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Rational Design of Fractal Gold Nanosphere Assemblies with Optimized Photothermal Conversion Using a Quantitative Structure Property Relationship (QSPR) Approach

Assemblies of plasmonic nanoparticles have been proposed for various applications, including photothermal therapy, exploiting surface plasmon coupling phenomena. However, the rational design of fractal nanoparticleassemblyremainschallenging due to the lack of structural characterizations and modelization of real systems. Here we used the quantitative structure property relationship (QSPR) approach, driven by experimental data and statistical analysis, to establish a relationship between structural descriptorsof fractal gold nanoparticle(GNP) aggregatesand their light-to-heat conversion. A total of 160 assemblies of various size spherical GNPs with different polyelectrolyte chains were synthesized, which differ in their global charge, size, mass fractal dimension, and plasmonic properties. Fifteen independent descriptors of structure and properties were extracted and further analyzed by QSPR. Principal component analysis and multilinear regression reveal that light-to-heat conversion ismainly governed by thestructureof theaggregatesand not by thecharacteristicsof the building blocks. This highlights the key role of the fractal dimension of the aggregate and of the ratio of GNP/polyelectrolyte mass to optimize photothermal effects. Rational criteria to optimize light-to-heat conversion within nonideal fractal assemblies of GNP were identified, relaxingon the choice of other parameters, such as GNP or aggregate size, that can beadapted to the desired biomedical applications.

INTRODUCTION

Nanoparticle assemblies have emerged in the last years as a robust and promising strategy to modulate nanoparticle physical properties. [START_REF] Grzelczak | Directed self-assembly of nanoparticles[END_REF][START_REF] Nie | Properties and emerging applications of self-assembled structures made from inorganic nanoparticles[END_REF][START_REF] Gong | Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application[END_REF][START_REF] Wu | Gold nanoparticles in biological optical imaging[END_REF][START_REF] Pileni | Impact of the metallic crystalline structure on the properties of nanocrystals and their mesoscopic assemblies[END_REF] The emerging collective behaviors of self-assemblies have already proved their potential in the biomedical fields with applications for biosensing, [START_REF] Zeng | A review on functionalized gold nanoparticles for biosensing applications[END_REF][START_REF] Saha | Gold nanoparticles in chemical and biological sensing[END_REF] surface enhanced Raman spectroscopy (SERS), [START_REF] Majumdar | DNAmediated wirelike clusters of silver nanoparticles: an ultrasensitive SERS substrate[END_REF][START_REF] Szekeres | SERS probing of proteins in gold nanoparticle agglomerates[END_REF] drug delivery, [START_REF] Chou | DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination[END_REF] magnetic resonance imaging (MRI), [START_REF] Berret | Controlled clusteringof superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging[END_REF][START_REF] Corr | Linear assemblies of magnetic nanoparticles as MRI contrast agents[END_REF] or photothermal therapy (PTT). [START_REF] Li | Mixed-charge self-assembled monolayers as a facile method to design pH-induced aggregation of largegold nanoparticlesfor near-infrared photothermal cancer therapy[END_REF][START_REF] Kang | Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy[END_REF][START_REF] Sun | Salt-induced aggregation of gold nanoparticles for photoacoustic imagingand photothermal therapy of cancer[END_REF][START_REF] Song | Smart gold nanoparticles for photoacoustic imaging: an imaging contrast agent responsive to the cancer microenvironment and signal amplification via pH-induced aggregation[END_REF][START_REF] Mulens-Arias | Polyethyleneimine-assisted one-pot synthesis of quasi-fractal plasmonic gold nanocomposites as a photothermal theranostic agent[END_REF] Nanoparticle assemblies are most often directed by DLVO (Derjaguin-Landau-Verwey-Overbeek) interactions and embrace a wide variety of mono-or polydisperse, isotropic or anisotropic structures, that could be highly organized or randomly arranged. [START_REF] Bouju | Nonisotropic Self-Assemblyof Nanoparticles: From Compact Packing to Functional Aggregates[END_REF] However, despite the great versatility of nanoparticle assemblies, such systems are still hard to optimize for a desired application. Indeed, the multiparametric relationship between a complex architecture and one resultingphysical property can hardly be predicted by analytical approaches, which makes it difficult to optimize assembly structures. [START_REF] Torquato | Inverse optimization techniques for targeted selfassembly[END_REF][START_REF] Adleman | Combinatorial optimization problems in self-assembly[END_REF] In many fields, the rationalization of structure-property relationships for complex objects has been a huge step to predict new efficient objects, for example, in drug design. [START_REF] Mandal | Rational drug design[END_REF][START_REF] Huggins | Rational approaches to improving selectivity in drug design[END_REF] One of these rational approaches, called quantitative structure property relationship (QSPR), or its biological variant quantitative structure activity relationship (QSAR), is based on statistical modeling and aims to build a mathematical relationship between thefeaturesof diverseobjects(molecules, polymers, crystals, nanoparticles, fluids) and a biological activity (interactionswith asubstrate, cytotoxicity), achemical reactivity, or a physical property. [START_REF] Katritzky | QSPR: the correlation and quantitative prediction of chemical and physical properties from structure[END_REF][START_REF] Schultz | Quantitative structure-activity relationships (QSARs) in toxicology: ahistorical perspective[END_REF][START_REF] Roy | A primer on QSAR/QSPR modeling: fundamental concepts[END_REF] This methodology presents the advantage to be driven by experimental data and computer calculation, limiting the bias due to human analysis or the assumptions inherent to theoretical approaches. On the other side, it requires robust and unbiased descriptors and a largenumber of samples. Such computational approacheshave the potential to improve fit-for-purpose assemblies of nanoparticles, as it can address multiparametric complex questions.

Herewechoseto challengethisstrategyfor arational design of gold nanoparticle (GNP) aggregates optimized for photo-thermal therapy. When closely assembled, thelocalized surface plasmon resonances (LSPRs) of adjacent GNPs are coupled, which induces a longitudinal plasmon at higher wavelengths than the initial transversal plasmon. This longitudinal plasmon is of great importance because it could reach the first tissue transparency window in the near-infrared range (NIR1, 650-900 nm). [START_REF] Ghosh | Interparticlecouplingeffect on thesurface plasmon resonanceof gold nanoparticles:fromtheoryto applications[END_REF] Hence, plasmon coupling could enable usage of GNPs of small sizes in diverse biomedical applications and activating them in the NIR1 window. GNP aggregates have been proposed for photothermal therapy or photoacoustic imaging with a proven efficiency but without any control or study of the aggregate structure. [START_REF] Li | Mixed-charge self-assembled monolayers as a facile method to design pH-induced aggregation of largegold nanoparticlesfor near-infrared photothermal cancer therapy[END_REF][START_REF] Kang | Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy[END_REF][START_REF] Sun | Salt-induced aggregation of gold nanoparticles for photoacoustic imagingand photothermal therapy of cancer[END_REF][START_REF] Song | Smart gold nanoparticles for photoacoustic imaging: an imaging contrast agent responsive to the cancer microenvironment and signal amplification via pH-induced aggregation[END_REF] The relationship between the GNP aggregate structure and their plasmonic properties has been studied theoretically using an analytic approach. Khlebtsov et al. highlighted the importance of the interparticle distance, the presence of short linear chain fragments, and the number of particles embedded in the aggregate. [START_REF] Khlebtsov | Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters[END_REF] However, the consistency between theoretical and experimental resultshasbeen assessed on ideal and monodisperse nanometric aggregates that could not be synthesized in water with biocompatible components and with a scalable protocol. On the contrary, nonideal aggregates have not been subjected to comparison between analytic prediction and experimental observation.

Nanoparticle aggregation also occurred upon cellular internalization of GNPs: GNP sequestration in the cell lysosomes modifies their initial optical properties, increasing or decreasing their therapeutic effects. [START_REF] Espinosa | Cancer cell internalization of gold nanostars impacts their photothermal efficiency in vitro and in vivo:toward aplasmonic thermal fingerprint in tumoral environment[END_REF] Understanding the structure-heating property relationship of complex GNP aggregatesisthusof fundamental interest to design therapeutic agents that do not lose their potential in biological media or after sequestration in cells.

Here we propose a QSPR regression model to establish a quantitativerelationship between the experimentally accessible descriptors of plasmonic aggregate structure and their optical and photothermal properties. Nanoparticle aggregation was trigerred by electrostatic complexation between citrate-coated GNPs (<30 nm) and oppositely charged long polyelectrolyte chains. This versatile approach enables GNP assemblies to be obtained in a wide range of size, mass fractal dimension, and inner structure by a simple mixing strategy. [START_REF] Shi | Shape-Tailored Colloidal Molecules Obtained by Self-Assembly of Model Gold Nanoparticles with Flexible Polyelectrolyte[END_REF] GNP aggregates were characterized by dynamic light scattering (DLS), laser Doppler electrophoresis (LDE), small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (cryo-TEM), UV-visible spectroscopy, and photothermal measurements, providing a set of descriptors suchasthesize,charge,fractal structure,interparticledistances, and optical and heatingpropertiesof theaggregatesat different times after synthesis. In total, 18 descriptors were extracted from these measurements and gathered in a single database compatible with QSPR tools, including data visualization by principal component analysis and statistical model construction (Scheme 1). These combined experimental and computational approaches allowed us to conclude on an optimized configuration of GNP aggregates for photothermal therapy. It gives an example on how QSPR methodology can be useful to optimize nanoparticle assemblies to optimize a given physicochemical property.

RESULTS AND DISCUSSION

Construction of a Data Set to Describe Gold Nanoparticles Polyelectrolyte Self-Assembly. Three sizes of citrate-coated, monodisperse, and well-dispersed gold nanospheres were synthesized using Turkevich inspired protocols (D = 3, 13, and 30 nm) (Figure S1 in the Supporting Information). [START_REF] Bastuś | Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm:sizefocusingversusOstwald ripening[END_REF][START_REF] Piella | Size-Controlled Synthesisof Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties[END_REF] Three biocompatible polyelectrolytes (chitosan 300 kDa, chitosan 700 kDa, branched poly(ethylenimine) (PEI) 750 kDa) were diluted in an acidic medium to ensure their protonation ([HCl] = 10 -3 ). Then, GNP aggregates were synthesized by an equivolumic mix of the GNP suspension and the polymer solution. Six concentration ratios were tested for each series, in which the concentration of atomic gold was fixed to 16.4 mg/L and the concentration of polyelectrolyte was varied between 3 × 10 -5 and 10 -2 g/L (i.e., polyelectrolyte/gold mass ratio between 0.0018 and 0.6). Thereafter, the aggregates were characterized 5 min and 24 h after the mixingof GNPsand polyelectrolytes. The long time (i.e., 24 h) was the first studied to ensure the stability of the structure of the objects under scrutiny, but we realized that, regardless of their structural stability, aggregates of gold particles sediment due to their density, even for small aggregation number when the particles are large. We then Scheme 1. Scheme of the Experimental and Computational Approaches Combined in the Present Study carried out asecond seriesof measurementsat short times(i.e., 5 min) in order to have sufficiently concentrated suspensions and to take into account the photothermal properties of the largest structural variety of aggregates. We point out that for theaggregateswiththehighest global chargethesedimentation kinetics are not perceptible before 30 min, whereas the aggregates are formed in less than 1 s. The data obtained at long times have nevertheless been kept to contribute to the wide range of behaviors embraced in this study.

First, the charge and size of the formed aggregates were estimated using their electrophoretic mobility (EM) and DLS relaxation times, respectively. DLS correlograms displayed in some samples a double relaxation process, indicating that two populations of objects can coexist. Accordingly, DLS correlograms were thus fitted with a mono-or biexponential fit, to obtain the relaxation times DLS t1 and DLS t2 (with DLS t2 > DLS t1 ), and their relativeamplitude, DLS A1 and DLS A2 (Figure S2A).Indicativehydrodynamic sizecould beextrapolated from the relaxation time measurements but should be taken with caution due to the presence of quickly sedimenting large aggregates (i.e., R >500 nm).

SAXS was performed to assess the fractal structure of the aggregates. At the higher q values, we always observed the sphere form factor of individual GNP building blocks, corresponding to the TEM size. At the lower q values, the curves show a power law shape, observed on at least one q decade, that enable us to extract the fractal dimension, FD, of the assembly (Figure S2B). The fractal dimension in question isthemassfractal dimension describingthespatial distribution of the mass within the aggregates. For an aggregate composed of particlesof massm 0 and sizer 0 , themassof theaggregatem scales with its radius r, measured from any site within the fractal structure, as ( )
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. In other words, FD characterizestheramification of thecluster and variesbetween FD ∼ 1 for one-dimensional clusters and FD ∼ 2.9 for threedimensional compact clusters. SAXS did not give us access to the size of the aggregates, as no Guinier regime was observed at low q values. The distance between the GNPs inside the aggregates was investigated bycryo-TEM in somechosen aggregatesthat were closeto thechargeneutralityratio.Theinterparticledistanceis known to be a key parameter to predict the optical properties of GNP aggregates,asplasmon couplingisonlyeffectiveunder really short distances. [START_REF] Khlebtsov | Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters[END_REF][START_REF] Louis | Gold nanoparticles for physics, chemistry and biology[END_REF] In addition to the structural characterization of GNP aggregates, their optical properties were investigated. UVvisible extinction spectra display one or two plasmon bands, correspondingto the longitudinal and transversal plasmon. To isolate the plasmon band features, the spectra were treated to removethebaselineof thesignal, that wascalculated thanksto the spectrum of the single GNPs (Figure S2C). Then, the corrected signal was fitted with one or two Gaussians centered on the mean wavelengths UVvis m1 and UVvis m2 (with UVvis m2 >UVvis m1 ), with a width UVvis w1,w2 and amplitude UVvis A1,A2 , thusprovidingthreeto sixnewdescriptors. Astheinfluenceof scattering effects strongly increases with the size of the aggregates, it could lead to an overestimation of the amplitude descriptors. [START_REF] Huang | Gold nanoparticles: optical propertiesand implementationsin cancer diagnosisand photothermal therapy[END_REF] Finally,photothermal measurementswereperformed usinga 680 nmlaser excitation with apower of 6.3 W•cm -2 at a4 cm distance from the sample surface. The temperature of the sample (V =100 μL) was monitored with an infrared thermal camera during the 5 min of irradiation, until the temperature reached a plateau. To quantify the heating capacity of the sample, the specific absorption rate (SAR) was deduced from the initial slope of temperature increase, T t d d , during the first seconds of irradiation, normalized by the ratio between the gold mass concentration (C m = 16.4 mg•L -1 ) and the heat capacity of water (C p = 4185 J•L -1 •K -1 ; Figure S2D). SAR measurements are a reliable evaluation of heating efficiency because the initial slope of the temperature increase weakly depends on thermal exchange with the environment and thus on the particular experimental setup. Beingalso normalized by the mass of materials, it provides avaluable metric to compare the heating efficiencies of different nanostructures.

All of these measurements were then used as descriptors for the aggregates, in addition to the following synthesis parameters: the GNP diameter (DiamNPs), the average molar mass (MassPoly) and the charge density (ChargePoly) of the polyelectrolyte, the ratio of polyelectrolyte over gold mass concentration (RatioPolyGold), and finally the time after mixing (Time). In total, our database includes 54 types of aggregates observed at two times, plus the three sizes of GNP building blocks: it represents 111 samples described by 18 descriptors,assummarized in Table1.Thisscreeningof alarge number of aggregatesenablesusto establish aphysicochemical relation between series obtained with a given GNP size and polyelectrolyte. Physicochemical Behavior of Gold Nanoparticle Aggregates and Their Properties. Analyses of each series of dataobtained 5 min after mixingreveal acommon behavior when varyingthepolyelectrolyte/gold massratio over 3 orders of magnitude, regardless of the GNP size and the polyelectrolyte nature (Figures S3-S10). Figure 1 displays a case study obtained by mixing 30 nm GNPs and 300 kDa chitosan.

Briefly, theformed GNP assemblieschangefromnegativeto positive global charge (-0.03 to +0.01 mm 2 •V -1 •s -1 ) when increasing the polyelectrolyte/gold concentration ratio and cross the neutrality at concentration ratio between 6 × 10 -3 and 60 × 10 -3 , depending on the series (Figure 1A). Neutral and weakly charged aggregates display the highest size and compactness (highest DLS relaxation time DLS t1 and fractal dimension FD; Figure 1B andC). However, the neutrality point does not systematically yield the maximum value for these descriptors. On the opposite, in a large excess of GNPs or of polymers (mass ratio below 1.8 × 10 -3 or above 180 × 10 -3 ),GNP aggregateshavehigher chargesand their structural features are closer to single GNPs.

Close to the neutrality point, the aggregation is very fast (less than 1 min) and shows a quick color change of the solution. Over time, these aggregates tend to coalesce to form larger aggregates that sediment, and the sample is fully destabilized after 24 h. For these samples, a second DLS relaxation time (DLS t2 ) is observed between 20 and 800 ms, confirming the presence of large aggregates. On the other hand, an excess of charge slows down the aggregation process and the color changes only after several hours, concomitant with an increase of the aggregate size (Figure S11).

Cryo-TEM observations performed close to the neutrality ratio validate that all observed GNPs are embedded into an aggregate and depict a branched structure compatible with SAXS measurements (Figure 1D). Inside the aggregates, interparticle distances are generally below 3 nm, but in some cases (less than 5% ), they can reach up to 15 nm. The observation of a low-contrast bridge between the GNPs, probably due to the polyelectrolyte, suggests that GNPs are enclosed in a single aggregate (Figure S12). However, in the large majority of cases, GNPs are close enough to share plasmon resonance oscillations.

This plasmon coupling is reflected in UV-visible spectraby thedecreasein intensityof theplasmon band of thesingleNPs around 525 nmand the appearance of asecond plasmon band between 580and 800nm(Figure1E).Thelatter indicatesthat adjacent GNPs share longitudinal plasmon resonance, in addition to the transversal plasmon resonance observed at 525 nm. This second plasmon band results in an absorption increase at the laser wavelength (i.e., 680 nm) for all samples, including the ones that have a second plasmon band centered on 580 nm. Due to absorption increase, the resulting heating efficiency,that ismeasured asaSAR,increasesfrom20kW•g -1 for singleGNPsto rangefrom50 to 150 kW•g -1 for neutral or weakly charged aggregates (Figure 1F).

Overall, the measurements performed 5 min after the synthesis describe a variety of aggregates from nanometric to micrometric size (roughly 20 to 2000 nm), with a fractal dimension between 1and 2.8,that present acollectiveplasmon peak in the visible to near-infrared range (up to 770 nm). When observed after 24 h, some samples tend to form larger aggregates with time. A general phenomenological behavior could beobserved for most of theseries, revealingamaximum size, compactness, and heatingefficiency of neutral and weakly charged aggregates, and some differences in the aggregation kinetics as afunction of the aggregate charges. However, some interesting variations could also be observed between series. Some descriptors tend to reach a plateau in some series (Figure 1C and F), while others reach a peak (Figure 1B). However, in other series, descriptors have completely different behaviors (e.g., Figure S6B, C, andF). Hence, dataanalysisby this empirical approach does not provide access to fine effects due to the structural variations between the wide range of samples.

Statistical tools are thus required in order to refine our understanding of the structure-heating property relationship. Data mining of this large data set was performed using principal component analysis in order to identify the source of variance between samples. Then, multilinear regression was used to build a predicting model that can link the heating properties of each sample to its conditions of synthesis and structure. As these computational approaches are not commonly used in the nanotechnology field, a brief mathematical description can be found in the Supporting Information. Data Set Exploration by Principal Component Analysis. The experimental data set was first explored by principal component analysis (PCA). As the descriptors RatioPolyGold, DLS t1 , DLS t2 , and SAR have values on several decades, the logarithmic values were calculated for these descriptors. Redundant descriptors were first identified by calculating Pearson's correlation between each pair of descriptors (Figure S13). Four descriptors (DLS A1 , DLS A2 , UVvis w1 , and UVvis w2 ) were suppressed from the data set beforefurther analysis,astheypresent redundancieswith other descriptors (see the Supporting Information).

To discriminate the different types of samples, PCA was performed using the remaining descriptors as input. The first two dimensions, that represent 67.3%of the variance together, clearly reveal three types of behaviors. The latter were extracted by k-means clustering and were noted clusters 1-3 (Figure 2A). Interestingly, the second cluster is oriented along the second plasmon resonance intensity (UVvis A2 ) and the heating efficiency SAR (Figure 2B). This suggests better heating properties than the two other clusters, which is confirmed by Figure 2C, showing the heating efficiency SAR for the different clusters.

Thefeaturesof thissecond cluster arehardlycorrelated with the synthesis descriptors (GNP diameter, type of polymer, polyelectrolyte/gold concentration ratio, or time; Figure S14), indicating that the aggregates included in the second cluster differ mostlybytheir structure.A systematic comparison of the initial data enables us to associate the clustering to three main distinct structures-property behaviors (Figure S15):

• Cluster 1:Theaggregatesizesand thefractal dimensions are close to those of single GNPs. No second plasmon bands are observed (UVvis m2 and UVvis A2 =0). • Cluster 2: The aggregate sizes are higher than those in cluster 1, but no second relaxation time is observed (DLS t2 = 0). UV-visible spectra show two distinct plasmon bands (UVvis A1 and UVvis A2 ≠ 0). • Cluster 3: The aggregates display two relaxation times (DLS t2 ≠ 0). UV-visible spectra exhibit a low plasmon band between 600 and 800 nm but no plasmon band around 525 nm (UVvis m1 and UVvis A1 =0).

These three behaviors show that there is an optimum state of aggregation (cluster 2) that lies between the single GNP behavior (cluster 1) and aggregatesof micrometric size(cluster 3) to optimize the SAR. However, this observation does not provide numerical criteria for this intermediate state, which requires the construction of a model.

Construction of the Heating Efficiency Predicting Model. We then build apredicting model in order to link the structure and synthesis descriptors to the heating efficiency of GNP aggregates.Theinput datawerelimited to the5mintime point, as no measurement was done on the fractal dimension for the24h timepoint.Thetrainingdataset of themodel thus consists of 54 samples, 7 input descriptors (DiamNPs, MassPoly, ChargePoly, EM, RatioPolyGold, DLS t1 , DF), and the output descriptor SAR.

Statistical modeling relies on a chosen mathematical expression in which parameters are optimized in order to fit a training data set with the highest determination coefficient (R 2 >0.7to validatethemodel).Herewestarted fromasimple multilinear model, that has the advantages to be both robust and easy to interpret. We performed a stepwise selection of descriptors in order to limit the number of descriptors that appears in the model. This approach consists of a successive elimination and addition of descriptorsso that thesuppression of a descriptor dramatically decreases the model quality, or reciprocally theaddition of anewdescriptor doesnot improve the model significantly. Moreprecisely, the model is chosen in order to minimize the Bayesian information criterion (BIC), for which the formula is detailed in the Supporting Information.

Our first multilinear regression shows a low determination coefficient (R train 2 =0.62 before stepwise regression, R train+step 2 =0.57 after stepwise regression), which emphasizes the need for amoreflexiblemodel.Thus,weadd quadratic termsfor the parameters that could take more than three values (RatioPolyGold, EM, DLS t1 , DF). As a consequence, the determination coefficient increases up to R train 2 =0.87 before the descriptor selection and R train+step 2 =0.80 after (Figure 3, orange squares). Descriptor selection assumes that linear and quadratic terms are independent variables, to ensure that the descriptors that appear on both forms will not predominate.

Additional testing, such as the normality of the residual distribution, and their distribution through conditions, confirms the mathematical validity of the model (Figures S16and S17).Asthismodel bridgesboththeadvantagesof the multilinear model and a flexibility adapted to the data set, it is selected as the working model.

Once the model has been built, its robustness and its predictability have been evaluated. Indeed, models can overadapt to the training data set, which decreases its predicability. To avoid this effect, two distinct tests have been performed:first an internal validation of the model using cross validation. Briefly, the parameters of the model are estimated on half of the data set and its predictability is assessed on the other half of the data set. We obtain with this method R CV 2 = 0.67, which proves that the model is robust even on alimited number of samples.Second,to beconsidered as robust and predictive, a statistical model must reach a determination coefficient R test 2 higher than 0.6 on the validation data set. [START_REF] Tropsha | The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models[END_REF] For this purpose, a validation data set was constructed, containing aggregates obtained with two new GNP sizes (diameter of 9 and 20 nm, Figure S18) mixed with either the three polyelectrolytes used for the training data set or a new one, polydiallyldimethylammonium chloride (PDADMAC, Mw = 400 kDa). The mixing was made at the same concentration ratios as the training data set, and the characterizations on size and fractal dimension were made 5 min after mixing. This validation dataset contains 48 samples. We emphasize that the validation data set should display descriptor values in the same range as the training data set: same descriptor distribution, GNP diameter between 3 and 30 nm, polyelectrolyte mass between 300 and 750 kDa, polyelectrolyte charge density between -6.2 × 10 -3 and -24.7 × 10 -3 e•mol•g -1 (Figure S19).

The correlation coefficient calculated on the validation data set was R valid 2 =0.64 (Figure 3, blue triangles) and presents an equal residue distribution though conditions (Figure S20). Thus, our model passes all of the validity checks on the mathematical constraints to model predictive values and could be studied more closely fromaphysicochemical point of view.

Polyelectrolyte/Gold Concentration Ratio and Fractal Dimension of the Aggregates Are the Key Parameters for Specific Absorption Rate Optimization. The descriptors that remain in the model after descriptor selection by the stepwise algorithm are the GNP diameter (DiamNPs), the polymer charge (ChargePoly), the polyelectrolyte on gold concentration ratio (RatioPolyGold and RatioPolyGold 2 ), and the fractal dimension (FD and FD 2 ) (Table S1). To evaluate their respective weight in the model, each term was sequentially suppressed and the resulting determination coefficient was calculated on the validation data set (Figure 4). It reveals that the polyelectrolyte/gold concentration ratio and the fractal dimension play major roles in the model, while the polymer charge and the GNP diameter have a minor weight.

Moreover, the two most impacting parameters appear as a second degree polynomial in the model, that present optimum valuesof DF =2 for thefractal dimension and RatioPolyGold = 25×10 -3 for theconcentration ratio between thetwo building blocks. The validity of this prediction is consistent with the observed evolution of SAR with these two parameters (Figure 5A andB). In addition, the optimized concentration ratio calculated by the model is close to the neutrality ratio for all series (Figures 1 andS3-S10). As the concentration ratio could be related to the interparticle distance, this descriptor could account for this lacking structural parameter. [START_REF] Nguyen | Complexation of a polyelectrolyte with oppositely charged spherical macroions: giant inversion of charge[END_REF] The results concerning the fractal dimension appear to be compatible with a previous study on gold nanoparticle assemblies published by Mulens-Arias et al. [START_REF] Mulens-Arias | Polyethyleneimine-assisted one-pot synthesis of quasi-fractal plasmonic gold nanocomposites as a photothermal theranostic agent[END_REF] The authors show these assemblies, that were synthesized by direct nucleation of gold onto a PEI chain, present an increase of their photothermal properties when the fractal dimension evolvesfrom1 to 1.9 accordingto SAXSmeasurements, which strengthen our results. Furthermore, this study evidences the potential of these assemblies for photothermal therapy and photoacoustic imaginginvitroand invivo, which highlightsthe biomedical potential of such objects.

While the conditions of synthesis and the fractal dimension of the aggregates clearly play a role in the model, on the contrary, the building block properties are minor or absent. The polymer mass does not appear in the model, while the polymer charge and the nanoparticle diameter play minor roles. This means that, as long as the concentration ratio and fractal dimension are optimized, the polymer type and GNP size could be chosen independently. To assess this result, we extract thesampleswhich fulfill thefollowingconditions:1.9≤ DF ≤ 2.1 (Figure 5A, red square) and 6 × 10 -3 ≤ RatioPolyGold ≤ 60 × 10 -3 (Figure 5B, red square). Among the 11 samples that fulfill these conditions, and that present significantly higher heating properties than the other samples (p-value=0.0057), thefour polyelectrolytescould befound as building blocks, as well as four of the five GNP sizes (3, 9, 13, and 18 nm). In addition, the first DLS relaxation time varies from130 to 1400 μs between these optimized samples, which covers a hydrodynamic size range from 60 to 680 nm, indicating that the aggregate size plays only asmall role in the heating properties as long as the previous criteria are met.

Thus, the rationalization of GNP aggregate structure with the QSPR approach enables simple and clear criteria to be evidenced that should be fulfilled to obtain optimal heating properties. This identification of criteria relaxes the constraint on the other parameters that govern the system, such as the aggregate size, or the choice of the GNP size and polyelectrolyte used for the aggregation, which enable saferby-design approaches. These parameters can hence be chosen in order to fit other criteriathat are known to depend on their charge and size, such as the biocompatibility of the aggregate, its capacity to avoid or promote elimination by the kidney or the liver, its ability to penetrate deeply inside the tumor, its internalization by tumor cells, or its elimination from the organismafter therapeutic use. [START_REF] Chou | DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination[END_REF][START_REF] Perrault | Mediating tumor targeting efficiency of nanoparticles through design[END_REF][START_REF] Albanese | Effect of gold nanoparticle aggregation on cell uptake and toxicity[END_REF][START_REF] Huo | Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors[END_REF] More particularly, these results raise the attention for the medical use of small nanoparticles, that appear recently to be more biodegradable than large ones. [START_REF] Balfourier | Unexpected intracellular biodegradation and recrystallization of gold nanoparticles[END_REF] Briefly, the author shows that 4 nm GNPs could bealmost entirely degraded by cellsinvitroin 2 months, while 22 nm GNPs are hardly degraded after 6 months. Overall, QSPR provides asafer-by-optimization approach than can really impact the field of nanoassembly design for a large frame of applications.

CONCLUSION

We propose a computational approach based on QSPR regression to model the heating capacities of complex GNP aggregates. For that purpose, we synthesized 108 assemblies using three sizes of GNPs and three types of oppositely charged biocompatible polymers mixed at different ratios. The resulting aggregates cover a range of size from the nanometer to the micrometer scale and that vary from open to compact aggregates. These aggregates were described by 15 independent descriptors that encompass their average size, fractal dimension, charge, and optical and heating properties. Data mining analysis by the empirical approach evidences a general pattern in series,thoughtendenciescannot fullybedepicted by this approach.

Hence, we resort to statistical tools to refine our understanding of this data set. Principal component analysis evidences that samples could be separated into three clusters that are independent of the building block properties, yet highly correlated with heating properties. This indicates that structural propertiesplayamoreimportant rolethan GNP size and polyelectrolytenature, which wasconfirmed by regression. Our analysis emphasizes the weight of the fractal dimension and the GNP/polyelectrolyte concentration ratio in the prediction of aggregate heating properties.

Overall, we validate the use of the QSPR approach on selfassembly structures, and we provide a predictive model to evaluate aggregate heating properties. We evidence that optimizing a few parameters can be sufficient to design optimized functional aggregates. Thislast point enableshaving a choice on other criteria (e.g., on the nanoparticle size) that are important for biomedical application such as the bionano interactions, pharmacodynamics, tissue penetration, intracellular behavior, long-term fate, and safety of these nanodevices.

EXPERIMENTAL SECTION Chemicals. Tetrachloroauric(III) acid (≥99%trace metal basis), trisodium citrate dihydrate (≥99% ), potassium carbonate (≥99% ), and tannic acid were purchased from Sigma-Aldrich. Chitosan 700 kDa was purchased from Acros Organics, and chitosan 300 kDa, PDADMAC 400 kDa, and PEI 750 kDawere purchased fromSigma-Aldrich. Fresh Milli-Q water has been used for all experiments.

GNP Synthesis. The 9, 13, 20, and 30 nm GNPs were synthesized following a Turkevich inspired protocol proposed by ref 30 based on the synthesis of gold seeds of 10 nm followed by asequential addition triggering seed growth. A 97 mgportion of sodiumcitratewasdissolved in 150 mL of Milli-Q water in a two-necked round-bottom flask and heated to boiling under stirring. After 15 min of boiling, 1 mL of preheated 25 mM gold chloride solution was added. After 10 min of reaction,thereaction waseither stopped (for the13nm GNPs) or lowered to 90 °C (for the 30 nm GNPs). The sample was then diluted to enable a quicker growth of the seeds by extracting 55 mL of the GNP solution and the addition of 53 mL of Milli-Q water and of 2 mL of 60 mM sodium citrate solution. A 1 mL portion of 25 mM gold chloride was then added. A second addition of 1 mL of gold solution was realized after 30 min. After another 30 min, the dilution and addition of reagent steps were repeated to obtain the desired size.

The 3 nmGNPs were synthesized in the presence of tannic acid, followingaprotocol proposed by ref 31. A 97 mgportion of sodium citrate and 20.7 mg of potassium carbonate were added to 150 mL of Milli-Q water and 1 mL of 2.5 mM tannic acid solution in a two-necked flask. After heating at 70 °C under stirring, 1 mL of 25 mM gold chloride solution was added. When the solution turned orange, the reaction was stopped.

As shown in Figure S1, these approaches allowed us to obtain stable dispersions of isotropic and monodisperse GNPs with the following radii measured by TEM: D TEM =3.4 ± 0.9, 9.1 ± 1.4, 13.5 ± 3.2, 20.2 ± 2.4, and 30.6 ± 2.6 nm. These GNPs are mainly dispersed as individual objects, as evidenced by UV-visible spectroscopy, DLS, and cryo-TEM. The GNPs were not further treated beforecomplexation and wereused at the lowest concentration obtained after synthesis([Au] =32.8 mg/L). Aggregate Synthesis. Aggregates have been synthesized by an equivolumic mixing of the aqueous GNP solution and theaqueouspolyelectrolytesolution, whosepH waspreviously adjusted to 3 by addition of hydrochloric acid. No salt was added to fix the ionic strength background. Thus, the ionic strength increases with the polycation concentration at fixed GNP concentration. The electrical conductivity was always below 0.5 mS•cm -1 . The polyelectrolyte concentration was modified to obtain final polymer concentrationsrangingfrom3 × 10 -5 to 10 -2 g•L -1 and a gold concentration of [Au] =16.4 mg•L -1 after theequivolumic mix.Theconcentration ratio was evaluated as the ratio of the mass concentration between polyelectrolyte and gold, that is between 0 (GNPs only) and 0.6.

Characterization Methods. Transmission electron microscopy images of single GNPs were obtained with a Tecnai 12 microscope operating at 80 keV (Imagoseine, Jacques Monod Institute, Paris) after deposition of a droplet of NP solution on a hydrophilized grid.

Aggregate characterizations were performed directly after synthesis (less than 5 min after mixing) and after 24 h. Dynamic light scattering (DLS) and laser Doppler electrophoresis (LDE) were performed on a Zeta Sizer NanoZS apparatus (Malvern Instruments), operating with a 632.8 nm laser with P ± 4mW at afixed scatteringangleof 173°at room temperature (25 °C). Size analysis was carried out by converting the measured intensity autocorrelation function into the scattered electric field autocorrelation function using the Siegert relation. Charge analysis was carried out with an electrical field of 25 V•cm -1 oscillating successively at 20 and 0.7 Hz to reduce the electroosmosis effect due to the surface charge of the capillary cell. The particle velocity was measured by LASER Doppler velocimetry.

Small-angleX-ray scatteringexperimentswereperformed on the SWING beamline (SOLEIL synchrotron at St Aubin, France) with the following configuration: sample-to-detector distanceD =6.52 m;beamenergy E =12 keV;λ =1 Å;and q range from 0.0012 to 0.228 Å -1 . The samples were contained in cylindrical glass capillaries of calibrated diameter. The scattered signal was recorded by an Eiger 4 M detector (DectrisLtd, Switzerland) with a pixel size of 75 μm. Preliminary data treatment (angular averaging and normalization) was done using the software Foxtrot developed at the beamline.

GNP aggregates were characterized by cryo-TEM as in ref 40. A 4 μL droplet of aggregate aqueous solution was deposited on a Quantifoil (Quantifoil Micro Tools GmbH, Germany) holey carbon grid. The excess of liquid on the grid wasabsorbed with filter paper, and thegrid wasquench-frozen quickly in liquid ethane to forma thin vitreous ice film. Once placed in aGatan 626 cryo-holder cooled with liquid nitrogen, the samples were transferred to the microscope and observed at alowtemperature(-180°C).Observationswereperformed with aLaB6 JEOL JEM2100cryo-microscopeoperatingat 200 kV (IMPMC, Sorbonne Universite, CNRS UMR 7590, Paris, France) coupled with a 2k × 2k Gatan Ultrascan 1000 CCD camera. Images were taken with the JEOL low dose system (Minimum Dose System, MDS) to protect the thin ice film from any irradiation before imaging and to reduce the irradiation during the image capture.

UV-visible spectra were obtained in an Enspire multimode plate reader (PerkinElmer) using TPP 96-well plates in the 300-800 nm range.

Photothermal measurementswereperformed with a680 nm laser (Laser components SAS) illuminating a 0.5 mL tube containing0.1mL of sample.Thedistancebetween thesample and the laser was fixed to 4 cmto get a laser power of 6.3 W• cm -2 . The temperature of the sample was measured using a thermal camera (Flir SC7000) in real time (1 image/s) in the temperaturerangefrom20to 80°C.Datawereprocessed with the Altair software.

Theoretical Methods. All calculations were performed on R software (version 3.4.3).

To discriminate the different types of aggregates, the samples were represented using the PCA tool of the package FactoMineR and clusterized using k-means clustering.

TheSAR wasmodeled bylinear modelingusingthefunction lm of R. In the present case, the use of nonlinear terms was added to the lm function. All of the models were first calculated using the widest number of descriptors; then, to minimize the number of descriptors, a stepwise approach was performed on the model (function step, direction = "both", penalty fixed to log(n) for the linear models, 2log(n) for the nonlinear ones).

For the training dataset, the model quality was validated by assessment of residue normality (Figure S18), assessment of the equal distribution of residues through condition (Figure S19), and Y-randomization (R Y-random 2 = 0.10). Internal validation wasperformed byLeaveManyOut CrossValidation (LMOCV), usingthe package caret of R (function train). The model parameters were calculated on 50%of the data. Then, the accuracy of these parameters was evaluated by predicting R CV 2 on theremaining50%of thedataset.TheR CV 2 havebeen averaged on 1000 partitions of the data set. For the validation data set, the model prediction was validated by assessment of the equal distribution of residues through conditions (Figure S20).

The model accuracy on the validation data set was assessed with the function predict. The optimized descriptors to maximize the SAR were determined using the function optim. Asthefunction presentsasinglemaximum, thestarting point has no incidence. The domain of definition for this maximum research was established using either the physical limitation of the descriptor or the minimal and maximal values observed in the data set.

Figure 1 .

 1 Figure 1. Characterizationsof theGNP aggregatesobtained 5 min after mixingfor onesizeof GNPs(D =30 nm) and onetypeof polyelectrolyte (chitosan 300kDa) at varyingconcentration ratio:electrophoretic mobility(A) and diffusion relaxation timeDLS t1 (B) obtained through LDE and DLSmeasurements,respectively;fractal dimension(C) deduced fromSAXSmeasurements.Cryo-TEM (D) wasperformed for thesamplethat was the closest to the neutrality ratio (see arrow in part A). Optical extinction (E) and SAR (F) were measured, respectively, by UV-visible spectroscopy and photothermal measurements (λ =680 nm, 6.3 W•cm -2 ).

Figure 2 .

 2 Figure 2. Principal component analysis(PCA) and k-meansclusteringreveal theexistenceof threebehaviorsamongthesamples(A). Correlation between descriptors and the two first principal components (B). SAR across clusters (C).

Figure 3 .

 3 Figure 3. Fitted valuesvsobserved valuesfor theSAR for thetraining (orange squares) and validation data set (blue triangle). The red dotted line indicates the ideal case. R 2 is the correlation coefficient.

Figure 4 .

 4 Figure 4. Estimation of the parameter weight in the validation data set. Calculations were performed by calculating the parameter values on the training data set and then by an estimation of the determination coefficient on the validation data set.

Figure 5 .

 5 Figure 5. Validation of the predicted optimum of the model. Plot of the SAR values depending on the fractal dimension (A) and on the concentration ratio between polyelectrolyte and gold (B). The red dotted rectangles indicate the area around the optimized value for the fractal dimension and aggregate size according to the regression.

  

Table 1 .

 1 Summary of the Descriptors of GNP Aggregates

	descriptor	method	signification	unit
	DiamNPs		gold nanoparticle diameter nm
	MassPoly		mass average molar mass	kDa
			of the polyelectrolyte	
	ChargePoly		number of charge per	e•mol•g -1
			molar mass	
	RatioPolyGold		mass concentration ratio	no unit
			between polyelectrolyte	
			and gold -log scale	
	Time		time between mixing and	h
			measure	
	EM	LDE	electrophoretic mobility	m 2 •V -1 •s -1
	DLS t1	DLS	first relaxation time measured by DLS -	μs
			log scale	
	DLS A1 DLS t2	DLS DLS	proportion of objects associated to DLS t1 second relaxation time measured by DLS -	no unit μs
			log scale	
	DLS A2	DLS	associated to DLS t2 proportion of objects	no unit
	FD	SAXS	fractal dimension	no unit
	UVvis m1	UV-visible spectroscopy	plasmon band position of the first	nm
	UVvis w1	UV-visible spectroscopy	band width of the first plasmon	nm
	UVvis A1	UV-visible spectroscopy	plasmon band intensity of the first	no unit
	UVvis m2	spectroscopy UV-visible	plasmon band position of the second	nm
	UVvis w2	UV-visible spectroscopy	band width of the first plasmon	nm
	UVvis A2	spectroscopy UV-visible	plasmon band intensity of the second	no unit
	SAR	PTT	heating property of the	kW•g -1
			aggregate -log scale	

ACKNOWLEDGMENTS A.B. received a PhD fellowship from the doctoral school Physique en Ile de France (EDPIF). V.M.-A. received a postdoc fellowship from the Association pour le Recherche contre le Cancer (ARC, Aides Individuelles, postdoctorant, dossier 20150603405). The authors thank the ANR CarGold-16-CE09-026, ANR Coligomere-18-CE06-0006, and the European Union's Horizon 2020 research and innovation programunder Grant Agreement No. 801305 for funding. We are grateful to the Imagoseine core facility of the Institut Jacques Monod (UMR7592, CNRS/UniversitéParis Diderot, Paris, France), member of the France BioImaging (ANR-10-INBS-65904) for the electron microscopy observations, Thomas Bizien and the SWING beamline team (Synchrotron SOLEIL, St-Aubin, France) for the SAXS experiments, Jean Michel Guinier (Sorbonne Universite, Museúm National d'Histoire Naturelle, CNRS, IRD, Institut de Mineŕalogie, de Physique des Mateŕiaux et de Cosmochimie (IMPMC), Paris, France), Alba Nicolas Boluda and Plan-Sangnier (Universitéde Paris, Laboratoire Matiere et Systemes Complexes, UMR7057, Paris, France) for help with photothermal measurements, and Pierre Bost (C3BI, USR3756, CNRS/Institut Pasteur, Paris, France) and Cyprien Gay and Gaelle Charron (Universitéde Paris, Laboratoire Matiere et Systemes Complexes, UMR7057, Paris, France) for fruitful discussion.

AUTHOR INFORMATION