
HAL Id: hal-03978536
https://hal.science/hal-03978536

Submitted on 8 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-Supervised Learning for Data Scarcity in a Fatigue
Damage Prognostic Problem

Anass Akrim, Christian Gogu, Rob A. Vingerhoeds, Michel Salaün

To cite this version:
Anass Akrim, Christian Gogu, Rob A. Vingerhoeds, Michel Salaün. Self-Supervised Learning for Data
Scarcity in a Fatigue Damage Prognostic Problem. Engineering Applications of Artificial Intelligence,
2023, 120, pp.105837. �10.1016/j.engappai.2023.105837�. �hal-03978536�

https://hal.science/hal-03978536
https://hal.archives-ouvertes.fr

a

b

a

Self-Supervised Learning for data scarcity in a fatigue damage prognostic
problem
Anass Akrim a,b,∗, Christian Gogu a,b, Rob Vingerhoeds b, Michel Salaün a,b

Institut Clément Ader (UMR CNRS 5312) INSA/UPS/ISAE/Mines Albi, Université de Toulouse, 3 rue Caroline Aigle, 31400 Toulouse, France
ISAE-SUPAERO, Université de Toulouse, 10 Avenue Edouard Belin, 31400 Toulouse, France

Dataset link: https://github.com/ansak95/Dee
pSSL

Keywords:
Prognostics and Health Management (PHM)
Remaining Useful Life (RUL)
Deep Learning (DL)
Data scarcity
Self-Supervised Learning (SSL)

A B S T R A C T

With the increasing availability of data for Prognostics and Health Management (PHM), Deep Learning (DL)
techniques are now the subject of considerable attention for this application, often achieving more accurate
Remaining Useful Life (RUL) predictions. However, one of the major challenges for DL techniques resides in the
difficulty of obtaining large amounts of labelled data on industrial systems. To overcome this lack of labelled
data, an emerging learning technique is considered in our work: Self-Supervised Learning, a sub-category of
unsupervised learning approaches. This paper aims to investigate whether pre-training DL models in a self-
supervised way on unlabelled sensors data can be useful for RUL estimation with only Few-Shots Learning,
i.e. with scarce labelled data. In this research, a fatigue damage prognostics problem is addressed, through the
estimation of the RUL of aluminium alloy panels (typical of aerospace structures) subject to fatigue cracks from
strain gauge data. Synthetic datasets composed of strain data are used allowing to extensively investigate the
influence of the dataset size on the predictive performance. Results show that the self-supervised pre-trained
models are able to significantly outperform the non-pre-trained models in downstream RUL prediction task,
and with less computational expense, showing promising results in prognostic tasks when only limited labelled
data is available.
1. Introduction

Prognostics and Health Management (PHM) is a research domain
addressing failure mechanisms of real systems in order to better manage
the use of information on equipment operating conditions (Shao-feng
et al., 2013). Its implementation can improve the efficiency of main-
tenance support (Mao et al., 2010), optimize the maintenance plan
nd therewith equipment availability (Atamuradov et al., 2017), help

industry to balance safety and economic profit (Wen and Liu, 2011). For
many mechanical structures and notably aerospace structures, fatigue
damage is one of the major modes of failure. Therefore, fatigue moni-
toring and prediction of fatigue life in structures, i.e. Remaining Useful
Life (RUL) estimation, represents one of the major challenges to be
solved for paving the way towards predictive structural maintenance.

Among the approaches used for PHM, Data-Driven models have
gained more and more attention in the PHM community, especially
the latest Deep Learning (DL) techniques (Tsui et al., 2015), redefin-
ing state-of-the-art performances in a wide range of areas in recent
years (LeCun et al., 2015). However, their effectiveness depends on
the quantity and quality of available labelled data. Currently, data
scarcity represents a scientific bottleneck in many engineering fields
(e.g. in healthcare Jadon, 2021, in energy Berthou et al., 2019, water

∗ Corresponding author currently at: Square Research Center, Square Management Group, 173 Avenue Achille Peretti, 92200 Neuilly-sur-Seine, France
E-mail address: anass.akrim@gmail.com (A. Akrim).

and environmental engineering Borzooei et al., 2019; Gutierrez-Torre
et al., 2020, etc.), which makes it difficult to apply the latest Machine
Learning (ML) methods. Many approaches have been proposed to
address data scarcity in these various domains, as recently reviewed
by Nandy et al. (2022), Gorgoglione et al. (2020) and Bansal et al.
(2022). As faults are rare and structures can be replaced before reaching
failure, data scarcity is becoming one of the most important challenges
in PHM (Fink et al., 2020; Theissler et al., 2021). Nevertheless, while
labelled data is lacking, the availability of raw sensors data is increasing
due to the advancements in sensing technologies. This data is consid-
ered as ‘‘unlabelled’’ in the context of prognostics as, for sensor data at a
given point in time, the true RUL is unknown and cannot be determined
unless the sensor measurements are available all the way to failure. In
most engineering applications, this is unattainable, since the parts will
be replaced before failure, and this is particularly true for aerospace
mechanical structures, thus the majority of sensor data is unlabelled,
meaning that no associated RUL is available for it. Exploiting such
unlabelled sensors data during training has become a major goal in
ML in order to improve learning performance. Therefore, the research
question addressed in this paper can be stated as follows: is it possible to
learn meaningful representations from unlabelled data and use it to enhance
related supervised predictive tasks on a fatigue damage prognostics problem?
https://doi.org/10.1016/j.engappai.2023.105837

https://doi.org/10.1016/j.engappai.2023.105837
https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.105837&domain=pdf
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
mailto:anass.akrim@gmail.com
https://doi.org/10.1016/j.engappai.2023.105837

t
t
(
a
A
e
t
e
c
e
r
P
f

w
s
R
d
(

g
c
s
(
R
p

p
n
S
p
d
a
w
D
s
i
r
o

2

p
p

2

i
H
I
c
t
v
t
2
f
P
T
(

t
f
m
I
o
b
d
a
s
w
p
a
P
b

2

S
e
b
l
o
b

Nomenclature

Abbreviations

𝐴𝐸 Autoencoder
𝐴𝑅 Autoregressive
𝐷𝐺𝑁 Deep Gated Recurrent Unit Network
𝐷𝐿 Deep Learning
𝐺𝑅𝑈 Gated Recurrent Unit
𝐿𝑆𝑇𝑀 Long Short-Term Memory
𝑀𝐴𝑃𝐸 Mean Absolute Percentage Error
𝑀𝐿 Machine Learning
𝑀𝑆𝐸 Mean Squared Error
𝑀𝑆𝑃𝐴 Multi-Steps Prediction Autoregressive
𝑃𝐻𝑀 Prognostics and Health Management
𝑅𝑁𝑁 Recurrent Neural Networks
𝑅𝑈𝐿 Remaining Useful Life
𝑆𝑆𝐿 Self-Supervised Learning

Notations

𝐷𝐿 Labelled Dataset
𝐷𝑈 Unlabelled Dataset
𝑇𝑓 Time of failure
𝑋𝐿∕𝑦𝐿 Labelled input signal/Corresponding RUL

label
𝑋𝑈 Unlabelled input signal

Variables

𝑑 Ratio of the total lifetime of a sequence
ℎ Length of the sliding window
𝑛𝑔 Number of sensor time series
𝑁𝐿 Number of labelled structures
𝑛𝐿 Number of labelled samples
𝑁𝑇 𝑒𝑠𝑡
𝐿 Number of labelled structures for testing

𝑁𝑇 𝑟𝑎𝑖𝑛
𝐿 Number of labelled structures for training

𝑁𝑈 Number of unlabelled structures
𝑛𝑈 Number of unlabelled samples
𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 Number of unlabelled structures for train-

ing
𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 Number of unlabelled samples for training

In the Artificial Intelligence (AI) community, a recent learning
echnique to extract knowledge from unlabelled data was proposed
o address the challenge of data scarcity: Self-Supervised Learning
SSL) (Jaiswal et al., 2021), a sub-category of unsupervised learning
pproaches. SSL has already shown tremendous performances in many
I fields such as in Natural Language Processing (e.g. GPT-3 Brown
t al., 2020) or Image Processing (Chen et al., 2020a). Nevertheless,
he applicability of this approach remains largely unexplored in the
ngineering fields, a domain in which data scarcity is an increasingly
hallenging issue (Borzooei et al., 2019; Zhu et al., 2021; Rocchetta
t al., 2022). Currently, there is only a limited amount of existing
esearch that focuses on the potential of Self-Supervised Learning for
rognostics (Krokotsch et al., 2022; Guo et al., 2022), and particularly
or fatigue damage prognostics problems.

In order to address this limitation, this paper aims to investigate
hether pre-training DL models in a self-supervised way on unlabelled

ensors data on a fatigue damage prognostics problem can be useful for
UL estimation with only Few-Shots Learning, i.e. with scarce labelled
ata. The interest is in estimating the RUL of aluminium alloy panels

typical of aerospace structures) subject to fatigue cracks from strain
auge data. A synthetically generated dataset is used for this purpose,
omposed of a large unlabelled dataset (i.e. strain gauges data of
tructures before failure) for pre-training, and a smaller labelled dataset
i.e. strain gauges data of structures until failure) for fine-tuning on the
UL prediction task. The synthetic dataset is based on a framework
reviously developed by the authors (Akrim et al., 2022).

The remainder of the paper is structured as follows. Section 2
rovides a background on the state-of-the-art DL techniques in prog-
ostics for PHM. In Section 3, the proposed methodology is presented.
ection 4 presents the experimental settings used in this study for
re-training and fine-tuning phases, and the results obtained with the
eep learning-based approaches trained in a self-supervised manner are
nalysed. The impact of the size of the data available for pre-training as
ell as the choice of the pre-text task will be investigated, and different
L models are compared for the self supervised learning task. Section 5

ummarizes the aspects of the approach considered in this paper and
dentifies potential future work. Finally, Section 6 concludes the current
esearch paper and provides future outlooks. Fig. 1 illustrates the
utline of this paper and summarizes the objective of each section.

. Background

In this section, the application of DL techniques in the field of
rognostics for PHM and related work on Self-Supervised Learning are
resented.

.1. Deep learning in prognostics for PHM

As more data becomes available in the engineering domain, there
s a recent surge of interest in using Deep Learning in Prognostics and
ealth Management (Jimenez et al., 2020; Voulodimos et al., 2018).

n prognostics applications, Time Series Forecasting models are most
ommonly used to predict the RUL of systems or structures, given
he format of acquired data in PHM (e.g. data collected from sensors,
ibration signals, etc.), and the most commonly used algorithms for
hese tasks are Recurrent Neural Networks (RNN) (Hewamalage et al.,
021). Given the sequential nature of the sensor data in the prognostics
ield (e.g. sensors data), good results have been obtained within the
HM community by using RNNs, such as Standard RNNs, Long Short-
erm Memory (LSTM) networks, and Gated Recurrent Unit networks
GRU) (Fink et al., 2020; Rana, 2016; Baptista et al., 2020).

The lack of available labelled data is becoming a major challenge in
he application of machine learning to PHM, which, as a field, suffers
rom a high data acquisition cost compared to other domains in which
achine learning has proven useful (e.g. Natural Language Processing).

n Prognostics tasks, a label can constitute the RUL at each time step
f measurements, which is generally difficult to acquire and often can
e a time-consuming and expensive investment for experts. However,
ue to advancements in sensing technologies in engineering fields, the
vailability of unlabelled data is increasing (e.g. raw sensors data of
tructures replaced before reaching failure). Since failure is not reached
hen the structures are replaced, the RUL at replacement and at each
revious timestep is not known. Thus the sensor data is unlabelled
ccording to the previously introduced definition of a label in the
HM context. Exploiting unlabelled data during training has therefore
ecome a major goal in order to improve learning performance.

.2. Self-Supervised Learning

Similarly to self-taught learning as presented in Raina et al. (2007),
elf-Supervised Learning (SSL) consists in learning meaningful and gen-
ral representations from unlabelled data (during a pre-training phase)
y solving a so-called pretext task without requiring the data to be
abelled. These representations are then applicable to a wide range
f related supervised tasks (i.e. downstream task) with only few la-
elled data (i.e. ‘‘Few-Shots Learning’’). SSL aims to improve predictive

p
d
l
a
d
P
e
s

o
e
P
i
M
t
r
i
d
G
i
d

s
a
o

Fig. 1. Outline of this paper.
h

t
t
s
n
r

erformance on the downstream task through the use of unlabelled
ata, thus avoiding the extensive cost of collecting and annotating
arge-scale datasets (Jing and Tian, 2020). This learning paradigm has
lready proven that it can significantly improve the performance of
ownstream tasks for many AI applications such as in Natural Language
rocessing (e.g. GPT-3 Brown et al., 2020) or Image Processing (Chen
t al., 2020a,b). GPT-3 (Brown et al., 2020) was one of the largest
elf-supervised learning systems released by OpenAI in 2019.

There are few recent developments that have shown the potential
f the SSL paradigm in engineering fields (Yengera et al., 2018; Endo
t al., 2022; Yu et al., 2022; Shurrab and Duwairi, 2022), and several
HM researchers considered this approach to address the data scarcity
n fault diagnostics problems, showing promising results (Hahn and
echefske, 2021; Ding et al., 2022). However, to date, there is, to

he best of the authors’ knowledge, only a limited amount of existing
esearch that focuses on the application of SSL to prognostic problems
n PHM, for example for RUL estimation on the NASA C-MAPSS1

ataset (Yoon et al., 2017; Ellefsen et al., 2019; Krokotsch et al., 2022;
uo et al., 2022). One of the first to explore this learning paradigm

n prognostics in order to deal with the problem of lack of labelled
ata is Yoon et al. (2017), using a pre-trained variational autoencoder

(VAE Kingma and Welling, 2013) that makes use of available unlabelled
data to learn a latent space representation in an unsupervised manner;
the pre-text task being the minimization of the reconstruction error.
The extracted features by the VAE model are then fed as inputs to
an RNN model for RUL estimation, trained in a supervised manner by
varying the fraction of labelled engines data down to 1% in order to
investigate if the SSL approach can enhance predictive tasks when only
a small amount of labelled data is available. Results showed that their
proposed method was able to outperform a non pre-trained supervised

1 NASA C-MAPSS (Saxena et al., 2008) is a publicly available dataset of
imulated turbofan engines commonly used to benchmark RUL estimation
lgorithms. The dataset is divided into four subsets (FD001–FD004) of different
perating conditions and possible fault modes.
RNN-model when all the labelled dataset is available as well as in other
scenarios when the available labelled data is highly limited with only a
small labelled fraction of the training data. The authors in Ellefsen et al.
(2019) used a Restricted Boltzmann Machine model (RBM) (Hinton,
2009) for pre-training on unlabelled dataset with a reconstruction pre-
text task, and an LSTM model for RUL prediction. Results showed that
this SSL approach could improve the RUL prediction accuracy com-
pared to the purely supervised learning approach (i.e. predictive model
without the initial pre-training stage), both when the training data is
completely labelled and when the labelled training data is reduced.
It is worth noting that the methods proposed in Yoon et al. (2017)
and Ellefsen et al. (2019) were not presented as SSL approaches, but are
considered as such in this paper since the proposed methods follow the
same procedure as described earlier. However, Krokotsch et al. (2022)
ighlighted two shortcomings of these two previous studies:

1. the approaches were evaluated only on one subset of the C-
MAPSS dataset out of four in each study, rendering these inves-
tigations limited;

2. pre-training was performed on unlabelled data of engines that
contain the point of failure, which should not be the case in real
scenarios, since the RUL labels for all the data could be deduced
based on the knowledge of the failure time.

To overcome these limitations in Krokotsch et al. (2022), the inves-
igation was performed over all subsets of the C-MAPSS data set and
he unsupervised pre-training phase was performed over truncated time
eries, assuming that realistic unlabelled data does not contain features
ear the time of failure (corresponding to sensors data of structures
eplaced before reaching failure). Results showed that:

1. the proposed SSL approach can outperform the supervised base-
line that used only the labelled data. Both approaches were
trained on only few labelled time series for RUL estimation

(i.e. Few-Shots learning);

2. the proposed pre-training model outperformed two competing
pre-training models, including AE and RBM using a reconstruc-
tion pre-text task (i.e. the output 𝑦 corresponds to an estimation
of the input 𝑥).

These results suggest that the choice of the pre-training model
(or pre-text task) matters. Recently, Guo et al. (2022) proposed a
pre-training method based on masked autoencoders (He et al., 2022)
to perform SSL on the C-MAPSS datasets. Results showed that their
pre-trained model outperformed the fully supervised model in RUL
estimation. Unfortunately, there are no clear guidelines for selecting
the right pre-text task that learns meaningful representations from unla-
belled time series data (e.g. sensors data) during the pre-training phase.
Furthermore, one of the main challenges for extensive investigations on
the potential of SSL in PHM resides in the difficulty of having scalable
open-source dataset, similar to those available in Natural Language Pro-
cessing or Image Processing. Thus, despite demonstrating encouraging
results, the domain of SSL is still largely unexplored in the prognostics
field and is in contrast with the increasing amount of unlabelled data
available in industry, having the potential to enable predictive mainte-
nance. Table 1 summarizes the applications of self-supervised learning
in PHM identified in this paper.

3. Methodology

The authors of this paper seek to advance the field of data scarcity
in fatigue damage prognostic problems by investigating Deep Self-
Supervised Learning on an associated RUL estimation problem. In this
section, a description of the dataset involved is provided, followed by
a description of the problem considered in this paper and the way
the Self-Supervised Learning approach is implemented on it. The deep
learning-based models used to investigate the SSL approach are also
presented and detailed in this section. Note that data and code for
the learning procedure are publicly available on https://github.com/
ansak95/DeepSSL.

3.1. Data description

In the current research study, a synthetic dataset for a realistic fa-
tigue damage prognostics problem is generated, based on a framework
previously proposed by the authors (Akrim et al., 2022). It consists
of synthetic multivariate run-to-failure time series data for structures
subject to fatigue crack propagation (e.g. fuselage panels). Indeed,
the proposed framework generates synthetic data sets of mechanical
strain data (i.e. virtual strain gauges), by simulating the crack growths
in structures based on the Paris–Erdogan model (Paris and Erdogan,
1963). Strain data was considered as sensor data since we consider a
mechanical fatigue propagation problem and strain data is one of the
main, easily measurable, quantities of interest allowing to determine
crack propagation. Furthermore, strain gauge measurement is a mature
technique that can be relatively easily implemented on various kinds
of structures. The strain data, or measurement sequences, are obtained
until the crack size 𝑎 reaches the critical crack size 𝑎𝑐𝑟𝑖𝑡, considered as
the time of failure (necessary to compute the RUL at each time step for
example). Finally, the generated strain data are used as sensors time
series data available for prognostics problem such as RUL estimation.
This setup can be seen representative of real experiments under fatigue
loading where the strain state is monitored at multiple strain gauge
positions (blue, orange and green crosses), illustrated in Fig. 2.

In the current research, the multivariate dataset used contains the
variations of the strains at 𝑛𝑔 = 3 positions in the panel as a function
of the number of cycles, where 𝑛𝑔 is the number of the time series.
More details about the dataset are given in Akrim et al. (2022), and
an illustration of a generated sequence (i.e. three placed gauges) for a
single structure until failure is given in Fig. 3.

Given the sequential nature of the sensors data, the time series gen-
erated are processed sequentially on a sliding window approach of size
ℎ: at each time-step 𝑡, the input of the predictive models corresponds to
the current and past measurements, such that 𝑋𝑡 ∶= (𝑥𝑡−ℎ+1,… , 𝑥𝑡) ∈
R𝑛𝑔 × ℎ where ℎ = 30 is the length of the sliding window (note that
the value of parameter ℎ was set after preliminary experiments). Fig. 4
illustrates the sliding window approach used in this work.

3.2. The proposed Self-Supervised Learning approach

The Self-Supervised learning paradigm aims to extract useful fea-
tures from unlabelled data in a self-supervised manner that can subse-
quently benefit supervised training on few labelled samples. Hence it
is typically composed of:

1. a pre-training phase: a predictive data-driven model is trained on
a raw unlabelled dataset in an unsupervised (or self-supervised)
manner in order to learn abstract features.

2. a fine-tuning phase: the pre-trained model is coupled to a non-
pre-trained model (e.g. for neural networks a linear layer or
data-driven model) and then trained on a set of labelled data
in a supervised manner.

The pre-training in SSL is essentially performed with deep learning
models. Indeed, the architecture of DL models is in the form of a
stack of layers of neurons, and the last layer is used to obtain the
final output. Knowledge transfer is typically performed by removing
this last layer and replacing it with a new non-trained output linear
layer (or a predictive model). The working of SSL can be illustrated in
Fig. 5. This strategy allows to reuse the learned knowledge in terms
of global architecture of the pre-trained network, which works as a
features extractor, and to exploit it as a starting point for a down-
stream task (i.e. fine-tuning phase). It also provides faster learning time
in downstream predictive tasks compared to non-pre-trained models,
since it is not necessary to train the pre-trained layers but only the
new output linear layer (or predictive model). This aspect will be
discussed in Section 4.4.2. Note that some machine learning models
are not suitable for pre-training in SSL paradigm, as their architecture
is not composed of layers that can be easily extracted and reused for
knowledge transfer (e.g. Support Vector Machines Cortes and Vapnik,
1995, Random Forests Ho, 1995, Gaussian Processes Rasmussen, 2003).
Nevertheless, there are recent developments of these models that can
be used in knowledge transfer (e.g. Deep Gaussian Processes Damianou

and Lawrence, 2013; Kandemir, 2015).
Table 1
Summary of identified applications of SSL approaches in PHM.

Authors Year Downstream task Pre-training tasks Application

Yoon et al. (2017) 2017 RUL estimation Reconstruction of the input signal (variational autoencoder). Turbofan engines
Ellefsen et al.
(2019)

2019 RUL estimation Reconstruction of the input signal (restricted Boltzmann machine). Turbofan engines

Krokotsch et al.
(2022)

2022 RUL estimation Reconstruction of the input signal (autoencoder and restricted Boltzmann machine);
learn a distance or similarity metric between pairs of data (siamese network).

Turbofan engines

Guo et al. (2022) 2022 RUL estimation Reconstruction of the input signal (masked autoencoder). Turbofan engines
Hahn and
Mechefske (2021)

2021 Fault diagnostics Reconstruction of the input signal (variational autoencoder). Milling tools

Ding et al. (2022) 2022 Fault diagnostics Contrastive learning (deep convolutional network). Bearings

https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL
https://github.com/ansak95/DeepSSL

Fig. 2. Illustration of 3 run-to-failure time series generated (i.e. strain data) used as sensors data, and as input for prognostic problems (e.g. RUL estimation).
t

a
d
t
t
(
e
d
a

Fig. 3. Strain values time series corresponding to a random sensor sample generated
reaching failure (i.e. a labelled sequence).

Fig. 4. Illustration of the processing of the input data using a ‘‘sliding window’’ of size
ℎ to predict the corresponding output at each timestep 𝑡.

3.2.1. Problem statement
To clearly formulate the problem, the synthetic data used in this

work is composed of:

1. A large set of unlabelled data 𝐷𝑈 = {𝑋𝑈
𝑖 }

𝑛𝑈
𝑖=1, where 𝑛𝑈 is the

number of unlabelled samples, 𝑋𝑈
𝑖 ∈ R𝑛𝑔 × ℎ the input signal

with 𝑛𝑔 sensors and ℎ time steps. The unlabelled set 𝐷𝑈 refers
to strain measurement sequences of structures before reaching
failure.

2. A smaller set of labelled data 𝐷𝐿 = {(𝑋𝐿
𝑖 , 𝑦

𝐿
𝑖)}

𝑛𝐿
𝑖=1, where 𝑛𝐿 is the

number of labelled samples, 𝑋𝐿
𝑖 ∈ R𝑛𝑔 × ℎ the input signal with

𝑛𝑔 sensors and ℎ time steps, 𝑦𝐿𝑖 ∈ R the corresponding RUL label.
The labelled set 𝐷𝐿 refers to strain measurement sequences of
structures until failure.
Fig. 5. A schematic view of the Self-Supervised Learning procedure (a): Pre-training
phase in a self-supervised way, (b): Fine-tuning phase (supervised training on
downstream tasks).

Note that the samples of both domains 𝐷𝑈 and 𝐷𝐿 are multivariate
ime series sampled from related distributions.

Therefore in this paper, the pre-training phase of the proposed SSL
pproach consists of pre-training a DL model on unlabelled sensors
ataset 𝐷𝑈 in a self supervised manner, called pre-text task. The pre-
rained model is then fine-tuned on a specific downstream Prognostics
ask, i.e. RUL estimation, using only limited amounts of labelled data
i.e. strain data of structures until failure, on which the RUL is known at
ach timestep). The pre-trained model is then fine-tuned on a specific
ownstream Prognostics task, i.e. RUL estimation, using only limited
mounts of labelled data 𝐷𝐿. In this work, Deep Gated Recurrent

Unit (GRU Rana, 2016) networks, or DGN, are used as the basic
deep prediction model, because of their sequential properties and good
regressive performance found in previous work (Akrim et al., 2022)
(see Appendix for more details about the GRU networks). Note that a
DGN consists of a stack of GRU layers in this work. Fig. 6 summarizes
the proposed SSL approach in this paper.

3.2.2. Pre-training phase
In order to vary the pre-text tasks and inspired by Liu et al. (2021)

and Chen et al. (2020b), two types of models are used and compared in
this work: (1) Autoencoders (AE) and (2) Autoregressive (AR) models.

3.2.2.1. Autoencoder architecture in pre-training phase. An Autoencoder
(AE) is an artificial neural network that is often used in learning the dis-
criminating features of a dataset in an unsupervised manner (Rumelhart
et al., 1986). It is composed of two blocks: encoder and decoder (see

a
i

b

o
A
f

Fig. 6. Flow chart of the proposed Self-Supervised Learning framework.
u
d
l

Fig. 7 for a simplified architecture of the model). The encoder seeks
to learn the underlying features of the input data 𝑋𝑡 at time step 𝑡.
These learned features 𝑧𝑡 are generally of reduced dimension (number
of neurons less than the number of input features). The goal of the
decoder is thus to recreate the original data from these underlying
learned features. In recent years, Autoencoders have been successful
in prognostics applications in terms of feature extraction (Ren et al.,
2018; Ma et al., 2018; Sun et al., 2018), which motivated the use of its
rchitecture as a reference model for abstract representation learning
n this work.

Fig. 7. The architecture of basic Autoencoders. Note that encoders and decoders can
e composed of one or more hidden layers.

In pre-training, the output of the Autoencoder (AE) is an estimation
f the unlabelled input signal 𝑋𝑈

𝑡 = (𝑥𝑈𝑡−ℎ+1,… , 𝑥𝑈𝑡) such that 𝑦𝑈𝑡 = 𝑋𝑡.
schematic view of the investigated AE model in the proposed SSL

ramework is given in Fig. 8.

The architecture of the AE model is organized as follows:
1. The input data 𝑋𝑈
𝑡 is first embedded through a linear layer2 𝑓

in order to expand the dimension of the data and learn abstract
features;

2. The output of the following layer 𝑒𝑡 corresponds to a normalized3

transformation of the embedded input 𝑓 (𝑋𝑈
𝑡);

3. The resulting embedded and normalized transformation of the
data 𝑒𝑡 is then fed to an encoder 𝜃 and decoder 𝜓 . Note that
both encoder and decoder are Deep GRU networks (DGN), i.e.
stack of GRU layers;

4. 𝑧𝑡 is considered as the learned representation by the model and
will be used for feature extraction in the following;

5. In this architecture, two skip connections4 are used through deep
GRU networks such that 𝑧𝑡 = 𝜃(𝑒𝑡) + 𝑒𝑡 and 𝑜𝑡 = 𝜓(𝑧𝑡) + 𝑧𝑡;

6. The output linear layer 𝑔 is then used to generate an estimation
�̂�𝑈𝑡 of the unlabelled input signal 𝑋𝑈

𝑡 , i.e. an estimation of the
input signal such that �̂�𝑈𝑡 = �̂�𝑈

𝑡 .

2 The input linear layer is used as an alternative to the embedding layers
sed in Natural Language Processing (Hrinchuk et al., 2019) since the input
ata is continuous is this work, converting each time step data into a fixed
ength vector of defined size.

3 The layer normalization (Ba et al., 2016) are used for regularized training
and faster convergence.

4 Skip connections in DL architectures, also called residual connections or
shortcut connections, consist in skipping some layers in the neural network and
feeding the output of one layer as the input to the next layers (Adaloglou,
2020), used to solve the degradation problem (e.g. ResNet He et al., 2016).
In this paper, skip connections are proposed to establish a direct connection
through deep GRU networks in order to avoid information loss and learn robust
sequential representation, which has already proven to be effective for deep
recurrent neural networks (Yue et al., 2018).
Fig. 8. Flow chart of the pre-training phase of the Autoencoder model (AE) in the proposed Self-Supervised Learning framework.

a

s
i
b

l
b

w
f
i
f
o

i
t
t
a

u
t
t
p
p
G
m

4

4

s
t
(

o
s
t
t
s
t
a
1
s
p
s
m
o
t

3.2.2.2. Autoregressive architecture in pre-training phase. An Autoregres-
sive (AR) model 𝑔ℎ can be defined as a sequential model governed by
n Autoregressive process of order ℎ that models the future outcome of

a sequence at time 𝑡 + 1, using its previous ℎ realizations. Autoregres-
ive modelling captures the temporal dependencies between sequential
nput data, which makes it useful in learning better features. Inspired
y the autoregressive DL models used in Brown et al. (2020) and Chen

et al. (2020b) for pre-training, the proposed AR model in this paper
consists of a Deep GRU network in which the input is a sequence of
ℎ time steps at 𝑡 such that 𝑋𝑈

𝑡 = (𝑥𝑈𝑡−ℎ+1,… , 𝑥𝑈𝑡), and the output is
an estimation of the data of the next timestep such that 𝑦𝑈𝑡 = 𝑥𝑈𝑡+1,
according to the following formula:

�̂�𝑈𝑡 = �̂�𝑈𝑡+1 = ℎ(𝑥𝑈𝑡 , 𝑥
𝑈
𝑡−1,… , 𝑥𝑈𝑡−ℎ+1) (1)

where ℎ denotes the AR model governed by an autoregressive process
of order ℎ. A schematic view of the investigated AR models in the
proposed SSL framework is given in Fig. 9.

The architecture of the AR model is organized as follows:

1. The embedding linear layer 𝑓 is used in order to expand the
dimension of the input data and learn abstract features;

2. The output of the following layer 𝑒𝑡 corresponds to a normalized
transformation of the embedded input 𝑓 (𝑋𝑈

𝑡);
3. The resulting embedded and normalized transformation of the

data 𝑒𝑡 is then fed to a Deep GRU Network 𝜓 , composed of a
stack of GRU layers;

4. 𝑧𝑡 is considered as the learned representation by the model and
will be used for feature extraction in the following;

5. In this architecture, a skip connection is used such that 𝑧𝑡 =
𝜓(𝑒𝑡) + 𝑒𝑡;

6. The output linear layer 𝑔 is then used to generate an estimation
�̂�𝑈𝑡 of the input signal 𝑋𝑈

𝑡 , i.e. the data of the next timestep such
that �̂�𝑈𝑡 = �̂�𝑈𝑡+1.

3.2.3. Fine-tuning phase
In the fine-tuning phase, an RUL estimation problem is considered,

hence the output of the predictive models is a point-wise estimation of
the RUL such that 𝑦𝐿𝑡 = 𝑅𝑈𝐿𝑡. The embedding 𝑧𝑡 of the input data is
extracted (see Figs. 10 and 11), the weights of the hidden pre-trained
ayers are frozen, then for fine-tuning a simple GRU layer 𝜙 followed
y an output linear layer �̃� are used such that:

�̂�𝐿𝑡 = �̃� ◦𝜙(𝑧𝑡)

= ̂𝑅𝑈𝐿𝑡
(2)

here the function 𝜙 refers to the fine-tuning GRU layer and the
unction �̃� to the output linear layer. Note that, in the fine-tuning phase
t is common to use only a linear layer for training, but the authors
ound that adding a GRU layer significantly improves the performance
f the approach on this RUL estimation problem.

Finally, in order to investigate the added value of the SSL approach
n prognostics, the pre-trained models are compared with their non-pre-
rained counterpart architecture, illustrated in Figs. 10 and 11. Note
hat the architectures of the pre-trained and non-pre-trained models

re the same, the difference residing in the absence of pre-training on u
nlabelled data and the corresponding knowledge transfer. Also, only
he non-pre-trained weights for the pre-trained models are trained (i.e.
rainable weights of the fine-tuning model), while all the trainable
arameters of the non-pre-trained models are trained. Note that the
re-trained model with an autoregressive pre-text task followed by a
RU model for fine-tuning will be referred to as the ‘‘autoregressive
odel’’ in the following for simplicity.

. Experiments and results

.1. Preparation of data

In this experiment, an Aluminium alloy 7075-T6 plate was con-
idered, which is typical of aeronautic structures. Considering that
he evolution of the changes from one cycle to another are small
see Fig. 3), it was decided to collect the data every 𝛥𝑘 = 500

loading–unloading cycles, as in Akrim et al. (2022).
In the current paper, a training set and a testing set are generated.

The training set is composed of:

1. 𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 unlabelled structures for the pre-training phase,

2. 𝑁𝑇 𝑟𝑎𝑖𝑛
𝐿 labelled structures for the fine-tuning phase.

Note that the number of structures 𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 and 𝑁𝑇 𝑟𝑎𝑖𝑛

𝐿 are varied;
this will be described in the following subsections. The testing set is
composed of 𝑁𝑇 𝑒𝑠𝑡

𝐿 labelled structures. It is used to evaluate the RUL
estimation performance of the trained models (in fine-tuning) as a data
set that was not used during training. The parameters used to generate
the dataset according to the framework described in Akrim et al. (2022)
are summarized in Table 2.

4.2. Experimental settings in pre-training phase

As the structures subjected to fatigue can be replaced before reach-
ing failure at any time, the proposed approach has been investigated
on four degradation scenarios: for pre-training, available sequences
of unlabelled data are incomplete at d = 60%, 70%, 80%, and 90%
f their total lifetime, where 𝑑 is the ratio of the total lifetime of a
equence. To illustrate the size of the strain data sequences available,
hese four degradation scenarios are illustrated in Fig. 12. Moreover,
he number of pre-training structures, denoted 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 , for which strain
equences were available was varied in order to investigate the effect of
he amount of unlabelled data. The investigated models (autoencoder
nd autoregressive model) were therefore pre-trained on 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 =
00, 1000, 5000, and 10 000 unlabelled structures. As mentioned before,
train data are collected every 500 cycles, and a sliding window ap-
roach of ℎ = 30 is used (see Section 3). Thus, as an illustration, Table 3
ummarizes the number of pre-training samples 𝑛𝑈 for the autoencoder
odel in each degradation scenario. In each training procedure, 95%

f the dataset was used for training (in terms of the number of struc-
ures), while 5% of it was used for validation. The validation set is

sed for monitoring and adjusting the training phase, using the mean
Fig. 9. Flow chart of the pre-training phase of the Autoregressive model (AR) in the proposed Self-Supervised Learning framework.

s
𝑡
t

Fig. 10. Flow chart of the fine-tuning phase of the Autoencoder model (AE) in the proposed Self-Supervised Learning framework.
Fig. 11. Flow chart of the fine-tuning phase of the Autoregressive model (AR) in the proposed Self-Supervised Learning framework.
s
w
b
t
(

Fig. 12. Four degradation scenarios depicted on the sequence of a structure. For each
cenario, the available strain data correspond to the measurements from time 0 to time
∗
𝑑 ∶= 𝑑 × 𝑇𝑓 , where 𝑑 is the ratio of the total lifetime of a sequence, and 𝑇𝑓 is the
ime of failure.
absolute percentage error (MAPE) metric. During training, the aim is to
minimize the mean squared error (MSE) loss function 𝐿𝑀𝑆𝐸 such that:

𝐿𝑀𝑆𝐸 = 1
𝑛𝑈

𝑛𝑈
∑

𝑖=1
(𝑦𝑈𝑖 − �̂�𝑈𝑖)

2 (3)

𝑀𝐴𝑃𝐸 = 1
𝑛𝑈

𝑛𝑈
∑

𝑖=1
|

𝑦𝑈𝑖 − �̂�𝑈𝑖
𝑦𝑈𝑖

| ∗ 100 (4)

where 𝑛𝑈 is the number of unlabelled samples with �̂�𝑈. being the predic-
tion and 𝑦𝑈. the target value. Note that 𝑦𝑈𝑖 = (𝑥𝑈𝑖−ℎ+1,… , 𝑥𝑈𝑖) for the AE
model and 𝑦𝑈𝑖 = 𝑥𝑈𝑖+1 for the AR model. The Adam optimizer (Kingma
and Ba, 2014) was used with default parameters and the learning rate
was decreased incrementally. The learning rates of 10−2, 10−3, 10−4 were
equentially used for a predefined number of epochs, saving the model
eights each time the validation loss decreases; the weights of the
est model were loaded each time the learning rate was lowered. At
he end of the procedure, the model was trained on the whole dataset
training and validation sets) with a lower learning rate of 10−5 until

convergence. Calculations were performed using PyTorch’s core library
in Python on NVIDIA V100 GPUs, hence the batch size was chosen to be
as large as possible in order to speed up calculations, here 212 = 4096
depending on the available memory of the used GPUs, and not too large
in order to avoid numerical instability. The model hyperparameters
were optimized using a Grid Search algorithm, listed in Table 4:

s
d
f
c

4

Table 2
Parameters for numerical study. The full model description is available in Akrim et al. (2022).
Parameter Denotation Type Value Unit

Elastic parameters
Young’s modulus 𝐸 Deterministic 71.7 GPa
Poisson’s ratio 𝜈 Deterministic 0.33 –

Strain field parameters
Maximum stress intensity 𝜎𝑚𝑎𝑥 Uniform distribution (75, 85).106 Pa
Fracture toughness 𝐾𝐼 Deterministic 19, 7.106 Pa

√

𝑚

Strain gauges
Number of gauges placed 𝑛𝑔 Deterministic 3 –
Position of the gauges placed (𝑥𝑖 , 𝑦𝑖)𝑖=1,…,𝑛𝑔 Deterministic (3, 14), (14, 14), (25, 14) mm
Angle of the gauges placed 𝜃 Deterministic 45 deg

Initialization parameters
Initial crack size 𝑎0 Gaussian distribution (𝜇𝑎0 , 𝜎𝑎0) m
Mean of 𝑎0 𝜇𝑎0 Deterministic 5.10−4 m
Standard deviation of 𝑎0 𝜎𝑎0 Deterministic 2, 5.10−4 m
Paris–Erdogan’s law parameters (𝑚, log𝐶) Multivariate Gaussian distribution (𝜇𝑚 , 𝜎𝑚 , 𝜇log𝐶 , 𝜎log𝐶 , 𝜌) –
Mean of 𝑚 𝜇𝑚 Deterministic 3,4 -
Standard deviation of 𝑚 𝜎𝑚 Deterministic 0,25 –
Mean of 𝐶 𝜇𝐶 Deterministic 1.10−10 –
Standard deviation of 𝐶 𝜎𝐶 Deterministic 5.10−11 –
Correlation coefficient of 𝑚 and log𝐶 𝜌 Deterministic −0.996 –

Generated data set
Number of unlabelled structures for training 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 Deterministic (100, 1000, 5000, 10 000) –
Number of labelled structures for training 𝑁𝑇 𝑟𝑎𝑖𝑛

𝐿 Deterministic (5, 10, 20, 50, 100) –
Number of labelled structures for testing 𝑁𝑇 𝑒𝑠𝑡

𝐿 Deterministic 100 –
Data collection interval 𝛥𝑘 Deterministic 500 –
Table 3
Number of unlabelled pre-training samples 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 used in this work for the autoencoder. Note that in this work, strain data are collected every
𝛥𝑘 = 500 cycles and a sliding window approach of ℎ = 30 is used.
Number of pre-training structures 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 Ratio of the total lifetime 𝑑

𝑑 = 60% 𝑑 = 70% 𝑑 = 80% 𝑑 = 90%

𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 100 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 11 880 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 14 346 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 16 819 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 19 283

𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 1000 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 114 537 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 138 451 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 162 511 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 186 443

𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 5000 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 571 515 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 690 932 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 811 015 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 930 545

𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 10 000 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 1137 959 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 1375 948 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 1 615 261 𝑛𝑇 𝑟𝑎𝑖𝑛𝑈 = 1 853 470
Table 4
Hyperparameters of the pre-training phase.
Hyperparameters Search space Autoencoder model Autoregressive model

Linear layer 𝑓 - neurons {32, 64} 64 64
Deep GRU network 𝜃 - neurons {32, 64, 128, 256} 64 –
Deep GRU network 𝜃 - layers {1, 2, 4, 8} 2 –
Deep GRU network 𝜃 - dropout {0, 0.1, 0.2, 0.3} 0.1 –
Deep GRU network 𝜓 - neurons {32, 64, 128, 256} 64 64
Deep GRU network 𝜓 - layers {1, 2, 4, 8} 2 4
Deep GRU network 𝜓 - dropout {0, 0.1, 0.2, 0.3} 0.1 0.1
• Autoencoder model illustrated in Fig. 8: the embedding linear
layer 𝑓 is composed of 64 neurons, the Deep GRU Networks 𝜃
and 𝜓 were each composed of 2 layers of GRU, 64 neurons, and
a dropout of 0.1, that is to say nearly 100.000 parameters.

• Autoregressive model illustrated in Fig. 9: the embedding linear
layer 𝑓 is composed of 64 neurons, the Deep GRU Network 𝜓 was
composed of 4 GRU layers, 64 neurons, and a dropout of 0.1, that
is to say nearly 100.000 parameters.

Note that the authors found that, given the training data, the
earch space considered was sufficient to obtain good results, whereas
eep neural networks with a larger number of layers/neurons per-
ormed poorer with longer training (probably due to more difficult
onvergence).

.3. Experimental settings in fine-tuning phase

For fine-tuning, as illustrated in Figs. 10 and 11, the embedding 𝑧𝑡
of the input data was extracted, the weights of the hidden layers were
frozen, and a GRU model was used for the downstream task. The models
are then trained on 𝑁𝐿 available labelled structures, using a sliding
window approach similar to that used in the previous pre-training
phase. The fine-tuning model was composed of a single GRU layer,
32 neurons, 0.1 in dropout to regularize, and followed by an output
linear layer (the hyperparameters were optimized using a Grid Search
algorithm on the autoencoder pre-trained model, listed in Table 5).
Table 5
Hyperparameters of the fine-tuning phase.

Hyperparameters Search space Fine-tuning model

Deep GRU network 𝜙 - neurons {32, 64} 32
Deep GRU network 𝜙 - layers {1, 2} 1
Deep GRU network 𝜙 - dropout {0, 0.1, 0.2, 0.3} 0.1
Batch size {32, 64} 32

The pre-trained models were then compared with their non-pre-
trained ‘‘counterpart’’ (i.e. same architecture but all model weights
were reset) on few shots learning. The number of available labelled
training structures 𝑁𝑇 𝑟𝑎𝑖𝑛

𝐿 were varied, such that: 𝑁𝑇 𝑟𝑎𝑖𝑛
𝐿 = 5, 10, 20, 50

and 100 labelled structures (i.e. strain data of structures reaching failure

b
c
G

u
s
a
𝑡
i
p
b
f
t
c
a
p
t

p

i
v
v
e
e

4

4

n
e
p

t
f
R

at time 𝑇𝑓 , thus for which the RUL is available for each timestep
etween times 0 and 𝑇𝑓). Calculations were performed using PyTorch’s
ore library in Python on a machine with 62 GB of RAM and an NVIDIA
eForce GTX 1080 Ti 11 GB GPU.

After training during the fine-tuning phase, the models are eval-
ated on the testing set composed of 𝑁𝑇 𝑒𝑠𝑡

𝐿 = 100 different labelled
tructures. For each structure, a unique RUL estimation is performed
t a time 𝑡∗𝑛. For each structure 𝑛 ∈ {1,… , 𝑁𝑇 𝑒𝑠𝑡

𝐿 }, the parameter
∗
𝑛 is randomly drawn such that 𝑡∗𝑛 ∼ 𝑇 𝑛𝑓 × ([0, 33; 0, 9]), where 𝑇 𝑛𝑓
s the time of failure for the 𝑛th structure. This means that the test
rediction for the RUL is done at a time 𝑡∗𝑛 which is drawn uniformly
etween 33% and 90% of the sequence’s length. Hence, the input data
or the model is 𝑋𝐿

𝑡∗𝑛
= (𝑥𝐿𝑡∗𝑛−ℎ+1

,… , 𝑥𝐿𝑡∗𝑛
) ∈ R𝑛𝑔 × ℎ and the output of

he model is �̂�𝐿𝑡∗𝑛 = ̂𝑅𝑈𝐿𝑡∗𝑛 ∈ R. As the RUL estimation problem is
onsidered as a regression problem in this paper, the aim is to minimize
mean squared error loss 𝐿𝑀𝑆𝐸 during training, and the mean absolute
ercentage error (MAPE) metric is used to evaluate the performance of
he investigated models such that:

𝐿𝑀𝑆𝐸 = 1
𝑛𝐿

𝑛𝐿
∑

𝑖=1
(𝑦𝐿𝑖 − �̂�𝐿𝑖)

2 (5)

𝑀𝐴𝑃𝐸 = 1
𝑛𝐿

𝑛𝐿
∑

𝑖=1
|

𝑦𝐿𝑖 − �̂�𝐿𝑖
𝑦𝐿𝑖

| ∗ 100 (6)

where 𝑛𝐿 is the number of labelled samples with �̂�𝐿. being the RUL
rediction and 𝑦𝐿. the target RUL value.

As a limited amount of labelled data leads to epistemic uncertainty,
t is difficult to make a reliable comparison. Hence, a 5-fold cross
alidation was used by varying the split between the training and
alidation set, as illustrated in Fig. 13, which gives an average MAPE
rror and its standard deviation to quantify the uncertainty when
valuated on the test set.

.4. Results

.4.1. Pre-training analysis and comparison of pre-text tasks
First, the performance of the pre-trained Autoencoder (AE) and

on-pre-trained counterpart were compared on the considered RUL
stimation problem, by varying the number of unlabelled samples in
re-training. The results are presented in Table 6.

A first remark that can be drawn from the results in Table 6 is
hat pre-training the model is not always beneficial. For example,
or an AE model pre-trained on 100 structures, the accuracy of the

UL estimation is not always better compared to the non-pre-trained
model (AE). The term negative transfer can be used when the transfer
method decreases predictive performance (Torrey and Shavlik, 2010).
Moreover, considerable variability in results can be observed when
models are pre-trained on very few unlabelled samples (for example
when fine-tuned on 5 labelled samples), which could be due to over-
fitting during pre-training. However, it can also be observed that as the
number of unlabelled samples increases, the pre-training becomes more
efficient and allows to have better results than a non-pre-trained model
when few labelled structures are available, especially for the model pre-
trained on 10 000 structures. For example, the AE pre-trained models
with 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 10 000 unlabelled structures and fine-tuned on 𝑁𝑇 𝑟𝑎𝑖𝑛
𝐿 =

10 structures has an 𝑀𝐴𝑃𝐸 of about 11%–12% while the non-pre-
trained model with the same 𝑁𝑇 𝑟𝑎𝑖𝑛

𝐿 = 10 structures has an 𝑀𝐴𝑃𝐸 of
about 23%. Overall, results in Table 6 show that for the Autoencoder
model, the number of unlabelled samples in pre-training matters: the
more unlabelled samples, the more efficient the self supervised learning
is for each of the 4 scenarios. The autoregressive model shows similar
performances, presented in Table 7.

In order to illustrate the differences in performance between the
autoencoder and the autoregressive pre-text tasks, the 𝑀𝐴𝑃𝐸 of these
models for 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 10 000 structures as well as the 𝑀𝐴𝑃𝐸 of their non-
pre-trained counterparts are provided in Fig. 14. For very few labelled
structures (𝑁𝑇 𝑟𝑎𝑖𝑛

𝐿 = 5), results illustrated in Fig. 14 do not allow to
clearly distinguish between the two models due to the limited number
of labelled samples, leading all models to work relatively poorly.

Nevertheless, results show that both pre-trained models clearly
outperform their non-pre-trained counterpart in Few-Shots learning
(more than 5 but less than 50 structures). The AR pre-trained model
significantly outperforms the AE pre-trained one when fine-tuned on
10 or 20 structures, and has almost three times less estimation error
than the best non-pre-trained model. These results make sense since the
autoregressive task and the RUL estimation task have in common the
task of predicting future outcome, and may need to capture the tempo-
ral dependencies of the input signal. However, it can also be seen that
as the number of labelled samples increases, the difference between the
pre-trained and non-pre-trained models is reduced (e.g. trained on more
than 50 structures).

Given the good performance of the autoregressive model, some
further variations of this concept were investigated. Hence, an extended
Autoregressive model was proposed, denoted multi-steps prediction
autoregressive (MSPA) model, for which the pre-text task consists in
estimating at each timestep 𝑡 the data from the next timestep 𝑡 + 1
until the timestep 𝑡 + 𝑞, such that 𝑦𝑈𝑡 = (�̂�𝑈𝑡+1,… , �̂�𝑈𝑡+𝑞), with 𝑞 ∈ 𝐍∗,
as illustrated in Fig. 15.
Fig. 13. Flow chart of the 5-fold cross validation used in this paper.

i
t
(

Table 6
MAPE mean values (in %) plus or minus its standard deviation as a function of the number of labelled structures used and of the training
scenario for the autoencoder case. Best performance is represented in bold for each case.
Labelled structures 𝑁𝑇 𝑟𝑎𝑖𝑛

𝐿 𝑀𝐴𝑃𝐸 (%) Mean ± St. Dev.

5 10 20 50 100

Pre-trained model (d = 60%)
Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 100 29.36 ± 3.81 21.16 ± 2.86 11.84 ± 4.12 1.95 ± 0.25 1.87 ± 0.36

Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 1.000 25.95 ± 0.74 14.78 ± 3.13 5.59 ± 1.47 1.42 ± 0.17 1.31 ± 0.06

Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 5.000 28.55 ± 0.99 12.01 ± 2.31 4.80 ± 0.92 1.27 ± 0.11 1.08 ± 0.03

Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 10.000 24.60 ± 4.30 12.70 ± 1.76 3.48 ± 0.93 1.41 ± 0.04 1.13 ± 0.12

Pre-trained model (d = 70%)
Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 100 28.02 ± 1.96 20.99 ± 3.73 11.70 ± 3.78 1.61 ± 0.43 1.43 ± 0.25

Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 1.000 30.76 ± 1.83 18.20 ± 3.76 6.42 ± 1.69 1.65 ± 0.36 1.29 ± 0.16

Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 5.000 26.10 ± 0.88 18.73 ± 2.72 6.67 ± 1.30 1.58 ± 0.23 1.25 ± 0.08

Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 10.000 25.38 ± 5.99 11.85 ± 2.64 3.77 ± 0.61 1.29 ± 0.06 1.08 ± 0.12

Pre-trained model (d = 80%)
Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 100 34.96 ± 9.59 17.72 ± 4.43 8.92 ± 3.33 1.33 ± 0.13 1.41 ± 0.20

Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 1.000 26.46 ± 2.51 15.78 ± 3.77 4.74 ± 0.79 1.31 ± 0.13 1.10 ± 0.05

Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 5.000 30.19 ± 6.56 17.18 ± 3.03 6.19 ± 2.07 1.60 ± 0.22 1.17 ± 0.18

Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 10.000 24.77 ± 4.80 12.06 ± 3.82 4.27 ± 0.72 1.18 ± 0.13 1.01 ± 0.06

Pre-trained model (d = 90%)
Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 100 28.27 ± 2.47 21.56 ± 0.98 9.91 ± 3.29 1.57 ± 0.35 1.56 ± 0.16
Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 1.000 30.27 ± 1.15 18.53 ± 5.68 6.51 ± 1.63 1.74 ± 0.43 1.13 ± 0.15
Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 5.000 25.99 ± 1.73 17.06 ± 4.09 5.24 ± 1.60 1.43 ± 0.31 1.06 ± 0.07
Autoencoder 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 10.000 22.97 ± 5.69 11.04 ± 3.61 3.39 ± 0.67 1.22± 0.12 0.88 ± 0.09

Non-pre-trained model
Autoencoder architecture 27.72 ± 0.65 23.07 ± 5.94 8.12 ± 1.87 1.40 ± 0.33 0.83 ± 0.18
Table 7
MAPE mean values (in %) plus or minus its standard deviation as a function of the number of labelled structures used and of the training
scenario for the autoregressive case. Best performance is represented in bold for each case.
Labelled structures 𝑁𝑇 𝑟𝑎𝑖𝑛

𝐿 𝑀𝐴𝑃𝐸 (%) Mean ± St. Dev.

5 10 20 50 100

Pre-trained model (d = 60%)
Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 100 36.15 ± 13.48 20.18 ± 5.19 12.17 ± 3.31 2.29 ± 0.22 1.70 ± 0.19

Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 1.000 28.14 ± 3.20 16.65 ± 1.21 8.80 ± 3.13 1.48 ± 0.18 1.21 ± 0.13

Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 5.000 26.53 ± 1.57 13.58 ± 2.14 7.25 ± 3.09 1.22 ± 0.02 1.00 ± 0.01

Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛
𝑈 = 10.000 22.48 ± 6.06 7.34 ± 0.95 2.63 ± 0.80 1.14 ± 0.04 1.03 ± 0.06

Pre-trained model (d = 70%)
Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 100 28.95 ± 1.74 16.98 ± 2.96 11.85 ± 2.73 2.01 ± 0.20 1.51 ± 0.34
Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 1.000 26.76 ± 2.49 16.34 ± 1.38 8.54 ± 1.89 1.53 ± 0.20 1.18 ± 0.16
Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 5.000 25.18 ± 2.70 10.96 ± 2.46 6.79 ± 2.51 1.33 ± 0.13 1.27 ± 0.21
Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 10.000 24.43 ± 4.08 8.46 ± 1.53 2.42 ± 0.53 1.20 ± 0.06 1.14 ± 0.17

Pre-trained model (d = 80%)
Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 100 30.47 ± 3.47 20.04 ± 2.59 10.68 ± 4.25 2.34 ± 0.85 1.48 ± 0.07
Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 1.000 26.10 ± 2.14 13.66 ± 3.22 6.01 ± 1.45 1.44 ± 0.05 1.17 ± 0.03
Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 5.000 26.46 ± 2.46 12.60 ± 1.33 6.91 ± 1.28 1.38 ± 0.11 1.09 ± 0.05
Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 10.000 26.50 ± 2.58 8.09 ± 3.28 2.39 ± 0.26 1.39 ± 0.20 1.07 ± 0.11

Pre-trained model (d = 90%)
Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 100 35.76 ± 7.41 17.64 ± 2.58 8.66 ± 2.26 1.60 ± 0.17 1.33 ± 0.19
Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 1.000 25.00 ± 3.89 17.31 ± 1.72 8.59 ± 2.79 1.45 ± 0.15 1.29 ± 0.20
Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 5.000 23.01 ± 3.23 12.97 ± 2.91 3.15 ± 0.45 1.21 ± 0.08 1.05 ± 0.03
Autoregressive 𝑁𝑇 𝑟𝑎𝑖𝑛

𝑈 = 10.000 22.69 ± 2.36 8.83 ± 1.61 3.39 ± 0.40 1.25 ± 0.07 0.99 ± 0.06

Non-pre-trained model
Autoregressive architecture 28.09 ± 1.63 21.10 ± 1.92 7.52 ± 1.59 1.15 ± 0.09 0.79 ± 0.09
Results in Table 8 show that increasing the prediction time horizon
n pre-training can improve the predictive performance of the fine-
uned models, when few labelled structures for training are available
𝑁𝑇 𝑟𝑎𝑖𝑛
𝐿 = 5 or 10). For example, the MSPA model with a time horizon of

𝑞 = 30 and fine-tuned on 𝑁𝑇 𝑟𝑎𝑖𝑛
𝐿 = 5 structures has an 𝑀𝐴𝑃𝐸 of about

13% when 𝑑 = 90%, while the initial autoregressive model trained
under the same conditions has an 𝑀𝐴𝑃𝐸 of about 22%. Moreover,
on very few labelled training structures (𝑁𝑇 𝑟𝑎𝑖𝑛

𝐿 = 5), the results show
that the parameter 𝑑 has a significant influence on the pre-training of
the MSPA models: the higher 𝑑 is, the more the available sequence
data is close to the given failure time 𝑇𝑓 (see Section 4.1) and the
better the RUL estimation performance of the MSPA pre-trained models.
This improvement of the MSPA performance compared to the AR one
makes sense since when at d = 90%, predicting q = 30 timesteps
means predicting the strain data until the time of failure. Being able
to accurately predict until time of failure facilitates of course the
downstream RUL prediction task. However, note that this performance
does not hold when more labelled samples for training are available
(𝑁𝑇 𝑟𝑎𝑖𝑛

𝐿 greater than 20) by becoming worse than those of the initial
autoregressive model and the non-pre-trained model, which does not

a
t
t
m
c

o
t
𝑥

Fig. 14. Comparison of pre-trained and non-pre-trained models in RUL estimation for the testing set (100 samples). The MAPE metric (%) is used, and here the target value to
estimate is the RUL.
Fig. 15. Illustration of the extended Autoregressive model (MSPA) pre-text task.

llow general conclusions to be drawn. One possible explanation for
his worsening is that training the DL models with values of q greater
han 1 is significantly more challenging. Some of the variations seen
ay then be related to the pre-training phase being not yet fully

onverged.
Future work could seek to better control the training convergence

f the pre-text task for the MSPA models. As a final remark, note that
he authors also tried as outputs of the pre-text task predicting 𝑦𝑈𝑡 =
̂𝑈𝑡+𝑞 only, instead of predicting the entire time-windows (�̂�𝑈𝑡+1,… , �̂�𝑈𝑡+𝑞).
As the results obtained after fine-tuning were similar for the two
approaches, in this study only the pre-text task considering the entire
time-windows has been presented and described in this paper.
4.4.2. Freezing pre-trained layers during learning
In the fine-tuning phase of the previous subsection, the weights

of the pre-trained layers were frozen, and only the weights of the
fine-tuning model were trainable (i.e. GRU network for fine-tuning as
illustrated in Fig. 11. Therefore, the authors also sought to investigate
the effect of not freezing the pre-trained layers during the fine-tuning
phase. Unfreezing the layers means that the pre-text task is basically
used to find a good starting point for the training of the full network ar-
chitecture. As the autoregressive model showed the best performance so
far, the investigation was done on this model. In the fine-tuning phase,
the model based on the autoregressive structure is composed of 125 121
trainable parameters when the pre-trained layers are not frozen, against
25 025 trainable parameters when they are frozen. Results in Table 9
show that the two approaches perform almost similarly, so it is difficult
to determine whether it is better to freeze or not the layers in this
RUL estimation problem. Note that both pre-trained models remain
better in RUL estimation than their non-pre-trained counterpart, with
or without frozen pre-trained layers, which confirms the benefits of the
pre-training in all the cases.

Nevertheless, it should be noted that freezing the weights of the pre-
trained layers considerably reduces the number of trainable parameters
(25 025 trainable parameters when the pre-trained layers are frozen,
against 125 121 trainable parameters when they are not), and therefore
reduces the computational complexity during training. Indeed, Fig. 16
shows that freezing the pre-trained layers speeds up the calculations
considerably (1.5 to 2 times less time than other models), while both
investigated learning approaches in this subsection perform almost
similarly as shown in Table 9.

5. Discussion

Based on the previous results we now summarize and discuss some

of the effects observed:

Table 8
MAPE mean values (in %) plus or minus its standard deviation as a function of the number of labelled structures used and of the training
scenario for the autoregressive case. Best performance is represented in bold for each case.
Labelled structures 𝑁𝑇 𝑟𝑎𝑖𝑛

𝐿 𝑀𝐴𝑃𝐸 (%) Mean ± St. Dev.

5 10 20 50 100

Pre-trained models (d = 60%)
Autoregressive 𝑞 = 1 22.48 ± 6.06 8.08 ± 1.27 2.63 ± 0.80 1.14 ± 0.04 1.03 ± 0.06
MSPA 𝑞 = 10 25.90 ± 4.02 8.81 ± 2.08 2.86 ± 0.80 1.22 ± 0.13 1.04 ± 0.07
MSPA 𝑞 = 20 23.93 ± 6.54 7.81 ± 0.56 3.55 ± 0.67 1.34 ± 0.19 1.06 ± 0.08
MSPA 𝑞 = 30 18.88 ± 4.02 8.24 ± 1.33 4.95 ± 0.80 1.57 ± 0.21 1.23 ± 0.15

Pre-trained models (d = 70%)
Autoregressive 𝑞 = 1 24.43 ± 4.08 8.46 ± 1.53 2.42 ± 0.53 1.20 ± 0.06 1.14 ± 0.17
MSPA 𝑞 = 10 21.33 ± 3.85 8.25 ± 0.88 4.34 ± 0.90 1.43 ± 0.12 1.17 ± 0.04
MSPA 𝑞 = 20 20.99 ± 5.43 7.95 ± 1.03 4.62 ± 0.56 1.70 ± 0.17 1.22 ± 0.24
MSPA 𝑞 = 30 16.56 ±3.16 7.52 ± 0.99 4.79 ± 0.87 2.68 ± 0.42 1.45 ± 0.04

Pre-trained models (d = 80%)
Autoregressive 𝑞 = 1 26.50 ± 2.58 8.09 ± 3.28 2.39 ± 0.26 1.39 ± 0.20 1.07 ± 0.11
MSPA 𝑞 = 10 17.75 ± 4.53 8.96 ± 0.53 3.53 ± 1.03 1.47 ± 0.11 1.18 ± 0.10
MSPA 𝑞 = 20 14.84 ± 3.22 7.03 ± 1.30 4.68 ± 0.77 2.27 ± 0.41 1.55 ± 0.17
MSPA 𝑞 = 30 13.32 ± 2.78 5.83 ± 0.53 4.55 ± 0.98 2.88 ± 0.47 2.16 ± 0.18

Pre-trained models (d = 90%)
Autoregressive 𝑞 = 1 22.69 ± 2.36 8.83 ± 1.61 3.39 ± 0.40 1.25 ± 0.07 0.99 ± 0.06
MSPA 𝑞 = 10 14.68 ± 3.55 8.84 ± 1.73 6.55 ± 0.85 1.44 ± 0.05 1.19 ± 0.06
MSPA 𝑞 = 20 13.92 ± 5.16 7.15 ± 0.81 5.22 ± 0.59 1.85 ± 0.25 1.39 ± 0.14
MSPA 𝑞 = 30 13.24 ± 2.34 7.45 ± 0.73 4.42 ± 2.04 1.48 ± 0.21 1.18 ± 0.09

Non-pre-trained models
Autoregressive architecture 28.09 ± 1.63 21.10 ± 1.92 7.52 ± 1.59 1.15 ± 0.09 0.79 ± 0.09
Table 9
MAPE mean values (in %) plus or minus its standard deviation as a function of the number of labelled structures used and of the training
scenario for the autoregressive case, with or without freezing pre-trained layers. Best performance is represented in bold for each case.
Labelled structures 𝑁𝑇 𝑟𝑎𝑖𝑛

𝐿 𝑀𝐴𝑃𝐸 (%) Mean ± St. Dev.

5 10 20 50 100

Pre-trained models (d = 60%)
Autoregressive - Freeze layers 22.48 ± 6.06 8.08 ± 1.27 2.63 ± 0.80 1.14 ± 0.04 1.03 ± 0.06
Autoregressive - Unfreeze layers 21.13 ± 4.87 6.52 ± 0.56 3.36 ± 0.80 1.13 ± 0.08 1.05 ± 0.06

Pre-trained models (d = 70%)
Autoregressive - Freeze layers 24.43 ± 4.08 8.46 ± 1.53 2.42 ± 0.53 1.20 ± 0.06 1.14 ± 0.17
Autoregressive - Unfreeze layers 24.75 ± 3.64 8.93 ± 1.93 3.20 ± 1.18 1.14 ± 0.12 1.01 ± 0.09

Pre-trained models (d = 80%)
Autoregressive - Freeze layers 26.50 ± 2.58 8.09 ± 3.28 2.39 ± 0.26 1.39 ± 0.20 1.07 ± 0.11
Autoregressive - Unfreeze layers 27.04 ± 4.74 7.81 ± 1.63 2.99 ± 0.85 1.16 ± 0.08 1.02 ± 0.08

Pre-trained models (d = 90%)
Autoregressive - Freeze Layers 22.69 ± 2.36 8.83 ± 1.61 3.39 ± 0.40 1.25 ± 0.07 0.99 ± 0.06
Autoregressive - Unfreeze Layers 22.41 ± 3.05 8.74 ± 2.65 4.37 ± 1.29 1.16 ± 0.10 0.85 ± 0.12

Non-pre-trained models
Autoregressive architecture 28.09 ± 1.63 21.10 ± 1.92 7.52 ± 1.59 1.15 ± 0.09 0.79 ± 0.09
• Number of unlabelled samples for pre-training: Results obtained
confirmed that the number of pre-training samples matters. They
have shown that pre-training does not always improve predic-
tive performance when the number of pre-training samples is
not sufficient, and may even decrease predictive performance
(i.e. negative transfer). Nevertheless, these investigations indicated
that as the number of unlabelled samples increases, the pre-
training becomes more efficient and allows to have better results
than a non-pre-trained model when few labelled structures are
available. A research direction to further improve the pre-training
process would be to select the available unlabelled sample, with
the aim of extracting the most useful features from the data and
avoiding over-fitting, in the spirit of deep active learning (Ren
et al., 2021). On the application we considered, for example,
it could be interesting to implement an adaptive pre-training
strategy to select the training samples and remove unnecessary
samples (e.g. sensor data with very little variation).

• Pre-text task: In this work, several pre-training tasks were com-
pared (i.e. input signal estimation and prediction of the future
outcome of a sequence) in order to identify which one is most
appropriate for the considered case study, and by extension for
other engineering case studies using time series sensor data.
Experiments have shown that autoregressive pre-training tasks
outperform the AE model in pre-training, and capture useful
representations from the sensor data (i.e. temporal dependen-
cies of the input signal) for RUL estimation tasks. Moreover,
results showed that increasing the prediction time horizon of
autoregressive models in pre-training can improve the predictive
performance, notably when few labelled structures are available.
In next steps, it would be interesting to explore other pre-text
tasks (e.g. Contrastive learning, which aims at learning similar
or dissimilar representations from source data Jaiswal et al.,
2021). Another interesting research direction would be to embed
a Bayesian framework to the models in the pre-training phase
(e.g. Variational Autoencoders Kingma and Welling, 2013), in
order to address the random nature of the data such as noise
or measurement errors (i.e. aleatoric uncertainty). Note that the
VAE model, although it has shown promising results in learning
meaningful representations from raw unlabelled data (Zhu et al.,
2020; Dhariwal et al., 2020), has been studied and implemented
in this work but the results were unsatisfactory. This could be
due to the stochastic nature of the model during sampling: thus
it requires further investigation in the future.

t
P

Fig. 16. Mean training time during fine-tuning phase (in minutes).
A
w
s
F
s
p

C

I
C
v
s
–

D

c
i

D

h

A

u
T
(
2
h

6. Conclusion

In this paper, a Self-Supervised Learning approach for fatigue dam-
age prognostics problem was proposed and investigated. The approach
is based on combination of a pretext and a downstream task. In the
pretext task a model is trained using a large number of raw (unla-
belled) sensor data with the aim of learning general representations
linked to the degradation process. No RUL data is available during this
pretext task, only raw sensor data (strains in our case), as the data is
obtained only on structures that have not yet reached failure. Then,
in a subsequent downstream task, a new model, aimed at predicting
the RUL, is adjusted based on the previously pretrained model and
based on a limited number of labelled RUL data obtained on structures
that have reached failure. Multiple scenarios were investigated within
this framework, including varying the pretext task, the models and the
dataset properties.

The results obtained showed that self supervised learning is efficient
in prognostics and can improve RUL estimation performances especially
when only a limited amount of labelled data is available. Overall, these
investigations indicate that pre-trained models are able to significantly
outperform the respective non-pre-trained counterpart models in the
RUL prediction task, while at the same time lowering training com-
putational costs. Accordingly, the proposed approach can significantly
reduce the need for labelled data for a given prediction accuracy, or
alternatively significantly improve the prediction accuracy for the same
amount of (limited) labelled data. Furthermore, the authors of this
paper believe that the potential of this learning approach will benefit
researchers in a variety of similar engineering fields using sensors
or time series data (e.g. in energy Jain et al., 2006, or water and
environmental engineering Borzooei et al., 2019) and that it can be
reused to overcome the lack of available labelled data.

In next steps, it would be interesting to explore other pre-text
tasks (e.g. contrastive learning, ensemble learning, etc.) or other mod-
els (e.g. masked autoencoders), adaptive activation functions Jagtap
et al., 2020b,a, 2022; Jagtap and Karniadakis, 2022). Furthermore,
as uncertainty quantification remains a challenging and ubiquitous
task in real-world ML applications (e.g. in engineering domains such
as transportation engineering Mazloumi et al., 2011 or water and
environmental applications Ghiasi et al., 2022), it could be interesting
o use Bayesian machine learning models in SSL (e.g. Deep Gaussian
rocesses) to quantify uncertainty in downstream prognostics tasks.
nother future work perspective consists in combining strain data
ith other type of sensor data (e.g. ultrasound mappings) in a self-

upervised framework in order to further improve prediction results.
uture work is also aimed at investigating how the proposed self-
upervised prognostics framework behaves on an actual engineering
roblem involving real-world data.

RediT authorship contribution statement

Anass Akrim: Conceptualization, Formal analysis, Methodology,
nvestigation, Visualization, Writing – original draft. Christian Gogu:
onceptualization, Investigation, Validation, Supervision, Writing – re-
iew & editing. Rob Vingerhoeds: Investigation, Validation, Supervi-
ion, Writing – review & editing. Michel Salaün: Supervision, Writing
review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data and code for the learning procedure are publicly available on
ttps://github.com/ansak95/DeepSSL.

cknowledgements

This work was partially funded by the French ‘‘Occitanie Region’’
nder the Predict project. This funding is gratefully acknowledged.
his work has been partly carried out on the supercomputers PANDO
ISAE-SUPAERO, Toulouse) and Olympe (CALMIP, Toulouse, project n◦

1042). Authors are grateful to ISAE-SUPAERO and CALMIP for the
ours allocated to this project.

https://github.com/ansak95/DeepSSL

t
e

n

s
l
d
a
e
t
w
f

R

A

A

A

B

B

B

B

B

C

C

C

C
D

D

D

E

E

F

G

G

G

G

H

H

H

H

H
H

H

J

J

J

J

J

J

J

Appendix. Deep gated recurred unit networks

Introduced by Cho et al. (2014) Gated Recurrent Unit, or GRU,
are a variant of recurrent neural networks which solves the time-
delay problem existing in traditional RNNs. This approach has gained
in popularity in recent years due to its relative simplicity (i.e. lower
complexity and faster computation Rana, 2016), while the same ability
o capture the mapping relationships among time series data (Yamak
t al., 2019). The structure of the GRU network is shown in Fig. A.17.

Fig. A.17. GRUs architecture.
Source: In Olah (2015).

The formulas that govern the computation happening in a GRU
etwork are as follow (Cho et al., 2014):

𝑧𝑡 = 𝜎(𝑊𝑧𝑋𝑡 + 𝑈𝑧ℎ𝑡−1)

𝑟𝑡 = 𝜎(𝑊𝑓𝑋𝑡 + 𝑈𝑓ℎ𝑡−1)

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ̃𝑋𝑡 + 𝑈ℎ̃[ℎ𝑡−1 ∗ 𝑟𝑡])

ℎ𝑡 = 𝑧𝑡 ∗ ℎ̃𝑡 + (1 − 𝑧𝑡) ∗ ℎ𝑡−1

(A.1)

where 𝑥𝑡 is the input sequence at time step 𝑡, ℎ𝑡 a hidden state, 𝑧𝑡
the update gate, 𝑟𝑡 the reset gate, ℎ̃𝑡 a cell state, 𝜎(.) represents the
igmoid activation function and tanh(.) the hyperbolic tangent non-
inear function, 𝑊 and 𝑈 denote the weight matrices which are learned
uring training. The pink circles represent pointwise operations (e.g.
ddition, multiplication). The idea behind the GRU network is that in
ach unit, the update gate 𝑧𝑡 must select whether the hidden state ℎ𝑡 is
o be updated with a new hidden state ℎ̃𝑡; the reset gate 𝑟𝑡 must decide
hether the previous hidden state ℎ𝑡−1 is ignored. More details can be

ound in Cho et al. (2014).

eferences

daloglou, N., 2020. Intuitive explanation of skip connections in deep learning. AI
Summer.

krim, A., Gogu, C., Guillebot de Nerville, T., Strähle, P., Waffa Pagou, B., Salaün, M.,
Vingerhoeds, R., 2022. A framework for generating large data sets for fatigue
damage prognostic problems. In: 2022 IEEE International Conference on Prognostics
and Health Management. ICPHM, IEEE, pp. 25–33. http://dx.doi.org/10.1109/
ICPHM53196.2022.9815692.

tamuradov, V., Medjaher, K., Dersin, P., Lamoureux, B., Zerhouni, N., 2017. Prognos-
tics and health management for maintenance practitioners-review, implementation
and tools evaluation. Int. J. Progn. Health Manag. 8 (060), 1–31.

a, J.L., Kiros, J.R., Hinton, G.E., 2016. Layer normalization. arXiv preprint arXiv:
1607.06450.

ansal, M.A., Sharma, D.R., Kathuria, D.M., 2022. A systematic review on data scarcity
problem in deep learning: solution and applications. ACM Comput. Surv. 54 (10s),
1–29.

aptista, M., Prendinger, H., Henriques, E., 2020. Prognostics in aeronautics with deep
recurrent neural networks. In: PHM Society European Conference, Vol. 5. p. 11.

erthou, T., Duplessis, B., Stabat, P., Rivière, P., Marchio, D., 2019. Urban energy
models validation in data scarcity context: Case of the electricity consumption in
the French residential sector. In: Building Simulation 2019.

orzooei, S., Amerlinck, Y., Abolfathi, S., Panepinto, D., Nopens, I., Lorenzi, E.,
Meucci, L., Zanetti, M.C., 2019. Data scarcity in modelling and simulation of a

large-scale WWTP: stop sign or a challenge. J. Water Process Eng. 28, 10–20.
Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., et al., 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

hen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.E., 2020a. Big self-
supervised models are strong semi-supervised learners. Adv. Neural Inf. Process.
Syst. 33, 22243–22255.

hen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., Sutskever, I., 2020b. Gen-
erative pretraining from pixels. In: International Conference on Machine Learning.
PMLR, pp. 1691–1703.

ho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
Bengio, Y., 2014. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078.

ortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20 (3), 273–297.
amianou, A., Lawrence, N., 2013. Deep gaussian processes. In: Artificial Intelligence

and Statistics. pp. 207–215.
hariwal, P., Jun, H., Payne, C., Kim, J.W., Radford, A., Sutskever, I., 2020. Jukebox:

A generative model for music. arXiv preprint arXiv:2005.00341.
ing, Y., Zhuang, J., Ding, P., Jia, M., 2022. Self-supervised pretraining via contrast

learning for intelligent incipient fault detection of bearings. Reliab. Eng. Syst. Saf.
218, 108126.

llefsen, A.L., Bjørlykhaug, E., Æsøy, V., Ushakov, S., Zhang, H., 2019. Remaining
useful life predictions for turbofan engine degradation using semi-supervised deep
architecture. Reliab. Eng. Syst. Saf. 183, 240–251.

ndo, M., Poston, K.L., Sullivan, E.V., Fei-Fei, L., Pohl, K.M., Adeli, E., 2022. Gait-
ForeMer: Self-supervised pre-training of transformers via human motion forecasting
for few-shot gait impairment severity estimation. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. Springer, pp.
130–139.

ink, O., Wang, Q., Svensén, M., Dersin, P., Lee, W.-J., Ducoffe, M., 2020. Potential,
challenges and future directions for deep learning in prognostics and health
management applications. Eng. Appl. Artif. Intell. 92, 103678.

hiasi, B., Noori, R., Sheikhian, H., Zeynolabedin, A., Sun, Y., Jun, C., Hamouda, M.,
Bateni, S.M., Abolfathi, S., 2022. Uncertainty quantification of granular computing-
neural network model for prediction of pollutant longitudinal dispersion coefficient
in aquatic streams. Sci. Rep. 12 (1), 1–15.

orgoglione, A., Castro, A., Chreties, C., Etcheverry, L., 2020. Overcoming data scarcity
in earth science. Data 5 (1), 5.

uo, H., Zhu, H., Wang, J., Prahlad, V., Ho, W.K., Lee, T.H., 2022. Masked self-
supervision for remaining useful lifetime prediction in machine tools. arXiv preprint
arXiv:2207.01219.

utierrez-Torre, A., Berral, J.L., Buchaca, D., Guevara, M., Soret, A., Carrera, D., 2020.
Improving maritime traffic emission estimations on missing data with CRBMs. Eng.
Appl. Artif. Intell. 94, 103793.

ahn, T.V., Mechefske, C.K., 2021. Self-supervised learning for tool wear monitoring
with a disentangled-variational-autoencoder. Int. J. Hydromechatron. 4 (1), 69–98.

e, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R., 2022. Masked autoencoders are
scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 16000–16009.

e, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 770–778.

ewamalage, H., Bergmeir, C., Bandara, K., 2021. Recurrent neural networks for time
series forecasting: Current status and future directions. Int. J. Forecast. 37 (1),
388–427.

inton, G.E., 2009. Deep belief networks. Scholarpedia 4 (5), 5947.
o, T.K., 1995. Random decision forests. In: Proceedings of 3rd International

Conference on Document Analysis and Recognition, Vol. 1. IEEE, pp. 278–282.
rinchuk, O., Khrulkov, V., Mirvakhabova, L., Orlova, E., Oseledets, I., 2019. Tensorized

embedding layers for efficient model compression. arXiv preprint arXiv:1901.10787.
adon, S., 2021. COVID-19 detection from scarce chest x-ray image data using few-

shot deep learning approach. In: Medical Imaging 2021: Imaging Informatics for
Healthcare, Research, and Applications, Vol. 11601. SPIE, pp. 161–170.

agtap, A.D., Karniadakis, G.E., 2022. How important are activation functions in regres-
sion and classification? A survey, performance comparison, and future directions.
arXiv preprint arXiv:2209.02681.

agtap, A.D., Kawaguchi, K., Em Karniadakis, G., 2020a. Locally adaptive activation
functions with slope recovery for deep and physics-informed neural networks. Proc.
R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 476 (2239), 20200334.

agtap, A.D., Kawaguchi, K., Karniadakis, G.E., 2020b. Adaptive activation functions
accelerate convergence in deep and physics-informed neural networks. J. Comput.
Phys. 404, 109136.

agtap, A.D., Shin, Y., Kawaguchi, K., Karniadakis, G.E., 2022. Deep Kronecker neural
networks: A general framework for neural networks with adaptive activation
functions. Neurocomputing 468, 165–180.

ain, S., Shah, R.C., Brunette, W., Borriello, G., Roy, S., 2006. Exploiting mobility for
energy efficient data collection in wireless sensor networks. Mob. Netw. Appl. 11
(3), 327–339.

aiswal, A., Babu, A.R., Zadeh, M.Z., Banerjee, D., Makedon, F., 2021. A survey on
contrastive self-supervised learning. Technologies 9 (1).

http://refhub.elsevier.com/S0952-1976(23)00021-0/sb1
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb1
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb1
http://dx.doi.org/10.1109/ICPHM53196.2022.9815692
http://dx.doi.org/10.1109/ICPHM53196.2022.9815692
http://dx.doi.org/10.1109/ICPHM53196.2022.9815692
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb3
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb3
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb3
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb3
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb3
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb5
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb5
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb5
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb5
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb5
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb6
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb6
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb6
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb7
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb7
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb7
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb7
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb7
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb8
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb8
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb8
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb8
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb8
http://arxiv.org/abs/2005.14165
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb10
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb10
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb10
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb10
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb10
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb11
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb11
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb11
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb11
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb11
http://arxiv.org/abs/1406.1078
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb13
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb14
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb14
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb14
http://arxiv.org/abs/2005.00341
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb16
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb16
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb16
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb16
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb16
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb17
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb17
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb17
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb17
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb17
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb18
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb18
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb18
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb18
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb18
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb18
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb18
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb18
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb18
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb19
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb19
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb19
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb19
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb19
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb20
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb20
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb20
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb20
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb20
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb20
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb20
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb21
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb21
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb21
http://arxiv.org/abs/2207.01219
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb23
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb23
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb23
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb23
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb23
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb24
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb24
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb24
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb25
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb25
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb25
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb25
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb25
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb26
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb26
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb26
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb26
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb26
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb27
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb27
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb27
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb27
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb27
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb28
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb29
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb29
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb29
http://arxiv.org/abs/1901.10787
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb31
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb31
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb31
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb31
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb31
http://arxiv.org/abs/2209.02681
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb33
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb33
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb33
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb33
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb33
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb34
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb34
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb34
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb34
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb34
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb35
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb35
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb35
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb35
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb35
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb36
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb36
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb36
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb36
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb36
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb37
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb37
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb37

Jimenez, J.J.M., Schwartz, S., Vingerhoeds, R., Grabot, B., Salaün, M., 2020. Towards
multi-model approaches to predictive maintenance: A systematic literature survey
on diagnostics and prognostics. J. Manuf. Syst. 56, 539–557.

Jing, L., Tian, Y., 2020. Self-supervised visual feature learning with deep neural
networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell..

Kandemir, M., 2015. Asymmetric transfer learning with deep gaussian processes. In:
International Conference on Machine Learning. PMLR, pp. 730–738.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kingma, D.P., Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Krokotsch, T., Knaak, M., Gühmann, C., 2022. Improving semi-supervised learning for
remaining useful lifetime estimation through self-supervision. Int. J. Progn. Health
Manag. 13 (1), http://dx.doi.org/10.36001/ijphm.2022.v13i1.3096.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444.
Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., Tang, J., 2021. Self-supervised

learning: Generative or contrastive. IEEE Trans. Knowl. Data Eng..
Ma, J., Su, H., Zhao, W.-l., Liu, B., 2018. Predicting the remaining useful life of an

aircraft engine using a stacked sparse autoencoder with multilayer self-learning.
Complexity 2018.

Mao, D., Lv, C., Shi, J., Zou, Y., Guo, Z., 2010. Research of the military aircraft
maintenance support mode based on the prognostics and health management. In:
2010 Prognostics and System Health Management Conference. IEEE, pp. 1–6.

Mazloumi, E., Rose, G., Currie, G., Moridpour, S., 2011. Prediction intervals to account
for uncertainties in neural network predictions: Methodology and application in
bus travel time prediction. Eng. Appl. Artif. Intell. 24 (3), 534–542.

Nandy, A., Duan, C., Kulik, H.J., 2022. Audacity of huge: overcoming challenges of
data scarcity and data quality for machine learning in computational materials
discovery. Curr. Opin. Chem. Eng. 36, 100778.

Olah, C., 2015. Understanding LSTM networks. URL colah.github.io/posts/2015-08-
Understanding-LSTMs/.

Paris, P., Erdogan, F., 1963. A critical analysis of crack propagation laws. J. Basic Eng.
85 (4), 528–533. http://dx.doi.org/10.1115/1.3656900.

Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y., 2007. Self-taught learning: transfer
learning from unlabeled data. In: Proceedings of the 24th International Conference
on Machine Learning. pp. 759–766.

Rana, R., 2016. Gated recurrent unit (GRU) for emotion classification from noisy speech.
arXiv preprint arXiv:1612.07778.

Rasmussen, C.E., 2003. Gaussian processes in machine learning. In: Summer School on
Machine Learning. Springer, pp. 63–71.

Ren, L., Sun, Y., Cui, J., Zhang, L., 2018. Bearing remaining useful life prediction based
on deep autoencoder and deep neural networks. J. Manuf. Syst. 48, 71–77.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta, B.B., Chen, X., Wang, X., 2021.
A survey of deep active learning. ACM Comput. Surv. 54 (9), 1–40.

Rocchetta, R., Gao, Q., Mavroeidis, D., Petkovic, M., 2022. A robust model selection
framework for fault detection and system health monitoring with limited failure
examples: Heterogeneous data fusion and formal sensitivity bounds. Eng. Appl.
Artif. Intell. 114, 105140.
Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by
back-propagating errors. Nature 323 (6088), 533–536.

Saxena, A., Goebel, K., Simon, D., Eklund, N., 2008. Damage propagation modeling
for aircraft engine run-to-failure simulation. In: 2008 International Conference on
Prognostics and Health Management. IEEE, pp. 1–9.

Shao-feng, X., Yun-fei, E., Xiao-ling, L., Yu-dong, L., Yi-qiang, C., 2013. Development
and application of prognostics and health management technology. In: Proceedings
of the 20th IEEE International Symposium on the Physical and Failure Analysis of
Integrated Circuits. IPFA, IEEE, pp. 3–7.

Shurrab, S., Duwairi, R., 2022. Self-supervised learning methods and applications in
medical imaging analysis: A survey. PeerJ Comput. Sci. 8, e1045.

Sun, C., Ma, M., Zhao, Z., Tian, S., Yan, R., Chen, X., 2018. Deep transfer learning based
on sparse autoencoder for remaining useful life prediction of tool in manufacturing.
IEEE Trans. Ind. Inform. 15 (4), 2416–2425.

Theissler, A., Pérez-Velázquez, J., Kettelgerdes, M., Elger, G., 2021. Predictive mainte-
nance enabled by machine learning: Use cases and challenges in the automotive
industry. Reliab. Eng. Syst. Saf. 215, 107864.

Torrey, L., Shavlik, J., 2010. Transfer learning. In: Handbook of Research on Machine
Learning Applications and Trends: Algorithms, Methods, and Techniques. IGI
Global, pp. 242–264.

Tsui, K.L., Chen, N., Zhou, Q., Hai, Y., Wang, W., 2015. Prognostics and health
management: A review on data driven approaches. Math. Probl. Eng. 2015.

Voulodimos, A., Doulamis, N., Bebis, G., Stathaki, T., 2018. Recent developments in
deep learning for engineering applications. Comput. Intell. Neurosci. 2018.

Wen, Z., Liu, Y., 2011. Applications of Prognostics and Health Management in aviation
industry. In: 2011 Prognostics and System Health Managment Confernece. IEEE,
pp. 1–5.

Yamak, P.T., Yujian, L., Gadosey, P.K., 2019. A comparison between arima, lstm,
and gru for time series forecasting. In: Proceedings of the 2019 2nd In-
ternational Conference on Algorithms, Computing and Artificial Intelligence.
pp. 49–55.

Yengera, G., Mutter, D., Marescaux, J., Padoy, N., 2018. Less is more: Surgical phase
recognition with less annotations through self-supervised pre-training of CNN-LSTM
networks. arXiv preprint arXiv:1805.08569.

Yoon, A.S., Lee, T., Lim, Y., Jung, D., Kang, P., Kim, D., Park, K., Choi, Y., 2017.
Semi-supervised learning with deep generative models for asset failure prediction.
arXiv preprint arXiv:1709.00845.

Yu, J., Yin, H., Xia, X., Chen, T., Li, J., Huang, Z., 2022. Self-supervised learning for
recommender systems: A survey. arXiv preprint arXiv:2203.15876.

Yue, B., Fu, J., Liang, J., 2018. Residual recurrent neural networks for learning
sequential representations. Information 9 (3), 56.

Zhu, Q.-X., Hou, K.-R., Chen, Z.-S., Gao, Z.-S., Xu, Y., He, Y.-L., 2021. Novel virtual
sample generation using conditional GAN for developing soft sensor with small
data. Eng. Appl. Artif. Intell. 106, 104497.

Zhu, Y., Min, M.R., Kadav, A., Graf, H.P., 2020. S3vae: Self-supervised sequential
vae for representation disentanglement and data generation. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 6538–6547.

http://refhub.elsevier.com/S0952-1976(23)00021-0/sb38
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb38
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb38
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb38
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb38
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb39
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb39
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb39
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb40
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb40
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb40
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://dx.doi.org/10.36001/ijphm.2022.v13i1.3096
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb44
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb45
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb45
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb45
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb46
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb46
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb46
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb46
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb46
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb47
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb47
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb47
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb47
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb47
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb48
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb48
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb48
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb48
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb48
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb49
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb49
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb49
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb49
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb49
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://dx.doi.org/10.1115/1.3656900
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb52
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb52
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb52
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb52
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb52
http://arxiv.org/abs/1612.07778
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb54
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb54
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb54
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb55
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb55
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb55
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb56
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb56
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb56
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb57
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb57
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb57
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb57
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb57
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb57
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb57
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb58
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb58
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb58
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb59
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb59
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb59
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb59
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb59
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb60
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb60
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb60
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb60
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb60
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb60
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb60
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb61
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb61
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb61
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb62
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb62
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb62
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb62
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb62
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb63
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb63
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb63
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb63
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb63
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb64
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb64
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb64
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb64
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb64
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb65
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb65
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb65
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb66
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb66
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb66
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb67
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb67
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb67
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb67
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb67
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb68
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb68
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb68
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb68
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb68
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb68
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb68
http://arxiv.org/abs/1805.08569
http://arxiv.org/abs/1709.00845
http://arxiv.org/abs/2203.15876
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb72
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb72
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb72
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb73
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb73
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb73
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb73
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb73
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb74
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb74
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb74
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb74
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb74
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb74
http://refhub.elsevier.com/S0952-1976(23)00021-0/sb74

	Self-Supervised Learning for data scarcity in a fatigue damage prognostic problem
	Introduction
	Background
	Deep Learning in Prognostics for PHM
	Self-Supervised Learning

	Methodology
	Data Description
	The proposed Self-Supervised Learning Approach
	Problem statement
	Pre-training phase
	Fine-tuning phase

	Experiments and Results
	Preparation of Data
	Experimental settings in pre-training phase
	Experimental settings in Fine-tuning phase
	Results
	Pre-training analysis and comparison of pre-text tasks
	Freezing pre-trained layers during learning

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix. Deep Gated Recurred Unit networks
	References

