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ABSTRACT

This paper discusses the preparation of the flow solver ISIS-CFD for industrial simulation of free-surface hydrody-
namic flows with adaptive mesh refinement. To accurately capture the free surface and boundary layers, anisotropic
hexahedral mesh refinement and derefinement is performed by local cell division. The adaptation is based on metric
criteria which combine Hessians of the flow variables and free-surface detection. Analytical mesh deformation is used
to account for body movement, while a dedicated local deformation algorithm handles the projection of the adapted
mesh onto the geometry. It is shown that computational setup protocols can be defined to choose the simulation
parameters, without user intervention, for large classes of simulations. Tests on different ships and lifting hydrofoils
show the efficiency and versatility of the method.

Keywords: mesh adaptation, anisotropy, hexahedral, mesh deformation, automatic setup, ship hy-
drodynamics

1. INTRODUCTION

Industrial application of mesh adaptation is gaining
momentum, thanks to the increasing power and relia-
bility of mesh adaptation algorithms on one side and
the growing industry awareness of their benefits on the
other side. Mesh adaptation was identified as a future
key technology in NASA’s CFD Vision 2030 [1] and
is currently used in aerospace by for example NASA
and Boeing [2, 3], and Safran[4, 5]. For hydrodynamic
simulations, mesh adaptation is used with flow solvers
such as OpenFOAM [6, 7], ReFresco [8], StarCCM+
[9], and FINE/Marine [10, 11, 12].

The ISIS-CFD Navier-Stokes solver, developed at Cen-
trale Nantes / CNRS and commercialised by Cadence
Design Systems as part of FINE/Marine, includes an
adaptive grid capability since 2009. Industrial use of
this feature rose sharply around 2018 when the soft-
ware had matured and accumulated experience al-

lowed the user interface to be simplified; it is now
used routinely by about half of the industrial users.
The principal application is mesh refinement to cap-
ture water surfaces [13].

Despite research progress [12, 14, 15], Hessian-based
mesh adaptation with ISIS-CFD has so far seen little
industrial application. Routine simulation of realistic
flows, where the entire mesh is created using adaptive
refinement, presents several mesh-related challenges:

• Most hydrodynamic flow solvers use hexahedral
meshes with highly stretched cells to capture
boundary layers, wakes, and the free surface.
Thus, for mesh adaptation, anisotropic refine-
ment of hexahedral meshes is essential.

• Even in steady simulations, the position of a ship
is rarely fixed; at the very least, the freedom to
move to an equilibrium position is often needed.



Furthermore, refined meshes must be adjusted to
conform exactly to the CAD topology. Both is-
sues require mesh deformation procedures.

• For industrial simulation to be successful, the
simulation setup should be simple and user guide-
lines should be reliable and able to handle a large
variety of different cases, without requiring ex-
pert knowledge.

This article discusses the work done to prepare
Hessian-based adaptation for industrial application.
The mesh refinement and deformation capabilities are
available today, while on-going work intends to show
that straightforward computational setup protocols
can be established for all the typical classes of hy-
drodynamic simulations. As examples, protocols have
been presented for displacement hulls like cargo ships
and military vessels [12] and for lifting hydrofoils used
on modern high-speed sailing craft [16].

The paper is organised as follows. Section 2 presents
the flow solver and its specific features for hydrody-
namic problems. Section 3 then describes the grid
adaptation method, concentrating on those aspects
that are particular for hexahedral meshes and hy-
drodynamic flows. Mesh deformation algorithms are
discussed in section 4, while section 5 studies auto-
matic computation setup and parameter choices for
large classes of computations. Finally, in section 6 the
method is demonstrated for ships and hydrofoils. The
conclusion (section 7) discusses the readiness and the
usefulness of the procedure for industrial application.

2. THE ISIS-CFD FLOW SOLVER

ISIS-CFD is an incompressible unstructured finite-
volume solver for multifluid flow [17]. The veloc-
ity field is obtained from the momentum conserva-
tion equations and the pressure field is extracted from
the mass conservation constraint transformed into a
pressure equation. These equations are similar to the
Rhie and Chow SIMPLE method [18], but have been
adapted for flows with discontinuous density fields.
The method features turbulence models like Menter’s
k − ω SST [19] but also an anisotropic EASM model
[20] and hybrid RANS/LES models of the DES fam-
ily. Imposed and resolved motions of rigid or flexible
bodies can be computed as will be shown in section
4, while large-amplitude multibody motion is possible
with sliding or overset meshes. The code is fully paral-
lel using the message passing interface (MPI) protocol.

Free-surface flow is simulated with a water-air mixture
model [17]. Instead of explicitly reconstructing the
water surface, its position is obtained implicitly from a
conservation equation for the volume fraction of water.
This equation is discretised with specific compressive

discretisation schemes to keep the transition between
air and water close to a discontinuity (see figure 1).
At the surface, regular and fine meshes are required to
accurately resolve the volume fraction.

Figure 1: Water volume fraction on the hull of a ship
and its centre symmetry plane. Red: volume fraction 1,
blue: volume fraction 0.

The unstructured discretisation of all the flow equa-
tions is face-based. While the unknown state variables
are cell-centered, the fluxes which form the systems of
equations are constructed face by face, so cells with
an arbitrary number of arbitrarily-shaped constitutive
faces are accepted. This enables for example adaptive
mesh refinement by local cell division: a cell with a
divided face and hanging nodes is treated naturally as
several independent faces.

Since free-surface flow simulations need regular meshes
for good accuracy, ISIS-CFD simulations are mostly
performed on unstructured hexahedral meshes like the
ones generated by Hexpress from Cadence Design Sys-
tems. These meshes feature local refinement with
hanging nodes and body-fitted boundary layer grids.
An example of such a mesh is shown in figure 3.

3. MESH ADAPTATION

3.1 Anisotropic hexahedral refinement

The natural mesh adaptation approach for hexahedral
meshes is adaptive refinement by local cell division,
starting from a coarse initial mesh (figure 3). Hy-
drodynamic flows contain many flat or stretched flow
features, such as vortical wakes or the water surface.
To efficiently capture these, anisotropic mesh adapta-
tion is a necessity [21]. Therefore, the adaptation in
ISIS-CFD [14, 15, 22] is performed by anisotropic di-
vision: cells can either be split in one or in several
directions. For unsteady flows or to accommodate the
convergence of a steady flow, existing refinement can
be undone. This derefinement is also anisotropic and
refinement can be created and removed in a different
order [23].

During a simulation, the refinement procedure is called
repeatedly, until the flow has converged and the mesh
is no longer changed by the adaptation steps. Since a
cell can only be refined or derefined once during each



Figure 2: An example of an adapted mesh. Top to
bottom: free surface, details of the Y -symmetry plane,
X-cut at the stern. The case is the DTMB 5415 at
Fr = 0.41 of section 6.2, with Tr,H = 0.07.

step, the adaptation is an iterative process which re-
quires many calls (40–50) to converge. Therefore, the
flow is not fully solved on each adapted mesh. Instead,
the adaptation procedure is called every 10 – 25 time
steps and the flow converges together with the mesh.

Division-based mesh adaptation has its limits. Specif-
ically, the initial grid has a large influence on the
adapted mesh, since (1) the division procedure can
only reduce the initial cell sizes by a power of two,
so not all cell sizes can be obtained, and (2) the
adaptation cannot modify the orientation of the cells.
This means that the initial grid with its body-aligned
boundary layer grid has to be created with care; coarse
but orthogonal grids and thick boundary layer meshes
produce optimal results. An illustration of an initial
and adapted ship mesh is provided in figures 3 and 2,
while figure 4 shows a mesh for a hydrofoil.

Figure 3: Initial mesh corresponding to the bottom im-
age of figure 2.

Figure 4: An adapted mesh for a lifting hydrofoil geom-
etry, coloured with the water volume fraction.

3.2 Refinement criterion

The decision where to refine is based on a metric refine-
ment criterion [24, 25, 26], which is applied to division-
based refinement of hexahedrals as follows. Starting
from a symmetric tensor field C(x, y, z) computed from
the flow, the grid is adapted until the three dimen-
sions di,j of each hexahedral cell i, which are the vec-
tors between the face centres for the the three pairs
(j = 1, 2, 3) of opposing faces, satisfy:

|Ci di,j | = Tr, ∀i, ∀j ∈ (1, 2, 3), (1)

as closely as possible. Here |·| indicates a vector length.
The constant threshold Tr functions as a global specifi-
cation of the mesh fineness. Cells are refined in a direc-
tion j whenever the modified distance |Ci di,j | exceeds
Tr and derefined whenever it is below Tr/2.5, to make
sure the derefined cells are not immediately refined
again. This definition leads to anisotropic refinement
whenever the cells are aligned with a non-uniform met-
ric, which is typically the case at the water surface.
Although the formulation (1) differs slightly from the
approach of George et al. [24], who use a metric MP

to directly compute a modified vector length uTMPu,
this difference is cosmetic. If C is chosen such that



C C = MP , the resulting modified distances are the
same between the approaches.

To create fine meshes entirely using adaptive refine-
ment, the refinement criterion C must react to all the
flow features which are relevant for ship resistance.
For the orbital flow fields in the waves, the Hessian of
the pressure is a suitable indicator [14]. The accurate
resolution of the boundary layer and wake is needed
to correctly predict both viscous and pressure forces,
which suggests refinement based on the velocity Hes-
sians as well. Thus, the criterion is based on the Hes-
sians of both the pressure and the velocity, weighted in
the way in which they appear in the flux [15]. A com-
mon weight ρV is assigned to all the velocity Hessians,
where V =

√
u2 + v2 + w2:

CH =
(

max
(
‖H(p)‖,

ρV ‖H(u)‖, ρV ‖H(v)‖, ρV ‖H(w)‖
))ϕ. (2)

H is the Hessian operator. ‖ · ‖ indicates a matrix
having the same eigenvectors as the original one and
the absolute values of its eigenvalues; the power ϕ is
again applied to the eigenvalues, where ϕ = 0.5 is
used in practice. Finally, the maximum of two tensors
is computed following the procedure in [22], which is
based on [25]. The convection-derived weight ρV for
the velocity Hessians is open to discussion, since these
mainly indicate diffusion-based errors. This is a sub-
ject of on-going study.

The power ϕ can be used to give more or less weight
to the strongest flow features. For ϕ = 1

2
, the equiv-

alent metric of [24] is MP = C2H ∼ ‖H(p)‖, ‖H(u)‖,
which is what [24] themselves use. Hessian metrics
are linked with interpolation error control and, follow-
ing [26], the use of a Hessian without weighting by its
determinant implies a minimisation of the interpola-
tion error in the L∞ norm, i.e. an equidistribution of
the error. However, for our hexahedral finite-volume
discretisation, the interpolation error may not be pro-
portional to the discretisation error, so the latter is
not equidistributed.

Finally, a smooth anisotropic mesh at the free surface
is required for the volume fraction equation. Since the
pressure gradient is discontinuous at the free surface
due to hydrostatic forces, the pressure Hessian is un-
defined there. To solve this issue, the Hessian criterion
is extrapolated from below through the surface region
and a second criterion [22] creates the refined mesh at
the free surface: this criterion is non-zero whenever
the water volume fraction α is neither 0 nor 1. Di-
rectional refinement normal to the surface is obtained
from normal vectors v = ∇αA/|∇αA|, where αA is a
smeared volume fraction field created with Laplacian

smoothing. The criterion then becomes:

CS =

{
v ⊗ v if 0.1 ≤ αA ≤ 0.9,

0 otherwise.
(3)

The choice is based on αA to create a buffer layer of a
few cells around the surface position for safety.

The two tensor criteria are combined into one [14] by
taking a weighted maximum of the tensors. Since the
free-surface criterion always has a unit eigenvalue, a
weighting constant c is applied only to the Hessian
criterion:

CC = max (CS , c CH) . (4)

In practice, choosing c directly is inconvenient, so the
user specifies separate thresholds TrS and TrH for the
free-surface and Hessian criterion. These are then used
to set Tr = TrS and c = TrS

TrH
. The choice of TrS and

TrH is discussed in section 5.2.

In figure 2, combined refinement at and below the sur-
face can be seen in waves, while the mesh around the
hull is refined at the bow and in the boundary layer.
Figure 4 shows refinement in the pressure peaks at the
leading and trailing edge, as well a anisotropic refine-
ment in the wake.

3.3 Quality measures

Certain measures are applied in the mesh adaptation
process, to preserve the quality of the adapted mesh
[22]. The two main aspects for this article concern
post-treatment of the refinement criterion. First, the
eigenvalues of the criteria C can be limited to a user-
specified value. This imposes a minimum cell size,
below which the cells are never refined. This option
is useful, for example, to prevent spurious refinement
near flow discontinuities. Furthermore, the metric can
be set to zero in the x-, y- and z-direction on the
outside of limiting boxes, to prevent refinement close
to the border of the domain. The specific use of these
features is explained in section 5.

Other quality measures act directly on the refined
mesh, like the difference of one refinement level allowed
between neighbour cells, or the obligation to keep the
same refinement in a column of boundary layer cells.
For brevity, these are not further described here.

4. MESH DEFORMATION

For realistic flow simulation in hydrodynamics, mesh
deformation is essential. The first reason for this is,
that the forces on a ship are highly dependent on its
position with respect to the water surface: a ship that
sits slightly deeper in the water has a much higher
drag. Thus, even for steady simulations, it is more
realistic to let a ship move to its dynamic equilibrium



position, than to fix the position. For fast ships and
hydrofoils, this can lead to significant motion. Fur-
thermore, for hydrofoils, naval architects are observing
that the deformation of the geometry needs to be taken
into account to get accurate forces. This requires mesh
deformation to follow the motion of rigid and flexible
bodies. Finally, division-based mesh refinement cre-
ates meshes where the newly inserted nodes are not
body-fitted. To correct this, the mesh is locally de-
formed to project it back onto the geometry.

Since these mesh deformations do not have the same
requirements, different deformation methods are em-
ployed in ISIS-CFD for rigid-body motion, flexible-
body deformation, and for the projection of adapted
meshes. This section briefly describes these methods.
For the coupling with the flow equations, ISIS-CFD
uses an Arbitrary Lagrangian Eulerian formulation
[17] which allows to solve the flow on moving meshes.

4.1 Rigid-body motion

For rigid-body ship motions [27], the challenge is to
preserve a good mesh at the free surface. Therefore,
rigid-body motions may be divided in those that do
not displace the free surface (x- and y-translation,
z-rotation, with z the vertical axis), and those that
do (z-translation, x- and y-rotation). For single-body
flows, the former can be treated by rigid-body dis-
placement of the entire mesh. The latter require mesh
deformation where the outer boundaries of the mesh
are not deformed, to make sure the mesh at the free
surface moves as little as possible. If the free-surface
grid is created with adaptive refinement, z-translation
can also be treated with rigid-body movement, but x-
and y-rotation always require deformation.

The deformation is performed with analytical
weighted regridding: the required motion is applied
to all the nodes of the mesh, multiplied by a weight-
ing coefficient w(x) which goes to zero on the outer
boundaries so that only the inner part of the mesh
moves (figure 5). An initial coefficient w0(x) is com-
puted as a solution of Laplace’s equation with Dirichlet
boundary conditions 1 on the body surface and 0 on
the outer boundaries. This coefficient is then modified
to produce the actual weighting:

w(x) = max (w0(x)p/cmax, 1) . (5)

The power p reduces the zone where the mesh deforms
significantly, to leave the free surface far away from the
ship undisturbed. The factor cmax on the other hand,
imposes a zone of rigid-body motion w = 1 close to
the hull, to preserve the shape of the boundary layer
mesh. For ship simulations with mesh refinement, the
default values are p = 3 and cmax = 0.8.

Figure 5: Deformed mesh for rotation of the central body
(left) and the weighting coefficient w(x) (right).

4.2 Flexible-body deformation

The deformation of flexible bodies cannot be per-
formed with the analytical weighting presented above.
To perform fluid-structure interaction (FSI), two de-
formation approaches are included in ISIS-CFD. The
first, presented by [28, 29], is to divide the mesh into
layers around the hull. The displacement of each face
in a layer is copied to the layer around it, defined us-
ing the cell-face connectivity, with a diffusion effect to
homogenise the deformation and a weighting similar
to the one above, to obtain zero deformation on the
outer boundaries. The second approach, used with
the modal FSI mentioned in section 6.4, is to deform
the mesh with radial basis functions distributed over
the geometry, to distribute the motion of each of these
parts [30]. These techniques go beyond the scope of
this article and are not described in detail.

4.3 Post-refinement projection

In division-based refinement, new nodes are inserted
in the centres of existing edges and faces. For curved
geometries, these nodes are not placed on the geom-
etry, so the refined mesh has to be deformed to fit
the geometry. These deformations are highly local,
since each misplaced boundary node is surrounded by
existing nodes which are placed correctly on the geom-
etry. The layer-based flexible-body mesh deformation
mentioned above can be (and has been) used for this
projection, but it is not ideal. First, it is inefficient to
use such an expensive global deformation to solve es-
sentially local problems. And second, the method does
not propagate the local deformations very far from the
boundary nodes, which leads to strongly deformed and
potentially twisted cells.

Therefore, a dedicated local mesh deformation has
been introduced for post-refinement projection. This
method starts with the projection of the boundary



dx2

dx1

Figure 6: Ellipsoid around a boundary node, with
wall-normal vector, projection displacement dx1, and
orthogonality-preserving displacement dx2.

nodes onto the CAD geometry, represented by a trian-
gulation. Each node is projected orthogonally onto the
triangle which gives the smallest displacement from
the current node position. In the second step, the in-
terior mesh is deformed. For this, ellipsoids (figure
6) are defined around each boundary node to project,
with their long axes oriented along the normal direc-
tion to the geometry and with two short axes, of equal
length, parallel to the wall. The ellipsoids are di-
mensioned such that they contain no other boundary
nodes. This is obtained by starting from an infinite
ellipsoid for each point and then searching the cells
nearby. Each time a boundary node is found, either
the long or the short axis length is reduced to fit the
ellipsoid surface through this node. The axis to ad-
just is chosen as the one which maintains the largest
volume for the ellipsoid.

Once all the ellipsoids are defined, the boundary node
deformations (dx1 in figure 6) are applied to all the
nodes in each ellipsoid, with a linear weighting so that
the outer boundary of the ellipsoid does not deform.
Furthermore, a secondary shear translation dx2 is ap-
plied to the interior nodes with a quadratic weighting,
such that the interior node closest to the boundary
node is projected towards the normal vector. With-
out this secondary lateral deformation, when faces are
not aligned with the wall-normal direction, large nor-
mal displacements may reduce the orthogonality of the
cells to the point that faces can become inverted. Let
r(x) be the non-dimensional radius of a point in the
ellipsoid, such that r = 0 in the centre and r = 1 on
the boundary. Then the total displacement of x is:

dx(x) =
(
dx1 + dx2r(x)/r2

)
(1− r(x)), (6)

with r2 the radius of the closest node.

Figure 7 gives an example of the process. It shows
the undeformed mesh with the ellipsoids and the final
deformed mesh. Around the leading edge of the airfoil,
secondary displacement is visible.

Figure 7: Example of a refined grid with ellipsoids (left)
and corresponding projected grid (right).

5. REFINEMENT PROTOCOLS AND
COMPUTATIONAL SETUP

To use these algorithms for routine simulations, de-
fault values for the simulation parameters are needed,
which must be straightforward, reliable, and valid over
a large range of ship lengths, velocities, hull shapes,
etc. These guidelines are based on physical arguments,
notably dimensional analysis, to reduce the number of
input variables that have to be considered, combined
with experience to find sensible default settings for the
remaining parameters [23].

Simulation protocols have been defined in [12] for dis-
placement ships and in [16, 31] for lifting hydrofoils.
Without repeating these protocols fully, we provide
examples here of how the guidelines are defined, fo-
cusing on the mesh adaptation. Figures 2 and 4 show
meshes created with these protocols.

5.1 Reference length

For non-dimensional guidelines, a key issue is the
choice of the reference length, since many parameters
such as the threshold Tr of equation (1), but also the
flow domain size, the boundary layer mesh, certain
motion laws, etc. depend on a length scale. To obtain
similar meshes for similar flow features, it is important
that the length scale represents the characteristic size
of the flow, which is typically the length over which
the boundary layer develops.



Figure 8: KCS, Free-surface elevation with limiting box
0.3L behind the stern (left) and 2L behind the stern
(right). Hessian threshold TrH = 0.05L. The dashed
line indicates the aft edge of the limiting box.

For ships, this is the hull length L which is also the
main dimension of the ship. For hydrofoils however,
the largest dimension is the span but the character-
istic boundary layer length is the chord. Therefore,
contrary to existing practices which take the span, [16]
chooses the maximum chord c as the reference.

Below, all lengths are expressed in terms of L for ships
and of c for hydrofoils, to underline that the physics
of these cases is different. However, both parameters
denote the reference length for their respective cases.

5.2 Thresholds

The mesh density is specified here by the threshold Tr.
Many authors adjust such mesh density parameters to
obtain a specified number of cells, for example by nor-
malising the metric in such a way that the threshold
directly specifies the target number of cells [26].

To capture free-surface waves, we prefer a different
approach. For non-adapted ship meshes, established
ISIS-CFD guidelines specify target cell sizes at the
free surface in terms of the ship length L. To obtain
the same behaviour for adaptive refinement, the free-
surface refinement criterion is defined with unit vectors
in equation (3), so its threshold TrS equals the desired
cell size normal to the free surface, which is chosen as
L/1000 like for non-adapted meshes. For hydrofoils,
[16] suggests c/64 which gives accurate forces, with-
out reproducing all the details of the free-surface flow.
The cell sizes of the initial mesh (section 3.1) should
be chosen such that this target cell size can actually
be obtained by cell division.

To keep the criteria compatible, a similar behaviour is
sought for the Hessian refinement criterion: the mesh

a)

b)

Figure 9: KCS, effect of the minimum cell size (a) and
limiting box (b) on the resistance convergence with TrH .
The blue lines show the uncertainty interval of the ex-
perimental results [32].

density on the geometry should be proportional to the
threshold value, independent of the case parameters.
Therefore, the criterion is non-dimensionalised using
the reference length and velocity. As a result, the
choice for TrH no longer depends on the hull length
and velocity; only a (weak) dependence on Fr, Re,
and the hull shape remains, which can be ignored for
a specific class of geometries (such as displacement
ships, fast ships, or hydrofoils). For ships, the tests
in [12] suggest the range TrH ∈ [0.2L, 0.025L] for
coarse to fine grids. For hydrofoils, [16] recommends
TrH ∈ [0.5c, 0.0625c].

5.3 Cutoff filter and limiting box

Adaptive refinement based on the combined refine-
ment criterion captures flow details in the entire do-
main. However, for the accurate evaluation of resis-
tance, not all these details may be required. Thus,
the criterion is modified in two ways.

The resolution can be controlled by specifying a mini-
mum cell size, below which cells are no longer refined.



A large minimum cell size works like a cutoff filter:
while the adaptive refinement still captures the main
flow features, very fine cells to resolve small details are
not created. For the KCS test case of section 6.1, figure
9a shows the dependence of the resistance on the min-
imum cell size. This parameter (chosen small in ear-
lier tests, around 10−4L) has a pronounced influence:
for a larger minimum cell size, the number of cells is
strongly reduced, for only a modest loss of precision.
Also, the solutions for all minimum cell sizes converge
to the same value when TrH is reduced. Thus, for
resistance simulations, a large minimum cell size, i.e.
L/1000 like the free-surface threshold, is preferable.
For hydrofoils, the free-surface size was found to be
too large so a minimum size of c/256 is recommended.

Furthermore, resolving the wake and the wave field be-
hind the ship may not be needed for resistance compu-
tations. Therefore, limiting boxes were tested for the
KCS which forbid horizontal refinement from a given
distance behind the stern. Preventing refinement aft
of 0.3L behind the stern removes the entire far wake
field (figure 8). However, compared to a 2L box which
preserves most of the waves, the box at 0.3L does not
significantly alter the forces while reducing the num-
ber of cells by up to 40% (figure 9b). An even shorter
box (0.1L behind the stern) changes the converged re-
sistance, so it is not adopted. The box at 0.3L is the
best compromise. Similar tests suggest a box at 1c
behind the trailing edge for hydrofoils.

6. TEST CASES

Without attempting a full test of the simulation ap-
proach, this section provides four examples of the vari-
ety of test cases which it can handle. Where available,
the results are compared with experiments and simu-
lations on non-adapted meshes. More complete tests,
including further details of the cases presented here,
are provided in [12] for ships and in [16] for hydrofoils.

a) b)

Figure 10: Hull shapes of the KCS (a) and DTMB 5415
(b) models.

6.1 KRISO Container Ship

A modern cargo ship, the KRISO Container Ship
(KCS) [32], is simulated in model-scale towed condi-
tion at Re = 1.257 · 107 and Fr = 0.260. The k − ω

SST turbulence model with a wall law is used. Fig-
ure 11 shows the convergence of the resistance with
the Hessian threshold TrH , as well as the numerical
uncertainty evaluated with the grid-convergence based
method of Eça and Hoekstra [33] (where TrH is used as
the measure for the grid size, instead of an averaged
cell size). A power-law like convergence is obtained
and the uncertainty estimations, which overlap for the
finer grids, make sense. Figure 12 shows that the free
surface also converges rapidly and that at TrH = 0.05
it is very close to the finest threshold. Thus, varying
TrH is an effective way to obtain grid convergence and
the selected range for TrH is appropriate.

Figure 11: KCS resistance, grid convergence as a func-
tion of the number of cells, with estimated numerical
uncertainty. The blue lines show the uncertainty interval
of the experimental results [32].

The results are compared with simulations on Hex-
press meshes created with the C-Wizard automatic
setup tool, which provides uniform cell sizes over the
hull. Also, a combined Hexpress and systematic grid
refinement (SGR) approach is shown, where the three
coarsest grids are generated by Hexpress, using manual
refinement at the bow and stern. The finest grids are
created from these coarser grids by refining all cells
once, using the adaptive refinement algorithm. Fig-
ure 11 compares the three results. The adapted se-
ries converges faster to its final value than the other
two. A given numerical accuracy is therefore obtained
on coarser grids: the same distance from the con-
verged value is typically obtained with 1.5 to 2 times
fewer cells than the C-Wizard series. Furthermore,
the adapted and SGR series converge to roughly the
same values for the resistance, which underlines the
reliability of both series. The meshes of the C-Wizard
series are not similar: in Hexpress, the boundary layer
meshes become thinner as the outer mesh is refined.
Therefore, the series converges to a lower value than
the other two.



Figure 12: KCS, mesh convergence of the free-surface
elevation. Top: result for TrH = 0.025. Bottom: the
difference of the results for TrH = 0.2L, 0.1L, 0.05L
with respect to 0.025L.

6.2 DTMB 5415

The protocol (developed for the KCS) is applied un-
changed to the DTMB 5415 model in towed condition
at Fr = 0.41 and Re = 1.74 · 107 following the mea-
surements of [34]. This case represents a slender mil-
itary vessel at full speed, where heavy wave breaking
occurs both at the bow and the stern (figure 13).

The adapted-grid resistance is again compared with
C-Wizard uniform grids and meshes with manual re-
finement and SGR (figure 14). The adapted series
converges quickly and produces good uncertainty esti-
mations; however, the converged resistance is smaller
than for the experimental results, likely due to the
difficulty of modelling the breaking wave behaviour.
The non-adapted series seem to agree better with the
experiments, but they converge to the same underesti-
mated solution – albeit more slowly. Thus, the faster
convergence and smaller uncertainty mean that the
adapted-mesh results are the most reliable.

Figure 13: DTMB 5415, wave pattern for TrH =
0.025L.

Figure 14: DTMB 5415, grid convergence and uncer-
tainties for three series of meshes. The blue line repre-
sents the experimental result from [34].

6.3 KCS in self-propulsion

To test the versatility of the ship refinement protocol,
it is applied to a case for which it was never intended:
the KCS in self-propulsion condition [35] with a body-
force model to represent the propeller. This is a chal-
lenge since the mesh refinement has never been tested
for a force field before. Also, a ship propeller is tiny
with respect to the ship itself. Can something so small
be captured by mesh adaptation that is configured for
the flow around the ship?

Figure 15: KCS self-propulsion: axial velocity in the y-
symmetry plane for TrH = 0.1L and location of the body
force (pink box).



Figure 16: KCS self-propulsion: grid convergence of the
resistance; the blue line represents the experimental re-
sult from [35].

The initial Hexpress mesh is equal to the one from sec-
tion 6.1; no particular refinement is applied around the
actuator disk. Still, the adapted grid (figure 15) cap-
tures the propeller flow well, even at the coarse thresh-
old TrH = 0.1L. Thus, refinement based on the ship
length scale is appropriate for a detail like the actua-
tor disk. However, the mesh size throughout the disk
region is equal to the minimum cell size. While this
mesh is fine enough for the actuator disk, it is possible
that the minimum cell size prevents the convergence
to a mesh-independent solution. All resistance results
(figure 16) agree well with the experiments; the differ-
ence between the series is similar to the DTMB 5415
for example. These force results confirm that the mesh
adaptation protocol can be used for self-propulsion.

6.4 Flexible META hydrofoil

Finally, the hydrofoil protocol of [16] is tested. Like
for the ships, this protocol has been established for
rigid geometries. However, carbon-fiber foils undergo
significant deformation under load and a consensus is
developing among naval architects that this deforma-
tion should be taken into account for the evaluation of
the forces. Therefore, the hydrofoil protocol is applied
here with fluid-structure interaction, accomplished via
a modal approach [30]: a structural solver is used to
determine the deformation eigenmodes of the foil, then
the flow solver computes the deformation as a linear
combination of the first eigenmodes. Thus, no direct
coupling of the structure and fluid solvers is needed.

The test case is a hydrofoil for an ocean-going cata-
maran, with a chord c = 0.90m and span of about
2.2m, simulated at 10m/s. The foil has never been con-
structed so there are no experiments available. Since
no structure was ever designed, the foil is considered
to be made of a homogeneous isotropic material with a

Figure 17: Deformed (red) and rigid (green) shape of
the META hydrofoil.

Young’s modulus of 60GPa. This simplification affects
only the results, not the simulation procedure.

The fluid-structure interaction leads to significant de-
formation, as shown in figure 17 where the shape is
compared with the undeformed foil shape. Both have
been simulated with the same hydrofoil protocol. The
resistance (figure 18) shows smooth convergence and
similar behaviour for the rigid and flexible foils, with
good uncertainty estimations. The uncertainty on the
finest (23M cell) grid is about 1.6%. All deformed
cases have about 200k more cells than the equivalent
rigid case; this is likely because the deformed mesh is
not perfectly aligned with the free surface, so it re-
quires more isotropic cells to capture the surface.

Finally, figure 19 shows the difference in the drag be-
tween the flexible and rigid case. Although the conver-
gence of this difference is not monotonic, the predic-
tion is acceptable even on the coarsest grids. The more
general conclusion is that the simulations allow to con-
sistently determine the difference in performance be-
tween very similar geometries, even on coarse grids.



Figure 18: Convergence of the resistance for the rigid
and flexible hydrofoils, with uncertainty.

Figure 19: Convergence of the difference in resistance
between the rigid and flexible hydrofoil.

This is crucial for automatic shape optimisation and
it demonstrates the reliability of the simulations.

7. CONCLUSIONS AND DISCUSSION

In preparing the industrial application of combined
Hessian-based and free-surface mesh adaptation with
ISIS-CFD, the first question is if such computations
are possible today. For the adaptation algorithm it-
self, this is probably true since mesh adaptation is
already in industrial use. The mesh deformation is
a standard industrial technique in ISIS-CFD and has
long since proven itself. This means that the general-
ity and robustness of the user guidelines are the cru-
cial issue. For calm-water resistance of displacement
hulls, the tests in [12] show that the protocol can be
applied unmodified to hull shapes ranging from slen-
der to full, and to speeds from slow steaming to mili-
tary top speeds. Furthermore, the protocol is applied
successfully to body-force propeller models, a case for
which it was never intended. Larger variations of the
test case, such as fast planing hulls, were not tried.
However, the hydrofoil test shows that a very similar
protocol is adequate for these radically different ge-
ometries. Most calm-water cases are probably close
enough to what was tested here, that even if the pro-
tocols in section 5 have to be adapted for them, it is

likely that suitable protocols exist. Thus, routine mesh
adaptation for resistance simulations appears realistic
today.

Does the proposed mesh adaptation offer advantages
with respect to existing meshing approaches? The
tests show that adapted meshes provide excellent grid
convergence, often obtaining 1% difference with the
converged resistance on grids of about 1M cells, which
is much faster than on non-adapted meshes. Further-
more, mesh adaptation makes the simulation more re-
liable, since it automatically ensures that the mesh
is suitable for the flow. While the correspondence of
the resistance with experiments is often worse than
for non-adapted meshes, the differences were traced
to problems with the non-adapted meshes, such as in-
sufficient resolution of breaking waves. Thus, this is
not a numerical problem but a modelling issue. Fi-
nally, the grid convergence in all cases presented here
is smooth, which leads to reliable convergence-based
uncertainty estimations; this was also observed by [15]
for mono-fluid flows and by [26] for wings and aircraft
using compressible flow and tetrahedral mesh adapta-
tion. Thus, the good uncertainty estimations are likely
a property of the metric-based refinement. This is an
important advantage for unstructured grids.

Open questions remain and the simulation protocol
will probably be improved and extended. Still, mesh
adaptation has proved its generality and the poten-
tial advantages are obvious, so it appears ready for
industrial use. Furthermore, hydrofoil simulation in
particular has the advantage of being a relatively new
application. Many naval architects do not have estab-
lished simulation practices and may therefore be more
likely to adopt mesh adaptation as a standard practice.
Thus, the hydrofoil may be the break-through appli-
cation which will launch Hessian-based adaptation for
hydrodynamic simulation. The future will tell.

ACKNOWLEDGEMENTS

We thank the Institute Carnot MERS (ORUP project)
and the research directorate of Centrale Nantes for
funding the hydrofoil investigation.

References

[1] Slotnick J., Khodadoust A., Alonso J., Darmofal
D., Gropp W., Lurie E., Mavriplis D. “CFD Vi-
sion 2030 Study: A Path to Revolutionary Com-
putational Aerosciences.” Tech. Rep. NASA/CR–
2014-218178, NASA, 2014

[2] Balan A., Park M., Anderson K., Kamenetskiy
D., Krakos J., Michal T., Alauzet F. “Verifica-
tion of Anisotropic Mesh Adaptation for Turbu-



lent Simulations over ONERA M6 Wing.” AIAA
J, vol. 58, 1–16, 2020

[3] Park M., Balan A., Clerici F., Alauzet F., Loseille
A., Kamenetskiy D., Krakos J., Michal T., Gal-
braith M. “Verification of Viscous Goal-Based
Anisotropic Mesh Adaptation.” AIAA SciTech
Forum. Anaheim, CA, 11-21 January 2021

[4] Mercier R., Benard P., Lartigue G., Moureau
V. “Dynamic adaptation of tetrahedral-based
meshes for the simulation of turbulent premixed
flames.” 17th International Conference on Nu-
merical Combustion. Aachen, Germany, 2019

[5] Nardoni C., Bordeu F., Cortia J. “Body-
fitted discretization, accurate interface tracking
and geometrical constraints in topology optimiza-
tion.” Adaptive Modelling and Simulation 2019.
El Campello, Spain, 2019

[6] Eskilsson C., Bensow R.E. “A mesh adaptive
compressible Euler model for the simulation of
cavitating flow.” MARINE 2011. Lisbon, Portu-
gal, 2012

[7] Wang Z., Li L., Cheng H., Ji B. “Numerical inves-
tigation of unsteady cloud cavitating flow around
the Clark-Y hydrofoil with adaptive mesh refine-
ment using OpenFOAM.” Ocean Eng, vol. 206,
107349, 2020

[8] Windt J., Klaij C. “Adaptive mesh refinement in
MARIN’s viscous flow solver ReFRESCO: imple-
mentation and application to steady flow.” MA-
RINE 2011. Lisbon, Portugal, 2012

[9] Yilmaz N., Atlar M., Khorasanchi M. “An
improved Mesh Adaption and Refinement ap-
proach to Cavitation Simulation (MARCS) of
propellers.” Ocean Eng, vol. 171, 139–150, 2019

[10] Hildebrandt T., Reyer M. “Business and techni-
cal adaptivity in marine CFD simulations: Bridg-
ing the gap.” COMPIT ’15, pp. 394–405. Ul-
richshusen, Germany, 2015

[11] Yvin C., Muller P. “Tip vortex cavitation incep-
tion without a cavitation model.” 19th Numeri-
cal Towing Tank Symposium. St Pierre d’Oléron,
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