -1 x) Fu 0 (λ, b) = |W | -1 +∞ 0 dr r -1 (χτ 1 )(r) e ita 1 (r) S -1 dσ η |c(rη)| -2 B db e irη+ρ, A(k -1 x) Fu 0 (rη, b) = U (r,x)
.

By substituting r = a -1 1 (s) on the support of χ, we have χ(D x ) τ 1 (D x ) e ita 1 (Dx) u 0 (x)

= |W | -1 a 1 (R + ) ds |(a -1 1 ) (s)| (a -1 1 (s)) -1 (χτ 1 )(a -1 1 (s)) U (a -1 1 (s), x) e its .
Applying the Plancherel formula (in variable t), we obtain

χ(D x ) τ 1 (D x ) e ita 1 (Dx) u 0 (x) 2 L 2 (R) = (2π) -1 |W | -2 a 1 (R + ) ds |(a -1 1 ) (s)| 2 |a -1 1 (s)| 2 -2 |(χτ 1 )(a -1 1 (s))| 2 |U (a -1 1 (s), x)| 2 = (2π) -1 |W | -2 +∞ 0 dr r 2 -2 |χ(r)| 2 |τ 1 (r)| 2 |a 1 (r)| |U (r, x)| 2 .
Here, we have used the substitution s = a 1 (r) and the identity (a -1 1 ) (a 1 (r)) = a 1 (r) -1 . We deduce from the comparison condition (CC) that

χ(D x ) τ 1 (D x ) e ita 1 (Dx) u 0 (x) L 2 (Rt) ≤ C (2π) -1 |W | -2 +∞ 0 dr r 2 -2 |χ(r)| 2 |τ 2 (r)| 2 |a 2 (r)| |U (r, x)| 2 = C χ(D x ) τ 2 (D x ) e ita 2 (Dx) u 0 (x) L 2 (Rt)
for all x ∈ X. Then (4.1) follows.

4.1. General order Schrödinger-type equations. The above comparison principle allows us to deduce some new smoothing estimates from the model case. Consider the Schrödinger-type equation of order m > 0:

(i∂ t + D m x ) u(t, x) = 0, u(0, x) = u 0 (x), (4.2)
whose solution is given by u(t, x) = e itD m x u 0 (x). We will show that the solution to the Cauchy problem (4.2) satisfies the smoothing property:

A(x, D x ) u L 2 (Rt×X) u 0 L 2 (X) , (4.3) 
namely, Theorem 1.8. Recall that A(x, D) is defined as one of the following:

Type A(x, D) = 1 ≥ 2 (I) |x| α-m 2 D α m-3 2 < α < m-1 2 m-min{n,ν} 2 < α < m-1 2 (II) x -s D m-1 2
s > 1 2 and m > 0

(III) x -s D m-1 2 s ≥ m 2 and 1 < m < ν
Table 4. Regularity conditions on X for the Schrödinger-type equations with order m > 0.

Let us clarify what is already known about Theorem 1.8 and what remains for us to prove. The Type (I) estimate is proved for m = 2 in Theorem 1.1. In [START_REF] Kaizuka | Resolvent estimates on symmetric spaces of noncompact type[END_REF], the author showed

• the Type (II) estimate for m > 1;

• the Type (III) estimate for ≥ 2 and 1 < m < ;

• the Type (III) estimate for 1 < m ≤ ν, but with restricted condition s > m 2 . Notice that if the Type (II) estimate holds for m = 1, then the Type (III) estimate holds for s > m 2 with m = 1. As we mentioned in Remark 3.7, the Type (III) estimate in the critical (optimal) case s = m 2 is a consequence of the improved Stein-Weiss inequality (3.19), see also [START_REF] Kaizuka | Resolvent estimates on symmetric spaces of noncompact type[END_REF]Remark 4.1].

It remains for us to prove the Type (I) estimate for all m > 0 and complete the Type (II) estimate when 0 < m ≤ 1. They are the consequences of the comparison principle.

Proof of Theorem 1.8. Let -1 2 < α < 1 2 when = 1 and 1 -min{ n 2 , ν 2 } < α < 1 2 when ≥ 2. Notice that, for any m > 0 and r > 0, the two pairs of functions

{τ 1 (r) = r m 2 +α -1 , a 1 (r) = r m } and {τ 2 (r) = r α , a 2 (r) = r 2 } satisfy the comparison condition (CC) with C = 2 m . Hence |x| α -1 D m 2 +α -1 x e -itD m x u 0 (x) L 2 (Rt×X) = 2 m |x| α -1 D α x e -itD 2 x u 0 (x) L 2 (Rt×X) u 0 L 2 (X)
according to Theorem 4.1 and Theorem 1.1. We deduce the Type (I) smoothing estimate by taking α = m 2 + α -1. Now, suppose that 0 < m ≤ 1 < m . For any r > 0, the two pairs of functions {τ 1 (r) = r (m-1)/2 , a 1 (r) = r m } and {τ 2 (r) = r (m -1)/2 , a 2 (r) = r m } satisfy (CC) with C = m m . Then, we obtain

x -s |D x | m-1 2 e -itD m x u 0 (x) L 2 (Rt×X) = m m x -s |D x | m -1 2 e -itD m x u 0 (x) L 2 (Rt×X) u 0 L 2 (X)
for all s > 1 2 . Hence, the Type (II) smoothing estimate holds for all m > 0.

4.2. Wave and Klein-Gordon equations. Another important example is the Cauchy problem

(∂ 2 t + D 2 x + ζ) u(t, x) = 0, u(0, x) = u 0 (x), ∂ t | t=0 u(t, x) = u 1 (x), (4.4)
which is the wave equation when ζ = 0 and the Klein-Gordon equation when ζ > 0. To establish the smoothing properties for (4.4), we introduce the following secondary comparison principle.

Corollary 4.3 (Secondary comparison principle). Suppose that s > 1/2 and α satisfies

   -1 2 < α < 1 2 if = 1, 1 -min{n,ν} 2 < α < 1 2 if ≥ 2.
(4.5)

Let a ∈ C 1 (R + ) be a real-valued and strictly monotone function on the support of a measurable function χ on R + . Let τ ∈ C 0 (R + ) be such that, for some C > 0, we have

|τ (r)| ≤ C |a (r)| (SCC)
for all r ∈ supp χ. Then, the solution to the Cauchy problem

(i∂ t + a(D x ))u(t, x) = 0, u(t, x) = u 0 (x), (4.6) satisfies x -s χ(D x )τ (D x ) e ita(Dx) u 0 (x) L 2 (Rt×X) u 0 L 2 (X) , (4.7) |x| α-1 χ(D x ) D α-1 2 x τ (D x ) e ita(Dx) u 0 (x) L 2 (Rt×X) u 0 L 2 (X) . (4.8)
Proof. This corollary is a straightforward consequence of the first comparison principle and the smoothing property of the Schrödinger equation. Notice that if τ (r) and a(r) satisfy the second comparison condition (SCC) with C = 1 √ 2 , then {τ 1 (r) = r α-1/2 τ (r), a 1 (r) = a(r)} and {τ 2 (r) = r α , a 2 (r) = r 2 } fulfill (CC) with the same constant. Hence, for all α satisfies (4.5), we have

|x| α-1 χ(D x ) D α-1 2 x τ (D x ) e ita(Dx) u 0 (x) L 2 (Rt×X) |x| α-1 χ(D x ) D α x e itD 2 x u 0 (x) L 2 (Rt×X) u 0 L 2 (X)
according to Theorem 4.1 and Theorem 1.1. Similarly, since {τ (r), a(r)} and {τ 3 (r) = r (m-1)/2 , a 3 (r) = r m } satisfy (CC) for any m > 0, we deduce from Theorem 4.1 and Theorem 1.1 again that

x -s χ(D x )τ (D x ) e ita(Dx) u 0 (x) L 2 (Rt×X) x -s χ(D x )D m-1 2 x e itD m x f (x) L 2 (Rt×X) u 0 L 2 (X)
for any s > 1 2 .

By applying the above corollary with a(r) = r 2 + µ, where µ ≥ 0, we obtain the following smoothing estimates in different frequencies. Notice that

|a (r)| ≥ 1 if µ = 0 or r > 1, √ r if 0 < r ≤ 1.
Corollary 4.4. Suppose that s > 1/2 and α satisfies (4.5). Let χ be a smooth cut-off function on R + such that χ = 1 around the origin and denote by U l = χ(D)u 0 and U h = (1 -χ(D))u 0 the initial data corresponding to the low and high frequencies. Then, for all µ ≥ 0,

|x| α-1 D α e ±it √ D 2 x +µ U l (x) L 2 (Rt×X) U l L 2 (X) , (4.9) |x| α-1 D α-1 2 e ±it √ D 2 x +µ U h (x) L 2 (Rt×X) U h L 2 (X) , (4.10) x -s D 1 2 x e ±it √ D 2 x +µ U l (x) L 2 (Rt×X) U l L 2 (X) , (4.11) x -s e ±it √ D 2 x +µ U h (x) L 2 (Rt×X) U h L 2 (X) . (4.12)
Moreover, in the limiting case where µ = 0, we have better estimates in the low-frequency part:

|x| α-1 D α-1 2 x e ±itDx U l (x) L 2 (Rt×X) U l L 2 (X) , (4.13) x -s e ±itDx U l (x) L 2 (Rt×X) U l L 2 (X) . (4.14)
The usual way to relate smoothing estimates of wave and Schrödinger equations relies on changing variables in the corresponding restriction theorems. The previous corollary allows us to relate them simply according to the comparison principle. By combining estimates (4.10) and (4.13), as while as (4.12) and (4.14), we deduce the following smoothing estimates for the wave equation.

Theorem 4.5. Consider the Cauchy problem (4.4) with ζ = 0, namely, the wave equation. We have the smoothing properties

x -s u L 2 (Rt×X) u 0 L 2 (X) + D -1 x u 1 L 2 (X) , (4.15) |x| β-1 2 D β x u L 2 (Rt×X) u 0 L 2 (X) + D -1 x u 1 L 2 (X) , (4.16) 
for any s > 1 2 and β satisfies

   -1 < β < 0 if = 1, 1-min{n,ν} 2 < β < 0 if ≥ 2.
(4.17) Similar estimates such as (4.15) and (4.16) are well-known in R N for N ≥ 2 and 1-N 2 < β < 0, see [START_REF] Ben-Artzi | Regularity and smoothing for some equations of evolution[END_REF][START_REF] Ruzhansky | Smoothing properties of evolution equations via canonical transforms and comparison principle[END_REF]. In particular, since the regularity range of the Kato-type smoothing property of the Schrödinger equation is wider on H 2 (see Remark 1.3), analogous phenomenon appears in studying the wave equation: estimate (4.16) holds for all -1 < β < 0 on H 2 , while similar estimate holds on R 2 if and only if -1 2 < β < 0. By combining (4.12) and (4.9) (with α = 0), we can deduce the following smoothing property for the Klein-Gordon equation.

Theorem 4.6. Consider the Cauchy problem (4.4) with ζ > 0, namely, the Klein-Gordon equation. We have the smoothing property

x -1 u L 2 (Rt×X) u 0 L 2 (X) + D -1 x u 1 L 2 (X) . (4.18)
Similar estimate as (4.18) has been established in R N for N ≥ 3, see [START_REF] Ben-Artzi | Regularity and smoothing for some equations of evolution[END_REF][START_REF] Ruzhansky | Smoothing properties of evolution equations via canonical transforms and comparison principle[END_REF]. Moreover, if one considers the weight x -s with s > 1 instead of x -1 , similar smoothing which is compactly supported in [3 × 2 j-3 , 2 j ] and satisfies φ j = 1 on [2 j-1 , 3 × 2 j-2 ]. Moreover, we have where χ h is a cut-off function on a such that χ h = 1 in the support of π(iD H )R(φ h f ) ⊂ supp φ h . Then, for all H ∈ supp χ h , we have |H| ≤ |K(exp H)N | 2 h . We deduce, for every j ∈ Z, that 

2 σj φ j (| • |) J Rf L 2 (a×B) 2 σj h∈Z φ j (| • |) b -1 (D H ) χ h b(D H ) J R(φ h f ) L 2 (a×B) ≤ h∈Z 2 σ(j-h) φ j (| • |) b -1 (D H ) χ h b(D H ) 2
≤ C 1 C 2 h∈Z 2 2σh φ h (| • |)f 2 L 2 (X)
f 2 L 2 (X, |x| 2σ dx) . It remains us to check (A.5). We recall the Weyl-Hörmander pseudo-differential calculus used in [START_REF] Kaizuka | Resolvent estimates on symmetric spaces of noncompact type[END_REF]. Let us denote by S(m, g) the Weyl-Hörmander symbol class for a slowly varying metric g and a g-continuous positive function m. A differential operator is uniformly bounded from L 2 to L 2 if its symbol belongs to S(m, g) with m bounded, see [Hor94, Ch.XVIII]. According to (A.3), we know that b(λ) ±1 ∈ S(b 0 (λ) ±1 , H -2 |dH| 2 +|dλ| 2 ). Moreover, for every j, h ∈ Z, the differential symbols φ j (|H|), χ h (H), 2 (σ+1)j φ j (|H|)|H| -(σ+1) , and 2 -(σ+1)h χ h (H)|H| σ+1 are all in the class S(1, H -2 |dH| 2 + |dλ| 2 ). Hence, the families of pseudo-differential operators .

{φ j (| • |) b -1 (D H ) χ h b(D H )} j,h∈Z
By using the polar coordinates x + = Rξ and y + = rη with R, r > 0 and ξ, η ∈ S -1 , then the substitution r = sR and the homogeneity of K, we write, for every k 1 , k 2 ∈ K, 

I k 1 ,k 2 (R) = S -
∞ 0 dR R -1 | I η,k 1 ,k 2 (R)| 2 1/2 = ∞ 0 dR R -1 h(R) I η,k 1 ,k 2 (R).
We obtain, by using successively the Fubini theorem, the Cauchy-Schwarz inequality and the substitution r = sR, that since δ(sRη) |κ 2 (exp(sRη))| 2 is uniformly bounded by assumption. By applying the Jensen inequality to (A.6), we deduce from the above estimate that 

∞ 0 dR R -1 |I k 1 ,k 2 (R)| 2 ≤ |ω -1 | ∞ 0 dR R -1 S -1 dσ η | I η,k 1 ,k 2 (R)| 2 S -
(exp x + )| 2 K dk 1 K dk 2 |I k 1 ,k 2 (|x + |)| 2 K dk 1 K dk 2 ∞ 0 dR R -1 |I k 1 ,k 2 (R)| 2 K dk 1 K dk 2 a + dy + δ(y + ) |f (k 1 (exp y + )k 2 | 2 = f 2 L 2 (G)
. Here, we have used successively the Cartan decomposition, the assumption of κ 1 , the Jensen inequality, and estimate (A.7).
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1 dσ η ∞ 0

 0 dr r -1 δ(rη) K(R, r) κ 2 (exp(rη)) f (k 1 (exp (rη))k 2 ) = 1 δ(sRη) K(1, s) κ 2 (exp(sRη)) f (k 1 (exp (sRη))k 2 ) = I η,k 1 ,k 2 (R). (A.6) By duality, there exists a function h on R + such that ∞ 0 dRR -1 |h(R)| 2 = 1 and

∞ 0 dR

 0 R -1 | I η,k 1 ,k 2 (R)| 2 1/2 ≤ ∞ 0 ds s -1 K(1, s) ∞ 0 dR R -1 |h(R) δ(sRη) κ 2 (exp(sRη)) f (k 1 (exp (sRη))k 2 )| ≤ ∞ 0 dr r -1 δ(rη) |f (k 1 (exp (rη))k 2 )| 2 1/2 ∞ 0 ds s -1 s -2 K(1, s) ∞ 0 dR R -1 δ(sRη) |κ 2 (exp(sRη))| 2 |h(R)| 2 1/2 = O(1)

  Radon and modified Radon transforms. The Helgason-Fourier transform F is the flat Fourier transform F a of the Radon transform

	2.11)
	2.2.3.

  Since dk 1 and dk 2 are normalized measures on K, we obtain finallySf 2 L 2 (G) = const. + dx + δ(x + ) |Sf (exp x + )| 2 a + dx + δ(x + ) |κ 1

		∞
	dσ η	dr r -1 δ(rη) |f (k 1 (exp(rη))k 2 )| 2
	1	0
	=	
	a	

+ dy + δ(y + ) |f (k 1 (exp y + )k 2 | 2 (A.7) a
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property remains valid on R 2 . In our setting, the estimate (4.18) always holds even in the 2-dimensional case. The reason is that |x| -1 is D 2 -smooth on H 2 , which is not the case on R 2 . 4.3. Other examples. Many other equations in the Euclidean setting admit the smoothing properties, but are less considered on more general manifolds because of the lack of physical backgrounds. From the point of view of mathematical analysis, the above arguments also allow us to deduce their smoothing properties on symmetric spaces easily. The following are two examples.

Corollary 4.7 (Smoothing estimate of the relativistic Schrödinger equation). Consider the Cauchy problem

Then, we have the smoothing property

Analogous estimate holds in R N for all N ≥ 3, and the order of its weight x -1 is sharp, see [START_REF] Ben-Artzi | Remarks on relativistic Schrödinger operators and their extensions[END_REF][START_REF] Walther | Regularity, decay, and best constants for dispersive equations[END_REF]. Notice that we do not need the limiting absorption principle used in [START_REF] Ben-Artzi | Remarks on relativistic Schrödinger operators and their extensions[END_REF]. The smoothing property (4.19) is a straightforward consequence of estimates (4.12) and (4.9). Therefore, we have similar phenomena to the Klein-Gordon equation on H 2 .

Beyond the Schrödinger-type equation with constant coefficients, we can also deduce similar smoothing properties for some time-variable coefficients equations on symmetric spaces. Consider the Cauchy problem

where θ is a suitable function on R. In [START_REF] Federico | Smoothing and Strichartz estimates for degenerate Schrödinger-type equations[END_REF], the authors established the comparison principle and some smoothing properties for (4.20) in R N when θ satisfies Corollary 4.8. Suppose that θ meets the condition (4.21) and A(x, D) is described as in Table 2. Then, we have

Appendix A. Proofs of two lemmas

We prove Lemma 2.1 and Lemma 3.4 in this appendix.

Lemma A.1. For any σ ≥ 0, we have

Proof. Since we consider here the homogeneous weights, we modify slightly the cut-off functions that we used in the proof of Lemma 3.2. Let χ 0 ∈ C ∞ c (R + ) be a cut-off function such that χ 0 = 1 on [0, 3 4 ] and χ 0 = 0 on [1, +∞]. For every j ∈ Z, we define φ j (r) = χ 0 (2 -j r) -χ 0 (2 -j+1 r) ∀ r ≥ 0,